1
|
Yuan Z, Li P, Yang X, Cai X, Wu L, Zhao F, Wen W, Zhou M, Hou Y. FgPfn participates in vegetative growth, sexual reproduction, pathogenicity, and fungicides sensitivity via affecting both microtubules and actin in the filamentous fungus Fusarium graminearum. PLoS Pathog 2024; 20:e1012215. [PMID: 38701108 PMCID: PMC11095717 DOI: 10.1371/journal.ppat.1012215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/15/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum species complexes (FGSG), is an epidemic disease in wheat and poses a serious threat to wheat production and security worldwide. Profilins are a class of actin-binding proteins that participate in actin depolymerization. However, the roles of profilins in plant fungal pathogens remain largely unexplored. Here, we identified FgPfn, a homolog to profilins in F. graminearum, and the deletion of FgPfn resulted in severe defects in mycelial growth, conidia production, and pathogenicity, accompanied by marked disruptions in toxisomes formation and deoxynivalenol (DON) transport, while sexual development was aborted. Additionally, FgPfn interacted with Fgα1 and Fgβ2, the significant components of microtubules. The organization of microtubules in the ΔFgPfn was strongly inhibited under the treatment of 0.4 μg/mL carbendazim, a well-known group of tubulin interferers, resulting in increased sensitivity to carbendazim. Moreover, FgPfn interacted with both myosin-5 (FgMyo5) and actin (FgAct), the targets of the fungicide phenamacril, and these interactions were reduced after phenamacril treatment. The deletion of FgPfn disrupted the normal organization of FgMyo5 and FgAct cytoskeleton, weakened the interaction between FgMyo5 and FgAct, and resulting in increased sensitivity to phenamacril. The core region of the interaction between FgPfn and FgAct was investigated, revealing that the integrity of both proteins was necessary for their interaction. Furthermore, mutations in R72, R77, R86, G91, I101, A112, G113, and D124 caused the non-interaction between FgPfn and FgAct. The R86K, I101E, and D124E mutants in FgPfn resulted in severe defects in actin organization, development, and pathogenicity. Taken together, this study revealed the role of FgPfn-dependent cytoskeleton in development, DON production and transport, fungicides sensitivity in F. graminearum.
Collapse
Affiliation(s)
- Zhili Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pengfei Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xin Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaowei Cai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Luoyu Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Feifei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weidong Wen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Homa KE, Zsolnay V, Anderson CA, O'Connell ME, Neidt EM, Voth GA, Bidone TC, Kovar DR. Formin Cdc12's specific actin assembly properties are tailored for cytokinesis in fission yeast. Biophys J 2021; 120:2984-2997. [PMID: 34214524 DOI: 10.1016/j.bpj.2021.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Formins generate unbranched actin filaments by a conserved, processive actin assembly mechanism. Most organisms express multiple formin isoforms that mediate distinct cellular processes and facilitate actin filament polymerization by significantly different rates, but how these actin assembly differences correlate to cellular activity is unclear. We used a computational model of fission yeast cytokinetic ring assembly to test the hypothesis that particular actin assembly properties help tailor formins for specific cellular roles. Simulations run in different actin filament nucleation and elongation conditions revealed that variations in formin's nucleation efficiency critically impact both the probability and timing of contractile ring formation. To probe the physiological importance of nucleation efficiency, we engineered fission yeast formin chimera strains in which the FH1-FH2 actin assembly domains of full-length cytokinesis formin Cdc12 were replaced with the FH1-FH2 domains from functionally and evolutionarily diverse formins with significantly different actin assembly properties. Although Cdc12 chimeras generally support life in fission yeast, quantitative live-cell imaging revealed a range of cytokinesis defects from mild to severe. In agreement with the computational model, chimeras whose nucleation efficiencies are least similar to Cdc12 exhibit more severe cytokinesis defects, specifically in the rate of contractile ring assembly. Together, our computational and experimental results suggest that fission yeast cytokinesis is ideally mediated by a formin with properly tailored actin assembly parameters.
Collapse
Affiliation(s)
- Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, Chicago, Illinois
| | - Vilmos Zsolnay
- Graduate Program in Biophysical Sciences, Chicago, Illinois
| | | | | | - Erin M Neidt
- Department of Molecular Genetics and Cell Biology, Chicago, Illinois
| | - Gregory A Voth
- Department of Chemistry, The James Franck Institute, Institute for Biophysical Dynamics and Computation Institute, Chicago, Illinois
| | - Tamara C Bidone
- Department of Biomedical Engineering, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah.
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, Chicago, Illinois; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
3
|
Billault-Chaumartin I, Martin SG. Capping Protein Insulates Arp2/3-Assembled Actin Patches from Formins. Curr Biol 2019; 29:3165-3176.e6. [PMID: 31495586 PMCID: PMC6864609 DOI: 10.1016/j.cub.2019.07.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/04/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
How actin structures of distinct identities and functions coexist within the same environment is a critical self-organization question. Fission yeast cells have a simple actin cytoskeleton made of four structures: Arp2/3 assembles actin patches around endocytic pits, and the formins For3, Cdc12, and Fus1 assemble actin cables, the cytokinetic ring during division, and the fusion focus during sexual reproduction, respectively. The focus concentrates the delivery of hydrolases by myosin V to digest the cell wall for cell fusion. We discovered that cells lacking capping protein (CP), a heterodimer that blocks barbed-end dynamics and associates with actin patches, exhibit a delay in fusion. Consistent with CP-formin competition for barbed-end binding, Fus1, F-actin, and the linear filament marker tropomyosin hyper-accumulate at the fusion focus in cells lacking CP. CP deletion also rescues the fusion defect of a mutation in the Fus1 knob region. However, myosin V and exocytic cargoes are reduced at the fusion focus and diverted to ectopic foci, which underlies the fusion defect. Remarkably, the ectopic foci coincide with Arp2/3-assembled actin patches, which now contain low levels of Fus1. We further show that CP localization to actin patches is required to prevent the formation of ectopic foci and promote efficient cell fusion. During mitotic growth, actin patches lacking CP similarly display a dual identity, as they accumulate the formins For3 and Cdc12, normally absent from patches, and are co-decorated by the linear filament-binding protein tropomyosin and the patch marker fimbrin. Thus, CP serves to protect Arp2/3-nucleated structures from formin activity.
Collapse
Affiliation(s)
- Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Ueda EI, Kashiwazaki J, Inoué S, Mabuchi I. Fission yeast Adf1 is necessary for reassembly of actin filaments into the contractile ring during cytokinesis. Biochem Biophys Res Commun 2018; 506:330-338. [DOI: 10.1016/j.bbrc.2018.07.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/31/2018] [Indexed: 01/27/2023]
|
5
|
Cheffings T, Burroughs N, Balasubramanian M. Actomyosin Ring Formation and Tension Generation in Eukaryotic Cytokinesis. Curr Biol 2016; 26:R719-R737. [DOI: 10.1016/j.cub.2016.06.071] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Abstract
The shape of walled cells such as fungi, bacteria, and plants are determined by the cell wall. Models for cell morphogenesis postulate that the effects of turgor pressure and mechanical properties of the cell wall can explain the shapes of these diverse cell types. However, in general, these models await validation through quantitative experiments. Fission yeast Schizosaccharomyces pombe are rod-shaped cells that grow by tip extension and then divide medially through formation of a cell wall septum. Upon cell separation after cytokinesis, the new cell ends adopt a rounded morphology. Here, we show that this shape is generated by a very simple mechanical-based mechanism in which turgor pressure inflates the elastic cell wall in the absence of cell growth. This process is independent of actin and new cell wall synthesis. To model this morphological change, we first estimate the mechanical properties of the cell wall using several approaches. The lateral cell wall behaves as an isotropic elastic material with a Young's modulus of 50 ± 10 MPa inflated by a turgor pressure estimated to be 1.5 ± 0.2 MPa. Based upon these parameters, we develop a quantitative mechanical-based model for new end formation that reveals that the cell wall at the new end expands into its characteristic rounded shape in part because it is softer than the mature lateral wall. These studies provide a simple example of how turgor pressure expands the elastic cell wall to generate a particular cell shape.
