1
|
Vasudeva R, Sales K, Gage MJG, Hosken DJ. Inbreeding depression in male reproductive traits. J Evol Biol 2025; 38:504-515. [PMID: 39976446 DOI: 10.1093/jeb/voaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/10/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Inbreeding frequently leads to inbreeding depression, a general reduction in trait values and loss of fitness, and it appears that some sexually selected traits are especially sensitive to inbreeding, but sperm may be an exception. Additionally, because inbreeding depression is always in the direction of low fitness, it can reveal the direction of past selection acting on trait values. Here, we experimentally manipulate levels of inbreeding in a beetle (Tribolium castaneum) by full-sib mating for six generations. This breeding design allowed us to track the effects of increasing homozygosity on male reproductive traits (sperm and testes size), male size and lifespan, and reproductive output within inbred families, and on the heritability of these traits. All traits measured showed significant inbreeding depression and heritabilities tended to increase with inbreeding. Since inbreeding resulted in shorter sperm and smaller testes, it suggests that longer sperm and larger testes confer higher fitness in this beetle.
Collapse
Affiliation(s)
- Ramakrishnan Vasudeva
- Faculty of Environment, Science and Economy, Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9EZ, United Kingdom
| | - Kris Sales
- IFOS, Forest Research, Farnham GU10 4LH, United Kingdom
| | - Matthew J G Gage
- Faculty of Environment, Science and Economy, Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9EZ, United Kingdom
| | - David J Hosken
- Faculty of Environment, Science and Economy, Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9EZ, United Kingdom
| |
Collapse
|
2
|
Tanabe R, Akiyama N, Sato N. In the presence of rivals, males allocate less ejaculate per mating in Japanese pygmy squid with female sperm rejection. J Evol Biol 2025; 38:284-288. [PMID: 39302167 DOI: 10.1093/jeb/voae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
When mating is promiscuous, the ejaculate volume allocated to each female is expected (intuitively) to be linked with the presence and number of rival males. Previous theories have indicated that, in the absence of rival males, males will allocate the minimum ejaculate volume sufficient for fertilization of all available oocytes. However, it is unclear if this ejaculation strategy is still effective where females have a mechanism to remove sperm after copulation ("female sperm rejection"). In the Japanese pygmy squid, Idiosepius paradoxus, female sperm rejection was observed to occur frequently, but males were able to increase the remaining sperm volume available for fertilization, suggesting that there is no significant impact of female sperm rejection on male ejaculation strategy. However, males decreased ejaculate volume in the presence of rival males and increased it in their absence, a pattern counterintuitive to predictions from previous theories. Females reject sperm at every copulation, so after copulation, the amount of a given male's sperm remaining with the female may decrease after each subsequent rival copulates with the female. Perhaps in this species, the presence of rivals signals the risk of further sperm rejection, so males choose to conserve their resources and move on.
Collapse
Affiliation(s)
- Ryohei Tanabe
- Graduate School of Science and Technology, Tokai University, Shizuoka, Japan
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan
| | - Nobuhiko Akiyama
- Department of Fisheries, School of Marine Science and Technology, Tokai University, Shizuoka, Japan
| | - Noriyosi Sato
- Department of Fisheries, School of Marine Science and Technology, Tokai University, Shizuoka, Japan
| |
Collapse
|
3
|
Santhosh S, Ebert D, Janicke T. Sperm competition favours intermediate sperm size in a hermaphrodite1. J Evol Biol 2024; 37:829-838. [PMID: 38738700 DOI: 10.1093/jeb/voae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Sperm competition is a potent mechanism of postcopulatory sexual selection that has been found to shape reproductive morphologies and behaviours in promiscuous animals. Especially sperm size has been argued to evolve in response to sperm competition through its effect on sperm longevity, sperm motility, the ability to displace competing sperm, and ultimately fertilization success. Additionally, sperm size has been observed to co-evolve with female reproductive morphology. Theoretical work predicts that sperm competition may select for longer sperm but may also favour shorter sperm if sperm size trades-off with number. In this study, we studied the relationship between sperm size and postmating success in the free-living flatworm, Macrostomum lignano. Specifically, we used inbred isolines of M. lignano that varied in sperm size to investigate how sperm size translated into the ability of worms to transfer and deposit sperm in a mating partner. Our results revealed a hump-shaped relationship with individuals producing sperm of intermediate size having the highest sperm competitiveness. This finding broadens our understanding of the evolution of sperm morphology by providing empirical support for stabilizing selection on sperm size under sperm competition.
Collapse
Affiliation(s)
- Santhosh Santhosh
- Department of Environmental Sciences, Zoology, University of Basel, CH-4 4051 Basel, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, CH-4 4051 Basel, Switzerland
| | - Tim Janicke
- Centre d'Ecologie Fonctionelle et Evolutive, Univ. Montpellier, CNRS, EPHE, IRD, 34293 Montpellier Cedex 05, France
| |
Collapse
|
4
|
Sherman CDH, Careau V, Gasparini C, Weston KJ, Evans JP. Population density effects on gamete traits and fertilisation dynamics under varying sperm environments in mussels. Ecol Evol 2024; 14:e11338. [PMID: 38698926 PMCID: PMC11063781 DOI: 10.1002/ece3.11338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Gamete traits can vary widely among species, populations and individuals, influencing fertilisation dynamics and overall reproductive fitness. Sexual selection can play an important role in determining the evolution of gamete traits with local environmental conditions determining the strength and direction of sexual selection. Here, we test for signatures of post-mating selection on gamete traits in relation to population density, and possible interactive effects of population density and sperm concentration on sperm motility and fertilisation rates among natural populations of mussels. Our study shows that males from high-density populations produce smaller sperm compared with males from low-density populations, but we detected no effect of population density on egg size. Our results also reveal that females from low-density populations tended to exhibit lower fertilisation rates across a range of sperm concentrations, although this became less important as sperm concentration increased. Variances in fertilisation success were higher for females than males and the effect of gamete compatibility between males and females increases as sperm concentrations increase. These results suggest that local population density can influence gamete traits and fertilisation dynamics but also highlight the importance of phenotypic plasticity in governing sperm-egg interactions in a highly dynamic selective environment.
Collapse
Affiliation(s)
- Craig D. H. Sherman
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Vincent Careau
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | | | - Kim J. Weston
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Jonathan P. Evans
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
5
|
Marie-Orleach L, Hall MD, Schärer L. Contrasting the form and strength of pre- and postcopulatory sexual selection in a flatworm. Evolution 2024; 78:511-525. [PMID: 38149973 DOI: 10.1093/evolut/qpad227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Sexual traits may be selected during multiple consecutive episodes of selection, occurring before, during, or after copulation. The overall strength and form of selection acting on traits may thus be determined by how selection (co-)varies along different episodes. However, it is challenging to measure pre- and postcopulatory phenotypic traits alongside variation in fitness components at each different episode. Here, we used a transgenic line of the transparent flatworm Macrostomum lignano expressing green fluorescent protein (GFP) in all cell types, including sperm cells, enabling in vivo sperm tracking. We assessed the mating success, sperm-transfer efficiency, and sperm fertilizing efficiency of GFP(+) focal worms in which we measured 13 morphological traits. We found linear selection on sperm production rate arising from pre- and postcopulatory components and on copulatory organ shape arising from sperm fertilizing efficiency. We further found nonlinear (mostly concave) selection on combinations of copulatory organ and sperm morphology traits arising mostly from sperm-transfer efficiency and sperm fertilizing efficiency. Our study provides a fine-scale quantification of sexual selection, showing that both the form and strength of selection can change across fitness components. Quantifying how sexual selection builds up along episodes of selection allows us to better understand the evolution of sexually selected traits.
