1
|
Scroggs SLP, Bird EJ, Molik DC, Nayduch D. Vesicular Stomatitis Virus Elicits Early Transcriptome Response in Culicoides sonorensis Cells. Viruses 2023; 15:2108. [PMID: 37896885 PMCID: PMC10612082 DOI: 10.3390/v15102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Viruses that are transmitted by arthropods, or arboviruses, have evolved to successfully navigate both the invertebrate and vertebrate hosts, including their immune systems. Biting midges transmit several arboviruses including vesicular stomatitis virus (VSV). To study the interaction between VSV and midges, we characterized the transcriptomic responses of VSV-infected and mock-infected Culicoides sonorensis cells at 1, 8, 24, and 96 h post inoculation (HPI). The transcriptomic response of VSV-infected cells at 1 HPI was significant, but by 8 HPI there were no detectable differences between the transcriptome profiles of VSV-infected and mock-infected cells. Several genes involved in immunity were upregulated (ATG2B and TRAF4) or downregulated (SMAD6 and TOLL7) in VSV-treated cells at 1 HPI. These results indicate that VSV infection in midge cells produces an early immune response that quickly wanes, giving insight into in vivo C. sonorensis VSV tolerance that may underlie their permissiveness as vectors for this virus.
Collapse
Affiliation(s)
- Stacey L. P. Scroggs
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (D.C.M.); (D.N.)
| | - Edward J. Bird
- Department of Entomology, Kansas State University, Manhattan, KS 66502, USA;
| | - David C. Molik
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (D.C.M.); (D.N.)
| | - Dana Nayduch
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (D.C.M.); (D.N.)
| |
Collapse
|
2
|
Van Gelder RN. Molecular Diagnostics for Ocular Infectious Diseases: LXXVIII Edward Jackson Memorial Lecture. Am J Ophthalmol 2022; 235:300-312. [PMID: 34921773 PMCID: PMC8863649 DOI: 10.1016/j.ajo.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE To review the use of molecular diagnostic techniques in the management of ocular infectious disease. DESIGN Retrospective review. METHODS A combination of literature review and personal recollections are used. RESULTS Although the broad term molecular diagnostics may encompass techniques to identify pathogens via protein or metabolomic signatures, this review concentrates on detection of pathogen nucleic acid as an indicator of infection. The introduction of the polymerase chain reaction (PCR) in 1985 opened a new era in analysis of nucleic acids. This technique was soon applied to the detection of potential pathogen DNA and RNA, including viruses, bacteria, and parasites in infectious eye disease. Advances in PCR have allowed class-specific diagnostics (ie, pan-bacterial and pan-fungal), quantitation of pathogen DNA, and multiplexed testing. The Human Genome Project in the early 2000s greatly accelerated development of DNA sequencers, ushering in the era of "Next Generation Sequencing" and permitting pathogen-agnostic methods for the detection of potential infectious agents. Most recently, new technologies such as nanopore sequencing have reduced both cost and equipment requirements for whole-genome sequencing; when coupled with real-time sequence analysis methods, these methods offer the promise of true, real-time, point-of-service ocular infectious disease diagnostics. CONCLUSIONS Molecular methods for pathogen detection have greatly advanced the diagnosis of ocular infectious disease. Further methodologic advances will have a direct impact on the management of these conditions.
Collapse
Affiliation(s)
- Russell N Van Gelder
- From the Departments of Ophthalmology, Biological Structure, and Laboratory Medicine and Pathology, and Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
3
|
Wu D, Li R. Case Report: Long-Term Treatment and Follow-Up of Kleefstra Syndrome-2. Front Pediatr 2022; 10:881838. [PMID: 35685914 PMCID: PMC9172761 DOI: 10.3389/fped.2022.881838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Mutations in the KMT2C gene can cause Kleefstra syndrome-2 (KLEFS2). CASE In this study, we analyzed the clinical, genetic testing, and 10-year follow-up data of a child with KLEFS2 treated at the Child Healthcare Department, Children's Hospital of Nanjing Medical University, Nanjing. The case of KLEFS2 presented feeding difficulty and developmental delay, both intervened by nutritional support and family rehabilitation. Obvious attention deficit hyperactivity disorder (ADHD) occurred in preschool and school-age children and was managed by behavioral and pharmaceutical interventions. CONCLUSION Features of KLEFS2 include feeding difficulty and developmental delays in an early age, as well as ADHD in preschool and school age. Satisfactory outcomes are not achieved in early nutritional support for correcting malnutrition and pharmaceutical intervention for relieving ADHD, but both measures can counter developmental delay.
Collapse
Affiliation(s)
- Dandan Wu
- Child Healthcare Department, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Li
- Child Healthcare Department, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
5
|
Koemans TS, Kleefstra T, Chubak MC, Stone MH, Reijnders MRF, de Munnik S, Willemsen MH, Fenckova M, Stumpel CTRM, Bok LA, Sifuentes Saenz M, Byerly KA, Baughn LB, Stegmann APA, Pfundt R, Zhou H, van Bokhoven H, Schenck A, Kramer JM. Functional convergence of histone methyltransferases EHMT1 and KMT2C involved in intellectual disability and autism spectrum disorder. PLoS Genet 2017; 13:e1006864. [PMID: 29069077 PMCID: PMC5656305 DOI: 10.1371/journal.pgen.1006864] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/10/2017] [Indexed: 11/18/2022] Open
Abstract
Kleefstra syndrome, caused by haploinsufficiency of euchromatin histone methyltransferase 1 (EHMT1), is characterized by intellectual disability (ID), autism spectrum disorder (ASD), characteristic facial dysmorphisms, and other variable clinical features. In addition to EHMT1 mutations, de novo variants were reported in four additional genes (MBD5, SMARCB1, NR1I3, and KMT2C), in single individuals with clinical characteristics overlapping Kleefstra syndrome. Here, we present a novel cohort of five patients with de novo loss of function mutations affecting the histone methyltransferase KMT2C. Our clinical data delineates the KMT2C phenotypic spectrum and reinforces the phenotypic overlap with Kleefstra syndrome and other related ID disorders. To elucidate the common molecular basis of the neuropathology associated with mutations in KMT2C and EHMT1, we characterized the role of the Drosophila KMT2C ortholog, trithorax related (trr), in the nervous system. Similar to the Drosophila EHMT1 ortholog, G9a, trr is required in the mushroom body for short term memory. Trr ChIP-seq identified 3371 binding sites, mainly in the promoter of genes involved in neuronal processes. Transcriptional profiling of pan-neuronal trr knockdown and G9a null mutant fly heads identified 613 and 1123 misregulated genes, respectively. These gene sets show a significant overlap and are associated with nearly identical gene ontology enrichments. The majority of the observed biological convergence is derived from predicted indirect target genes. However, trr and G9a also have common direct targets, including the Drosophila ortholog of Arc (Arc1), a key regulator of synaptic plasticity. Our data highlight the clinical and molecular convergence between the KMT2 and EHMT protein families, which may contribute to a molecular network underlying a larger group of ID/ASD-related disorders. Neurodevelopmental disorders (NDDs) like intellectual disability (ID) and autism spectrum disorder (ASD) present an enormous challenge to affected individuals, their families, and society. Understanding the mechanisms underlying NDDs may lead to the development of targeted therapeutics, but this is complicated by the great clinical and genetic heterogeneity seen in patients. Mutations in hundreds of genes have been implicated in NDDs, giving rise to diverse clinical presentations. However, evidence suggests that many of these genes lie in common biological pathways, and mutations in genes that are involved in similar biological functions give rise to more similar clinical phenotypes. Here, we define a novel ID disorder with comorbid ASD (ID/ASD) caused by mutations in KMT2C. This disorder is defined by clinical features that overlap with a group of other disorders, including Kleefstra syndrome, which is caused by EHMT1 mutations. In the fruit fly, we show that the KMT2 and EHMT protein families regulate a highly converging set of biological processes. Both EHMT1 and KMT2C encode histone methyltransferases, which regulate gene transcription by modifying chromatin structure. Further understanding of the common gene regulatory networks associated with this group of ID- and ASD-related disorders may lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Tom S. Koemans