Collapse
|
7
|
Abstract
Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed.
Collapse
Affiliation(s)
- Bruce L Goode
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Julian A Eskin
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Beverly Wendland
- The Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218
| |
Collapse
|
8
|
Zhou Z, Munteanu EL, He J, Ursell T, Bathe M, Huang KC, Chang F. The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis. Mol Biol Cell 2014; 26:78-90. [PMID: 25355954 PMCID: PMC4279231 DOI: 10.1091/mbc.e14-10-1441] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cytokinesis in fission yeast is accomplished by inward growth of the cell wall septum guided by the contractile ring. The ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This suggests that the ring regulates cell wall assembly through a mechanosensitive mechanism. The functions of the actin-myosin–based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Emilia Laura Munteanu
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Jun He
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tristan Ursell
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305 Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Fred Chang
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
9
|
Abstract
Cytokinesis, the terminal event in the canonical cell cycle, physically separates daughter cells following mitosis. For cleavage to occur in many eukaryotes, a cytokinetic ring must assemble and constrict between divided genomes. Although dozens of different molecules localize to and participate within the cytokinetic ring, the core machinery comprises linear actin filaments. Accordingly, formins, which nucleate and elongate F-actin (filamentous actin) for the cytokinetic ring, are required for cytokinesis in diverse species. In the present article, we discuss specific modes of formin-based actin regulation during cell division and highlight emerging mechanisms and questions on this topic.
Collapse
|
10
|
Pan KZ, Saunders TE, Flor-Parra I, Howard M, Chang F. Cortical regulation of cell size by a sizer cdr2p. eLife 2014; 3:e02040. [PMID: 24642412 PMCID: PMC3956294 DOI: 10.7554/elife.02040] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/12/2014] [Indexed: 01/03/2023] Open
Abstract
Cells can, in principle, control their size by growing to a specified size before commencing cell division. How any cell actually senses its own size remains poorly understood. The fission yeast Schizosaccharomyces pombe are rod-shaped cells that grow to ∼14 µm in length before entering mitosis. In this study, we provide evidence that these cells sense their surface area as part of this size control mechanism. We show that cells enter mitosis at a certain surface area, as opposed to a certain volume or length. A peripheral membrane protein kinase cdr2p has properties of a dose-dependent 'sizer' that controls mitotic entry. As cells grow, the local cdr2p concentration in nodes at the medial cortex accumulates as a measure of cell surface area. Our findings, which challenge a previously proposed pom1p gradient model, lead to a new model in which cells sense their size by using cdr2p to probe the surface area over the whole cell and relay this information to the medial cortex. DOI: http://dx.doi.org/10.7554/eLife.02040.001.
Collapse
Affiliation(s)
- Kally Z Pan
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, United States
| | - Timothy E Saunders
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratories, Heidelberg, Germany
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ignacio Flor-Parra
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, United States
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Fred Chang
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, United States
| |
Collapse
|
11
|
Abstract
Yeast and other walled cells possess high internal turgor pressure that allows them to grow and survive in the environment. This turgor pressure, however, may oppose the invagination of the plasma membrane needed for endocytosis. Here we study the effects of turgor pressure on endocytosis in the fission yeast Schizosaccharomyces pombe by time-lapse imaging of individual endocytic sites. Decreasing effective turgor pressure by addition of sorbitol to the media significantly accelerates early steps in the endocytic process before actin assembly and membrane ingression but does not affect the velocity or depth of ingression of the endocytic pit in wild-type cells. Sorbitol also rescues endocytic ingression defects of certain endocytic mutants and of cells treated with a low dose of the actin inhibitor latrunculin A. Endocytosis proceeds after removal of the cell wall, suggesting that the cell wall does not contribute mechanically to this process. These studies suggest that endocytosis is governed by a mechanical balance between local actin-dependent inward forces and opposing forces from high internal turgor pressure on the plasma membrane.
Collapse
Affiliation(s)
- Roshni Basu
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | | | | |
Collapse
|
12
|
Abstract
In Schizosaccharomyces pombe, the septation initiation network (SIN) controls cytokinetic ring (CR) formation, maintenance, and constriction. Bohnert et al. identify Cdc12 as a key CR substrate of SIN kinase Sid2. Eliminating Sid2-mediated Cdc12 phosphorylation allows multimerization of a domain that confers F-actin bundling activity, which leads to persistent Cdc12 clustering, causing CRs to collapse when cytokinesis is delayed. These findings identify a SIN-triggered oligomeric switch that modulates cytokinetic formin function, revealing a novel mechanism of actin cytoskeleton regulation during cell division. Many eukaryotes accomplish cell division by building and constricting a medial actomyosin-based cytokinetic ring (CR). In Schizosaccharomyces pombe, a Hippo-related signaling pathway termed the septation initiation network (SIN) controls CR formation, maintenance, and constriction. However, how the SIN regulates integral CR components was unknown. Here, we identify the essential cytokinetic formin Cdc12 as a key CR substrate of SIN kinase Sid2. Eliminating Sid2-mediated Cdc12 phosphorylation leads to persistent Cdc12 clustering, which prevents CR assembly in the absence of anillin-like Mid1 and causes CRs to collapse when cytokinesis is delayed. Molecularly, Sid2 phosphorylation of Cdc12 abrogates multimerization of a previously unrecognized Cdc12 domain that confers F-actin bundling activity. Taken together, our findings identify a SIN-triggered oligomeric switch that modulates cytokinetic formin function, revealing a novel mechanism of actin cytoskeleton regulation during cell division.
Collapse
|
13
|
Affiliation(s)
- Dennis Breitsprecher
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | |
Collapse
|
14
|
Huang J, Huang Y, Yu H, Subramanian D, Padmanabhan A, Thadani R, Tao Y, Tang X, Wedlich-Soldner R, Balasubramanian MK. Nonmedially assembled F-actin cables incorporate into the actomyosin ring in fission yeast. ACTA ACUST UNITED AC 2013. [PMID: 23185032 PMCID: PMC3514790 DOI: 10.1083/jcb.201209044] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In many eukaryotes, cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring. Despite the central role of this ring in cytokinesis, the mechanism of F-actin assembly and accumulation in the ring is not fully understood. In this paper, we investigate the mechanism of F-actin assembly during cytokinesis in Schizosaccharomyces pombe using lifeact as a probe to monitor actin dynamics. Previous work has shown that F-actin in the actomyosin ring is assembled de novo at the division site. Surprisingly, we find that a significant fraction of F-actin in the ring was recruited from formin-Cdc12p nucleated long actin cables that were generated at multiple nonmedial locations and incorporated into the ring by a combination of myosin II and myosin V activities. Our results, together with findings in animal cells, suggest that de novo F-actin assembly at the division site and directed transport of F-actin cables assembled elsewhere can contribute to ring assembly.
Collapse
Affiliation(s)
- Junqi Huang
- Cell Division Laboratory, Temasek Life Sciences Laboratory, Singapore 117604
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee IJ, Coffman VC, Wu JQ. Contractile-ring assembly in fission yeast cytokinesis: Recent advances and new perspectives. Cytoskeleton (Hoboken) 2012; 69:751-63. [PMID: 22887981 DOI: 10.1002/cm.21052] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/16/2012] [Indexed: 11/07/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is an excellent model organism to study cytokinesis. Here, we review recent advances on contractile-ring assembly in fission yeast. First, we summarize the assembly of cytokinesis nodes, the precursors of a normal contractile ring. IQGAP Rng2 and myosin essential light chain Cdc4 are recruited by the anillin-like protein Mid1, followed by the addition of other cytokinesis node proteins. Mid1 localization on the plasma membrane is stabilized by interphase node proteins. Second, we discuss proteins and processes that contribute to the search, capture, pull, and release mechanism of contractile-ring assembly. Actin filaments nucleated by formin Cdc12, the motor activity of myosin-II, the stiffness of the actin network, and severing of actin filaments by cofilin all play essential roles in contractile-ring assembly. Finally, we discuss the Mid1-independent pathway for ring assembly, and the possible mechanisms underlying the ring maturation and constriction. Collectively, we provide an overview of the current understanding of contractile-ring assembly and uncover future directions in studying cytokinesis in fission yeast.
