1
|
Li DL, Wu WL, Liu HP. CqProfilin enhances WSSV infection by promoting viral intracellular transport through binding to both viral nucleocapsid and actin cytoskeleton. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105281. [PMID: 39427863 DOI: 10.1016/j.dci.2024.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
White spot syndrome virus (WSSV) is a large nuclear-replicating DNA virus of crustaceans such as shrimp and crayfish; however, the molecular mechanisms facilitating its transport from the invasion site to the cell nucleus have not yet been well elucidated. In this study, a CqProfilin (CqPFN) with a conserved PROF domain was identified from the red claw crayfish Cherax quadricarinatus. CqPFN was ubiquitously expressed in all examined tissues and hemocyte, with the highest levels in the hemocyte, followed by hematopoietic tissue (Hpt) from which the hemocyte were derived in crayfish. The transcript of WSSV genes such as IE1 and VP28 was obviously decreased both in vivo in hemocyte and Hpt, as well as in vitro in cultured Hpt cells, after CqPFN gene silencing; in contrast, the expression of viral genes was significantly increased by the introduction of a recombinant CqPFN protein in Hpt cells in vitro. Moreover, CqPFN was clearly colocalized with the main viral nucleocapsid protein VP664 and F-actin cytoskeleton, respectively, during the early stage of WSSV infection in Hpt cells. In addition, CqPFN was confirmed to interact with a truncated VP6642,405-2,535 and another viral nucleocapsid protein VP15 of WSSV and Cqβ-Actin from Hpt by co-immunoprecipitation assays. Further studies found that VP664 also colocalized with F-actin in the Hpt cell cytoplasm after WSSV infection, suggesting that the actin cytoskeleton was involved in the intracellular transport of incoming viral nucleocapsid. Taken together, CqPFN might combine with the actin cytoskeleton to promote WSSV infection through binding with viral nucleocapsid proteins VP664 and VP15, promoting intracellular transport of viral incoming nucleocapsid for further releasing genome into the nucleus for transcription. Collectively, these results provided an understanding of the WSSV pathogenesis, which will contribute to the development of an antiviral strategy against WSSV disease.
Collapse
Affiliation(s)
- Dong-Li Li
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Wen-Lin Wu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center Qingdao, China.
| |
Collapse
|
2
|
Zhang SZ, Zhu LB, Yu D, You LL, Wang J, Cao HH, Liu YX, Wang YL, Kong X, Toufeeq S, Xu JP. Identification and Functional Analysis of BmNPV-Interacting Proteins From Bombyx mori (Lepidoptera) Larval Midgut Based on Subcellular Protein Levels. Front Microbiol 2020; 11:1481. [PMID: 32695093 PMCID: PMC7338592 DOI: 10.3389/fmicb.2020.01481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/08/2020] [Indexed: 11/30/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen causing severe economic loss. However, the molecular mechanism of silkworm resistance to BmNPV and the interactions of this virus with the host during infection remain largely unclear. To explore the virus-binding proteins of silkworms, the midgut subcellular component proteins that may interact with BmNPV were analyzed in vitro based on one- and two-dimensional electrophoresis and far-western blotting combined with mass spectrometry (MS). A total of 24 proteins were determined to be specifically bound to budded viruses (BVs) in two subcellular fractions (mitochondria and microsomes). These proteins were involved in viral transportation, energy metabolism, apoptosis and viral propagation, and they responded to BmNPV infection with different expression profiles in different resistant strains. In particular, almost all the identified proteins were downregulated in the A35 strain following BmNPV infection. Interestingly, there were no virus-binding proteins identified in the cytosolic fraction of the silkworm midgut. Two candidate proteins, RACK1 and VDAC2, interacted with BVs, as determined with far-western blotting and reverse far-western blotting. We speculated that the proteins interacting with the virus could either enhance or inhibit the infection of the virus. The data provide comprehensive useful information for further research on the interaction of the host with BmNPV.
Collapse
Affiliation(s)
- Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Dong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ling-Ling You
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Hui-Hua Cao
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ying-Xue Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Yu-Ling Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Xue Kong
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shahzad Toufeeq
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|
3
|
Virulence Factors of Meningitis-Causing Bacteria: Enabling Brain Entry across the Blood-Brain Barrier. Int J Mol Sci 2019; 20:ijms20215393. [PMID: 31671896 PMCID: PMC6862235 DOI: 10.3390/ijms20215393] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Infections of the central nervous system (CNS) are still a major cause of morbidity and mortality worldwide. Traversal of the barriers protecting the brain by pathogens is a prerequisite for the development of meningitis. Bacteria have developed a variety of different strategies to cross these barriers and reach the CNS. To this end, they use a variety of different virulence factors that enable them to attach to and traverse these barriers. These virulence factors mediate adhesion to and invasion into host cells, intracellular survival, induction of host cell signaling and inflammatory response, and affect barrier function. While some of these mechanisms differ, others are shared by multiple pathogens. Further understanding of these processes, with special emphasis on the difference between the blood-brain barrier and the blood-cerebrospinal fluid barrier, as well as virulence factors used by the pathogens, is still needed.
Collapse
|
4
|
Imaging, Tracking and Computational Analyses of Virus Entry and Egress with the Cytoskeleton. Viruses 2018; 10:v10040166. [PMID: 29614729 PMCID: PMC5923460 DOI: 10.3390/v10040166] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Viruses have a dual nature: particles are “passive substances” lacking chemical energy transformation, whereas infected cells are “active substances” turning-over energy. How passive viral substances convert to active substances, comprising viral replication and assembly compartments has been of intense interest to virologists, cell and molecular biologists and immunologists. Infection starts with virus entry into a susceptible cell and delivers the viral genome to the replication site. This is a multi-step process, and involves the cytoskeleton and associated motor proteins. Likewise, the egress of progeny virus particles from the replication site to the extracellular space is enhanced by the cytoskeleton and associated motor proteins. This overcomes the limitation of thermal diffusion, and transports virions and virion components, often in association with cellular organelles. This review explores how the analysis of viral trajectories informs about mechanisms of infection. We discuss the methodology enabling researchers to visualize single virions in cells by fluorescence imaging and tracking. Virus visualization and tracking are increasingly enhanced by computational analyses of virus trajectories as well as in silico modeling. Combined approaches reveal previously unrecognized features of virus-infected cells. Using select examples of complementary methodology, we highlight the role of actin filaments and microtubules, and their associated motors in virus infections. In-depth studies of single virion dynamics at high temporal and spatial resolutions thereby provide deep insight into virus infection processes, and are a basis for uncovering underlying mechanisms of how cells function.