Collapse
Affiliation(s)
- Lucas Marie-Orleach
- Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland
- CNRS, Université de Rennes 1, ECOBIO (Écosystèmes, Biodiversité, Évolution)-UMR 6553, Rennes, France
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Degueldre F, Aron S. Sperm competition increases sperm production and quality in Cataglyphis desert ants. Proc Biol Sci 2023; 290:20230216. [PMID: 36987648 PMCID: PMC10050944 DOI: 10.1098/rspb.2023.0216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Sperm competition is a pervasive evolutionary force that shapes sperm traits to maximize fertilization success. Indeed, it has been shown to increase sperm production in both vertebrates and invertebrates. However, sperm production is energetically costly, which may result in trade-offs among sperm traits. In eusocial hymenopterans, such as ants, mating dynamics impose unique selective pressures on ejaculate. Males are sperm limited: they enter adulthood with a fixed amount of sperm that will not be renewed. We explored whether sperm competition intensity was associated with sperm quantity and quality (i.e. sperm viability and DNA fragmentation) in nine Cataglyphis desert ants. Our results provide phylogenetically robust evidence that sperm competition is positively correlated with sperm production and sperm viability. However, it was unrelated to sperm DNA integrity, indicating the absence of a trade-off involving this trait. These findings underscore that sperm competition may strongly mould sperm traits and drive reproductive performance in eusocial Hymenoptera.
Collapse
Affiliation(s)
- Félicien Degueldre
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Brussels B-1050, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Brussels B-1050, Belgium
| |
Collapse
|
7
|
Matzke M, Rossi A, Tuni C. Pre- and post-copulatory sexual selection increase offspring quality but impose survival costs to female field crickets. J Evol Biol 2023; 36:296-308. [PMID: 36484616 DOI: 10.1111/jeb.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022]
Abstract
Whether sexual selection increases or decreases fitness is under ongoing debate. Sexual selection operates before and after mating. Yet, the effects of each episode of selection on individual reproductive success remain largely unexplored. We ask how disentangled pre- and post-copulatory sexual selection contribute to fitness of field crickets Gryllus bimaculatus. Treatments allowed exclusively for (i) pre-copulatory selection, with males fighting and courting one female, and the resulting pair breeding monogamously, (ii) post-copulatory selection, with females mating consecutively to multiple males and (iii) relaxed selection, with enforced pair monogamy. While standardizing the number of matings, we estimated a number of fitness traits across treatments and show that females experiencing sexual selection were more likely to reproduce, their offspring hatched sooner, developed faster and had higher body mass at adulthood, but females suffered survival costs. Interestingly, we found no differences in fitness of females or their offspring from pre- and post-copulatory sexual selection treatments. Our findings highlight the potential for sexual selection in enhancing indirect female fitness while concurrently imposing direct survival costs. By potentially outweighing these costs, increased offspring quality could lead to beneficial population-level consequences of sexual selection.
Collapse
Affiliation(s)
| | - Aurora Rossi
- Ludwig Maximilian University of Munich, Munich, Germany
| | - Cristina Tuni
- Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
8
|
Vrech DE, Peretti AV, Prendini L, Mattoni CI. Bundles of Sperm: Structural Diversity in Scorpion Sperm Packages Illuminates Evolution of Insemination in an Ancient Lineage. AMERICAN MUSEUM NOVITATES 2022. [DOI: 10.1206/3993.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David E. Vrech
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal, CONICET – FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo V. Peretti
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal, CONICET – FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lorenzo Prendini
- Arachnology Lab and Scorpion Systematics Research Group, Division of Invertebrate Zoology, American Museum of Natural History, New York
| | - Camilo I. Mattoni
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal, CONICET – FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
9
|
Laugen AT, Hosken DJ, Reinhold K, Schwarzenbach GA, Hoeck PEA, Bussière LF, Blanckenhorn WU, Lüpold S. Sperm competition in yellow dung flies: No consistent effect of sperm size. J Evol Biol 2022; 35:1309-1318. [PMID: 35972882 DOI: 10.1111/jeb.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023]
Abstract
The male competition for fertilization that results from female multiple mating promotes the evolution of increased sperm numbers and can impact sperm morphology, with theory predicting that longer sperm can at times be advantageous during sperm competition. If so, males with longer sperm should sire more offspring than competitors with shorter sperm. Few studies have directly tested this prediction, and findings are inconsistent. Here we assessed whether longer sperm provide a competitive advantage in the yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae). Initially, we let brothers with different temperature-mediated mean sperm lengths compete - thus minimizing confounding effects of genetic background - and found no clear advantage of longer sperm. We then used flies from lines subjected to bidirectional selection on phenoloxidase activity that had shown correlated evolutionary responses in sperm and female spermathecal duct lengths. This experiment also yielded no main effect of sperm size on siring success. Instead, there was a trend for a shorter-sperm advantage, but only when competing in females with longer spermathecal ducts. Our data corroborated many previously reported findings (last-male precedence, effects of copula duration and body size), suggesting our failure to find sperm size effects is not inherently due to our experimental protocols. We conclude that longer sperm are not competitively superior in yellow dung flies under most circumstances, and that, consistent with previous work, in this species competitive fertilization success is primarily determined by the relative numbers of sperm competing.
Collapse
Affiliation(s)
- Ane T Laugen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - David J Hosken
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Centre for Ecology and Conservation, University of Exeter in Cornwall, Penryn, UK
| | - Klaus Reinhold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Evolutionsbiologie, Universität Bielefeld, Bielefeld, Germany
| | - Gioia A Schwarzenbach
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Paquita E A Hoeck
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Luc F Bussière
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Biology and Environmental Sciences, University of Gothenburg and Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| |
Collapse
|
10
|
Tonnabel J, Cosette P, Lehner A, Mollet JC, Amine Ben Mlouka M, Grladinovic L, David P, Pannell JR. Rapid evolution of pollen and pistil traits as a response to sexual selection in the post-pollination phase of mating. Curr Biol 2022; 32:4465-4472.e6. [PMID: 36027911 DOI: 10.1016/j.cub.2022.07.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/26/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Sexual selection is the basis of some of the most striking phenotypic variation in nature.1,2 In animals, sexual selection in males can act on traits that improve access to mates prior to copulation,3-8 but also on sperm traits filtered by sperm competition,9-14 or female choice expressed simply by the morphology and physiology of genital tracts.14-16 Although long overlooked as a mode of selection on plant traits, sexual selection should act on land plants too because they are anisogamous: males produce more, and smaller, gametes than females.17-19 Numerical asymmetry in gamete production is thought to play a central role in selection on traits that affect pollen transfer to mates,20,21 but very little is known about how pollen competition or cryptic female choice might affect the evolution of traits expressed after pollination.22,23 Here, we report the divergence of pollen and pistil traits of the dioecious wind-pollinated annual herb Mercurialis annua during evolution over three generations between populations at low versus high plant density, corresponding to low versus higher levels of polyandry;24 we expected selection under higher polyandry to strengthen competition among pollen donors for fertilizing ovules. We found that populations at high density evolved faster-growing pollen tubes (an equivalent of greater sperm velocity), greater expression of pollen proteins involved in pollen growth, and larger stigmas (a trait likely enhancing the number of pollen donors and thus competition for ovules). Our results identify the post-pollination phase of plant mating as an important arena for the action of sexual selection.
Collapse
Affiliation(s)
- Jeanne Tonnabel
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; CEFE, CNRS, University of Montpellier, EPHE, IRD, Montpellier, France; ISEM, University Montpellier, CNRS, IRD, Montpellier, France.