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
| | - Melissa C. Chubak
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Max H. Stone
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
- Division of Genetics and Development, Children’s Health Research Institute, London, Ontario, Canada
| | - Margot R. F. Reijnders
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
| | - Sonja de Munnik
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
| | - Marjolein H. Willemsen
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
| | - Michaela Fenckova
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
| | - Connie T. R. M. Stumpel
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Levinus A. Bok
- Department of Pediatrics, Máxima Medical Centre, Veldhoven, The Netherlands
| | | | - Kyna A. Byerly
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Linda B. Baughn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Alexander P. A. Stegmann
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
| | - Annette Schenck
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, The Netherlands
- * E-mail: (AS); (JMK)
| | - Jamie M. Kramer
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
- Division of Genetics and Development, Children’s Health Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- * E-mail: (AS); (JMK)
| |
Collapse
|
6
|
Rosa-Ferreira C, Christis C, Torres IL, Munro S. The small G protein Arl5 contributes to endosome-to-Golgi traffic by aiding the recruitment of the GARP complex to the Golgi. Biol Open 2015; 4:474-81. [PMID: 25795912 PMCID: PMC4400590 DOI: 10.1242/bio.201410975] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The small G proteins of the Arf family play critical roles in membrane trafficking and cytoskeleton organization. However, the function of some members of the family remains poorly understood including Arl5 which is widely conserved in eukaryotes. Humans have two closely related Arl5 paralogues (Arl5a and Arl5b), and both Arl5a and Arl5b localize to the trans-Golgi with Arl5b being involved in retrograde traffic from endosomes to the Golgi apparatus. To investigate the function of Arl5, we have used Drosophila melanogaster as a model system. We find that the single Arl5 orthologue in Drosophila also localizes to the trans-Golgi, but flies lacking the Arl5 gene are viable and fertile. By using both liposome and column based affinity chromatography methods we find that Arl5 interacts with the Golgi-associated retrograde protein (GARP) complex that acts in the tethering of vesicles moving from endosomes to the trans-Golgi network (TGN). In Drosophila tissues the GARP complex is partially displaced from the Golgi when Arl5 is absent, and the late endosomal compartment is enlarged. In addition, in HeLa cells GARP also becomes cytosolic upon depletion of Arl5b. These phenotypes are consistent with a role in endosome-to-Golgi traffic, but are less severe than loss of GARP itself. Thus it appears that Arl5 is one of the factors that directs the recruitment of the GARP complex to the trans-Golgi, and this function is conserved in both flies and humans.
Collapse
Affiliation(s)
| | | | | | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
7
|
Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila Cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex. Proc Natl Acad Sci U S A 2013; 110:4980-5. [PMID: 23479607 DOI: 10.1073/pnas.1303234110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryptochrome (CRY) is the primary circadian photoreceptor in Drosophila. It resets the circadian clock by promoting light-induced degradation of the clock proteins Timeless and Period, as well as its own proteolysis. The E3 ligases that ubiquitylate Timeless and Period before degradation are known and it is known that Drosophila (d) CRY is degraded by the ubiquitin-proteasome system as well. To identify the E3 ligase for dCRY we screened candidates in S2 cells by RNAi. Knockdown of each of the 25 putative F-box proteins identified by bioinformatics did not attenuate the light-induced degradation of dCRY. However, knockdown of a WD40 protein, Bromodomain and WD repeat domain containing 3 (Brwd3) (CG31132/Ramshackle) caused strong attenuation of dCRY degradation following light exposure. We found that BRWD3 functions as a Damage-specific DNA binding protein 1 (DDB1)- and CULLIN (CUL)4-associated factor in a Cullin4-RING Finger E3 Ligase (CRL4) that mediates light-dependent binding of dCRY to CUL4-ROC1-DDB1-BRWD3, inducing ubiquitylation of dCRY and its light-induced degradation. Thus, this study identifies a light-activated E3 ligase complex essential for light-mediated CRY degradation in Drosophila cells.
Collapse
|
8
|
Uhrigshardt H, Rouault TA, Missirlis F. Insertion mutants in Drosophila melanogaster Hsc20 halt larval growth and lead to reduced iron-sulfur cluster enzyme activities and impaired iron homeostasis. J Biol Inorg Chem 2013; 18:441-9. [PMID: 23444034 PMCID: PMC3612401 DOI: 10.1007/s00775-013-0988-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/07/2013] [Indexed: 10/31/2022]
Abstract
Despite the prominence of iron-sulfur cluster (ISC) proteins in bioenergetics, intermediary metabolism, and redox regulation of cellular, mitochondrial, and nuclear processes, these proteins have been given scarce attention in Drosophila. Moreover, biosynthesis and delivery of ISCs to target proteins requires a highly regulated molecular network that spans different cellular compartments. The only Drosophila ISC biosynthetic protein studied to date is frataxin, in attempts to model Friedreich's ataxia, a disease arising from reduced expression of the human frataxin homologue. One of several proteins involved in ISC biogenesis is heat shock protein cognate 20 (Hsc20). Here we characterize two piggyBac insertion mutants in Drosophila Hsc20 that display larval growth arrest and deficiencies in aconitase and succinate dehydrogenase activities, but not in isocitrate dehydrogenase activity; phenotypes also observed with ubiquitous frataxin RNA interference. Furthermore, a disruption of iron homeostasis in the mutant flies was evidenced by an apparent reduction in induction of intestinal ferritin with ferric iron accumulating in a subcellular pattern reminiscent of mitochondria. These phenotypes were specific to intestinal cell types that regulate ferritin expression, but were notably absent in the iron cells where ferritin is constitutively expressed and apparently translated independently of iron regulatory protein 1A. Hsc20 mutant flies represent an independent tool to disrupt ISC biogenesis in vivo without using the RNA interference machinery.
Collapse
Affiliation(s)
- Helge Uhrigshardt
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
9
|
Borycz J, Borycz JA, Edwards TN, Boulianne GL, Meinertzhagen IA. The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina. ACTA ACUST UNITED AC 2012; 215:1399-411. [PMID: 22442379 DOI: 10.1242/jeb.060699] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Flies recycle the photoreceptor neurotransmitter histamine by conjugating it to β-alanine to form β-alanyl-histamine (carcinine). The conjugation is regulated by Ebony, while Tan hydrolyses carcinine, releasing histamine and β-alanine. In Drosophila, β-alanine synthesis occurs either from uracil or from the decarboxylation of aspartate but detailed roles for the enzymes responsible remain unclear. Immunohistochemically detected β-alanine is present throughout the fly's entire brain, and is enhanced in the retina especially in the pseudocone, pigment and photoreceptor cells of the ommatidia. HPLC determinations reveal 10.7 ng of β-alanine in the wild-type head, roughly five times more than histamine. When wild-type flies drink uracil their head β-alanine increases more than after drinking l-aspartic acid, indicating the effectiveness of the uracil pathway. Mutants of black, which lack aspartate decarboxylase, cannot synthesize β-alanine from l-aspartate but can still synthesize it efficiently from uracil. Our findings demonstrate a novel function for pigment cells, which not only screen ommatidia from stray light but also store and transport β-alanine and carcinine. This role is consistent with a β-alanine-dependent histamine recycling pathway occurring not only in the photoreceptor terminals in the lamina neuropile, where carcinine occurs in marginal glia, but vertically via a long pathway that involves the retina. The lamina's marginal glia are also a hub involved in the storage and/or disposal of carcinine and β-alanine.