Collapse
|
5
|
Cyrklaff M, Frischknecht F, Kudryashev M. Functional insights into pathogen biology from 3D electron microscopy. FEMS Microbiol Rev 2018; 41:828-853. [PMID: 28962014 DOI: 10.1093/femsre/fux041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023] Open
Abstract
In recent years, novel imaging approaches revolutionised our understanding of the cellular and molecular biology of microorganisms. These include advances in fluorescent probes, dynamic live cell imaging, superresolution light and electron microscopy. Currently, a major transition in the experimental approach shifts electron microscopy studies from a complementary technique to a method of choice for structural and functional analysis. Here we review functional insights into the molecular architecture of viruses, bacteria and parasites as well as interactions with their respective host cells gained from studies using cryogenic electron tomography and related methodologies.
Collapse
Affiliation(s)
- Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt, Max-von-Laue Strasse 17, 60438 Frankfurt, Germany
| |
Collapse
|
6
|
Cortactin: Cell Functions of A Multifaceted Actin-Binding Protein. Trends Cell Biol 2018; 28:79-98. [DOI: 10.1016/j.tcb.2017.10.009] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022]
|
7
|
The role of spatial heterogeneity in the evolution of local and global infections of viruses. PLoS Comput Biol 2018; 14:e1005952. [PMID: 29370194 PMCID: PMC5800656 DOI: 10.1371/journal.pcbi.1005952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/06/2018] [Accepted: 01/05/2018] [Indexed: 11/20/2022] Open
Abstract
Viruses have two modes spread in a host body, one is to release infectious particles from infected cells (global infection) and the other is to infect directly from an infected cell to an adjacent cell (local infection). Since the mode of spread affects the evolution of life history traits, such as virulence, it is important to reveal what level of global and local infection is selected. Previous studies of the evolution of global and local infection have paid little attention to its dependency on the measures of spatial configuration. Here we show the evolutionarily stable proportion of global and local infection, and how it depends on the distribution of target cells. Using an epidemic model on a regular lattice, we consider the infection dynamics by pair approximation and check the evolutionarily stable strategy. We also conduct the Monte-Carlo simulation to observe evolutionary dynamics. We show that a higher local infection is selected as target cells become clustered. Surprisingly, the selected strategy depends not only on the degree of clustering but also the abundance of target cells per se. Viruses such as human immunodeficiency virus and measles virus can spread through physical contact between infected and susceptible cells (cell-to-cell infection), as well as normal cell-free infection through virions. Some experimental evidences support the possibility that high ability of cell-to-cell infection is selected in the host. Since the mode of spread affects the evolution of life history traits, it is important to reveal what condition favors high ability of cell-to-cell infection. Here we address what level of cell-to-cell infection is selected in different target cell distributions. Analysis of ordinary differential equations that keep track of dynamics for spatial configuration of infected cells and the Monte-Carlo simulations show that higher proportion of local infection is selected as target cells become clustered. The selected strategy depends not only on the degree of clustering but also the abundance of target cells per se. Our results suggest viruses have more chances to evolve the ability of local infection in a host body than previously thought. In particular, this may explain the emergence of measles virus strains that gained the ability to infect the central nervous system.
Collapse
|
8
|
Majeed M, Kumar G, Schlosser S, El-Matbouli M, Saleh M. In vitro investigations on extracellular proteins secreted by Aphanomyces invadans, the causative agent of epizootic ulcerative syndrome. Acta Vet Scand 2017; 59:78. [PMID: 29121973 PMCID: PMC5680770 DOI: 10.1186/s13028-017-0347-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/03/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Proteases produced by many microorganisms, including oomycetes, are crucial for their growth and development. They may also play a critical role in disease manifestation. Epizootic ulcerative syndrome is one of the most destructive fish diseases known. It is caused by the oomycete Aphanomyces invadans and leads to mass mortalities of cultured and wild fish in many countries. The areas of concern are Australia, China, Japan, South and Southeast Asian countries and the USA. Extracellular proteases produced by this oomycete are believed to trigger EUS pathogenesis in fish. To address this activity, we collected the extracellular products (ECP) of A. invadans and identified the secreted proteins using SDS-PAGE and mass spectrometery. A. invadans was cultivated in liquid Glucose-Peptone-Yeats media. The culture media was ultra-filtered through 10 kDa filters and analysed using SDS-PAGE. Three prominent protein bands from the SDS gel were excised and identified by mass spectrometery. Furthermore, we assessed their proteolytic effect on casein and immunoglobulin M (IgM) of rainbow trout (Oncorhynchus mykiss) and giant gourami (Osphronemus goramy). Antiprotease activity of the fish serum was also investigated. RESULTS BLASTp analysis revealed that the prominent secreted proteins were proteases, mainly of the serine and cysteine types. Proteins containing fascin-like domain and bromodomain were also identified. We could demonstrate that the secreted proteases showed proteolytic activity against the casein and the IgM of both fish species. The anti-protease activity experiment showed that the percent inhibition of the common carp serum was 94.2% while that of rainbow trout and giant gourami serum was 7.7 and 12.9%, respectively. CONCLUSIONS The identified proteases, especially serine proteases, could be the potential virulence factors in A. invadans and, hence, are candidates for further functional and host-pathogen interaction studies. The role of identified structural proteins in A. invadans also needs to be investigated further.