| | - Pascal Cosette
- Normandie University, UNIROUEN UMR6270 CNRS, PISSARO Proteomic Facility, Carnot I2C, 76130 Mont Saint Aigan, France
| | - Arnaud Lehner
- Normandie University, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, SFR 4377 NORVEGE, IRIB, Carnot I2C, 76000 Rouen, France
| | - Jean-Claude Mollet
- Normandie University, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, SFR 4377 NORVEGE, IRIB, Carnot I2C, 76000 Rouen, France
| | - Mohamed Amine Ben Mlouka
- Normandie University, UNIROUEN UMR6270 CNRS, PISSARO Proteomic Facility, Carnot I2C, 76130 Mont Saint Aigan, France
| | - Lucija Grladinovic
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Patrice David
- CEFE, CNRS, University of Montpellier, EPHE, IRD, Montpellier, France
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Sperm oxidative status varies with the level of sperm competition and affects male reproductive success. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Vasudeva R, Graziano M, Pointer M, Cole B, West G. Obituary: Professor Matthew James George Gage (1967-2022). Evolution 2022. [PMID: 35421257 DOI: 10.1111/evo.14487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ramakrishnan Vasudeva
- University of East Anglia, School of Biological Sciences, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Marco Graziano
- University of East Anglia, School of Biological Sciences, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Michael Pointer
- University of East Anglia, School of Biological Sciences, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Benjamin Cole
- University of East Anglia, School of Biological Sciences, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - George West
- University of East Anglia, School of Biological Sciences, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
13
|
Hosken D, Wedell N, Stockley P. Obituary in memoriam of Professor Matthew J.G. Gage. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Górski K, Kondracki S, Iwanina M, Kordan W, Fraser L. Effects of breed and ejaculate volume on sperm morphology and semen parameters of boars. Anim Sci J 2021; 92:e13629. [PMID: 34477292 DOI: 10.1111/asj.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
The aim of the study was to determine the relation between the semen quality, frequency of sperm defects, sperm dimensions and shape, and the ejaculate volume of Large White and Landrace boars. A total of 648 ejaculates collected from 31 Large White and 30 Landrace boars were divided into three groups according to the criterion of the ejaculate volume. In this study Landrace boars produced ejaculates with higher volume, sperm concentration, and total numbers of spermatozoa than Large White boars. Landrace boars also showed a lower frequency of sperm with morphological abnormalities (P < 0.05). Landrace boars sperm had larger heads, which were by 0.15 μm longer, and by a larger perimeter and area (P < 0.05). Landrace boar spermatozoa also had a longer flagellum and were generally larger and by 2.07 μm longer than Large White boar sperm (P < 0.05). Significant differences were also found in the shape of sperm of the two breeds (P < 0.05). Landrace boars sperm had more elongated heads, and the ratio of head size to flagellum length was lower than in Large White boars sperm (P < 0.05). Sperm from ejaculates with low volume had a shorter flagellum and a greater head length/flagellum length ratio than sperm from medium- and high-volume ejaculates (P < 0.05).
Collapse
Affiliation(s)
- Krzysztof Górski
- Institute of Animal Production and Fisheries, Faculty of Agrobioengineering and Animal Husbandry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Stanisław Kondracki
- Institute of Animal Production and Fisheries, Faculty of Agrobioengineering and Animal Husbandry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Maria Iwanina
- Institute of Animal Production and Fisheries, Faculty of Agrobioengineering and Animal Husbandry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Władysław Kordan
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Leyland Fraser
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
15
|
Vasudeva R, Deeming DC, Eady PE. Age‐specific sensitivity of sperm length and testes size to developmental temperature in the bruchid beetle. J Zool (1987) 2021. [DOI: 10.1111/jzo.12884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- R. Vasudeva
- School of Biological Sciences Norwich Research Park University of East Anglia Norwich UK
| | - D. C. Deeming
- School of Life Sciences University of Lincoln Lincoln Lincolnshire UK
| | - P. E. Eady
- School of Life Sciences University of Lincoln Lincoln Lincolnshire UK
| |
Collapse
|
16
|
Reuland C, Simmons LW, Lüpold S, Fitzpatrick JL. Weapons Evolve Faster Than Sperm in Bovids and Cervids. Cells 2021; 10:cells10051062. [PMID: 33947050 PMCID: PMC8145498 DOI: 10.3390/cells10051062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
In polyandrous species, males face reproductive competition both before and after mating. Sexual selection thus shapes the evolution of both pre- and postcopulatory traits, creating competing demands on resource allocation to different reproductive episodes. Traits subject to strong selection exhibit accelerated rates of phenotypic divergence, and examining evolutionary rates may inform us about the relative importance and potential fitness consequences of investing in traits under either pre- or postcopulatory sexual selection. Here, we used a comparative approach to assess evolutionary rates of key competitive traits in two artiodactyl families, bovids (family Bovidae) and cervids (family Cervidae), where male–male competition can occur before and after mating. We quantified and compared evolutionary rates of male weaponry (horns and antlers), body size/mass, testes mass, and sperm morphometrics. We found that weapons evolve faster than sperm dimensions. In contrast, testes and body mass evolve at similar rates. These results suggest strong, but differential, selection on both pre- and postcopulatory traits in bovids and cervids. Furthermore, we documented distinct evolutionary rates among different sperm components, with sperm head and midpiece evolving faster than the flagellum. Finally, we demonstrate that, despite considerable differences in weapon development between bovids and cervids, the overall evolutionary patterns between these families were broadly consistent.
Collapse
Affiliation(s)
- Charel Reuland
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 106 91 Stockholm, Sweden;
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia;
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - John L. Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 106 91 Stockholm, Sweden;
- Correspondence:
| |
Collapse
|
17
|
Demont M, Ward PI, Blanckenhorn WU, Lüpold S, Martin OY, Bussière LF. How biases in sperm storage relate to sperm use during oviposition in female yellow dung flies. Behav Ecol 2021. [DOI: 10.1093/beheco/arab026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Precise mechanisms underlying sperm storage and utilization are largely unknown, and data directly linking stored sperm to paternity remain scarce. We used competitive microsatellite PCR to study the effects of female morphology, copula duration and oviposition on the proportion of stored sperm provided by the second of two copulating males (S2) in Scathophaga stercoraria (Diptera: Scathophagidae), the classic model for sperm competition studies. We genotyped all offspring from potentially mixed-paternity clutches to establish the relationship between a second male’s stored sperm (S2) and paternity success (P2). We found consistent skew in sperm storage across the three female spermathecae, with relatively more second-male sperm stored in the singlet spermatheca than in the doublet spermathecae. S2 generally decreased with increasing spermathecal size, consistent with either heightened first-male storage in larger spermathecae, or less efficient sperm displacement in them. Additionally, copula duration and several two-way interactions influenced S2, highlighting the complexity of postcopulatory processes and sperm storage. Importantly, S2 and P2 were strongly correlated. Manipulation of the timing of oviposition strongly influenced observed sperm-storage patterns, with higher S2 when females laid no eggs before being sacrificed than when they oviposited between copulations, an observation consistent with adaptive plasticity in insemination. Our results identified multiple factors influencing sperm storage, nevertheless suggesting that the proportion of stored sperm is strongly linked to paternity (i.e., a fair raffle). Even more detailed data in this vein are needed to evaluate the general importance of sperm competition relative to cryptic female choice in postcopulatory sexual selection.
Collapse
Affiliation(s)
- Marco Demont
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel Winterthurerstrasse 190, Zurich, Switzerland
- Department of Biology and Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Paul I Ward
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel Winterthurerstrasse 190, Zurich, Switzerland
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel Winterthurerstrasse 190, Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel Winterthurerstrasse 190, Zurich, Switzerland
| | - Oliver Y Martin
- Department of Biology and Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Luc F Bussière
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel Winterthurerstrasse 190, Zurich, Switzerland
- Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, UK
- Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Lüpold S, de Boer RA, Evans JP, Tomkins JL, Fitzpatrick JL. How sperm competition shapes the evolution of testes and sperm: a meta-analysis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200064. [PMID: 33070733 DOI: 10.1098/rstb.2020.0064] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Females of many species mate with multiple males, thereby inciting competition among ejaculates from rival males for fertilization. In response to increasing sperm competition, males are predicted to enhance their investment in sperm production. This prediction is so widespread that testes size (correcting for body size) is commonly used as a proxy of sperm competition, even in the absence of any other information about a species' reproductive behaviour. By contrast, a debate about whether sperm competition selects for smaller or larger sperm has persisted for nearly three decades, with empirical studies demonstrating every possible response. Here, we synthesize nearly 40 years of sperm competition research in a meta-analytical framework to determine how the evolution of sperm number (i.e. testes size) and sperm size (i.e. sperm head, midpiece, flagellum and total length) is influenced by varying levels of sperm competition across species. Our findings support the long-held assumption that higher levels of sperm competition are associated with relatively larger testes. We also find clear evidence that sperm competition is associated with increases in all components of sperm length. We discuss these results in the context of different theoretical predictions and general patterns in the breeding biology and selective environment of sperm. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Raïssa A de Boer
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, Stockholm 10691, Sweden
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Joseph L Tomkins
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Crawley, Western Australia 6009, Australia
| | - John L Fitzpatrick
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, Stockholm 10691, Sweden
| |
Collapse
|
19
|
Bredlau JP, El-Sabrout AM, Bressac C. Reproductive context of extremely short sperm in the parasitic wasp Cotesia congregata (Hymenoptera: Braconidae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Among adaptive traits under sexual selection, the length of spermatozoa shows high interspecific variation. In insects, extremes exist for both short and long sperm. The spermatozoa of the endoparasitic wasp Cotesia congregata (Say) are the shortest flagellated sperm described in animals, 6.6 µm in length. By comparison, the sperm of Drosophila bifurca are almost 6000 times longer. Thus, C. congregata has the potential to shed light on the selection pressures that drive variation in sperm length in relation to their production and use. The reproductive organs, sperm counts, controlled oviposition and sex ratios were investigated. The testes showed stratified differentiation stages of spermatogenesis, and sperm counts revealed continuous spermatogenesis in the late pupal stage. The small female spermatheca stored ~1000 sperm, resulting in an extremely high sperm concentration. The number of progeny per brood decreased over time until depletion of eggs. Females produced up to 370 daughters, corresponding to the effective use of 34% of the average sperm stock. Haploid males made up a greater proportion of broods in later parasitisms. Sperm miniaturization may be an adaptation to transfer increased quantities for the entire reproductive life of females in the absence of sperm competition but in the reduced space offered by the spermatheca.