Collapse
Affiliation(s)
- I-Ju Lee
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
16
|
Saha S, Pollard TD. Anillin-related protein Mid1p coordinates the assembly of the cytokinetic contractile ring in fission yeast. Mol Biol Cell 2012; 23:3982-92. [PMID: 22918943 PMCID: PMC3469514 DOI: 10.1091/mbc.e12-07-0535] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Anillin-like protein Mid1p coordinates contractile ring assembly in fission yeast by restricting precursors in nodes around the equator. Without Mid1p, contractile ring assembly is slow and unreliable because ring precursors are separated in nodes (Blt1p, Cdc12p) or strands (myosin-II, Rng2p, Cdc15p, actin filaments) scattered widely in the cortex. In fission yeast cells cortical nodes containing the protein Blt1p and several kinases appear early in G2, mature into cytokinetic nodes by adding anillin Mid1p, myosin-II, formin Cdc12p, and other proteins, and condense into a contractile ring by movements that depend on actin and myosin-II. Previous studies concluded that cells without Mid1p lack cytokinetic nodes and assemble rings unreliably from myosin-II strands but left open questions. Why do strands form outside the equatorial region? Why is ring assembly unreliable without Mid1p? We found in Δmid1 cells that Cdc12p accumulates in cytokinetic nodes scattered in the cortex and produces actin filaments that associate with myosin-II, Rng2p, and Cdc15p to form strands located between the nodes. Strands incorporate nodes, and in ∼67% of cells, strands slowly close into rings that constrict without the normal ∼25-min maturation period. Ring assembly is unreliable and slow without Mid1p because the scattered Cdc12p nodes generate strands spread widely beyond the equator, and growing strands depend on random encounters to merge with other strands into a ring. We conclude that orderly assembly of the contractile ring in wild-type cells depends on Mid1p to recruit myosin-II, Rng2p, and Cdc15p to nodes and to place cytokinetic nodes around the cell equator.
Collapse
Affiliation(s)
- Shambaditya Saha
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
17
|
Rincon SA, Paoletti A. Mid1/anillin and the spatial regulation of cytokinesis in fission yeast. Cytoskeleton (Hoboken) 2012; 69:764-77. [DOI: 10.1002/cm.21056] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/13/2012] [Accepted: 07/20/2012] [Indexed: 12/20/2022]
|
18
|
Proctor SA, Minc N, Boudaoud A, Chang F. Contributions of turgor pressure, the contractile ring, and septum assembly to forces in cytokinesis in fission yeast. Curr Biol 2012; 22:1601-8. [PMID: 22840513 DOI: 10.1016/j.cub.2012.06.042] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/30/2012] [Accepted: 06/13/2012] [Indexed: 11/27/2022]
Abstract
A paradigm of cytokinesis in animal cells is that the actomyosin contractile ring provides the primary force to divide the cell. In the fission yeast Schizosaccharomyces pombe, cytokinesis also involves a conserved cytokinetic ring, which has been generally assumed to provide the force for cleavage (see also [5]). However, in contrast to animal cells, cytokinesis in yeast cells also requires the assembly of a cell wall septum, which grows centripetally inward as the ring closes. Fission yeast, like other walled cells, also possess high (MPa) turgor pressure. Here, we show that turgor pressure is an important factor in the mechanics of cytokinesis. Decreasing effective turgor pressure leads to an increase in cleavage rate, suggesting that the inward force generated by the division apparatus opposes turgor pressure. The contractile ring, which is predicted to provide only a tiny fraction of the mechanical stress required to overcome turgor, is largely dispensable for ingression; once septation has started, cleavage can continue in the absence of the contractile ring. Scaling arguments and modeling suggest that the large forces for cytokinesis are not produced by the contractile ring but are driven by the assembly of cell wall polymers in the growing septum.
Collapse
Affiliation(s)
- Stephen A Proctor
- Department of Microbiology & Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|
19
|
Schmitz HP, Philippsen P. Evolution of multinucleated Ashbya gossypii hyphae from a budding yeast-like ancestor. Fungal Biol 2011; 115:557-68. [PMID: 21640319 DOI: 10.1016/j.funbio.2011.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/17/2011] [Accepted: 02/19/2011] [Indexed: 12/14/2022]
Abstract
In the filamentous ascomycete Ashbya gossypii polarity establishment at sites of germ tube and lateral branch emergence depends on homologues of Saccharomyces cerevisiae factors controlling bud site selection and bud emergence. Maintenance of polar growth involves homologues of well-known polarity factors of budding yeast. To achieve the much higher rates of sustained polar surface expansion of hyphae compared to mainly non-polarly growing yeast buds five important alterations had to evolve. Permanent presence of the polarity machinery at a confined area in the rapidly expanding hyphal tip, increased cytoplasmic space with a much enlarged ER surface for generating secretory vesicles, efficient directed transport of secretory vesicles to and accumulation at the tip, increased capacity of the exocytosis system to process these vesicles, and an efficient endocytosis system for membrane and polarity factor recycling adjacent to the zone of exocytosis. Morphological, cell biological, and molecular aspects of this evolution are discussed based on experiments performed within the past 10 y.
Collapse
Affiliation(s)
- Hans-Peter Schmitz
- Universität Osnabrück, Institut für Genetik, Barbarastr. 11, 49076 Osnabrück, Germany.
| | | |
Collapse
|
20
|
Goyal A, Takaine M, Simanis V, Nakano K. Dividing the spoils of growth and the cell cycle: The fission yeast as a model for the study of cytokinesis. Cytoskeleton (Hoboken) 2011; 68:69-88. [PMID: 21246752 PMCID: PMC3044818 DOI: 10.1002/cm.20500] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/15/2010] [Accepted: 12/20/2010] [Indexed: 12/12/2022]
Abstract
Cytokinesis is the final stage of the cell cycle, and ensures completion of both genome segregation and organelle distribution to the daughter cells. Cytokinesis requires the cell to solve a spatial problem (to divide in the correct place, orthogonally to the plane of chromosome segregation) and a temporal problem (to coordinate cytokinesis with mitosis). Defects in the spatiotemporal control of cytokinesis may cause cell death, or increase the risk of tumor formation [Fujiwara et al., 2005 (Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D. 2005. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–1047); reviewed by Ganem et al., 2007 (Ganem NJ, Storchova Z, Pellman D. 2007. Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17:157–162.)]. Asymmetric cytokinesis, which permits the generation of two daughter cells that differ in their shape, size and properties, is important both during development, and for cellular homeostasis in multicellular organisms [reviewed by Li, 2007 (Li R. 2007. Cytokinesis in development and disease: variations on a common theme. Cell Mol Life Sci 64:3044–3058)]. The principal focus of this review will be the mechanisms of cytokinesis in the mitotic cycle of the yeast Schizosaccharomyces pombe. This simple model has contributed significantly to our understanding of how the cell cycle is regulated, and serves as an excellent model for studying aspects of cytokinesis. Here we will discuss the state of our knowledge of how the contractile ring is assembled and disassembled, how it contracts, and what we know of the regulatory mechanisms that control these events and assure their coordination with chromosome segregation.