Collapse
Affiliation(s)
- Muhammad Majeed
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Sarah Schlosser
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
9
|
El Karkouri K, Kowalczewska M, Armstrong N, Azza S, Fournier PE, Raoult D. Multi-omics Analysis Sheds Light on the Evolution and the Intracellular Lifestyle Strategies of Spotted Fever Group Rickettsia spp. Front Microbiol 2017; 8:1363. [PMID: 28775717 PMCID: PMC5517468 DOI: 10.3389/fmicb.2017.01363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
Arthropod-borne Rickettsia species are obligate intracellular bacteria which are pathogenic for humans. Within this genus, Rickettsia slovaca and Rickettsia conorii cause frequent and potentially severe infections, whereas Rickettsia raoultii and Rickettsia massiliae cause rare and milder infections. All four species belong to spotted fever group (SFG) rickettsiae. However, R. slovaca and R. raoultii cause scalp eschar and neck lymphadenopathy (SENLAT) and are mainly associated with Dermacentor ticks, whereas the other two species cause Mediterranean spotted fever (MSF) and are mainly transmitted by Rhipicephalus ticks. To identify the potential genes and protein profiles and to understand the evolutionary processes that could, comprehensively, relate to the differences in virulence and pathogenicity observed between these four species, we compared their genomes and proteomes. The virulent and milder agents displayed divergent phylogenomic evolution in two major clades, whereas either SENLAT or MSF disease suggests a discrete convergent evolution of one virulent and one milder agent, despite their distant genetic relatedness. Moreover, the two virulent species underwent strong reductive genomic evolution and protein structural variations, as well as a probable loss of plasmid(s), compared to the two milder species. However, an abundance of mobilome genes was observed only in the less pathogenic species. After infecting Xenopus laevis cells, the virulent agents displayed less up-regulated than down-regulated proteins, as well as less number of identified core proteins. Furthermore, their similar and distinct protein profiles did not contain some genes (e.g., ompA/B and rickA) known to be related to rickettsial adhesion, motility and/or virulence, but may include other putative virulence-, antivirulence-, and/or disease-related proteins. The identified evolutionary forces herein may have a strong impact on intracellular expressions and strategies in these rickettsiae, and that may contribute to the emergence of distinct virulence and diseases in humans. Thus, the current multi-omics data provide new insights into the evolution and fitness of SFG virulence and pathogenicity, and intracellular pathogenic bacteria.
Collapse
Affiliation(s)
- Khalid El Karkouri
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| | - Malgorzata Kowalczewska
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| | - Nicholas Armstrong
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| | - Said Azza
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| | - Pierre-Edouard Fournier
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| | - Didier Raoult
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National De La Recherche Scientifique 7278, IRD 198, Institut National De La Santé Et De La Recherche Médicale U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille UniversitéMarseille, France
| |
Collapse
|
10
|
Xu A, Li X, Li S, Sun L, Wu S, Zhang B, Huang J. A novel role for 14-kDa phosphohistidine phosphatase in lamellipodia formation. Cell Adh Migr 2017; 11:488-495. [PMID: 27924678 DOI: 10.1080/19336918.2016.1268319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell migration involves dynamic regulation of the actin cytoskeleton, which exhibits rapid actin polymerization at the leading edge of migrating cells. This process relies on regulated recruitment of actin nucleators and actin-binding proteins to the leading edge to polymerize new actin filaments. Many of these proteins have been identified, including the actin-related protein (Arp) 2/3 complex, which has emerged as the core player in the initiation of actin polymerization. However, the functional coordination of these proteins is unclear. Previously, we have demonstrated that the 14-kDa phosphohistidine phosphatase (PHP14) is involved in cell migration regulation and affects actin cytoskeleton reorganization. Here, we show that PHP14 may regulate actin remodeling directly and play an important role in dynamic regulation of the actin cytoskeleton. We observed a colocalization of PHP14 with Arp3 and F-actin at the leading edge of migrating cells. Moreover, PHP14 was recruited to the actin remodeling sites in parallel with Arp3 during lamellipodia formation. Furthermore, PHP14 knockdown impaired Arp3 localization at the leading edge of lamellipodia, as well as lamellipodia formation. Most importantly, we found that PHP14 was a novel F-actin-binding protein, displaying an Arp2/3-dependent localization to the leading edge. Collectively, our results indicated a crucial role for PHP14 in the dynamic regulation of the actin cytoskeleton and cell migration.
Collapse
Affiliation(s)
- Anjian Xu
- a Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,b National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Xiaojin Li
- a Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,b National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Siwen Li
- a Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Lan Sun
- c Department of Pathology , Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Shanna Wu
- d Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Bei Zhang
- a Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,b National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Jian Huang
- a Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,b National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
11
|
Gorai S, Paul D, Haloi N, Borah R, Santra MK, Manna D. Mechanistic insights into the phosphatidylinositol binding properties of the pleckstrin homology domain of lamellipodin. MOLECULAR BIOSYSTEMS 2016; 12:747-57. [DOI: 10.1039/c5mb00731c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lpd-PH domain strongly interacts with PI(3,4)P2containing liposome without any membrane penetration.