Collapse
Affiliation(s)
- Justin P Bredlau
- Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Ahmed M El-Sabrout
- Research Institute for Insect Biology, UMR CNRS 7261, University of Tours, Tours, France
- Department of Applied Entomology and Zoology, Faculty of Agriculture (El-shatby), Alexandria University, Alexandria, Egypt
| | - Christophe Bressac
- Research Institute for Insect Biology, UMR CNRS 7261, University of Tours, Tours, France
| |
Collapse
|
20
|
Lemaître JF, Gaillard JM, Ramm SA. The hidden ageing costs of sperm competition. Ecol Lett 2020; 23:1573-1588. [PMID: 32906225 DOI: 10.1111/ele.13593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
Ageing and sexual selection are intimately linked. There is by now compelling evidence from studies performed across diverse organisms that males allocating resources to mating competition incur substantial physiological costs, ultimately increasing ageing. However, although insightful, we argue here that to date these studies cover only part of the relationship linking sexual selection and ageing. Crucially, allocation to traits important in post-copulatory sexual selection, that is sperm competition, has been largely ignored. As we demonstrate, such allocation could potentially explain much diversity in male and female ageing patterns observed both within and among species. We first review how allocation to sperm competition traits such as sperm and seminal fluid production depends on the quality of resources available to males and can be associated with a wide range of deleterious effects affecting both somatic tissues and the germline, and thus modulate ageing in both survival and reproductive terms. We further hypothesise that common biological features such as plasticity, prudent sperm allocation and seasonality of ejaculate traits might have evolved as counter-adaptations to limit the ageing costs of sperm competition. Finally, we discuss the implications of these emerging ageing costs of sperm competition for current research on the evolutionary ecology of ageing.
Collapse
Affiliation(s)
- Jean-François Lemaître
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, F-69622, France
| | - Jean-Michel Gaillard
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, F-69622, France
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| |
Collapse
|
21
|
Sasson DA, Johnson SL, Smith MD, Brockmann HJ. Seasonal Variation in Reproduction of Horseshoe Crabs ( Limulus polyphemus) from the Gulf Coast of Florida. THE BIOLOGICAL BULLETIN 2020; 239:24-39. [PMID: 32812812 DOI: 10.1086/709876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
AbstractThe timing of reproduction is often governed by environmental variables, such as temperature or rainfall. Understanding how environmental variables affect mating dynamics is necessary to predict how systems and populations may adapt to changing environmental conditions and is crucial for management of threatened species. The American horseshoe crab (Limulus polyphemus) ranges from the Yucatan to Maine in distinct populations that differ in their timing of reproduction; while most populations have only one breeding period during the spring, some southern populations have two breeding periods. Here we discuss seasonal patterns of reproduction in a Florida Gulf coast population where horseshoe crabs have two periods of breeding: one in the spring and another in the fall. We used environmental measurements, spawning surveys, mark-recapture, and measurements of adult traits and spawning behavior to compare reproductive parameters between the two spawning seasons over three years. We then evaluated whether environmental conditions affect fall and spring horseshoe crab nesting patterns similarly and whether fall and spring horseshoe crabs should be considered two separate populations. We found significant differences in environmental conditions across seasons and in a wide variety of horseshoe crab traits and nesting parameters. Furthermore, environmental conditions affected nesting behaviors of fall and spring horseshoe crabs differently. However, some individuals spawn during both seasons, suggesting that trait differences may be attributable to environmental effects during development or seasonal plasticity, rather than genetic differences, although further study is necessary. Finally, our results suggest that management practices should be tailored to each population, because environmental conditions may have different effects even on genetically similar groups.
Collapse
|
22
|
Vuarin P, Hingrat Y, Lesobre L, Jalme MS, Lacroix F, Sorci G. Sperm competition accentuates selection on ejaculate attributes. Biol Lett 2019; 15:20180889. [PMID: 30890070 DOI: 10.1098/rsbl.2018.0889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ejaculate attributes are important factors driving the probability of fertilizing eggs. When females mate with several males, competition between sperm to fertilize eggs should accentuate selection on ejaculate attributes. We tested this hypothesis in the North African houbara bustard ( Chlamydotis undulata undulata) by comparing the strength of selection acting on two ejaculate attributes when sperm from single males or sperm from different males were used for insemination. In agreement with the prediction, we found that selection on ejaculate attributes was stronger when sperm of different males competed for egg fertilization. These findings provide the first direct comparison of the strength of selection acting on ejaculate attributes under competitive and non-competitive fertilizations, confirming that sperm competition is a major selective force driving the evolution of ejaculate characteristics.
Collapse
Affiliation(s)
- Pauline Vuarin
- 1 Emirates Center for Wildlife Propagation , 33250 Missour , Morocco.,2 Biogéosciences, UMR 6282 CNRS, Université de Bourgogne Franche-Comté , 21000 Dijon , France
| | - Yves Hingrat
- 3 Reneco International Wildlife Consultants LLC , PO Box 61741, Abu Dhabi , United Arab Emirates
| | - Loïc Lesobre
- 3 Reneco International Wildlife Consultants LLC , PO Box 61741, Abu Dhabi , United Arab Emirates
| | - Michel Saint Jalme
- 4 Centre d'Ecologie et des Sciences de la Conservation, UMR 7204 MNHN CNRS-UPMC, Museum National d'Histoire Naturelle , 75005 Paris , France
| | - Frédéric Lacroix
- 3 Reneco International Wildlife Consultants LLC , PO Box 61741, Abu Dhabi , United Arab Emirates
| | - Gabriele Sorci
- 2 Biogéosciences, UMR 6282 CNRS, Université de Bourgogne Franche-Comté , 21000 Dijon , France
| |
Collapse
|
23
|
Wysokińska A, Kondracki S. Heterosis for morphometric characteristics of sperm cells from Duroc x Pietrain crossbred boars. Anim Reprod Sci 2019; 211:106217. [DOI: 10.1016/j.anireprosci.2019.106217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/12/2019] [Accepted: 10/23/2019] [Indexed: 10/25/2022]
|
24
|
Patlar B, Ramm SA. Genotype‐by‐environment interactions for seminal fluid expression and sperm competitive ability. J Evol Biol 2019; 33:225-236. [DOI: 10.1111/jeb.13568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Bahar Patlar
- Evolutionary Biology Bielefeld University Bielefeld Germany
| | - Steven A. Ramm
- Evolutionary Biology Bielefeld University Bielefeld Germany
| |
Collapse
|
25
|
Tourmente M, Archer CR, Hosken DJ. Complex interactions between sperm viability and female fertility. Sci Rep 2019; 9:15366. [PMID: 31653962 PMCID: PMC6814814 DOI: 10.1038/s41598-019-51672-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/03/2019] [Indexed: 12/03/2022] Open
Abstract
Sperm viability is a major male fitness component, with higher sperm viability associated with enhanced sperm competitiveness. While many studies have focussed on sperm viability from the male fitness standpoint, its impact on female fitness is less clear. Here we used a panel of 32 isogenic Drosophila simulans lines to test for genetic variation in sperm viability (percentage of viable cells). We then tested whether sperm viability affected female fitness by mating females to males from low or high sperm viability genotypes. We found significant variation in sperm viability among genotypes, and consistent with this, sperm viability was highly repeatable within genotypes. Additionally, females mated to high sperm viability males laid more eggs in the first seven hours after mating, and produced more offspring in total. However, the early increase in oviposition did not result in more offspring in the 8 hours following mating, suggesting that mating with high sperm-viability genotypes leads to egg wastage for females shortly after copulation. Although mating with high sperm-viability males resulted in higher female fitness in the long term, high quality ejaculates would result in a short-term female fitness penalty, or at least lower realised fitness, potentially generating sexual conflict over optimal sperm viability.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom.