Collapse
Affiliation(s)
- Anupama Goyal
- EPFL SV ISREC UPSIMSV2.1830, Station 19, CH 1015 Lausanne, Switzerland
| | - Masak Takaine
- Structural Biosciences, Graduate School of Environmental and Life Sciences, University of Tsukuba1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Viesturs Simanis
- EPFL SV ISREC UPSIMSV2.1830, Station 19, CH 1015 Lausanne, Switzerland
| | - Kentaro Nakano
- Structural Biosciences, Graduate School of Environmental and Life Sciences, University of Tsukuba1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
21
|
Laporte D, Zhao R, Wu JQ. Mechanisms of contractile-ring assembly in fission yeast and beyond. Semin Cell Dev Biol 2010; 21:892-8. [PMID: 20708088 PMCID: PMC2991471 DOI: 10.1016/j.semcdb.2010.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/28/2010] [Accepted: 08/03/2010] [Indexed: 11/18/2022]
Abstract
Most eukaryotes including fungi, amoebas, and animal cells assemble an actin/myosin-based contractile ring during cytokinesis. The majority of proteins implied in ring formation, maturation, and constriction are evolutionarily conserved, suggesting that common mechanisms exist among these divergent eukaryotes. Here, we review the recent advances in positioning and assembly of the actomyosin ring in the fission yeast Schizosaccharomyces pombe, the budding yeast Saccharomyces cerevisiae, and animal cells. In particular, major findings have been made recently in understanding ring formation in genetically tractable S. pombe, revealing a dynamic and robust search, capture, pull, and release mechanism.
Collapse
Affiliation(s)
- Damien Laporte
- Department of Molecular Genetics, and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Ran Zhao
- Department of Molecular Genetics, and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Jian-Qiu Wu
- Department of Molecular Genetics, and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Coffman VC, Nile AH, Lee IJ, Liu H, Wu JQ. Roles of formin nodes and myosin motor activity in Mid1p-dependent contractile-ring assembly during fission yeast cytokinesis. Mol Biol Cell 2010; 20:5195-210. [PMID: 19864459 DOI: 10.1091/mbc.e09-05-0428] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Two prevailing models have emerged to explain the mechanism of contractile-ring assembly during cytokinesis in the fission yeast Schizosaccharomyces pombe: the spot/leading cable model and the search, capture, pull, and release (SCPR) model. We tested some of the basic assumptions of the two models. Monte Carlo simulations of the SCPR model require that the formin Cdc12p is present in >30 nodes from which actin filaments are nucleated and captured by myosin-II in neighboring nodes. The force produced by myosin motors pulls the nodes together to form a compact contractile ring. Live microscopy of cells expressing Cdc12p fluorescent fusion proteins shows for the first time that Cdc12p localizes to a broad band of 30-50 dynamic nodes, where actin filaments are nucleated in random directions. The proposed progenitor spot, essential for the spot/leading cable model, usually disappears without nucleating actin filaments. alpha-Actinin ain1 deletion cells form a normal contractile ring through nodes in the absence of the spot. Myosin motor activity is required to condense the nodes into a contractile ring, based on slower or absent node condensation in myo2-E1 and UCS rng3-65 mutants. Taken together, these data provide strong support for the SCPR model of contractile-ring formation in cytokinesis.
Collapse
Affiliation(s)
- Valerie C Coffman
- Department of Molecular Genetics, Graduate Program of Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
23
|
Liu R, Linardopoulou EV, Osborn GE, Parkhurst SM. Formins in development: orchestrating body plan origami. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:207-25. [PMID: 18996154 PMCID: PMC2838992 DOI: 10.1016/j.bbamcr.2008.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 08/21/2008] [Accepted: 09/26/2008] [Indexed: 01/21/2023]
Abstract
Formins, proteins defined by the presence of an FH2 domain and their ability to nucleate linear F-actin de novo, play a key role in the regulation of the cytoskeleton. Initially thought to primarily regulate actin, recent studies have highlighted a role for formins in the regulation of microtubule dynamics, and most recently have uncovered the ability of some formins to coordinate the organization of both the microtubule and actin cytoskeletons. While biochemical analyses of this family of proteins have yielded many insights into how formins regulate diverse cytoskeletal reorganizations, we are only beginning to appreciate how and when these functional properties are relevant to biological processes in a developmental or organismal context. Developmental genetic studies in fungi, Dictyostelium, vertebrates, plants and other model organisms have revealed conserved roles for formins in cell polarity, actin cable assembly and cytokinesis. However, roles have also been discovered for formins that are specific to particular organisms. Thus, formins perform both global and specific functions, with some of these roles concurring with previous biochemical data and others exposing new properties of formins. While not all family members have been examined across all organisms, the analyses to date highlight the significance of the flexibility within the formin family to regulate a broad spectrum of diverse cytoskeletal processes during development.
Collapse
Affiliation(s)
- Raymond Liu
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Elena V. Linardopoulou
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Gregory E. Osborn
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Susan M. Parkhurst
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| |
Collapse
|
24
|
Cytokinesis and the contractile ring in fission yeast: towards a systems-level understanding. Trends Microbiol 2009; 18:38-45. [PMID: 19959363 DOI: 10.1016/j.tim.2009.10.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 10/18/2009] [Accepted: 10/20/2009] [Indexed: 11/20/2022]
Abstract
Cytokinesis, the final stage of the cell division cycle, requires the proper placement, assembly and contraction of an actomyosin-based contractile ring. Conserved sets of cytokinesis proteins and pathways have now been identified and characterized functionally. Additionally, fluorescent protein fusion technology enables quantitative high-resolution imaging of protein dynamics in living cells. For these reasons, the study of cytokinesis is now ripe for quantitative, systems-level approaches. Here, we review our current understanding of the molecular mechanisms of contractile ring dynamics in the model organism Schizosaccharomyces pombe (fission yeast), focusing on recent examples that illustrate a synergistic integration of quantitative experimental data with computational modeling. A picture of a highly dynamic and integrated system consisting of overlapping networks is beginning to emerge, the detailed nature of which remains to be elucidated.
Collapse
|
25
|
Skau CT, Neidt EM, Kovar DR. Role of tropomyosin in formin-mediated contractile ring assembly in fission yeast. Mol Biol Cell 2009; 20:2160-73. [PMID: 19244341 DOI: 10.1091/mbc.e08-12-1201] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Like animal cells, fission yeast divides by assembling actin filaments into a contractile ring. In addition to formin Cdc12p and profilin, the single tropomyosin isoform SpTm is required for contractile ring assembly. Cdc12p nucleates actin filaments and remains processively associated with the elongating barbed end while driving the addition of profilin-actin. SpTm is thought to stabilize mature filaments, but it is not known how SpTm localizes to the contractile ring and whether SpTm plays a direct role in Cdc12p-mediated actin polymerization. Using "bulk" and single actin filament assays, we discovered that Cdc12p can recruit SpTm to actin filaments and that SpTm has diverse effects on Cdc12p-mediated actin assembly. On its own, SpTm inhibits actin filament elongation and depolymerization. However, Cdc12p completely overcomes the combined inhibition of actin nucleation and barbed end elongation by profilin and SpTm. Furthermore, SpTm increases the length of Cdc12p-nucleated actin filaments by enhancing the elongation rate twofold and by allowing them to anneal end to end. In contrast, SpTm ultimately turns off Cdc12p-mediated elongation by "trapping" Cdc12p within annealed filaments or by dissociating Cdc12p from the barbed end. Therefore, SpTm makes multiple contributions to contractile ring assembly during and after actin polymerization.
Collapse
Affiliation(s)
- Colleen T Skau
- Department of Molecular Genetics, The University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
26
|
Roberts-Galbraith RH, Chen JS, Wang J, Gould KL. The SH3 domains of two PCH family members cooperate in assembly of the Schizosaccharomyces pombe contractile ring. ACTA ACUST UNITED AC 2009; 184:113-27. [PMID: 19139265 PMCID: PMC2615086 DOI: 10.1083/jcb.200806044] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Schizosaccharomyces pombe cdc15 homology (PCH) family members participate in many cellular processes by bridging the plasma membrane and cytoskeleton. Their F-BAR domains bind and curve membranes, whereas other domains, typically SH3 domains, are expected to provide cytoskeletal links. We tested this prevailing model of functional division in the founding member of the family, Cdc15, which is essential for cytokinesis in S. pombe, and in the related PCH protein, Imp2. We find that the distinct functions of Imp2 and Cdc15 are SH3 domain independent. However, the Cdc15 and Imp2 SH3 domains share an essential role in recruiting proteins to the contractile ring, including Pxl1 and Fic1. Together, Pxl1 and Fic1, a previously uncharacterized C2 domain protein, add structural integrity to the contractile ring and prevent it from fragmenting during division. Our data indicate that the F-BAR proteins Cdc15 and Imp2 contribute to a single biological process with both distinct and overlapping functions.