Collapse
Affiliation(s)
- Sukhamoy Gorai
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | | | - Nandan Haloi
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Rituparna Borah
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | | | - Debasis Manna
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| |
Collapse
|
12
|
Abella JVG, Galloni C, Pernier J, Barry DJ, Kjær S, Carlier MF, Way M. Isoform diversity in the Arp2/3 complex determines actin filament dynamics. Nat Cell Biol 2015; 18:76-86. [PMID: 26655834 DOI: 10.1038/ncb3286] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022]
Abstract
The Arp2/3 complex consists of seven evolutionarily conserved subunits (Arp2, Arp3 and ARPC1-5) and plays an essential role in generating branched actin filament networks during many different cellular processes. In mammals, however, the ARPC1 and ARPC5 subunits are each encoded by two isoforms that are 67% identical. This raises the possibility that Arp2/3 complexes with different properties may exist. We found that Arp2/3 complexes containing ARPC1B and ARPC5L are significantly better at promoting actin assembly than those with ARPC1A and ARPC5, both in cells and in vitro. Branched actin networks induced by complexes containing ARPC1B or ARPC5L are also disassembled ∼2-fold slower than those formed by their counterparts. This difference reflects the ability of cortactin to stabilize ARPC1B- and ARPC5L- but not ARPC1A- and ARPC5-containing complexes against coronin-mediated disassembly. Our observations demonstrate that the Arp2/3 complex in higher eukaryotes is actually a family of complexes with different properties.
Collapse
Affiliation(s)
- Jasmine V G Abella
- Cellular Signalling and Cytoskeletal Function, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Chiara Galloni
- Cellular Signalling and Cytoskeletal Function, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Julien Pernier
- Laboratoire d'Enzymologie et Biochimie Structurale, I2BC, CNRS, 91198 Gif-sur-Yvette, France
| | - David J Barry
- Cellular Signalling and Cytoskeletal Function, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Svend Kjær
- The Structural Biology Science Technology Platform, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Marie-France Carlier
- Laboratoire d'Enzymologie et Biochimie Structurale, I2BC, CNRS, 91198 Gif-sur-Yvette, France
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| |
Collapse
|
13
|
Borinskaya S, Velle KB, Campellone KG, Talman A, Alvarez D, Agaisse H, Wu YI, Loew LM, Mayer BJ. Integration of linear and dendritic actin nucleation in Nck-induced actin comets. Mol Biol Cell 2015; 27:247-59. [PMID: 26609071 PMCID: PMC4713129 DOI: 10.1091/mbc.e14-11-1555] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/17/2015] [Indexed: 11/22/2022] Open
Abstract
The role of the Nck adaptor protein in balancing linear versus branched actin nucleation in comet tails is evaluated. Nck recruits both linear and branched nucleation-promoting factors, both of which are necessary for the formation of actin comets. The findings highlight a novel role for Nck in pathogen-like actin motility. The Nck adaptor protein recruits cytosolic effectors such as N-WASP that induce localized actin polymerization. Experimental aggregation of Nck SH3 domains at the membrane induces actin comet tails—dynamic, elongated filamentous actin structures similar to those that drive the movement of microbial pathogens such as vaccinia virus. Here we show that experimental manipulation of the balance between unbranched/branched nucleation altered the morphology and dynamics of Nck-induced actin comets. Inhibition of linear, formin-based nucleation with the small-molecule inhibitor SMIFH2 or overexpression of the formin FH1 domain resulted in formation of predominantly circular-shaped actin structures with low mobility (actin blobs). These results indicate that formin-based linear actin polymerization is critical for the formation and maintenance of Nck-dependent actin comet tails. Consistent with this, aggregation of an exclusively branched nucleation-promoting factor (the VCA domain of N-WASP), with density and turnover similar to those of N-WASP in Nck comets, did not reconstitute dynamic, elongated actin comets. Furthermore, enhancement of branched Arp2/3-mediated nucleation by N-WASP overexpression caused loss of the typical actin comet tail shape induced by Nck aggregation. Thus the ratio of linear to dendritic nucleation activity may serve to distinguish the properties of actin structures induced by various viral and bacterial pathogens.
Collapse
Affiliation(s)
- Sofya Borinskaya
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Katrina B Velle
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Kenneth G Campellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Arthur Talman
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06519
| | - Diego Alvarez
- Biotechnology Research Institute, University of San Martin, 1650 San Martin, Argentina
| | - Hervé Agaisse
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06519
| | - Yi I Wu
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030 Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Bruce J Mayer
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030 Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030
| |
Collapse
|
14
|
|
15
|
Schwarz US. Physical constraints for pathogen movement. Semin Cell Dev Biol 2015; 46:82-90. [DOI: 10.1016/j.semcdb.2015.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
|
16
|
Chang M, Huang S. Arabidopsis ACT11 modifies actin turnover to promote pollen germination and maintain the normal rate of tube growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:515-527. [PMID: 26096143 DOI: 10.1111/tpj.12910] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/21/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Actin is an ancient conserved protein that is encoded by multiple isovariants in multicellular organisms. There are eight functional actin genes in the Arabidopsis genome, and the precise function and mechanism of action of each isovariant remain poorly understood. Here, we report the characterization of ACT11, a reproductive actin isovariant. Our studies reveal that loss of function of ACT11 causes a delay in pollen germination, but enhances pollen tube growth. Cytological analysis revealed that the amount of filamentous actin decreased, and the rate of actin turnover increased in act11 pollen. Convergence of actin filaments upon the germination aperture was impaired in act11 pollen, consistent with the observed delay of germination. Reduction of actin dynamics with jasplakinolide suppressed the germination and tube growth phenotypes in act11 pollen, suggesting that the underlying mechanisms involve an increase in actin dynamics. Thus, we demonstrate that ACT11 is required to maintain the rate of actin turnover in order to promote pollen germination and maintain the normal rate of pollen tube growth.