Collapse
Affiliation(s)
- Janusz Borycz
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Canada, B3H 4J1
| | | | | | | | | |
Collapse
|
10
|
Abstract
Glucocorticoids, hormones produced by the adrenal gland cortex, perform numerous functions in body homeostasis and the response of the organism to external stressors. One striking feature of their regulation is a diurnal release pattern, with peak levels linked to the start of the activity phase. This release is under control of the circadian clock, an endogenous biological timekeeper that acts to prepare the organism for daily changes in its environment. Circadian control of glucocorticoid production and secretion involves a central pacemaker in the hypothalamus, the suprachiasmatic nucleus, as well as a circadian clock in the adrenal gland itself. Central circadian regulation is mediated via the hypothalamic-pituitary-adrenal axis and the autonomic nervous system, while the adrenal gland clock appears to control sensitivity of the gland to the adrenocorticopic hormone (ACTH). The rhythmically released glucocorticoids in turn might contribute to synchronisation of the cell-autonomous clocks in the body and interact with them to time physiological dynamics in their target tissues around the day.
Collapse
Affiliation(s)
- Thomas Dickmeis
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
11
|
Matsumoto A, Ukai-Tadenuma M, Yamada RG, Houl J, Uno KD, Kasukawa T, Dauwalder B, Itoh TQ, Takahashi K, Ueda R, Hardin PE, Tanimura T, Ueda HR. A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock. Genes Dev 2007; 21:1687-700. [PMID: 17578908 PMCID: PMC1899476 DOI: 10.1101/gad.1552207] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Drosophila circadian clock consists of integrated autoregulatory feedback loops, making the clock difficult to elucidate without comprehensively identifying the network components in vivo. Previous studies have adopted genome-wide screening for clock-controlled genes using high-density oligonucleotide arrays that identified hundreds of clock-controlled genes. In an attempt to identify the core clock genes among these candidates, we applied genome-wide functional screening using an RNA interference (RNAi) system in vivo. Here we report the identification of novel clock gene candidates including clockwork orange (cwo), a transcriptional repressor belonging to the basic helix-loop-helix ORANGE family. cwo is rhythmically expressed and directly regulated by CLK-CYC through canonical E-box sequences. A genome-wide search for its target genes using the Drosophila genome tiling array revealed that cwo forms its own negative feedback loop and directly suppresses the expression of other clock genes through the E-box sequence. Furthermore, this negative transcriptional feedback loop contributes to sustaining a high-amplitude circadian oscillation in vivo. Based on these results, we propose that the competition between cyclic CLK-CYC activity and the adjustable threshold imposed by CWO keeps E-box-mediated transcription within the controllable range of its activity, thereby rendering a Drosophila circadian clock capable of generating high-amplitude oscillation.
Collapse
Affiliation(s)
- Akira Matsumoto
- Center for Research and Advancement in Higher Education, Kyushu University, Ropponmatu, Fukuoka 810-8560, Japan
- E-MAIL ; FAX 81-92-726-4641
| | - Maki Ukai-Tadenuma
- Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Rikuhiro G. Yamada
- Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Jerry Houl
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, College Station, Texas 77843, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Kenichiro D. Uno
- Functional Genomics Unit, Center for Developmental Biology, RIKEN, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takeya Kasukawa
- Functional Genomics Unit, Center for Developmental Biology, RIKEN, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Brigitte Dauwalder
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Taichi Q. Itoh
- Department of Biology, Faculty of Science, Kyushu University, Ropponmatu, Fukuoka 810-8560, Japan
| | - Kuniaki Takahashi
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Ryu Ueda
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Paul E. Hardin
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, College Station, Texas 77843, USA
| | - Teiichi Tanimura
- Department of Biology, Faculty of Science, Kyushu University, Ropponmatu, Fukuoka 810-8560, Japan
| | - Hiroki R. Ueda
- Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Functional Genomics Unit, Center for Developmental Biology, RIKEN, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Bioscience, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Corresponding authors.E-MAIL ; FAX 81-78-306-3194
| |
Collapse
|
12
|
|
13
|
Rawls JM. Analysis of pyrimidine catabolism in Drosophila melanogaster using epistatic interactions with mutations of pyrimidine biosynthesis and beta-alanine metabolism. Genetics 2005; 172:1665-74. [PMID: 16361227 PMCID: PMC1456268 DOI: 10.1534/genetics.105.052753] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biochemical pathway for pyrimidine catabolism links the pathways for pyrimidine biosynthesis and salvage with beta-alanine metabolism, providing an array of epistatic interactions with which to analyze mutations of these pathways. Loss-of-function mutations have been identified and characterized for each of the enzymes for pyrimidine catabolism: dihydropyrimidine dehydrogenase (DPD), su(r) mutants; dihydropyrimidinase (DHP), CRMP mutants; beta-alanine synthase (betaAS), pyd3 mutants. For all three genes, mutants are viable and fertile and manifest no obvious phenotypes, aside from a variety of epistatic interactions. Mutations of all three genes disrupt suppression by the rudimentary gain-of-function mutation (r(Su(b))) of the dark cuticle phenotype of black mutants in which beta-alanine pools are diminished; these results confirm that pyrimidines are the major source of beta-alanine in cuticle pigmentation. The truncated wing phenotype of rudimentary mutants is suppressed completely by su(r) mutations and partially by CRMP mutations; however, no suppression is exhibited by pyd3 mutations. Similarly, su(r) mutants are hypersensitive to dietary 5-fluorouracil, CRMP mutants are less sensitive, and pyd3 mutants exhibit wild-type sensitivity. These results are discussed in the context of similar consequences of 5-fluoropyrimidine toxicity and pyrimidine catabolism mutations in humans.
Collapse
Affiliation(s)
- John M Rawls
- Molecular and Cellular Biology Group, Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA.
| |
Collapse
|
14
|
Abstract
The isolation and analysis of mutant flies (Drosophila melanogaster) with altered circadian rhythms have led to an understanding of circadian rhythms at the molecular level. This molecular mechanism elucidated in fruit flies is similar to the mechanism of the human circadian clock, which confers 24-h rhythmicity to our sleep/wake behavior, as well as to many other aspects of our cellular and organismal physiology. In fruit flies, genes can be mutated to abolish circadian rhythms (i.e., produce arrhythmia) or alter the period of the circadian rhythm; these genes encode key components of the circadian oscillator mechanism. Other mutations have identified components of the input pathways (by which light and temperature synchronize the circadian clock to environmental cycles) or output pathways (which connect the circadian oscillator to the physiological response). Mutations in genes are typically generated by chemical mutagenesis or mutagenesis with transposable elements. Flies with mutagenized chromosomes are processed in a series of genetic crosses, which allow specific chromosomes to be screened for semidominant mutations, recessive mutations, enhancer/suppressor mutations, or genes that can be overexpressed to alter circadian rhythms. Circadian phenotypes, which are assayed to identify mutants, include eclosion (emergence of the adult from the pupal case), locomotor activity (similar to human sleep?wake behavior), and circadian oscillations of gene expression. It is argued that screens for new circadian genes will continue to reveal novel components of the circadian mechanism.