| | - C Ruth Archer
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - David J Hosken
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
26
|
Vrech D, Oviedo-Diego M, Olivero P, Peretti A. Successive matings produce opposite patterns on ejaculate volume and spermatozoa number in an ancient arthropod model with indirect sperm transfer. CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The production of spermatophore and ejaculate is energetically expensive for males. High mating rates may accelerate sperm depletion and progressively decrease the size of the ejaculates. Sperm competition can shape spermatozoon numbers according to different signals and cues such as number of potential rivals or female mating status. Factors influencing patterns of sperm allocation have been neglected in terrestrial arthropods that transfer sperm indirectly using a complex sclerotized spermatophore deposited on the soil. We used the Neotropical scorpion Bothriurus bonariensis (C.L. Koch, 1842) to examine ejaculate volume, spermatozoon number, and spermatophore’s trunk length along three successive matings and their relationship with body size of males. Males mated and deposited a pre-insemination spermatophore every 10 days. Ejaculate volume and trunk length decreased, whereas spermatozoon number increased over matings. Male body size positively influenced ejaculate volume and trunk length interacted with mating event. High mating rates may decrease ejaculate volume. Sperm competition may produce increased spermatozoon number. Ejaculates are more energetically expensive than spermatozoa and larger males may better face the energetic requirements. Larger spermatophore trunks contain bigger ejaculate volume in the first two mating events, but this relationship disappears at the third mating event. Our discussion focuses on the factors responsible for the observed patterns.
Collapse
Affiliation(s)
- D.E. Vrech
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba, Argentina
- Catedra de Diversidad Biológica II
| | - M.A. Oviedo-Diego
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba, Argentina
| | - P.A. Olivero
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba, Argentina
| | - A.V. Peretti
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba, Argentina
- Catedra de Diversidad Biológica II
| |
Collapse
|
27
|
IWANINA M, KONDRACKI S. Dependence of the frequency of sperm defects and dimensions on sperm motility in ejaculates of Polish Landrace boars. ROCZNIKI NAUKOWE POLSKIEGO TOWARZYSTWA ZOOTECHNICZNEGO 2019. [DOI: 10.5604/01.3001.0013.5067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An attempt was made to determine the dependence of the frequency of sperm defects and dimensions on sperm motility in ejaculates of Polish Landrace boars. The study was conducted on 393 ejaculates collected from 33 Polish Landrace boars. Ejaculates were grouped according to the percentage of sperm with progressive motility, distinguishing ejaculates in which the percentage of motile sperm was 70% and 80%. In each ejaculate, the frequency of morphological changes in the sperm was determined and morphometric measurements of the sperm were made. Ejaculates with a higher proportion of sperm with progressive motility were found to contain more sperm. The ejaculate volume and sperm concentration in the ejaculate were not found to be directly associated with sperm motility. The frequency of primary defects was linked to sperm motility. Ejaculates with higher sperm motility contained fewer sperm with primary defects. The frequency of minor morphological changes, however, shows no significant dependence on sperm motility in the ejaculate. The primary morphological sperm defects most often found in ejaculates are a proximal droplet and the Dag defect. Both of these morphological forms are more common in ejaculates with lower sperm motility. The most common secondary sperm defects include sperm with a simple bent tail, sperm with a free normal head, and sperm with a distal droplet. These defects were not found to depend on sperm motility in the ejaculate. Sperm cells in ejaculates with greater sperm motility had slightly larger dimensions than sperm in ejaculates with lower sperm motility. Ejaculates with higher sperm motility are preferable for use in practice, not only because more insemination portions can be prepared from them, but also due to the lower frequency of primary defects.
Collapse
Affiliation(s)
- Maria IWANINA
- Department of Animal Reproduction and Hygiene, University of Natural Sciences and Humanities, Siedlce, Poland
| | - Stanisław KONDRACKI
- Siedlce University of Natural Sciences and Humanities, Siedlce, Poland Department of Bioengineering and Animal Breeding
| |
Collapse
|
28
|
Macartney EL, Crean AJ, Nakagawa S, Bonduriansky R. Effects of nutrient limitation on sperm and seminal fluid: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2019; 94:1722-1739. [PMID: 31215758 DOI: 10.1111/brv.12524] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023]
Abstract
Theory predicts that costly sexual traits should be reduced when individuals are in poor condition (i.e. traits should exhibit condition-dependent expression). It is therefore widely expected that male ejaculate traits, such as sperm and seminal fluid, will exhibit reduced quantity and quality when dietary nutrients are limited. However, reported patterns of ejaculate condition dependence are highly variable, and there has been no comprehensive synthesis of underlying sources of such variation in condition-dependent responses. In particular, it remains unclear whether all ejaculate traits are equally sensitive to nutrient intake, and whether such traits are particularly sensitive to certain dietary nutrients, respond more strongly to nutrients during specific life stages, or respond more strongly in some taxonomic groups. We systematically reviewed these potential sources of variation through a meta-analysis across 50 species of arthropods and vertebrates (from 71 papers and 348 effect sizes). We found that overall, ejaculate traits are moderately reduced when dietary nutrients are limited, but we also detected substantial variation in responses. Seminal fluid quantity was strongly and consistently condition dependent, while sperm quantity was moderately condition dependent. By contrast, aspects of sperm quality (particularly sperm viability and morphology) were less consistently reduced under nutrient limitation. Ejaculate traits tended to respond in a condition-dependent manner to a wide range of dietary manipulations, especially to caloric and protein restriction. Finally, while all major taxa for which sufficient data exist (i.e. arthropods, mammals, fish) showed condition dependence of ejaculate traits, we detected some taxonomic differences in the life stage that is most sensitive to nutrient limitation, and in the degree of condition dependence of specific ejaculate traits. Together, these biologically relevant factors accounted for nearly 20% of the total variance in ejaculate responses to nutrient limitation. Interestingly, body size showed considerably stronger condition-dependent responses compared to ejaculate traits, suggesting that ejaculate trait expression may be strongly canalised to protect important reproductive functions, or that the cost of producing an ejaculate is relatively low. Taken together, our findings show that condition-dependence of ejaculate traits is taxonomically widespread, but there are also many interesting, biologically relevant sources of variation that require further investigation. In particular, further research is needed to understand the differences in selective pressures that result in differential patterns of ejaculate condition dependence across taxa and ejaculate traits.
Collapse
Affiliation(s)
- Erin L Macartney
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Angela J Crean
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Langen K, Thünken T, Klemm J, Sandmann S, Bakker TCM. Sperm size is negatively related to relative testis size in West African riverine cichlid fishes. Naturwissenschaften 2019; 106:30. [PMID: 31147792 DOI: 10.1007/s00114-019-1622-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Fishes show a great diversity of mating systems and fertilization mechanisms. This diversity creates an enormous potential for sperm competition. Typically, monogamous species face a low risk of sperm competition and invest less into sperm, and thus show smaller relative testis mass compared to polygamous species with high sperm competition. In cichlids, sperm competition risk is very variable. In lacustrine East African cichlids, large sperm are interpreted as an adaptation to sperm competition, as in those species sperm length correlates with sperm swimming speed. The aim of the present study was to examine variation in sperm and testis traits of substrate breeding cichlids from West African river systems and its relationship to sperm competition. Therefore, sperm traits (total sperm size, flagellum-, midpiece-, and head size) and sperm number were related to the gonadosomatic index (GSI), an indicator of sperm competition, in eight species of two large informal tribes, the chromidotilapiines and the haplotilapiines. We found significant differences between species in all examined sperm traits, sperm number, and GSI with pronounced differences between chromidotilapiines and haplotilapiines. We used a generalized least-squares approach to control for non-independence of data. GSI was positively correlated with sperm number but negatively correlated with total sperm size (also negatively with the flagellum and head size but not significantly with midpiece size). Sperm number and sperm size were negatively correlated suggesting a trade-off between sperm size and quality. Our results suggest that large sperm can evolve in species with relatively low sperm expenditure and probably in absence of high sperm competition between males.