Collapse
Affiliation(s)
- Ming Chang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- National Center for Plant Gene Research, Beijing, 100101, China
| |
Collapse
|
17
|
Quintero CA, Tudela JG, Damiani MT. Rho GTPases as pathogen targets: Focus on curable sexually transmitted infections. Small GTPases 2015; 6:108-18. [PMID: 26023809 DOI: 10.4161/21541248.2014.991233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pathogens have evolved highly specialized mechanisms to infect hosts. Several microorganisms modulate the eukaryotic cell surface to facilitate their engulfment. Once internalized, they hijack the molecular machinery of the infected cell for their own benefit. At different stages of phagocytosis, particularly during invasion, certain pathogens manipulate pathways governed by small GTPases. In this review, we focus on the role of Rho proteins on curable, sexually transmitted infections caused by Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis and Treponema pallidum. Despite the high, worldwide frequencies of these sexually-transmitted diseases, very little is known about the strategies developed by these microorganisms to usurp key eukaryotic proteins that control intracellular signaling and actin dynamics. Improved knowledge of these molecular mechanisms will contribute to the elucidation of how these clinically important pathogens manipulate intracellular processes and parasitize their hosts.
Collapse
Affiliation(s)
- Cristián A Quintero
- a Laboratory of Phagocytosis and Intracellular Trafficking; IHEM-CONICET; School of Medicine; University of Cuyo ; Mendoza , Argentina
| | | | | |
Collapse
|
18
|
Rust MB, Maritzen T. Relevance of presynaptic actin dynamics for synapse function and mouse behavior. Exp Cell Res 2015; 335:165-71. [PMID: 25579398 DOI: 10.1016/j.yexcr.2014.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/26/2014] [Indexed: 01/26/2023]
Abstract
Actin is the most abundant cytoskeletal protein in presynaptic terminals as well as in postsynaptic dendritic spines of central excitatory synapses. While the relevance of actin dynamics for postsynaptic plasticity, for instance activity-induced changes in dendritic spine morphology and synaptic glutamate receptor mobility, is well-documented, only little is known about its function and regulatory mechanisms in presynaptic terminals. Moreover, studies on presynaptic actin dynamics have often been inconsistent, suggesting that actin has diverse presynaptic functions, varying likely between specific types of excitatory synapses and/or their activity states. In this review, we will summarize and discuss the function and upstream regulatory mechanisms of the actin cytoskeleton in presynaptic terminals, focusing on excitatory synapses of the mammalian central nervous system. Due to length restrictions we will mainly concentrate on new insights into actin's presynaptic function that have been gained by cell biological and mouse genetic approaches since the excellent 2008 review by Cingolani and Goda.
Collapse
Affiliation(s)
- Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany.
| | - Tanja Maritzen
- Department of Molecular Physiology and Cell Biology, Leibniz-Institute for Molecular Pharmacology, Berlin, Germany.
| |
Collapse
|
19
|
Levin R, Grinstein S, Schlam D. Phosphoinositides in phagocytosis and macropinocytosis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:805-23. [PMID: 25238964 DOI: 10.1016/j.bbalip.2014.09.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/23/2014] [Accepted: 09/08/2014] [Indexed: 01/08/2023]
Abstract
Professional phagocytes provide immunoprotection and aid in the maintenance of tissue homeostasis. They perform these tasks by recognizing, engulfing and eliminating pathogens and endogenous cell debris. Here, we examine the paramount role played by phosphoinositides in phagocytosis and macropinocytosis, two major endocytic routes that mediate the uptake of particulate and fluid matter, respectively. We analyze accumulating literature describing the molecular mechanisms whereby phosphoinositides translate environmental cues into the complex, sophisticated responses that underlie the phagocytic and macropinocytic responses. In addition, we exemplify virulence strategies involving modulation of host cell phosphoinositide signaling that are employed by bacteria to undermine immunity. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Roni Levin
- Division of Cell Biology, Hospital for Sick Children, 555 University Ave., Toronto M5G1X8, Canada
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, 555 University Ave., Toronto M5G1X8, Canada; Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria St., Toronto M5C1N8, Canada.
| | - Daniel Schlam
- Division of Cell Biology, Hospital for Sick Children, 555 University Ave., Toronto M5G1X8, Canada
| |
Collapse
|
20
|
Merhej V, Angelakis E, Socolovschi C, Raoult D. Genotyping, evolution and epidemiological findings of Rickettsia species. INFECTION GENETICS AND EVOLUTION 2014; 25:122-37. [DOI: 10.1016/j.meegid.2014.03.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 01/12/2023]
|
21
|
Van den Broeke C, Jacob T, Favoreel HW. Rho'ing in and out of cells: viral interactions with Rho GTPase signaling. Small GTPases 2014; 5:e28318. [PMID: 24691164 DOI: 10.4161/sgtp.28318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rho GTPases are key regulators of actin and microtubule dynamics and organization. Increasing evidence shows that many viruses have evolved diverse interactions with Rho GTPase signaling and manipulate them for their own benefit. In this review, we discuss how Rho GTPase signaling interferes with many steps in the viral replication cycle, especially entry, replication, and spread. Seen the diversity between viruses, it is not surprising that there is considerable variability in viral interactions with Rho GTPase signaling. However, several largely common effects on Rho GTPases and actin architecture and microtubule dynamics have been reported. For some of these processes, the molecular signaling and biological consequences are well documented while for others we just begin to understand them. A better knowledge and identification of common threads in the different viral interactions with Rho GTPase signaling and their ultimate consequences for virus and host may pave the way toward the development of new antiviral drugs that may target different viruses.