Collapse
Affiliation(s)
- Jeffrey L Price
- School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110, USA
| |
Collapse
|
15
|
Hall JC. Genetics and molecular biology of rhythms in Drosophila and other insects. ADVANCES IN GENETICS 2003; 48:1-280. [PMID: 12593455 DOI: 10.1016/s0065-2660(03)48000-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Application of generic variants (Sections II-IV, VI, and IX) and molecular manipulations of rhythm-related genes (Sections V-X) have been used extensively to investigate features of insect chronobiology that might not have been experimentally accessible otherwise. Most such tests of mutants and molecular-genetic xperiments have been performed in Drosophila melanogaster. Results from applying visual-system variants have revealed that environmental inputs to the circadian clock in adult flies are mediated by external photoreceptive structures (Section II) and also by direct light reception chat occurs in certain brain neurons (Section IX). The relevant light-absorbing molecuLes are rhodopsins and "blue-receptive" cryptochrome (Sections II and IX). Variations in temperature are another clock input (Section IV), as has been analyzed in part by use of molecular techniques and transgenes involving factors functioning near the heart of the circadian clock (Section VIII). At that location within the fly's chronobiological system, approximately a half-dozen-perhaps up to as many as 10-clock genes encode functions that act and interact to form the circadian pacemaker (Sections III and V). This entity functions in part by transcriptional control of certain clock genes' expressions, which result in the production of key proteins that feed back negatively to regulate their own mRNA production. This occurs in part by interactions of such proteins with others that function as transcriptional activators (Section V). The implied feedback loop operates such that there are daily variations in the abundances of products put out by about one-half of the core clock genes. Thus, the normal expression of these genes defines circadian rhythms of their own, paralleling the effects of mutations at the corresponding genetic loci (Section III), which are to disrupt or apparently eliminate clock functioning. The fluctuations in the abundance of gene products are controlled transciptionally and posttranscriptionally. These clock mechanisms are being analyzed in ways that are increasingly complex and occasionally obscure; not all panels of this picture are comprehensive or clear, including problems revolving round the biological meaning or a given features of all this molecular cycling (Section V). Among the complexities and puzzles that have recently arisen, phenomena that stand out are posttranslational modifications of certain proteins that are circadianly regulated and regulating; these biochemical events form an ancillary component of the clock mechanism, as revealed in part by genetic identification of Factors (Section III) that turned out to encode protein kinases whose substrates include other pacemaking polypeptides (Section V). Outputs from insect circadian clocks have been long defined on formalistic and in some cases concrete criteria, related to revealed rhythms such as periodic eclosion and daily fluctuations of locomotion (Sections II and III). Based on the reasoning that if clock genes can regulate circadian cyclings of their own products, they can do the same for genes that function along output pathways; thus clock-regulated genes have been identified in part by virtue of their products' oscillations (Section X). Those studied most intensively have their expression influenced by circadian-pacemaker mutations. The clock-regulated genes discovered on molecular criteria have in some instances been analyzed further in their mutant forms and found to affect certain features of overt whole-organismal rhythmicity (Sections IV and X). Insect chronogenetics touches in part on naturally occurring gene variations that affect biological rhythmicity or (in some cases) have otherwise informed investigators about certain features of the organism's rhythm system (Section VII). Such animals include at least a dozen insect species other than D. melanogaster in which rhythm variants have been encountered (although usually not looked for systematically). The chronobiological "system" in the fruit fly might better be graced with a plural appellation because there is a myriad of temporally related phenomena that have come under the sway of one kind of putative rhythm variant or the other (Section IV). These phenotypes, which range well beyond the bedrock eclosion and locomotor circadian rhythms, unfortunately lead to the creation of a laundry list of underanalyzed or occult phenomena that may or may not be inherently real, whether or not they might be meaningfully defective under the influence of a given chronogenetic variant. However, such mutants seem to lend themselves to the interrogation of a wide variety of time-based attributes-those that fall within the experimental confines of conventionally appreciated circadian rhythms (Sections II, III, VI, and X); and others that consist of 24-hr or nondaily cycles defined by many kinds of biological, physiological, or biochemical parameters (Section IV).
Collapse
Affiliation(s)
- Jeffrey C Hall
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
16
|
Hendricks JC. Invited review: Sleeping flies don't lie: the use of Drosophila melanogaster to study sleep and circadian rhythms. J Appl Physiol (1985) 2003; 94:1660-72; discussion 1673. [PMID: 12626480 DOI: 10.1152/japplphysiol.00904.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During the past century, flies thoroughly proved their value as an animal model for the study of the genetics of development and basic cell processes. During the past three decades, they have also been extensively used to study the genetics of behavior. For both circadian rhythms and for sleep, flies are helping us to understand the genetic mechanisms that underlie these complex behaviors. Since 1971, discoveries in the fly have led the way to a number of significant discoveries, establishing a mechanistic framework that is now known to be conserved in the mammalian clock. The highlights of this history are described. For sleep, the use of the fly as a model is relatively new, that is, only within the past 2 yr. Nonetheless, studies have already established that two transcription factors alter rest and rest homeostasis. The implications of these advances for the future of sleep research are summarized.
Collapse
Affiliation(s)
- Joan C Hendricks
- Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
17
|
Affiliation(s)
- Ezio Rosato
- Department of Biology, University of Leicester, Leicester LEI 7RH, UK
| | | |
Collapse
|
18
|
Abstract
In Drosophila, a number of key processes such as emergence from the pupal case, locomotor activity, feeding, olfaction, and aspects of mating behavior are under circadian regulation. Although we have a basic understanding of how the molecular oscillations take place, a clear link between gene regulation and downstream biological processes is still missing. To identify clock-controlled output genes, we have used an oligonucleotide-based high-density array that interrogates gene expression changes on a whole genome level. We found genes regulating various physiological processes to be under circadian transcriptional regulation, ranging from protein stability and degradation, signal transduction, heme metabolism, detoxification, and immunity. By comparing rhythmically expressed genes in the fly head and body, we found that the clock has adapted its output functions to the needs of each particular tissue, implying that tissue-specific regulation is superimposed on clock control of gene expression. Finally, taking full advantage of the fly as a model system, we have identified and characterized a cycling potassium channel protein as a key step in linking the transcriptional feedback loop to rhythmic locomotor behavior.
Collapse
|
19
|
Abstract
Pigment-dispersing factor (PDF) neuropeptide is an important neurochemical that carries circadian timing information originating from the central oscillator in Drosophila. Several core-clock factors function as upstream pdf regulators; the dClock and cycle genes control pdf transcription, whereas the period and timeless genes regulate post-translational processes of PDF via unknown mechanisms. For a downstream neural path, PDF most likely acts as a local modulator, which binds to its receptors that are possibly linked to Ras/MAPK signaling pathways. PDF receptor-containing cells seem to localize in the vicinity of nerve terminals from pace-making neurons. Although PDF is likely to be a principal clock-output factor, our recent evidence predicts the presence of other neuropeptides with rhythm-relevant functions. Furthermore, recent microarray screens have identified numerous potential clock-controlled genes, suggesting that diverse physiological processes might be affected by the biological clock system.
Collapse
|
20
|
Watabe T, Ogura K, Nishiyama T. [Molecular toxicological mechanism of the lethal interactions of the new antiviral drug, sorivudine, with 5-fluorouracil prodrugs and genetic deficiency of dihydropyrimidine dehydrogenase]. YAKUGAKU ZASSHI 2002; 122:527-35. [PMID: 12187768 DOI: 10.1248/yakushi.122.527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 1993, there were 18 acute deaths in Japanese patients who had the viral disease herpes zoster and were treated with the new antiviral drug sorivudine (SRV, 1-beta-D-arabinofuranosyl-(E)-5-(2-bromovinyl)uracil). All the dead patients had received a 5-fluorouracil (5-FU) prodrug as anticancer chemotherapy concomitant with SRV administration. Studies on toxicokinetics in rats and on hepatic dihydropyrimidine dehydrogenase (DPD), a rate-limiting enzyme for 5-FU catabolism in rats and humans, strongly suggested that in the patients who received both SRV and the 5-FU prodrug, tissue levels of highly toxic 5-FU markedly increased as a result of irreversible inactivation of DPD in the presence of NADPH by 5-(2-bromovinyl)uracil (BVU), a metabolite formed from SRV by gut flora in rats and humans. Recombinant human (h) DPD was also irreversibly inactivated by [14C] BVU in the presence of NADPH. MALDI-TOF MS analysis of radioactive tryptic fragments from the radiolabeled and inactivated hDPD demonstrated that a Cys residue located at position 671 in the pyrimidine-binding domain of hDPD was modified with an allyl bromide type of reactive metabolite, dihydro-BVU. Thus artificial DPD deficiency caused by BVU from SRV led to patient deaths when coadministered with the 5-FU prodrug. Human population studies using healthy volunteers have demonstrated that there are poor and extensive 5-FU metabolizers who have very low and high DPD activities, respectively. Administration of a clinical dose of 5-FU or its prodrug to poor 5-FU metabolizers may cause death unless DPD activity is determined using their peripheral blood mononuclear cells prior to the administration of the anticancer drug.