Collapse
|
27
|
Huang Y, Yan H, Balasubramanian MK. Assembly of normal actomyosin rings in the absence of Mid1p and cortical nodes in fission yeast. ACTA ACUST UNITED AC 2009; 183:979-88. [PMID: 19075108 PMCID: PMC2600752 DOI: 10.1083/jcb.200806151] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytokinesis in many eukaryotes depends on the function of an actomyosin contractile ring. The mechanisms regulating assembly and positioning of this ring are not fully understood. The fission yeast Schizosaccharomyces pombe divides using an actomyosin ring and is an attractive organism for the study of cytokinesis. Recent studies in S. pombe (Wu, J.Q., V. Sirotkin, D.R. Kovar, M. Lord, C.C. Beltzner, J.R. Kuhn, and T.D. Pollard. 2006. J. Cell Biol. 174:391-402; Vavylonis, D., J.Q. Wu, S. Hao, B. O'Shaughnessy, and T.D. Pollard. 2008. Science. 319:97-100) have suggested that the assembly of the actomyosin ring is initiated from a series of cortical nodes containing several components of this ring. These studies have proposed that actomyosin interactions bring together the cortical nodes to form a compacted ring structure. In this study, we test this model in cells that are unable to assemble cortical nodes. Although the cortical nodes play a role in the timing of ring assembly, we find that they are dispensable for the assembly of orthogonal actomyosin rings. Thus, a mechanism that is independent of cortical nodes is sufficient for the assembly of normal actomyosin rings.
Collapse
Affiliation(s)
- Yinyi Huang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | | | | |
Collapse
|
28
|
Abstract
Recent studies of actomyosin-ring assembly in fission yeast have suggested that an intricate web of membrane-bound nodes containing myosin and the actin nucleator formin is pulled together into a tight ring through a 'search-and-capture' mechanism.
Collapse
|
29
|
Neidt EM, Skau CT, Kovar DR. The cytokinesis formins from the nematode worm and fission yeast differentially mediate actin filament assembly. J Biol Chem 2008; 283:23872-83. [PMID: 18577519 DOI: 10.1074/jbc.m803734200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Formins drive actin filament assembly for diverse cellular processes including motility, establishing polarity, and cell division. To investigate the mechanism of contractile ring assembly in animal cells, we directly compared the actin assembly properties of formins required for cytokinesis in the nematode worm early embryo (CYK-1) and fission yeast (Cdc12p). Like Cdc12p and most other formins, CYK-1 nucleates actin filament assembly and remains processively associated with the elongating barbed end while facilitating the addition of profilin-actin above the theoretical diffusion-limited rate. However, specific properties differ significantly between Cdc12p and CYK-1. Cdc12p efficiently nucleates filaments that in the presence of profilin elongate at approximately the same rate as control filaments without formin (approximately 10.0 subunits/s). CYK-1 is an inefficient nucleator but allows filaments to elongate profilin-actin 6-fold faster than Cdc12p (approximately 60 subunits/s). Both Cdc12p and CYK-1 bind to pre-assembled actin filaments with low nanomolar affinity, but CYK-1 dissociates 2 orders of magnitude more quickly. However, CYK-1 rapidly re-associates with free barbed ends. Cdc12p allows barbed ends to elongate in the presence of excess capping protein, whereas capping protein inhibits CYK-1-mediated actin assembly. Therefore, these evolutionarily diverse formins can drive contractile ring assembly by a generally similar mechanism, but cells with unique dimensions and physical parameters might require proteins with carefully tuned actin assembly properties.
Collapse
Affiliation(s)
- Erin M Neidt
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
30
|
Yonetani A, Lustig RJ, Moseley JB, Takeda T, Goode BL, Chang F. Regulation and targeting of the fission yeast formin cdc12p in cytokinesis. Mol Biol Cell 2008; 19:2208-19. [PMID: 18305104 DOI: 10.1091/mbc.e07-07-0731] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Formins are conserved actin nucleators which promote the assembly of actin filaments for the formation of diverse actin structures. In fission yeast Schizosaccharomyces pombe, the formin cdc12p is required specifically in assembly of the actin-based contractile ring during cytokinesis. Here, using a mutational analysis of cdc12p, we identify regions of cdc12p responsible for ring assembly and localization. Profilin-binding residues of the FH1 domain regulate actin assembly and processive barbed-end capping by the FH2 domain. Studies using photobleaching (FRAP) and sensitivity to latrunculin A treatment show that profilin binding modulates the rapid dynamics of actin and cdc12p within the ring in vivo. Visualized by functional GFP-fusion constructs expressed from the endogenous promoter, cdc12p appears in a small number of cytoplasmic motile spot structures that deliver the formin to the ring assembly site, without detectable formation of an intermediate band of "nodes." The FH3/DID region directs interphase spot localization, while an N-terminal region and the FH1-FH2 domains of cdc12p can target its localization to the ring. Mutations in putative DID and DAD regions do not alter regulation, suggesting that cdc12p is not regulated by a canonical autoinhibition mechanism. Our findings provide insights into the regulation of formin activity and the mechanisms of contractile ring dynamics and assembly.
Collapse
Affiliation(s)
- Ann Yonetani
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
31
|
Kamasaki T, Osumi M, Mabuchi I. Three-dimensional arrangement of F-actin in the contractile ring of fission yeast. ACTA ACUST UNITED AC 2007; 178:765-71. [PMID: 17724118 PMCID: PMC2064542 DOI: 10.1083/jcb.200612018] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The contractile ring, which is required for cytokinesis in animal and yeast cells, consists mainly of actin filaments. Here, we investigate the directionality of the filaments in fission yeast using myosin S1 decoration and electron microscopy. The contractile ring is composed of around 1,000 to 2,000 filaments each around 0.6 mum in length. During the early stages of cytokinesis, the ring consists of two semicircular populations of parallel filaments of opposite directionality. At later stages, before contraction, the ring filaments show mixed directionality. We consider that the ring is initially assembled from a single site in the division plane and that filaments subsequently rearrange before contraction initiates.
Collapse
Affiliation(s)
- Tomoko Kamasaki
- Division of Biology, School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | | | | |
Collapse
|
32
|
Wu JQ, Sirotkin V, Kovar DR, Lord M, Beltzner CC, Kuhn JR, Pollard TD. Assembly of the cytokinetic contractile ring from a broad band of nodes in fission yeast. ACTA ACUST UNITED AC 2006; 174:391-402. [PMID: 16864655 PMCID: PMC2064235 DOI: 10.1083/jcb.200602032] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We observed live fission yeast expressing pairs of functional fluorescent fusion proteins to test the popular model that the cytokinetic contractile ring assembles from a single myosin II progenitor or a Cdc12p-Cdc15p spot. Under our conditions, the anillin-like protein Mid1p establishes a broad band of small dots or nodes in the cortex near the nucleus. These nodes mature by the addition of conventional myosin II (Myo2p, Cdc4p, and Rlc1p), IQGAP (Rng2p), pombe Cdc15 homology protein (Cdc15p), and formin (Cdc12p). The nodes coalesce laterally into a compact ring when Cdc12p and profilin Cdc3p stimulate actin polymerization. We did not observe assembly of contractile rings by extension of a leading cable from a single spot or progenitor. Arp2/3 complex and its activators accumulate in patches near the contractile ring early in anaphase B, but are not concentrated in the contractile ring and are not required for assembly of the contractile ring. Their absence delays late steps in cytokinesis, including septum formation and cell separation.