Collapse
Affiliation(s)
- Céline Van den Broeke
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Thary Jacob
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| |
Collapse
|
22
|
Gattazzo C, Martini V, Frezzato F, Trimarco V, Tibaldi E, Castelli M, Facco M, Zonta F, Brunati AM, Zambello R, Semenzato G, Trentin L. Cortactin, another player in the Lyn signaling pathway, is over-expressed and alternatively spliced in leukemic cells from patients with B-cell chronic lymphocytic leukemia. Haematologica 2014; 99:1069-77. [PMID: 24532043 DOI: 10.3324/haematol.2013.090183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cortactin, an actin binding protein and Lyn substrate, is up-regulated in several cancers and its level is associated with increased cell migration, metastasis and poor prognosis. The identification that the Src kinase Lyn and its substrate HS1 are over-expressed in B-cell chronic lymphocytic leukemia and involved in resistance to chemotherapy and poor prognosis, prompted us to investigate the role of cortactin, an HS1 homolog, in the pathogenesis and progression of this disorder. In this study, we observed that cortactin is over-expressed in leukemic cells of patients (1.10 ± 0.12) with respect to normal B lymphocytes (0.19 ± 0.06; P=0.0065). Fifty-three percent of our patients expressed the WT mRNA and p80/85 protein isoforms, usually lacking in normal B lymphocytes which express the SV1 variant and the p70/75 protein isoforms. Moreover, we found an association of the cortactin overexpression and negative prognostic factors, including ZAP-70 (P<0.01), CD38 (P<0.01) and somatic hypermutations in the immunoglobulin heavy-chain variable region (P<0.01). Our results show that patients with B-cell chronic lymphocytic leukemia express high levels of cortactin with a particular overexpression of the WT isoform that is lacking in normal B cells, and a correlation to poor prognosis, suggesting that this protein could be relevant in the pathogenesis and aggressiveness of the disease.
Collapse
Affiliation(s)
- Cristina Gattazzo
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Veronica Martini
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Federica Frezzato
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | | | - Elena Tibaldi
- Department of Molecular Medicine, University of Padova, Italy
| | - Monica Castelli
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy
| | - Monica Facco
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Francesca Zonta
- Department of Molecular Medicine, University of Padova, Italy
| | | | - Renato Zambello
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Gianpietro Semenzato
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Livio Trentin
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
23
|
Guardians of the actin monomer. Eur J Cell Biol 2013; 92:316-32. [DOI: 10.1016/j.ejcb.2013.10.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 11/22/2022] Open
|
24
|
Humphries AC, Way M. The non-canonical roles of clathrin and actin in pathogen internalization, egress and spread. Nat Rev Microbiol 2013; 11:551-60. [PMID: 24020073 DOI: 10.1038/nrmicro3072] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of clathrin in pathogen entry has received much attention and has highlighted the adaptability of clathrin during internalization. Recent studies have now uncovered additional roles for clathrin and have put the spotlight on its role in pathogen spread. Here, we discuss the manipulation of clathrin by pathogens, with specific attention to the processes that occur at the plasma membrane. In the majority of cases, both clathrin and the actin cytoskeleton are hijacked, so we also examine the interplay between these two systems and their role during pathogen internalization, egress and spread.
Collapse
Affiliation(s)
- Ashley C Humphries
- Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | | |
Collapse
|
25
|
Merhej V, Georgiades K, Raoult D. Postgenomic analysis of bacterial pathogens repertoire reveals genome reduction rather than virulence factors. Brief Funct Genomics 2013; 12:291-304. [PMID: 23814139 DOI: 10.1093/bfgp/elt015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the pregenomic era, the acquisition of pathogenicity islands via horizontal transfer was proposed as a major mechanism in pathogen evolution. Much effort has been expended to look for the contiguous blocks of virulence genes that are present in pathogenic bacteria, but absent in closely related species that are nonpathogenic. However, some of these virulence factors were found in nonpathogenic bacteria. Moreover, and contrary to expectation, pathogenic bacteria were found to lack genes (antivirulence genes) that are characteristic of nonpathogenic bacteria. The availability of complete genome sequences has led to a new era of pathogen research. Comparisons of genomes have shown that the most pathogenic bacteria have reduced genomes, with less ribosomal RNA and unorganized operons; they lack transcriptional regulators but have more genes that encode protein toxins, toxin-antitoxin (TA) modules, and proteins for DNA replication and repair, when compared with less pathogenic close relatives. These findings questioned the paradigm of virulence by gene acquisition and put forward the notion of genomic repertoire of virulence.
Collapse
|
26
|
Kwon MG, Kim JW, Park MA, Hwang JY, Choi HS, Kim MC, Park DW, Jung JM, Park CI. Microarray analysis of gene expression in peripheral blood leucocytes from rock bream (Oplegnathus fasciatus) after stimulation by LPS, ConA/PMA, and poly I:C. Genes Genomics 2013. [DOI: 10.1007/s13258-012-0001-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Zhong P, Agosto LM, Munro JB, Mothes W. Cell-to-cell transmission of viruses. Curr Opin Virol 2012; 3:44-50. [PMID: 23219376 DOI: 10.1016/j.coviro.2012.11.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 10/28/2012] [Accepted: 11/13/2012] [Indexed: 01/08/2023]
Abstract
The life cycle of most viruses involves the release of particles into the extracellular space. Consequently, the study of virus egress as well as virus entry has focused almost exclusively on the biology of cell-free virus. However, cell-free virus spread is often very inefficient. Specific barriers, either located in the donor cell or in the target cell, prevent efficient spread by the cell-free mode. In contrast, viral spread by direct cell-cell contact is largely unaffected by most of these barriers resulting in preferential spread by cell-to-cell transmission. Virus cell-to-cell transmission allows an efficient coordination of several steps of the viral life cycle. It often involves complex inter-cellular adhesion, cellular polarity and intra-cellular trafficking. Because virus cell-to-cell transmission can involve transmission through zones of tight cell-cell contact that are resistant to neutralizing antibodies and reach a high local particle concentration, cell-to-cell transmission can contribute to the pathogenesis of viral infections.