Collapse
Affiliation(s)
- Tadashi Watabe
- Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji City, Tokyo 192-0392, Japan.
| | | | | |
Collapse
|
21
|
Lin Y, Han M, Shimada B, Wang L, Gibler TM, Amarakone A, Awad TA, Stormo GD, Van Gelder RN, Taghert PH. Influence of the period-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogaster. Proc Natl Acad Sci U S A 2002; 99:9562-7. [PMID: 12089325 PMCID: PMC123180 DOI: 10.1073/pnas.132269699] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2002] [Accepted: 05/06/2002] [Indexed: 11/18/2022] Open
Abstract
We measured daily gene expression in heads of control and period mutant Drosophila by using oligonucleotide microarrays. In control flies, 72 genes showed diurnal rhythms in light-dark cycles; 22 of these also oscillated in free-running conditions. The period gene significantly influenced the expression levels of over 600 nonoscillating transcripts. Expression levels of several hundred genes also differed significantly between control flies kept in light-dark versus constant darkness but differed minimally between per(01) flies kept in the same two conditions. Thus, the period-dependent circadian clock regulates only a limited set of rhythmically expressed transcripts. Unexpectedly, period regulates basal and light-regulated gene expression to a very broad extent.
Collapse
Affiliation(s)
- Yiing Lin
- Department of Genetics, Washington University Medical School, St. Louis, MO, 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, Gant TW, Hastings MH, Kyriacou CP. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 2002; 12:540-50. [PMID: 11937022 DOI: 10.1016/s0960-9822(02)00759-5] [Citation(s) in RCA: 582] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND Genes encoding the circadian pacemaker in the hypothalamic suprachiasmatic nuclei (SCN) of mammals have recently been identified, but the molecular basis of circadian timing in peripheral tissue is not well understood. We used a custom-made cDNA microarray to identify mouse liver transcripts that show circadian cycles of abundance under constant conditions. RESULTS Using two independent tissue sampling and hybridization regimes, we show that approximately 9% of the 2122 genes studied show robust circadian cycling in the liver. These transcripts were categorized by their phase of abundance, defining clusters of day- and night-related genes, and also by the function of their products. Circadian regulation of genes was tissue specific, insofar as novel rhythmic liver genes were not necessarily rhythmic in the brain, even when expressed in the SCN. The rhythmic transcriptome in the periphery is, nevertheless, dependent on the SCN because surgical ablation of the SCN severely dampened or destroyed completely the cyclical expression of both canonical circadian genes and novel genes identified by microarray analysis. CONCLUSIONS Temporally complex, circadian programming of the transcriptome in a peripheral organ is imposed across a wide range of core cellular functions and is dependent on an interaction between intrinsic, tissue-specific factors and extrinsic regulation by the SCN central pacemaker.
Collapse
Affiliation(s)
- Ruth A Akhtar
- Department of Genetics, University of Leicester, LE1 7RH, Leicester, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Scully AL, Zelhof AC, Kay SA. A P element with a novel fusion of reporters identifies regular, a C2H2 zinc-finger gene downstream of the circadian clock. Mol Cell Neurosci 2002; 19:501-14. [PMID: 11988018 DOI: 10.1006/mcne.2001.1091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elucidating the mechanisms that link the circadian pacemaker to the timing of behaviors it controls is one of the greatest challenges in circadian biology. We report the generation of a P element, Pluc+, containing a novel reporter fusion. Our fusion reporter capitalizes on the use of luciferase bioluminescence to easily analyze temporal expression as well as the strength of myc epitopes and GFP to identify spatial expression. Using Pluc+ we have identified and characterized a novel C2H2 zinc-finger gene, regular (rgr), that cycles circadianly in phase with period (per) gene expression, but shifts to light-dark regulation in Clk(Jrk) mutant flies. By following myc expression of the Pluc+ reporter, we demonstrate that Rgr is expressed in a discrete number of neurons in the brain which overlap with axons expressing pigment-dispersing factor.
Collapse
Affiliation(s)
- Audra L Scully
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
24
|
Stempfl T, Vogel M, Szabo G, Wülbeck C, Liu J, Hall JC, Stanewsky R. Identification of circadian-clock-regulated enhancers and genes of Drosophila melanogaster by transposon mobilization and luciferase reporting of cyclical gene expression. Genetics 2002; 160:571-93. [PMID: 11861563 PMCID: PMC1461973 DOI: 10.1093/genetics/160.2.571] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new way was developed to isolate rhythmically expressed genes in Drosophila by modifying the classic enhancer-trap method. We constructed a P element containing sequences that encode firefly luciferase as a reporter for oscillating gene expression in live flies. After generation of 1176 autosomal insertion lines, bioluminescence screening revealed rhythmic reporter-gene activity in 6% of these strains. Rhythmically fluctuating reporter levels were shown to be altered by clock mutations in genes that specify various circadian transcription factors or repressors. Intriguingly, rhythmic luminescence in certain lines was affected by only a subset of the pacemaker mutations. By isolating genes near 13 of the transposon insertions and determining their temporal mRNA expression pattern, we found that four of the loci adjacent to the trapped enhancers are rhythmically expressed. Therefore, this approach is suitable for identifying genetic loci regulated by the circadian clock. One transposon insert caused a mutation in the rhythmically expressed gene numb. This novel numb allele, as well as previously described ones, was shown to affect the fly's rhythm of locomotor activity. In addition to its known role in cell fate determination, this gene and the phosphotyrosine-binding protein it encodes are likely to function in the circadian system.
Collapse
Affiliation(s)
- Thomas Stempfl
- Institut für Zoologie, Universität Regensburg, Lehrstuhl für Entwicklungsbiologie, 93040 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Circadian rhythms are found in most eukaryotes and some prokaryotes. The mechanism by which organisms maintain these roughly 24-h rhythms in the absence of environmental stimuli has long been a mystery and has recently been the subject of intense research. In the past few years, we have seen explosive progress in the understanding of the molecular basis of circadian rhythms in model systems ranging from cyanobacteria to mammals. This review attempts to outline these primarily genetic and biochemical findings and encompasses work done in cyanobacteria, Neurospora, higher plants, Drosophila, and rodents. Although actual clock components do not seem to be conserved between kingdoms, central clock mechanisms are conserved. Somewhat paradoxically, clock components that are conserved between species can be used in diverse ways. The different uses of common components may reflect the important role that the circadian clock plays in adaptation of species to particular environmental niches.
Collapse
Affiliation(s)
- S L Harmer
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
26
|
Abstract
Many daily biological rhythms are governed by an innate timekeeping mechanism or clock. Endogenous, temperature-compensated circadian clocks have been localized to discrete sites within the nervous systems of a number of organisms. In mammals, the master circadian pacemaker is the bilaterally paired suprachiasmatic nucleus (SCN) in the anterior hypothalamus. The SCN is composed of multiple single cell oscillators that must synchronize to each other and the environmental light schedule. Other tissues, including those outside the nervous system, have also been shown to express autonomous circadian periodicities. This review examines 1) how intracellular regulatory molecules function in the oscillatory mechanism and in its entrainment to environmental cycles; 2) how individual SCN cells interact to create an integrated tissue pacemaker with coherent metabolic, electrical, and secretory rhythms; and 3) how such clock outputs are converted into temporal programs for the whole organism.