Collapse
Affiliation(s)
- Kathrin Langen
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany. .,Zoological Research Museum Alexander Koenig, Leibniz Institute for Animal Biodiversity, Adenauerallee 160/162, 53113, Bonn, Germany.
| | - Timo Thünken
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| | - Janine Klemm
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| | - Sarah Sandmann
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| | - Theo C M Bakker
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| |
Collapse
|
30
|
Nieuwenhuis BPS, Aanen DK. Nuclear arms races: Experimental evolution for mating success in the mushroom-forming fungus Schizophyllum commune. PLoS One 2018; 13:e0209671. [PMID: 30589876 PMCID: PMC6320016 DOI: 10.1371/journal.pone.0209671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
When many gametes compete to fertilize a limited number of compatible gametes, sexual selection will favour traits that increase competitive success during mating. In animals and plants, sperm and pollen competition have yielded many interesting adaptations for improved mating success. In fungi, similar processes have not been shown directly yet. We test the hypothesis that sexual selection can increase competitive fitness during mating, using experimental evolution in the mushroom-forming fungus Schizophyllum commune (Basidiomycota). Mating in mushroom fungi occurs by donation of nuclei to a mycelium. These fertilizing 'male' nuclei migrate through the receiving 'female' mycelium. In our setup, an evolving population of nuclei was serially mated with a non-evolving female mycelium for 20 sexual generations. From the twelve tested evolved lines, four had increased and one had decreased fitness relative to an unevolved competitor. Even though only two of those five remained significant after correcting for multiple comparisons, for all five lines we found a correlation between the efficiency with which the female mycelium is accessed and fitness, providing additional circumstantial evidence for fitness change in those five lines. In two lines, fitness change was also accompanied by increased spore production. The one line with net reduced competitive fitness had increased spore production, but reduced fertilisation efficiency. We did not find trade-offs between male reproductive success and other fitness components. We compare these findings with examples of sperm and pollen competition and show that many similarities between these systems and nuclear competition in mushrooms exist.
Collapse
Affiliation(s)
- Bart P. S. Nieuwenhuis
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| | - Duur K. Aanen
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
31
|
Temperature variations affect postcopulatory but not precopulatory sexual selection in the cigarette beetle. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Lobov AA, Maltseva AL, Starunov VV, Babkina IY, Ivanov VA, Mikhailova NA, Granovitch AI. LOSP: A putative marker of parasperm lineage in male reproductive system of the prosobranch mollusk Littorina obtusata. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:193-201. [PMID: 29750393 DOI: 10.1002/jez.b.22803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022]
Abstract
Reproductive isolation is the key attribute of biological species and establishment of the reproductive barriers is an essential event for speciation. Among the mechanisms of reproductive isolation, gamete incompatibility due to the variability of gamete interaction proteins may drive fast divergence even in sympatry. However, the number of available models to study this phenomenon is limited. In case of internally fertilized invertebrates, models to study gamete incompatibility and sperm competition mechanisms are restricted to a single taxon: insects. Here, we propose a group of closely related Littorina species as a new model for such studies. Particularly since periwinkles are already thoroughly studied in terms of morphology, physiology, ecology, phylogeny, and ecological speciation. Earlier, we have identified the first species-specific Littorina sperm protein (LOSP) with no known conservative domains or homologies. LOSP is relatively abundant component of sperm extracts and might be involved in gamete incompatibility. Here, we characterize its definitive localization and mRNA expression pattern in the male reproductive system by immunocytochemistry and RNA in situ hybridization. We demonstrate that LOSP distribution is limited to the parasperm cells. Losp gene expression occurs only at the early stages of parasperm development. The protein is stored within granules of mature parasperm and, most likely, is released after ejaculation inside female reproductive system. Thus, LOSP is the only described molluscan paraspermal protein to date, and there is a possibility for LOSP to be involved in gamete incompatibility since heterospermy is a common phenomenon among Littorina.
Collapse
Affiliation(s)
- Arseniy A Lobov
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, St. Petersburg, Russia
| | - Arina L Maltseva
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, St. Petersburg, Russia
| | - Viktor V Starunov
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, St. Petersburg, Russia.,Zoological Institute of RAS, St. Petersburg, Russia
| | - Irina Y Babkina
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, St. Petersburg, Russia
| | - Vadim A Ivanov
- Laboratory of Tumor growth cytology, Institute of Cytology RAS, St. Petersburg, Russia
| | - Natalia A Mikhailova
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, St. Petersburg, Russia.,Centre of Cell Technologies, Institute of Cytology RAS, St. Petersburg, Russia
| | - Andrey I Granovitch
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
33
|
Seed CE, Tomkins JL. Positive size-speed relationships in gametes and vegetative cells of Chlamydomonas reinhardtii; implications for the evolution of sperm. Evolution 2018; 72:440-452. [PMID: 29345308 DOI: 10.1111/evo.13427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 11/26/2022]
Abstract
It is commonly held that differences in gametes of the two sexes (anisogamy) evolved from ancestors whose gametes were similar in size and behavior (isogamy). Underlying many hypotheses explaining anisogamy are assumed relationships between cell size and speed in the ancestral isogamous population. Using the isogamous alga Chlamydomonas reinhardtii, we explored size-speed distributions in vegetative and gamete cells of 10 cell lines, and clonal data from within two cell lines. We applied an independent speed selection approach to gamete populations of C. reinhardtii, monitoring correlated responses in size following selection for high speed. We demonstrate positive size-speed relationships in clones, cell lines, and artificially selected speed selection lines. We found different size-speed relationships in the two cell types of C. reinhardtii even though they overlap in size, suggesting that cell composition and/or programs of gene expression are capable of altering this relationship, and that the relationship is evolvable. The positive genetic size-speed correlation means that the division of parent vegetative cells into numerous gametes trades off against not only size, but also speed, a trade-off that has not received previous attention. Our results support reevaluating the role of speed selection in the evolution of anisogamy.
Collapse
Affiliation(s)
- Catherine E Seed
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Australia
| | - Joseph L Tomkins
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Australia
| |
Collapse
|
34
|
Vellnow N, Marie-Orleach L, Zadesenets KS, Schärer L. Bigger testes increase paternity in a simultaneous hermaphrodite, independently of the sperm competition level. J Evol Biol 2017; 31:180-196. [DOI: 10.1111/jeb.13212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/31/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Affiliation(s)
- N. Vellnow
- Zoological Institute, Evolutionary Biology; University of Basel; Basel Switzerland
| | | | | | - L. Schärer
- Zoological Institute, Evolutionary Biology; University of Basel; Basel Switzerland
| |
Collapse
|
35
|
Levitan DR. Do Sperm Really Compete and Do Eggs Ever Have a Choice? Adult Distribution and Gamete Mixing Influence Sexual Selection, Sexual Conflict, and the Evolution of Gamete Recognition Proteins in the Sea. Am Nat 2017; 191:88-105. [PMID: 29244565 DOI: 10.1086/694780] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evolution of gametic compatibility and the effectiveness of compatibility, within and across species, depend on whether sperm from different males directly compete for an egg and whether eggs ever have a choice. Direct sperm competition and egg choice depend on whether sperm from different males arrive at an egg in the brief interval between first sperm contact and fertilization. Although this process may be relevant for all sexually reproducing organisms, it is most easily examined in aquatic external fertilizers. When sperm are released into the sea, packets of seawater at the spatial scale relevant to single eggs might contain sperm from only one male, eliminating the potential for direct sperm competition and egg choice. Field experiments and a simple heuristic model examining the degree of sperm mixing for the sea urchin Strongylocentrotus franciscanus indicate that degree of competitive fertilization depends on density and distribution of competing males and that the nature of this competition influences whether males with high- or low-affinity gamete recognition protein genotypes have higher reproductive success. These results provide a potential explanation for the generation and maintenance of variation in gamete recognition proteins and why effectiveness of conspecific sperm precedence can be density dependent.