Collapse
Affiliation(s)
- Jian-Qiu Wu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Otomo T, Otomo C, Tomchick DR, Machius M, Rosen MK. Structural Basis of Rho GTPase-Mediated Activation of the Formin mDia1. Mol Cell 2005; 18:273-81. [PMID: 15866170 DOI: 10.1016/j.molcel.2005.04.002] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 03/31/2005] [Accepted: 04/05/2005] [Indexed: 11/20/2022]
Abstract
Diaphanous-related formins (DRFs) regulate dynamics of unbranched actin filaments during cell contraction and cytokinesis. DRFs are autoinhibited through intramolecular binding of a Diaphanous autoinhibitory domain (DAD) to a conserved N-terminal regulatory element. Autoinhibition is relieved through binding of the GTPase RhoA to the N-terminal element. We report the crystal structure of the dimeric regulatory domain of the DRF, mDia1. Dimerization is mediated by an intertwined six-helix bundle, from which extend two Diaphanous inhibitory domains (DIDs) composed of five armadillo repeats. NMR and biochemical mapping indicate the RhoA and DAD binding sites on the DID partially overlap, explaining activation of mDia1 by the GTPase. RhoA binding also requires an additional structurally independent segment adjacent to the DID. This regulatory construction, involving a GTPase binding site spanning a flexibly tethered arm and the inhibitory module, is observed in many autoinhibited effectors of Ras superfamily GTPases, suggesting evolutionary pressure for this design.
Collapse
Affiliation(s)
- Takanori Otomo
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
34
|
Otomo T, Tomchick DR, Otomo C, Panchal SC, Machius M, Rosen MK. Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature 2005; 433:488-94. [PMID: 15635372 DOI: 10.1038/nature03251] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 12/08/2004] [Indexed: 11/08/2022]
Abstract
The conserved formin homology 2 (FH2) domain nucleates actin filaments and remains bound to the barbed end of the growing filament. Here we report the crystal structure of the yeast Bni1p FH2 domain in complex with tetramethylrhodamine-actin. Each of the two structural units in the FH2 dimer binds two actins in an orientation similar to that in an actin filament, suggesting that this structure could function as a filament nucleus. Biochemical properties of heterodimeric FH2 mutants suggest that the wild-type protein equilibrates between two bound states at the barbed end: one permitting monomer binding and the other permitting monomer dissociation. Interconversion between these states allows processive barbed-end polymerization and depolymerization in the presence of bound FH2 domain. Kinetic and/or thermodynamic differences in the conformational and binding equilibria can explain the variable activity of different FH2 domains as well as the effects of the actin-binding protein profilin on FH2 function.
Collapse
Affiliation(s)
- Takanori Otomo
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | | | | | | | |
Collapse
|
35
|
Celton-Morizur S, Bordes N, Fraisier V, Tran PT, Paoletti A. C-terminal anchoring of mid1p to membranes stabilizes cytokinetic ring position in early mitosis in fission yeast. Mol Cell Biol 2004; 24:10621-35. [PMID: 15572668 PMCID: PMC533969 DOI: 10.1128/mcb.24.24.10621-10635.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mid1p is a key factor for the central positioning of the cytokinetic ring in Schizosaccharomyces pombe. In interphase and early mitosis, mid1p forms a medial cortical band overlying the nucleus, which may represent a landmark for cytokinetic ring assembly. It compacts before anaphase into a tight ring with other cytokinetic ring components. We show here that mid1p binds to the medial cortex by at least two independent means. First, mid1p C-terminus association with the cortex requires a putative amphipathic helix adjacent to mid1p nuclear localization sequence (NLS), which is predicted to insert directly into the lipid bilayer. This association is stabilized by the polybasic NLS. mid1p mutated within the helix and the NLS forms abnormal filaments in early mitosis that are not properly anchored to the medial cortex. Misplaced rings assemble in late mitosis, indicating that mid1p C-terminus binding to membranes stabilizes cytokinetic ring position. Second, the N terminus of mid1p has the ability to associate faintly with the medial cortex and is sufficient to form tight rings. In addition, we show that mid1p oligomerizes. We propose that membrane-bound oligomers of mid1p assemble recruitment "platforms" for cytokinetic ring components at the medial cortex and stabilize the ring position during its compaction.
Collapse
|
36
|
Balasubramanian MK, Bi E, Glotzer M. Comparative Analysis of Cytokinesis in Budding Yeast, Fission Yeast and Animal Cells. Curr Biol 2004; 14:R806-18. [PMID: 15380095 DOI: 10.1016/j.cub.2004.09.022] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokinesis is a temporally and spatially regulated process through which the cellular constituents of the mother cell are partitioned into two daughter cells, permitting an increase in cell number. When cytokinesis occurs in a polarized cell it can create daughters with distinct fates. In eukaryotes, cytokinesis is carried out by the coordinated action of a cortical actomyosin contractile ring and targeted membrane deposition. Recent use of model organisms with facile genetics and improved light-microscopy methods has led to the identification and functional characterization of many proteins involved in cytokinesis. To date, this analysis indicates that some of the basic components involved in cytokinesis are conserved from yeast to humans, although their organization into functional machinery that drives cytokinesis and the associated regulatory mechanisms bear species-specific features. Here, we briefly review the current status of knowledge of cytokinesis in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and animal cells, in an attempt to highlight both the common and the unique features. Although these organisms diverged from a common ancestor about a billion years ago, there are eukaryotes that are far more divergent. To evaluate the overall evolutionary conservation of cytokinesis, it will be necessary to include representatives of these divergent branches. Nevertheless, the three species discussed here provide substantial mechanistic diversity.
Collapse
|
37
|
Cvrčková F, Novotný M, Pícková D, Žárský V. Formin homology 2 domains occur in multiple contexts in angiosperms. BMC Genomics 2004; 5:44. [PMID: 15256004 PMCID: PMC509240 DOI: 10.1186/1471-2164-5-44] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 07/15/2004] [Indexed: 11/10/2022] Open
Abstract
Background Involvement of conservative molecular modules and cellular mechanisms in the widely diversified processes of eukaryotic cell morphogenesis leads to the intriguing question: how do similar proteins contribute to dissimilar morphogenetic outputs. Formins (FH2 proteins) play a central part in the control of actin organization and dynamics, providing a good example of evolutionarily versatile use of a conserved protein domain in the context of a variety of lineage-specific structural and signalling interactions. Results In order to identify possible plant-specific sequence features within the FH2 protein family, we performed a detailed analysis of angiosperm formin-related sequences available in public databases, with particular focus on the complete Arabidopsis genome and the nearly finished rice genome sequence. This has led to revision of the current annotation of half of the 22 Arabidopsis formin-related genes. Comparative analysis of the two plant genomes revealed a good conservation of the previously described two subfamilies of plant formins (Class I and Class II), as well as several subfamilies within them that appear to predate the separation of monocot and dicot plants. Moreover, a number of plant Class II formins share an additional conserved domain, related to the protein phosphatase/tensin/auxilin fold. However, considerable inter-species variability sets limits to generalization of any functional conclusions reached on a single species such as Arabidopsis. Conclusions The plant-specific domain context of the conserved FH2 domain, as well as plant-specific features of the domain itself, may reflect distinct functional requirements in plant cells. The variability of formin structures found in plants far exceeds that known from both fungi and metazoans, suggesting a possible contribution of FH2 proteins in the evolution of the plant type of multicellularity.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Plant Physiology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| | - Marian Novotný
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Husargatan 3, Box 570, S 751 23 Uppsala, Sweden
| | - Denisa Pícková
- Department of Plant Physiology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
- Institute of Experimental Botany, Faculty of Sciences of the Czech Republic, Rozvojová 135, CZ 165 02 Praha 6, Czech Republic
| | - Viktor Žárský
- Department of Plant Physiology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
- Institute of Experimental Botany, Faculty of Sciences of the Czech Republic, Rozvojová 135, CZ 165 02 Praha 6, Czech Republic
| |
Collapse
|
38
|
Li Y, Chang EC. Schizosaccharomyces pombe Ras1 effector, Scd1, interacts with Klp5 and Klp6 kinesins to mediate cytokinesis. Genetics 2004; 165:477-88. [PMID: 14573463 PMCID: PMC1462777 DOI: 10.1093/genetics/165.2.477] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fission yeast Scd1 is an exchange factor for Cdc42 and an effector of Ras1. In a screen for scd1 interacting genes, we isolated klp5 and klp6, which encode presumptive kinesins. Klp5 and Klp6 form a complex to control the same processes, which so far include microtubule dynamics and chromosome segregation. We showed that klp5 or klp6 inactivation in combination with the scd1 deletion (scd1delta) created a synthetic temperature-dependent growth defect. Further genetic analysis demonstrated that Klp5 and Klp6 interacted specifically with the Ras1-Scd1 pathway, but not with the Ras1-Byr2 pathway. In addition, Klp5 and Klp6 can stably associate with Scd1 and Cdc42. A deletion in the Scd1 C terminus, which contains the PB1 domain, prevented Scd1 binding to Klp5/6 and caused a growth defect in Klp5/6 mutant cells that is indistinguishable from that induced by scd1delta. Analysis of the double-mutant phenotype indicated that at the nonpermissive temperature, cells failed to undergo cytokinesis efficiently. These cells contained abnormal contractile rings in which F-actin and Mid1, a key regulator of F-actin ring formation and positioning, are mispositioned and fragmented. These data suggest that Klp5/6 cooperate with the Ras1-Scd1 pathway to influence proper formation of the contractile ring for cytokinesis.