Collapse
Affiliation(s)
- Erik D Herzog
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
27
|
Allada R, Emery P, Takahashi JS, Rosbash M. Stopping time: the genetics of fly and mouse circadian clocks. Annu Rev Neurosci 2001; 24:1091-119. [PMID: 11520929 DOI: 10.1146/annurev.neuro.24.1.1091] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Forward genetic analyses in flies and mice have uncovered conserved transcriptional feedback loops at the heart of circadian pacemakers. Conserved mechanisms of posttranslational regulation, most notably phosphorylation, appear to be important for timing feedback. Transcript analyses have indicated that circadian clocks are not restricted to neurons but are found in several tissues. Comparisons between flies and mice highlight important differences in molecular circuitry and circadian organization. Future studies of pacemaker mechanisms and their control of physiology and behavior will likely continue to rely on forward genetics.
Collapse
Affiliation(s)
- R Allada
- Department of Neurobiology, Evanston, IL 60208, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
Circadian rhythms are regulated by endogenous body clocks, which are formed by rhythmic cycles of clock gene expression. Almost all reviews of the Drosophila circadian clock state that the intracellular oscillator is based on a simple negative feedback loop. However, not many 'simple' feedback loops in biology last for 24 h. Instead, the Drosophila clock is a series of precisely timed steps that are deliberately slow. In this paper, I will discuss the current model for how the Drosophila clock is regulated, and ask what questions remain to be answered.
Collapse
Affiliation(s)
- J Blau
- NYU Department of Biology, 100 Washington Square East, Main Building 1009, New York, NY 10003, USA.
| |
Collapse
|
29
|
Abstract
This paper discusses circadian output in terms of the signaling mechanisms used by circadian pacemaker neurons. In mammals, the suprachiasmatic nucleus houses a clock controlling several rhythmic events. This nucleus contains one or more pacemaker circuits, and exhibits diversity in transmitter content and in axonal projections. In Drosophila, a comparable circadian clock is located among period -expressing neurons, a sub-set of which (called LN-vs) express the neuropeptide PDF. Genetic experiments indicate LN-vs are the primary pacemakers neurons controlling daily locomotion and that PDF is the principal circadian transmitter. Further definition of pacemaker properties in several model systems will provide a useful basis with which to describe circadian output mechanisms.
Collapse
Affiliation(s)
- P H Taghert
- Department of Anatomy & Neurobiology, Box 8108, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA.
| |
Collapse
|
30
|
Abstract
Much of our current understanding of how circadian rhythms are generated is based on work done with Drosophila melanogaster. Molecular mechanisms used to assemble an endogenous clock in this organism are now known to underlie circadian rhythms in many other species, including mammals. The genetic amenability of Drosophila has led to the identification of some genes that encode components of the clock (so-called clock genes) and others that either link the clock to the environment or act downstream of it. The clock provides time-of-day cues by regulating levels of specific gene products such that they oscillate with a circadian rhythm. The mechanisms that synchronize these oscillations to light are understood to some extent. However, there are still large gaps in our knowledge, in particular with respect to the mechanisms used by the clock to control overt rhythms. It has, however, become clear that in addition to the brain clock, autonomous or semi-autonomous clocks occur in peripheral tissues where they confer circadian regulation on specific functions.
Collapse
Affiliation(s)
- J A Williams
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
31
|
Abstract
The genetic and molecular analysis of circadian timekeeping mechanisms has accelerated as a result of the increasing volume of genomic markers and nucleotide sequence information. Completion of whole genome sequences and the use of differential gene expression technology will hasten the discovery of the clock output pathways that control diverse rhythmic phenomena.
Collapse
Affiliation(s)
- P E Hardin
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA.
| |
Collapse
|
32
|
Abstract
We report the role of dCREB2, the Drosophila homolog of CREB/CREM, in circadian rhythms. dCREB2 activity cycles with a 24 hr rhythm in flies, both in a light:dark cycle and in constant darkness. A mutation in dCREB2 shortens circadian locomotor rhythm in flies and dampens the oscillation of period, a known clock gene. Cycling dCREB2 activity is abolished in a period mutant, indicating that dCREB2 and Period affect each other and suggesting that the two genes participate in the same regulatory feedback loop. We propose that dCREB2 supports cycling of the Period/Timeless oscillator. These findings support CREB's role in mediating adaptive behavioral responses to a variey of environmental stimuli (stress, growth factors, drug addiction, circadian rhythms, and memory formation) in mammals and long-term memory formation and circadian rhythms in Drosophila.
Collapse
Affiliation(s)
| | - Hong Zhou
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Jerry C. P. Yin
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| |
Collapse
|
33
|
Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 1999; 96:57-68. [PMID: 9989497 DOI: 10.1016/s0092-8674(00)80959-9] [Citation(s) in RCA: 710] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We examined the transcriptional regulation of the clock-controlled arginine vasopressin gene in the suprachiasmatic nuclei (SCN). A core clock mechanism in mouse SCN appears to involve a transcriptional feedback loop in which CLOCK and BMAL1 are positive regulators and three mPeriod (mPer) genes are involved in negative feedback. We show that the RNA rhythm of each mPer gene is severely blunted in Clock/Clock mice. The vasopressin RNA rhythm is abolished in the SCN of Clock/Clock animals, leading to markedly decreased peptide levels. Luciferase reporter gene assays show that CLOCK-BMAL1 heterodimers act through an E box enhancer in the vasopressin gene to activate transcription; this activation can be inhibited by the mPER and mTIM proteins. These data indicate that the transcriptional machinery of the core clockwork directly regulates a clock-controlled output rhythm.
Collapse
Affiliation(s)
- X Jin
- Pediatric Service, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Molecular and genetic characterizations of circadian rhythms in Drosophila indicate that function of an intracellular pacemaker requires the activities of proteins encoded by three genes: period (per), timeless (tim), and doubletime (dbt). RNA from two of these genes, per and tim, is expressed with a circadian rhythm. Heterodimerization of PER and TIM proteins allows nuclear localization and suppression of further RNA synthesis by a PER/TIM complex. These protein interactions promote cyclical gene expression because heterodimers are observed only at high concentrations of per and tim RNA, separating intervals of RNA accumulation from times of PER/TIM complex activity. Light resets these molecular cycles by eliminating TIM. The product of dbt also regulates accumulation of per and tim RNA, and it may influence action of the PER/TIM complex. The recent discovery of PER homologues in mice and humans suggests that a related mechanism controls mammalian circadian behavioral rhythms.
Collapse
Affiliation(s)
- M W Young
- National Science Foundation Science and Technology Center for Biological Timing, Rockefeller University, New York, New York 10021, USA.
| |
Collapse
|
35
|
Abstract
In the fruit-fly Drosophila, rhythmic expression of the clock gene period is detected in cells throughout the body. Whereas these cells could be pacemakers for circadian rhythms of unknown physiological processes, the brain pacemakers are known to be responsible for circadian behavior. Recent progress in genetic and molecular studies of clock genes in Drosophila has permitted the identification of brain pacemakers at the cellular level and their output pathways to rhythmic behavior. Similar studies in other insect species have suggested considerable diversity in the anatomical and neurochemical properties of pacemaker cells, as well as in the mechanisms of clock-gene regulation.