Collapse
Affiliation(s)
- Peng Zhong
- Department of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Ave., New Haven, CT 06536, USA
| | | | | | | |
Collapse
|
28
|
Tegtmeyer N, Wittelsberger R, Hartig R, Wessler S, Martinez-Quiles N, Backert S. Serine phosphorylation of cortactin controls focal adhesion kinase activity and cell scattering induced by Helicobacter pylori. Cell Host Microbe 2011; 9:520-31. [PMID: 21669400 DOI: 10.1016/j.chom.2011.05.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/29/2011] [Accepted: 05/25/2011] [Indexed: 02/04/2023]
Abstract
Cell migration and invasion require the coordinated regulation of cytoskeletal architectural changes by signaling factors, including the actin-binding protein cortactin. Bacterial and viral pathogens subvert these signaling factors to promote their uptake, spread and dissemination. We show that the gastric pathogen Helicobacter pylori (Hp) targets cortactin by two independent processes leading to its tyrosine dephosphorylation and serine phosphorylation to regulate cell scattering and elongation. The phosphorylation status of cortactin dictates its subcellular localization and signaling partners. Upon infection, cortactin was found to interact with and stimulate the kinase activity of focal adhesion kinase (FAK). This interaction required the SH3 domain and phosphorylation of cortactin at serine 405 and a proline-rich sequence in FAK. Using Hp as a model, this study unravels a previously unrecognized FAK activation pathway. We propose that Hp targets cortactin to protect the gastric epithelium from excessive cell lifting and ensure sustained infection in the stomach.
Collapse
Affiliation(s)
- Nicole Tegtmeyer
- Department of Microbiology, Otto von Guericke University, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Ujfalusi-Pozsonyi K, Hild G, Gróf P, Gutay-Tóth Z, Bacsó Z, Nyitrai M. The effects of detergents on the polymerization properties of actin. Cytometry A 2010; 77:447-56. [PMID: 20151434 DOI: 10.1002/cyto.a.20855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Effects of some detergents-most frequently used in membrane raft studies-on the polymerization properties of actin were examined under in vitro and in vivo conditions, for protein and cellular investigations, respectively. Under in vitro conditions the polymerization rates were measured with pyrene-labeled actin. We found that polymerization rate depended on the detergent concentration by following either biphasic characteristics or only decreasing tendency. The strongest effects were observed at relatively low detergent concentrations. SDS-PAGE electrophoresis and dynamic light-scattering measurements provided further evidences for the size distribution of actin filaments formed under the influence of detergents. Comparing the polymerization rates measured in the presence of different detergents to those obtained with various magnesium and KCl concentrations showed that detergents may influence the actin polymerization at three levels by modifying: (i) the monomer-monomer interaction, (ii) the local ionic strength, and (iii) the affinity of actin for various cations. In vivo studies on NIH 3T3MDR1 cells using TRITC-phalloidin detected fast depolymerization of large extent around the critical micellar concentrations of the detergents. We concluded that microdomain insolubility observed in the presence of detergents is hardly to be the result of the stabilization of the submembrane actin cytoskeleton merely; rather inter-lipid and lipid-protein interactions are also involved within the detergent-resistant membranes.
Collapse
Affiliation(s)
- Kinga Ujfalusi-Pozsonyi
- Department of Biophysics, Faculty of Medicine, University of Pécs, Pécs, Szigeti str. 12, H-7624, Hungary
| | | | | | | | | | | |
Collapse
|
30
|
Merhej V, Raoult D. Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc 2010; 86:379-405. [DOI: 10.1111/j.1469-185x.2010.00151.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Kudryashev M, Lepper S, Baumeister W, Cyrklaff M, Frischknecht F. Geometric constrains for detecting short actin filaments by cryogenic electron tomography. PMC BIOPHYSICS 2010; 3:6. [PMID: 20214767 PMCID: PMC2844354 DOI: 10.1186/1757-5036-3-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 03/05/2010] [Indexed: 01/30/2023]
Abstract
Polymerization of actin into filaments can push membranes forming extensions like filopodia or lamellipodia, which are important during processes such as cell motility and phagocytosis. Similarly, small organelles or pathogens can be moved by actin polymerization. Such actin filaments can be arranged in different patterns and are usually hundreds of nanometers in length as revealed by various electron microscopy approaches. Much shorter actin filaments are involved in the motility of apicomplexan parasites. However, these short filaments have to date not been visualized in intact cells. Here, we investigated Plasmodium sporozoites, the motile forms of the malaria parasite that are transmitted by the mosquito, using cryogenic electron tomography. We detected filopodia-like extensions of the plasma membrane and observed filamentous structures in the supra-alveolar space underneath the plasma membrane. However, these filaments could not be unambiguously assigned as actin filaments. In silico simulations of EM data collection and tomographic reconstruction identify the limits in revealing the filaments due to their length, concentration and orientation. PACS Codes: 87.64.Ee
Collapse
Affiliation(s)
- Mikhail Kudryashev
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
32
|
Neumann AK, Jacobson K. A novel pseudopodial component of the dendritic cell anti-fungal response: the fungipod. PLoS Pathog 2010; 6:e1000760. [PMID: 20169183 PMCID: PMC2820528 DOI: 10.1371/journal.ppat.1000760] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 01/11/2010] [Indexed: 02/02/2023] Open
Abstract
Fungal pathologies are seen in immunocompromised and healthy humans. C-type lectins expressed on immature dendritic cells (DC) recognize fungi. We report a novel dorsal pseudopodial protrusion, the “fungipod”, formed by DC after contact with yeast cell walls. These structures have a convoluted cell-proximal end and a smooth distal end. They persist for hours, exhibit noticeable growth and total 13.7±5.6 µm long and 1.8±0.67 µm wide at the contact. Fungipods contain clathrin and an actin core surrounded by a sheath of cortactin. The actin cytoskeleton, but not microtubules, is required for fungipod integrity and growth. An apparent rearward flow (225±55 nm/second) exists from the zymosan contact site into the distal fungipod. The phagocytic receptor Dectin-1 is not required for fungipod formation, but CD206 (Mannose Receptor) is the generative receptor for these protrusions. The human pathogen Candida parapsilosis induces DC fungipod formation strongly, but the response is species specific since the related fungal pathogens Candida tropicalis and Candida albicans induce very few and no fungipods, respectively. Our findings show that fungipods are dynamic actin-driven cellular structures involved in fungal recognition by DC. They may promote yeast particle phagocytosis by DC and are a specific response to large (i.e., 5 µm) particulate ligands. Our work also highlights the importance of this novel protrusive structure to innate immune recognition of medically significant Candida yeasts in a species specific fashion. Yeasts are normal microbial commensals of humans and a significant source of opportunistic infections, especially in immunocompromised individuals. We report a novel cellular protrusive structure, the fungipod, which participates in the host-microbe interaction between human immature dendritic cells (DC) and yeasts. The fungipod's structure is based on and propelled by a robust process of local actin cytoskeleton growth at the DC-yeast contact site, and this cytoskeletal remodeling results in a durable tubular structure over 10 µm long connecting the dorsal DC membrane and yeast. The fungal cell wall polysaccharides mannan and chitin trigger fungipod formation by stimulating the carbohydrate pattern recognition receptor CD206. Fungipods are part of a specific response to large particulate objects (i.e., yeast), and they may promote the human immature DC's relatively poor phagocytosis of yeast. The human fungal pathogen, Candida parapsilosis, induces a strong fungipod response from DC, and this response is highly species specific since the related pathogens Candida albicans and Candida tropicalis induce fungipods rarely. Our work highlights a novel cell biological element of fungal recognition by the innate immune system.