Collapse
Affiliation(s)
- Yingchun Li
- Baylor College of Medicine, Department of Molecular and Cellular Biology, The Breast Center, Methodist Hospital, Houston, Texas 77030, USA
| | | |
Collapse
|
39
|
Uyeda TQP, Nagasaki A, Yumura S. Multiple Parallelisms in Animal Cytokinesis. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:377-432. [PMID: 15548417 DOI: 10.1016/s0074-7696(04)40004-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The process of cytokinesis in animal cells is usually presented as a relatively simple picture: A cleavage plane is first positioned in the equatorial region by the astral microtubules of the anaphase mitotic apparatus, and a contractile ring made up of parallel filaments of actin and myosin II is formed and encircles the cortex at the division site. Active sliding between the two filament systems constricts the perimeter of the cortex, leading to separation of two daughter cells. However, recent studies in both animal cells and lower eukaryotic model organisms have demonstrated that cytokinesis is actually far more complex. It is now obvious that the three key processes of cytokinesis, cleavage plane determination, equatorial furrowing, and scission, are driven by different mechanisms in different types of cells. In some cases, moreover, multiple pathways appear to have redundant functions in a single cell type. In this review, we present a novel hypothesis that incorporates recent observations on the activities of mitotic microtubules and the biochemistry of Rho-type GTPase proteins and postulates that two different sets of microtubules are responsible for the two known mechanisms of cleavage plane determination and also for two distinct mechanisms of equatorial furrowing.
Collapse
Affiliation(s)
- Taro Q P Uyeda
- Gene Function Research Center, National Institute for Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | | | |
Collapse
|
40
|
Carnahan RH, Gould KL. The PCH family protein, Cdc15p, recruits two F-actin nucleation pathways to coordinate cytokinetic actin ring formation in Schizosaccharomyces pombe. J Cell Biol 2003; 162:851-62. [PMID: 12939254 PMCID: PMC2172828 DOI: 10.1083/jcb.200305012] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytokinetic actin ring (CAR) formation in Schizosaccharomyces pombe requires two independent actin nucleation pathways, one dependent on the Arp2/3 complex and another involving the formin Cdc12p. Here we investigate the role of the S. pombe Cdc15 homology family protein, Cdc15p, in CAR assembly and find that it interacts with proteins from both of these nucleation pathways. Cdc15p binds directly to the Arp2/3 complex activator Myo1p, which likely explains why actin patches and the Arp2/3 complex fail to be medially recruited during mitosis in cdc15 mutants. Cdc15p also binds directly to Cdc12p. Cdc15p and Cdc12p not only display mutual dependence for CAR localization, but also exist together in a ring-nucleating structure before CAR formation. The disruption of these interactions in cdc15 null cells is likely to be the reason for their complete lack of CARs. We propose a model in which Cdc15p plays a critical role in recruiting and coordinating the pathways essential for the assembly of medially located F-actin filaments and construction of the CAR.
Collapse
Affiliation(s)
- Robert H Carnahan
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
41
|
Abstract
Evolutionarily conserved in eukaryotes, formin homology (FH) proteins, or formins, exert their effects on the actin and microtubule (MT) networks during meiosis, mitosis, the maintenance of cell polarity, vesicular trafficking, signaling to the nucleus and embryonic development. Once thought to be only molecular scaffolds that indirectly affected cellular functions through the binding of other proteins, recent in vitro studies have illustrated that they can function as actin nucleators in the formation of new filaments. The connection between formins and MTs is less well understood. In yeast, the MT effects appear to be dependent on the ability of formins to generate polarized actin cables whereas, in mammalian cells, formin signals that cause MT stabilization and polarization might be more direct. A subclass of formins, the Diaphanous-related formins (Drfs), can act as effectors for Rho small GTPases, yet it is not clear what GTPase binding contributes to formin function.
Collapse
Affiliation(s)
- Bradley J Wallar
- Laboratory of Cell Structure and Signal Integration, Van Andel Research Institute, 333 Bostwick Avenue N.E., Grand Rapids, MI 49503, USA
| | | |
Collapse
|
42
|
Rajagopalan S, Wachtler V, Balasubramanian M. Cytokinesis in fission yeast: a story of rings, rafts and walls. Trends Genet 2003; 19:403-8. [PMID: 12850446 DOI: 10.1016/s0168-9525(03)00149-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Srividya Rajagopalan
- Laboratory of Cell Division, Temasek Life Sciences Laboratory, 1 Research Link, The National University of Singapore, 117604 Singapore
| | | | | |
Collapse
|
43
|
Haydar TF, Ang E, Rakic P. Mitotic spindle rotation and mode of cell division in the developing telencephalon. Proc Natl Acad Sci U S A 2003; 100:2890-5. [PMID: 12589023 PMCID: PMC151436 DOI: 10.1073/pnas.0437969100] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mode of neural stem cell division in the forebrain proliferative zones profoundly influences neocortical growth by regulating the number and diversity of neurons and glia. Long-term time-lapse multiphoton microscopy of embryonic mouse cortex reveals new details of the complex three-dimensional rotation and oscillation of the mitotic spindle before stem cell division. Importantly, the duration and amplitude of spindle movement predicts and specifies the eventual mode of mitotic division. These technological advances have provided dramatic data and insights into the kinetics of neural stem cell division by elucidating the involvement of spindle rotation in selection of the cleavage plane and the mode of neural stem cell division that together determine the size of the mammalian neocortex.
Collapse
Affiliation(s)
- Tarik F Haydar
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
44
|
Wong KCY, D'souza VM, Naqvi NI, Motegi F, Mabuchi I, Balasubramanian MK. Importance of a myosin II-containing progenitor for actomyosin ring assembly in fission yeast. Curr Biol 2002; 12:724-9. [PMID: 12007415 DOI: 10.1016/s0960-9822(02)00790-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An actomyosin-based contractile ring provides the forces necessary for cell cleavage in several organisms [1-3]. Myosin II is an essential component of the actomyosin ring and has also been detected as a "spot" in interphase Schizosaccharomyces pombe cells [4-5]. It is currently unknown if this myosin II-containing spot is important for cytokinesis. In this study, we characterize this myosin II-containing spot using a combination of genetic and cell biological analyses. Whereas myosin II at the actomyosin ring undergoes rapid turnover, myosin II at the spot does not. Maintenance of the myosin II-containing spot is independent of F-actin function. Interestingly, maintenance of this myosin II spot in interphase requires the function of Rng3p, a UCS domain-containing protein, the Caenorhabditis elegans homolog of which has recently been shown to be a cochaperone for myosin II assembly [6]. Disassembly of the spot in interphase prevents actomyosin ring formation in the subsequent mitosis, implying that the spot might represent a progenitor that is important for assembly of the actomyosin ring. Given that mitosis represents a short period of the fission yeast cell cycle, organization of this progenitor structure in interphase might ensure proper assembly of the actomyosin ring and successful cell division.