Collapse
Affiliation(s)
- M Kaneko
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
36
|
Zeng C, Justice NJ, Abdelilah S, Chan YM, Jan LY, Jan YN. The Drosophila LIM-only gene, dLMO, is mutated in Beadex alleles and might represent an evolutionarily conserved function in appendage development. Proc Natl Acad Sci U S A 1998; 95:10637-42. [PMID: 9724756 PMCID: PMC27947 DOI: 10.1073/pnas.95.18.10637] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/1998] [Indexed: 11/18/2022] Open
Abstract
The process of wing patterning involves precise molecular mechanisms to establish an organizing center at the dorsal-ventral boundary, which functions to direct the development of the Drosophila wing. We report that misexpression of dLMO, a Drosophila LIM-only protein, in specific patterns in the developing wing imaginal disc, disrupts the dorsal-ventral (D-V) boundary and causes errors in wing patterning. When dLMO is misexpressed along the anterior-posterior boundary, extra wing outgrowth occurs, similar to the phenotype seen when mutant clones lacking Apterous, a LIM homeodomain protein known to be essential for normal D-V patterning of the wing, are made in the wing disc. When dLMO is misexpressed along the D-V boundary in third instar larvae, loss of the wing margin is observed. This phenotype is very similar to the phenotype of Beadex, a long-studied dominant mutation that we show disrupts the dLMO transcript in the 3' untranslated region. dLMO normally is expressed in the wing pouch of the third instar wing imaginal disc during patterning. A mammalian homolog of dLMO is expressed in the developing limb bud of the mouse. This indicates that LMO proteins might function in an evolutionarily conserved mechanism involved in patterning the appendages.
Collapse
Affiliation(s)
- C Zeng
- Howard Hughes Medical Institute, Department of Physiology and Department of Biochemistry, University of California at San Francisco, San Francisco, CA 94143-0725, USA
| | | | | | | | | | | |
Collapse
|
37
|
Bell-Pedersen D. Keeping pace with Neurospora circadian rhythms. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 7):1699-1711. [PMID: 9695904 DOI: 10.1099/00221287-144-7-1699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Miyamoto Y, Sancar A. Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci U S A 1998; 95:6097-102. [PMID: 9600923 PMCID: PMC27591 DOI: 10.1073/pnas.95.11.6097] [Citation(s) in RCA: 327] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1998] [Accepted: 04/01/1998] [Indexed: 02/07/2023] Open
Abstract
In mammals the retina contains photoactive molecules responsible for both vision and circadian photoresponse systems. Opsins, which are located in rods and cones, are the pigments for vision but it is not known whether they play a role in circadian regulation. A subset of retinal ganglion cells with direct projections to the suprachiasmatic nucleus (SCN) are at the origin of the retinohypothalamic tract that transmits the light signal to the master circadian clock in the SCN. However, the ganglion cells are not known to contain rhodopsin or other opsins that may function as photoreceptors. We have found that the two blue-light photoreceptors, cryptochromes 1 and 2 (CRY1 and CRY2), recently discovered in mammals are specifically expressed in the ganglion cell and inner nuclear layers of the mouse retina. In addition, CRY1 is expressed at high level in the SCN and oscillates in this tissue in a circadian manner. These data, in conjunction with the established role of CRY2 in photoperiodism in plants, lead us to propose that mammals have a vitamin A-based photopigment (opsin) for vision and a vitamin B2-based pigment (cryptochrome) for entrainment of the circadian clock.
Collapse
Affiliation(s)
- Y Miyamoto
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
39
|
Drosophila photoreceptors contain an autonomous circadian oscillator that can function without period mRNA cycling. J Neurosci 1998. [PMID: 9425016 DOI: 10.1523/jneurosci.18-02-00741.1998] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Circadian oscillations in period (per) mRNA and per protein (PER) constitute, in part, a feedback loop that is required for circadian pacemaker function in Drosophila melanogaster. Oscillations in PER are required for oscillations in per mRNA, but the converse has not been rigorously tested because of a lack of measurable quantities of per mRNA and protein in the same cells. This circadian feedback loop operates synchronously in many neuronal and non-neuronal tissues, including a set of lateral brain neurons (LNs) that mediate rhythms in locomotor activity, but whether a hierarchy among these tissues maintains this synchrony is not known. To determine whether per mRNA cycling is necessary for PER cycling and whether cyclic per gene expression is tissue autonomous, we have generated per01 flies carrying a transgene that constitutively expresses per mRNA specifically in photoreceptors, a cell type that supports feedback loop function. These transformants were tested for different aspects of feedback loop function including per mRNA cycling, PER cycling, and PER nuclear localization. Under both light/dark (LD) cycling and constant dark (DD) conditions, PER abundance cycles in the absence of circadian cycling of per mRNA. These results show that per mRNA cycling is not required for PER cycling and indicate that Drosophila photoreceptors R1-R6 contain a tissue autonomous circadian oscillator.
Collapse
|
40
|
Abstract
In higher eukaryotes, circadian behaviour patterns have been dissected at the molecular level in Drosophila and, more recently, in the mouse. Considerable progress has been made in identifying some of the molecular components of the clock in the fly, where two genes, period (per) and timeless (tim), are essential for behavioural rhythmicity. The PER and TIM proteins show circadian cycles in abundance, and are part of a negative feedback loop with their own mRNAs. Within the pacemaker neurons, the PER and TIM products are believed to form a complex which allows them to translocate to the nucleus, but how they repress their own transcription is unclear. TIM is rapidly degraded by light, a feature which permits a compelling molecular description of both behavioural light entrainment and phase responses to light pulses. The regulation of per and tim is altered in different Drosophila tissues, however, and comparative analyses of the two genes outside the Diptera reveals further unusual patterns of tissue-specific regulation. Evolution appears to have modified the way in which the two genes are utilised to generate circadian phenotypes. More recently, the cloning of mouse clock genes, including putative per homologues, opens up exciting possibilities for mammalian molecular chronobiology.
Collapse
Affiliation(s)
- E Rosato
- Department of Genetics, University of Leicester, UK
| | | | | |
Collapse
|
41
|
Abstract
Transgenic Drosophila that expressed either luciferase or green fluorescent protein driven from the promoter of the clock gene period were used to monitor the circadian clock in explanted head, thorax, and abdominal tissues. The tissues (including sensory bristles in the leg and wing) showed rhythmic bioluminescence, and the rhythms could be reset by light. The photoreceptive properties of the explanted tissues indicate that unidentified photoreceptors are likely to contribute to photic signal transduction to the clock. These results show that autonomous circadian oscillators are present throughout the body, and they suggest that individual cells in Drosophila are capable of supporting their own independent clocks.
Collapse
Affiliation(s)
- J D Plautz
- Department of Cell Biology and National Science Foundation Center for Biological Timing, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
42
|
Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling. J Neurosci 1997. [PMID: 9254686 DOI: 10.1523/jneurosci.17-17-06745.1997] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The circadian timekeeping system of Drosophila functions from the first larval instar (L1) onward but is not known to require the expression of clock genes in larvae. We show that period (per) and timeless (tim) are rhythmically expressed in several groups of neurons in the larval CNS both in light/dark cycles and in constant dark conditions. Among the clock gene-expressing cells there is a subset of the putative pacemaker neurons, the "lateral neurons" (LNs), that have been analyzed mainly in adult flies. Like the adult LNs, the larval ones are also immunoreactive to a peptide called pigment-dispersing hormone. Their putative dendritic trees were found to be in close proximity to the terminals of the larval optic nerve Bolwig's nerve, possibly receiving photic input from the larval eyes. The LNs are the only larval cells that maintain a strong cycling in PER from L1 onward, throughout metamorphosis and into adulthood. Therefore, they are the best candidates for being pacemaker neurons responsible for the larval "time memory" (inferred from previous experiments). In addition to the LNs, a subset of the larval dorsal neurons (DNLs) expresses per and tim. Intriguingly, two neurons of this DNL group cycle in PER and TIM immunoreactivity almost in antiphase to the other DNLs and to the LNs. Thus, the temporal expression of per and tim are regulated differentially in different cells. Furthermore, the light sensitivity associated with levels of the TIM protein is different from that in the heads of adult Drosophila.