Collapse
|
36
|
Křížková J, Čoudková V, Maršálek M. Computer-Assisted Sperm Analysis of Head Morphometry and Kinematic Parameters in Warmblood Stallions Spermatozoa. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2017.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Orr TJ, Garland T. Complex Reproductive Traits and Whole-Organism Performance. Integr Comp Biol 2017; 57:407-422. [DOI: 10.1093/icb/icx052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Apostólico LH, Marian JEAR. Dimorphic ejaculates and sperm release strategies associated with alternative mating behaviors in the squid. J Morphol 2017; 278:1490-1505. [DOI: 10.1002/jmor.20726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/23/2017] [Accepted: 06/21/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Lígia H. Apostólico
- Departamento de Zoologia; Instituto de Biociências, Universidade de São Paulo; São Paulo SP Brazil
| | - José E. A. R. Marian
- Departamento de Zoologia; Instituto de Biociências, Universidade de São Paulo; São Paulo SP Brazil
| |
Collapse
|
39
|
Godwin JL, Vasudeva R, Michalczyk Ł, Martin OY, Lumley AJ, Chapman T, Gage MJG. Experimental evolution reveals that sperm competition intensity selects for longer, more costly sperm. Evol Lett 2017; 1:102-113. [PMID: 30283643 PMCID: PMC6089504 DOI: 10.1002/evl3.13] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
It is the differences between sperm and eggs that fundamentally underpin the differences between the sexes within reproduction. For males, it is theorized that widespread sperm competition leads to selection for investment in sperm numbers, achieved by minimizing sperm size within limited resources for spermatogenesis in the testis. Here, we empirically examine how sperm competition shapes sperm size, after more than 77 generations of experimental selection of replicate lines under either high or low sperm competition intensities in the promiscuous flour beetle Tribolium castaneum. After this experimental evolution, populations had diverged significantly in their sperm competitiveness, with sperm in ejaculates from males evolving under high sperm competition intensities gaining 20% greater paternity than sperm in ejaculates from males that had evolved under low sperm competition intensity. Males did not change their relative investment into sperm production following this experimental evolution, showing no difference in testis sizes between high and low intensity regimes. However, the more competitive males from high sperm competition intensity regimes had evolved significantly longer sperm and, across six independently selected lines, there was a significant association between the degree of divergence in sperm length and average sperm competitiveness. To determine whether such sperm elongation is costly, we used dietary restriction experiments, and revealed that protein-restricted males produced significantly shorter sperm. Our findings therefore demonstrate that sperm competition intensity can exert positive directional selection on sperm size, despite this being a costly reproductive trait.
Collapse
Affiliation(s)
- Joanne L. Godwin
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Ramakrishnan Vasudeva
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | | | | | - Alyson J. Lumley
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Matthew J. G. Gage
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| |
Collapse
|
40
|
McDiarmid CS, Friesen CR, Ballen C, Olsson M. Sexual coloration and sperm performance in the Australian painted dragon lizard,
Ctenophorus pictus. J Evol Biol 2017; 30:1303-1312. [DOI: 10.1111/jeb.13092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022]
Affiliation(s)
- C. S. McDiarmid
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - C. R. Friesen
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - C. Ballen
- College of Biological Sciences University of Minnesota Minneapolis MN USA
| | - M. Olsson
- Department of Biological and Environmental Sciences Göteborg University Göteborg Sweden
| |
Collapse
|
41
|
Parker DJ, Zaborowska J, Ritchie MG, Vahed K. Paternity analysis of wild-caught females shows that sperm package size and placement influence fertilization success in the bushcricketPholidoptera griseoaptera. Mol Ecol 2017; 26:3050-3061. [DOI: 10.1111/mec.14089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Darren James Parker
- Centre for Biological Diversity; University of St Andrews; St Andrews KY16 9TH UK
- Department of Ecology and Evolution; University of Lausanne; Biophore Lausanne 1015 Switzerland
| | - Julia Zaborowska
- Centre for Biological Diversity; University of St Andrews; St Andrews KY16 9TH UK
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
- Institute of Environmental Biology; Adam Mickiewicz University in Poznań; Umultowska 89 61-614 Poznań Poland
| | | | - Karim Vahed
- Environmental Sustainability Research Centre; University of Derby; Kedleston Road Derby DE22 1GB UK
| |
Collapse
|
42
|
Chechi TS, Ali Syed Z, Prasad NG. Virility does not imply immensity: Testis size, accessory gland size and ejaculate depletion pattern do not evolve in response to experimental manipulation of sex ratio in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:67-73. [PMID: 27913151 DOI: 10.1016/j.jinsphys.2016.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
Sperm competition theory predicts that with increase in sperm competition, males either invest more in reproductive organ(s) and/or improve ejaculate investment. We test this idea using experimental evolution in Drosophila melanogaster. We maintained replicate populations of Drosophila melanogaster under male (M) and female (F) biased sex ratio regimes for more than a hundred generations with the result that males from the M regime evolved higher sperm competitive abilities relative to males from the F regime. In the present study, we measured the testes and the accessory gland size of virgin and singly mated males from the M and F regimes. The M and F males do not differ in either testis or accessory gland size. Additionally, ejaculate investment is not different in the M and F males, as measured by reduction in testis and accessory gland sizes. Thus, contrary to theoretical prediction and evidence from other species, we found that evolved differences in sperm competitive ability are not necessarily due to evolution of testis/accessory gland size or strategic ejaculate investment in these populations.
Collapse
Affiliation(s)
- Tejinder Singh Chechi
- Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Zeeshan Ali Syed
- Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Nagaraj Guru Prasad
- Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India.
| |
Collapse
|
43
|
Vega-Trejo R, Jennions MD, Head ML. Are sexually selected traits affected by a poor environment early in life? BMC Evol Biol 2016; 16:263. [PMID: 27905874 PMCID: PMC5134236 DOI: 10.1186/s12862-016-0838-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/25/2016] [Indexed: 01/06/2023] Open
Abstract
Background Challenging conditions experienced early in life, such as a restricted diet, can detrimentally affect key life-history traits. Individuals can reduce these costs by delaying their sexual maturation, albeit at the price of the later onset of breeding, to eventually reach the same adult size as individuals that grow up in a benevolent environment. Delayed maturation can, however, still lead to other detrimental morphological and physiological changes that become apparent later in adulthood (e.g. shorter lifespan, faster senescence). In general, research focuses on the naturally selected costs of a poor early diet. In mosquitofish (Gambusia holbrooki), males with limited food intake early in life delay maturation to reach a similar adult body size to their well-fed counterparts (‘catch-up growth’). Here we tested whether a poor early diet is costly due to the reduced expression of sexually selected male characters, namely genital size and ejaculate traits. Results We found that a male’s diet early in life significantly influenced his sperm reserves and sperm replenishment rate. Shortly after maturation males with a restricted early diet had significantly lower sperm reserves and slower replenishment rates than control diet males, but this dietary difference was no longer detectable in older males. Conclusions Although delaying maturation to reach the same body size as well fed juveniles can ameliorate some costs of a poor start in life, our findings suggest that costs might still arise because of sexual selection against these males. It should be noted, however, that the observed effects are modest (Hedges’ g = 0.20–0.36), and the assumption that lower sperm production translates into a decline in fitness under sperm competition remains unconfirmed. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0838-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Regina Vega-Trejo
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia.
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia.,Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, 14193, Germany
| | - Megan L Head
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
44
|
Devigili A, Di Nisio A, Grapputo A, Pilastro A. Directional postcopulatory sexual selection is associated with female sperm storage in Trinidadian guppies. Evolution 2016; 70:1829-43. [PMID: 27345870 DOI: 10.1111/evo.12989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 12/17/2022]
Abstract
Female sperm storage (FSS) is taxonomically widespread and often associated with intense sperm competition, yet its consequences on postcopulatory sexual selection (PCSS) are poorly known. Theory predicts that FSS will reduce the strength of PCSS, because sperm characteristics favored before and after FSS may be traded-off, and opportunities for nondirectional PCSS should increase. We explored these questions in the guppy (Poecilia reticulata), by allowing females to mate multiply and by comparing the paternity pattern in two successive broods. Contrary to predictions, the variance in male fertilization success increased after FSS, driven by a change in male paternity share across broods. This change was positively associated with sperm velocity (measured before FSS) but not with the duration of FSS, indirectly suggesting that faster sperm were better in entering female storage organs, rather than in persisting within them. Other male traits, such as male size and orange color, heterozygosity, and relatedness to the female, did not influence paternity after FSS. These results indicate that processes associated with FSS tend to reinforce the strength of PCSS in guppies, rather than weaken it. Further work is necessary to test whether this pattern changes in case of more prolonged FSS.