Collapse
Affiliation(s)
- Kelvin C Y Wong
- Cell Division Laboratory, Institute of Molecular Agrobiology, The National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | | | | | | | | | | |
Collapse
|
45
|
Arai R, Mabuchi I. F-actin ring formation and the role of F-actin cables in the fission yeastSchizosaccharomyces pombe. J Cell Sci 2002; 115:887-98. [PMID: 11870208 DOI: 10.1242/jcs.115.5.887] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells of the fission yeast Schizosaccharomyces pombe divide by the contraction of the F-actin ring formed at the medial region of the cell. We investigated the process of F-actin ring formation in detail using optical sectioning and three-dimensional reconstruction fluorescence microscopy. In wild-type cells, formation of an aster-like structure composed of F-actin cables and accumulation of F-actin cables were recognized at the medial cortex of the cell during prophase to metaphase. The formation of the aster-like structure seemed to initiate from branching of the longitudinal F-actin cables at a site near the spindle pole bodies, which had been duplicated but not yet separated. A single cable extended from the aster and encircled the cell at the equator to form a primary F-actin ring during metaphase. During anaphase,the accumulated F-actin cables were linked to the primary F-actin ring, and then all of these structures seemed to be packed to form the F-actin ring. These observations suggest that formation of the aster-like structure and the accumulation of the F-actin cables at the medial region of the cell during metaphase may be required to initiate the F-actin ring formation. In the nda3 mutant, which has a mutation in ß-tubulin and has been thought to be arrested at prophase, an F-actin ring with accumulated F-actin cables similar to that of anaphase wild-type cells was formed at a restrictive temperature. Immediately after shifting to a permissive temperature, this structure changed into a tightly packed ring. This suggests that the F-actin ring formation progresses beyond prophase in the nda3 cells once the cells enter prophase. We further examined F-actin structures in both cdc12 and cdc15 early cytokinesis mutants. As a result,Cdc12 seemed to be required for the primary F-actin ring formation during prophase, whereas Cdc15 may be involved in both packing the F-actin cables to form the F-actin ring and rearrangement of the F-actin after anaphase. In spg1, cdc7 and sid2 septum initiation mutants, the F-actin ring seemed to be formed in order.
Collapse
Affiliation(s)
- Ritsuko Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan
| | | |
Collapse
|
46
|
Sharpless KE, Harris SD. Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol Biol Cell 2002; 13:469-79. [PMID: 11854405 PMCID: PMC65642 DOI: 10.1091/mbc.01-07-0356] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Formins are a family of multidomain scaffold proteins involved in actin-dependent morphogenetic events. In Aspergillus nidulans, the formin SEPA participates in two actin-mediated processes, septum formation and polarized growth. In this study, we use a new null mutant to demonstrate that SEPA is required for the formation of actin rings at septation sites. In addition, we find that a functional SEPA::GFP fusion protein localizes simultaneously to septation sites and hyphal tips, and that SEPA colocalizes with actin at each site. Using live imaging, we show that SEPA localization at septation sites and hyphal tips is dynamic. Notably, at septation sites, SEPA forms a ring that constricts as the septum is deposited. Moreover, we demonstrate that actin filaments are required to maintain the proper localization pattern of SEPA, and that the amino-terminal half of SEPA is sufficient for localization at septation sites and hyphal tips. In contrast, only localization at septation sites is affected by loss of the sepH gene product. We propose that specific morphological cues activate common molecular pathways to direct SEPA localization to the appropriate morphogenetic site.
Collapse
Affiliation(s)
- Kathryn E Sharpless
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030-3205, USA
| | | |
Collapse
|
47
|
Abstract
Cytokinesis creates two daughter cells endowed with a complete set of chromosomes and cytoplasmic organelles. This conceptually simple event is mediated by a complex and dynamic interplay between the microtubules of the mitotic spindle, the actomyosin cytoskeleton, and membrane fusion events. For many decades the study of cytokinesis was driven by morphological studies on specimens amenable to physical manipulation. The studies led to great insights into the cellular structures that orchestrate cell division, but the underlying molecular machinery was largely unknown. Molecular and genetic approaches have now allowed the initial steps in the development of a molecular understanding of this fundamental event in the life of a cell. This review provides an overview of the literature on cytokinesis with a particular emphasis on the molecular pathways involved in the division of animal cells.
Collapse
Affiliation(s)
- M Glotzer
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 1, A-1030 Vienna, Austria.
| |
Collapse
|
48
|
Sagot I, Klee SK, Pellman D. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat Cell Biol 2002; 4:42-50. [PMID: 11740491 DOI: 10.1038/ncb719] [Citation(s) in RCA: 312] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Formins are conserved Rho-GTPase effectors that communicate Rho-GTPase signals to the cytoskeleton. We found that formins were required for the assembly of one of the three budding yeast actin structures: polarized arrays of actin cables. A dominant-active formin induced the assembly of actin cables. The activation and localization of the formin Bni1p required components of the polarisome complex. These findings potentially define the cellular function of formins in budding yeast and explain their involvement in the generation of cell polarity. A requirement for formins in constructing specific actin structures might be the basis for the diverse activities of formins in development.
Collapse
Affiliation(s)
- Isabelle Sagot
- Department of Pediatric Hematology/Oncology, The Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
49
|
Noguchi T, Arai R, Motegi F, Nakano K, Mabuchi I. Contractile ring formation in Xenopus egg and fission yeast. Cell Struct Funct 2001; 26:545-54. [PMID: 11942608 DOI: 10.1247/csf.26.545] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
How actin filaments (F-actin) and myosin II (myosin) assemble to form the contractile ring was investigated with fission yeast and Xenopus egg. In fission yeast cells, an aster-like structure composed of F-actin cables is formed at the medial cortex of the cell during prophase to metaphase, and a single F-actin cable(s) extends from this structure, which seems to be a structural basis of the contractile ring. In early mitosis, myosin localizes as dots in the medial cortex independently of F-actin. Then they fuse with each other and are packed into a thin contractile ring. At the growing ends of the cleavage furrow of Xenopus eggs, F-actin at first assembles to form patches. Next they fuse with each other to form short F-actin bundles. The short bundles then form long bundles. Myosin seems to be transported by the cortical movement to the growing end and assembles there as spots earlier than F-actin. Actin polymerization into the patches is likely to occur after accumulation of myosin. The myosin spots and the F-actin patches are simultaneously reorganized to form the contractile ring bundles. The idea that a Ca signal triggers cleavage furrow formation was tested with Xenopus eggs during the first cleavage. We could not detect any Ca signals such as a Ca wave, Ca puffs or even Ca blips at the growing end of the cleavage furrow. Furthermore, cleavages are not affected by Ca-chelators injected into the eggs at concentrations sufficient to suppress the Ca waves. Thus we conclude that formation of the contractile ring is not induced by a Ca signal at the growing end of the cleavage furrow.
Collapse
Affiliation(s)
- T Noguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
50
|
Abstract
One fundamental problem in cytokinesis is how the plane of cell division is established. In this review, we describe our studies on searching for "signals" that position the cell division plane, using fission yeast Schizosaccharomyces pombe. First, we take a genetic approach to determine how the nucleus may position the contractile ring in fission yeast. mid1p appears to link the position of the ring with the nuclear position, as it is required for proper placement of the contractile ring and is localized in a band at the cell surface overlying the nucleus. Second, we study how microtubules may function in the establishment of cell polarity at the cell tips. tea1p may be deposited on the cell surface by microtubules and function to recruit proteins involved in making actin structures. These studies suggest how microtubules may direct the assembly of the contractile ring in animal cells.
Collapse
Affiliation(s)
- F Chang
- Columbia University, College of Physicians and Surgeons, Microbiology Department, New York, NY, USA.
| |
Collapse
|