Collapse
|
43
|
Hao H, Allen DL, Hardin PE. A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. Mol Cell Biol 1997; 17:3687-93. [PMID: 9199302 PMCID: PMC232220 DOI: 10.1128/mcb.17.7.3687] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genes expressed under circadian-clock control are found in organisms ranging from prokaryotes to humans. In Drosophila melanogaster, the period (per) gene, which is required for clock function, is transcribed in a circadian manner. We have identified a circadian transcriptional enhancer within a 69-bp DNA fragment upstream of the per gene. This enhancer drives high-amplitude mRNA cycling under light-dark-cycling or constant-dark conditions, and this activity is per protein (PER) dependent. An E-box sequence within this 69-bp fragment is necessary for high-level expression, but not for rhythmic expression, indicating that PER mediates circadian transcription through other sequences in this fragment.
Collapse
Affiliation(s)
- H Hao
- Department of Biology, Texas A & M University, College Station 77843-3258, USA
| | | | | |
Collapse
|
44
|
Rouyer F, Rachidi M, Pikielny C, Rosbash M. A new gene encoding a putative transcription factor regulated by the Drosophila circadian clock. EMBO J 1997; 16:3944-54. [PMID: 9233804 PMCID: PMC1170018 DOI: 10.1093/emboj/16.13.3944] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Circadian rhythms of locomotor activity and eclosion in Drosophila depend upon the reciprocal autoregulation of the period (per) and timeless (tim) genes. As part of this regulatory loop, per and tim mRNA levels oscillate in a circadian fashion. Other cycling transcripts may participate in this central pacemaker mechanism or represent outputs of the clock. In this paper, we report the isolation of Crg-1, a new circadianly regulated gene. Like per and tim transcript levels, Crg-1 transcript levels oscillate with a 24 h period in light:dark (LD) conditions, with a maximal abundance at the beginning of the night. These oscillations persist in complete darkness and depend upon per and tim proteins. The putative CRG-1 proteins show some sequence similarity with the DNA-binding domain of the HNF3/fork head family of transcription factors. In the adult head, in situ hybridization analysis reveals that per and Crg-1 have similar expression patterns in the eyes and optic lobes.
Collapse
Affiliation(s)
- F Rouyer
- HHMI and Department of Biology, Brandeis University, Waltham, MA 02254, USA.
| | | | | | | |
Collapse
|
45
|
Plautz JD, Straume M, Stanewsky R, Jamison CF, Brandes C, Dowse HB, Hall JC, Kay SA. Quantitative analysis of Drosophila period gene transcription in living animals. J Biol Rhythms 1997; 12:204-17. [PMID: 9181432 DOI: 10.1177/074873049701200302] [Citation(s) in RCA: 325] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To determine the in vivo regulatory pattern of the clock gene period (per), the authors recently developed transgenic Drosophila carrying a luciferase cDNA fused to the promoter region of per. They have now carried out noninvasive, high time-resolution experiments allowing high-throughput monitoring of circadian bioluminescence rhythms in individual living adults for several days. This immediately solved several problems (resulting directly from individual asynchrony within a population) that have accompanied previous biochemical experiments in which groups of animals were sacrificed at each time point. Furthermore, the authors have developed numerical analysis methods for automatically determining rhythmicity associated with bioluminescence records from single flies. This has revealed some features of per gene transcription that were previously unappreciated and provides a general strategy for the analysis of rhythmic time series in the study of molecular rhythms.
Collapse
Affiliation(s)
- J D Plautz
- Department of Biology, University of Virginia, Charlottesville 22903, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The first part of this review summarizes the two best understood aspects of the two best understood circadian systems, the feedback oscillators of Neurospora and Drosophila, concentrating on what we know about the frequency (frq), period (per) and timeless (tim) genes. In the second part, the general circadian genetic and molecular literature is surveyed, with an eye to describing what is known from a variety of systems about input to the oscillator (entrainment), and how the oscillator might work and be temperature compensated, in emerging systems including Synechococcus, Gonyaulax, Arabidopsis, hamsters, and mice. Finally, the conversation of the molecular components of clocks is analyzed: both frq and per are widely conserved in their respective phylogenetic classes. Pharmacological data suggests that most other organisms use a day-phased oscillator of the type seen in Neurospora rather than a night-phased oscillator such as in Drosophila.
Collapse
Affiliation(s)
- J C Dunlap
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| |
Collapse
|
47
|
Bell-Pedersen D, Shinohara ML, Loros JJ, Dunlap JC. Circadian clock-controlled genes isolated from Neurospora crassa are late night- to early morning-specific. Proc Natl Acad Sci U S A 1996; 93:13096-101. [PMID: 8917550 PMCID: PMC24052 DOI: 10.1073/pnas.93.23.13096] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/1996] [Accepted: 08/23/1996] [Indexed: 02/03/2023] Open
Abstract
An endogenous circadian biological clock controls the temporal aspects of life in most organisms, including rhythmic control of genes involved in clock output pathways. In the fungus Neurospora crassa, one pathway known to be under control of the clock is asexual spore (conidia) development. To understand more fully the processes that are regulated by the N. crassa circadian clock, systematic screens were carried out for genes that oscillate at the transcriptional level. Time-of-day-specific cDNA libraries were generated and used in differential screens to identify six new clock-controlled genes (ccgs). Transcripts specific for each of the ccgs preferentially accumulate during the late night to early morning, although they vary with respect to steady-state mRNA levels and amplitude of the rhythm. Sequencing of the ends of the new ccg cDNAs revealed that ccg-12 is identical to N. crassa cmt encoding copper metallothionein, providing the suggestion that not all clock-regulated genes in N. crassa are specifically involved in the development of conidia. This was supported by finding that half of the new ccgs, including cmt(ccg-12), are not transcriptionally induced by developmental or light signals. These data suggest a major role for the clock in the regulation of biological processes distinct from development.
Collapse
Affiliation(s)
- D Bell-Pedersen
- Department of Biochemistry, Darmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
48
|
Newby LM, Jackson FR. Regulation of a specific circadian clock output pathway by lark, a putative RNA-binding protein with repressor activity. JOURNAL OF NEUROBIOLOGY 1996; 31:117-28. [PMID: 9120432 DOI: 10.1002/(sici)1097-4695(199609)31:1<117::aid-neu10>3.0.co;2-i] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An endogenous clock within the Drosophila brain regulates circadian rhythms in adult eclosion and locomotor activity. Although molecular elements of the Drosophila circadian clock have been well characterized, little is known about the clock output pathways that mediate the control of rhythmic events. Previous genetic analysis indicates that a gene known as lark encodes an element of the clock output pathway regulating adult eclosion. We now present evidence that lark encodes a novel member of the RNA recognition motif (RRM) class of RNA-binding proteins. Similar to other members of this protein superfamily, lark contains two copies of a bipartite consensus RNA-binding motif. Unlike any other RRM family member, however, lark protein also contains a distinct class of nucleic acid binding motif, a retroviral-type zinc finger, that is present in the nucleocapsid protein of retroviruses and in several eukaryotic proteins. In contrast to identified clock elements, lark mRNA does not exhibit diurnal fluctuations in abundance in late pupae or in adult heads. Thus rhythmic transcription of the gene does not contribute to the temporal regulation of eclosion by lark protein. Gene dosage experiments show that decreased or increased lark product, respectively, leads to an early or late eclosion phenotype, indicating that the protein negatively regulates the eclosion process. It is postulated that lark is required for the posttranscriptional repression of genes encoding other elements of this clock output pathway.
Collapse
Affiliation(s)
- L M Newby
- Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545, USA
| | | |
Collapse
|
49
|
Abstract
The timeless gene is a second essential component of the circadian clock in Drosophila; its product interacts physically with the only other known clock component, the period gene product. Together they control the daily cycle of expression of their own and other loci.
Collapse
Affiliation(s)
- R N Van Gelder
- Department of Ophthalmology and Visual Sciences, Washington University Medical School, St. Louis, Missouri 63131, USA
| | | |
Collapse
|