Collapse
Affiliation(s)
| | - Andrea Di Nisio
- Department of Biology, University of Padua, I-35131, Padova, Italy
| | | | - Andrea Pilastro
- Department of Biology, University of Padua, I-35131, Padova, Italy.
| |
Collapse
|
45
|
Singh K, Samant MA, Tom MT, Prasad NG. Evolution of Pre- and Post-Copulatory Traits in Male Drosophila melanogaster as a Correlated Response to Selection for Resistance to Cold Stress. PLoS One 2016; 11:e0153629. [PMID: 27093599 PMCID: PMC4836659 DOI: 10.1371/journal.pone.0153629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/02/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In Drosophila melanogaster the fitness of males depends on a broad array of reproductive traits classified as pre- and post-copulatory traits. Exposure to cold stress, can reduce sperm number, male mating ability and courtship behavior. Therefore, it is expected that the adaptation to cold stress will involve changes in pre- and post-copulatory traits. Such evolution of reproductive traits in response to cold stress is not well studied. METHODS We selected replicate populations of D. melanogaster for resistance to cold shock. Over 37-46 generations of selection, we investigated pre- and post-copulatory traits such as mating latency, copulation duration, mating frequency, male fertility, fitness (progeny production) and sperm competitive ability in male flies subjected to cold shock and those not subjected to cold shock. RESULTS We found that post cold shock, the males from the selected populations had a significantly lower mating latency along with, higher mating frequency, fertility, sperm competitive ability and number of progeny relative to the control populations. CONCLUSION While most studies of experimental evolution of cold stress resistance have documented the evolution of survivorship in response to selection, our study clearly shows that adaptation to cold stress involves rapid changes in the pre- and post-copulatory traits. Additionally, improved performances under stressful conditions need not necessarily trade-off with performance under benign conditions.
Collapse
Affiliation(s)
- Karan Singh
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Punjab, 140306, India
| | - Manas Arun Samant
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Punjab, 140306, India
| | - Megha Treesa Tom
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Punjab, 140306, India
| | - Nagaraj Guru Prasad
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Punjab, 140306, India
| |
Collapse
|
46
|
Bocedi G, Reid JM. Coevolutionary Feedbacks between Female Mating Interval and Male Allocation to Competing Sperm Traits Can Drive Evolution of Costly Polyandry. Am Nat 2016; 187:334-50. [PMID: 26913946 DOI: 10.1086/684746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Complex coevolutionary feedbacks between female mating interval and male sperm traits have been hypothesized to explain the evolution and persistence of costly polyandry. Such feedbacks could potentially arise because polyandry creates sperm competition and consequent selection on male allocation to sperm traits, while the emerging sperm traits could create female sperm limitation and, hence, impose selection for increased polyandry. However, the hypothesis that costly polyandry could coevolve with male sperm dynamics has not been tested. We built a genetically explicit individual-based model to simulate simultaneous evolution of female mating interval and male allocation to sperm number versus longevity, where these two sperm traits trade off. We show that evolution of competing sperm traits under polyandry can indeed cause female sperm limitation and, hence, promote further evolution and persistence of costly polyandry, particularly when sperm are costly relative to the degree of female sperm limitation. These feedbacks were stronger, and greater polyandry evolved, when postcopulatory competition for paternity followed a loaded rather than fair raffle and when sperm traits had realistically low heritability. We therefore demonstrate that the evolution of allocation to sperm traits driven by sperm competition can prevent males from overcoming female sperm limitation, thereby driving ongoing evolution of costly polyandry.
Collapse
|
47
|
Jones SD, Wallman JF, Byrne PG. Do male secondary sexual characters correlate with testis size and sperm length in the small hairy maggot blowfly? ZOOLOGY 2015; 118:439-45. [PMID: 26297128 DOI: 10.1016/j.zool.2015.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/06/2015] [Accepted: 07/22/2015] [Indexed: 11/26/2022]
Abstract
The phenotype-linked fertility hypothesis proposes that secondary sexual characters (SSCs) advertise a male's fertility to prospective mates. However, findings from empirical studies attempting to test this hypothesis are often ambivalent or even contradictory, and few studies have simultaneously evaluated how both morphological and behavioural SSCs relate to ejaculate characteristics. Males of the small hairy maggot blowfly, Chrysomya varipes, possess conspicuous foreleg ornaments and display highly stereotyped courtship behaviour. These traits are favoured by females during pre-copulatory mate choice, but it remains unknown whether they correlate with post-copulatory traits expected to influence male fertility. The aim of this study was to investigate whether male courtship and ornamentation correlate with testis size and sperm length in C. varipes. We found that males investing more in courtship had bigger testes, and males with more extensive foreleg ornamentation released sperm with longer tails. Based on the assumption that larger testes enable males to produce more sperm, and that sperm with longer tails have greater propulsive force, our findings suggest that more vigorous and more ornamented males may be more fertile. These findings lend support to the phenotype-linked fertility hypothesis. However, a complete test of this hypothesis will require evaluating whether testis size and sperm length influence male fertilisation ability, as well as female fecundity and/or fertility.
Collapse
Affiliation(s)
- Stephanie D Jones
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| | - James F Wallman
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Phillip G Byrne
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
48
|
Mehlis M, Rahn AK, Bakker TCM. Sperm quality but not relatedness predicts sperm competition success in threespine sticklebacks (Gasterosteus aculeatus). BMC Evol Biol 2015; 15:74. [PMID: 25928309 PMCID: PMC4415302 DOI: 10.1186/s12862-015-0353-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mating between close relatives often leads to a reduction of an individual's fitness, due to an increased expression of deleterious alleles. Thus, in many animal taxa pre- as well as postcopulatory inbreeding avoidance mechanisms have evolved. An increased risk of inbreeding and hence a loss of genetic variation may occur during founder events as in most cases only few individuals establish a new population. The threespine stickleback (Gasterosteus aculeatus) is a small externally fertilizing fish species subject to strong sperm competition. Sticklebacks inhabit both marine and freshwater environments and anadromous populations have repeatedly established new genetically less diverse freshwater populations. Previous studies showed that anadromous sticklebacks strongly suffer from inbreeding depression and when given the choice females prefer to mate with unrelated males. RESULTS The present study aimed to address whether there exists a postcopulatory inbreeding avoidance mechanism solely based on sperm-egg interactions in sperm competition experiments. We used F1 individuals that originated either from a large, genetically heterogeneous anadromous population or from a small, genetically less diverse freshwater population. For each population, eggs of two different females were in vitro fertilized by the same two males' sperm in a paired study design. In the main experiment one male was the female's full-sib brother and in the control experiment all individuals were unrelated. The results revealed that fertilization success was independent of relatedness in both populations suggesting a general lack of a postcopulatory inbreeding avoidance mechanism. Instead, male quality (i.e. sperm morphology) predicted paternity success during competitive fertilization trials. CONCLUSION In sticklebacks, there is no evidence for postcopulatory inbreeding avoidance. Sperm morphology predicted paternity instead, thus sperm quality traits are under strong sexual selection, presumably driven by the high risk of sperm competition under natural conditions.
Collapse
Affiliation(s)
- Marion Mehlis
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, D-53121, Bonn, Germany.
| | - Anna K Rahn
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, D-53121, Bonn, Germany.
| | - Theo C M Bakker
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, D-53121, Bonn, Germany.
| |
Collapse
|
49
|
Waheed MM, Ghoneim IM, Abdou MS. Morphometric Characteristics of Spermatozoa in the Arabian Horse With Regard to Season, Age, Sperm Concentration, and Fertility. J Equine Vet Sci 2015. [DOI: 10.1016/j.jevs.2015.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Firman RC, Garcia-Gonzalez F, Thyer E, Wheeler S, Yamin Z, Yuan M, Simmons LW. Evolutionary change in testes tissue composition among experimental populations of house mice. Evolution 2015; 69:848-55. [DOI: 10.1111/evo.12603] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/29/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Renée C. Firman
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
- Estacion Biologica de Doñana-CSIC; Sevilla 41092 Spain
| | - Evan Thyer
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| | - Samantha Wheeler
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| | - Zayaputeri Yamin
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| | - Michael Yuan
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| |
Collapse
|