Collapse
Affiliation(s)
- Aaron K. Neumann
- Department of Cell & Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ken Jacobson
- Department of Cell & Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
33
|
Smith K, Humphreys D, Hume PJ, Koronakis V. Enteropathogenic Escherichia coli Recruits the Cellular Inositol Phosphatase SHIP2 to Regulate Actin-Pedestal Formation. Cell Host Microbe 2010; 7:13-24. [DOI: 10.1016/j.chom.2009.12.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/28/2009] [Accepted: 12/01/2009] [Indexed: 12/11/2022]
|
34
|
F11-mediated inhibition of RhoA signalling enhances the spread of vaccinia virus in vitro and in vivo in an intranasal mouse model of infection. PLoS One 2009; 4:e8506. [PMID: 20041165 PMCID: PMC2794559 DOI: 10.1371/journal.pone.0008506] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/04/2009] [Indexed: 11/19/2022] Open
Abstract
The cortical actin cytoskeleton beneath the plasma membrane represents a physical barrier that vaccinia virus has to overcome during its exit from an infected cell. Previous observations using overexpression and pharmacological approaches suggest that vaccinia enhances its release by modulating the cortical actin cytoskeleton by inhibiting RhoA signalling using the viral protein F11. We have now examined the role of F11 and its ability to interact with RhoA to inhibit its downstream signalling in the spread of vaccinia infection both in vitro and in vivo. Live cell imaging over 48 hours reveals that loss of F11 or its ability to bind RhoA dramatically reduces the rate of cell-to-cell spread of the virus in a cell monolayer. Cells infected with the DeltaF11L virus also maintained their cell-to-cell contacts, and did not undergo virus-induced motility as observed during wild-type infections. The DeltaF11L virus is also attenuated in intranasal mouse models of infection, as it is impaired in its ability to spread from the initial sites of infection to the lungs and spleen. Loss of the ability of F11 to bind RhoA also reduces viral spread in vivo. Our results clearly establish that viral-mediated inhibition of RhoA signalling can enhance the spread of infection not only in cell monolayers, but also in vivo.
Collapse
|
35
|
Abstract
Evolutionary conflicts involving mimicry are found throughout nature. Diverse pathogens produce a range of 'mimics' that resemble host components in both form and function. Such mimics subvert crucial cellular processes, including the cell cycle, apoptosis, cytoskeletal dynamics and immunity. Here, we review the mounting evidence that mimicry of host processes is a highly successful strategy for pathogens. Discriminating mimics can be crucial for host survival, and host factors exist that effectively counteract mimics, using strategies that combine rapid evolution and an unexpected degree of flexibility in protein-protein interactions. Even in these instances, mimicry may alter the evolutionary course of fundamental cellular processes in host organisms.
Collapse
|
36
|
Impact of Rac1 and Cdc42 signaling during early herpes simplex virus type 1 infection of keratinocytes. J Virol 2009; 83:9759-72. [PMID: 19640983 DOI: 10.1128/jvi.00835-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Keratinocytes of the skin or mucosa are the primary entry portals for herpes simplex virus type 1 (HSV-1) in vivo. We hypothesized that dynamics of cell motility and adhesion contribute to the initial steps of HSV-1 infection of epithelial cells, and thus, we investigated the impact of Rac1 and Cdc42, which serve as key regulators of actin dynamics. Measurement of endogenous Rac1 and Cdc42 in the human keratinocyte cell line HaCaT indicated temporary changes in activity levels of Rac1/Cdc42 upon HSV-1 infection. Overexpression of Rac1/Cdc42 mutants in HaCaT cells demonstrated a decrease of infection efficiency with constitutively active Rac1 or Cdc42, while dominant-negative Rac1 had no effect. Accordingly, we addressed whether the absence of Rac1 and/or Cdc42 influenced infection, and we performed RNA interference studies. Both in HaCaT cells and in primary human keratinocytes, reduction of Rac1 and/or Cdc42 did not suppress infection. When mouse epidermis was infected ex vivo, we observed early HSV-1 infection in basal keratinocytes. Similar results were obtained upon infection of mouse epidermis with a keratinocyte-restricted deletion of the rac1 gene, indicating no inhibitory effect on HSV-1 infection in the absence of Rac1. Our results suggest that HSV-1 infection of keratinocytes does not depend on pathways involving Rac1 and Cdc42 and that constitutively active Rac1 and Cdc42 have the potential to interfere with HSV-1 infectivity.
Collapse
|
37
|
Schmauch C, Claussner S, Zöltzer H, Maniak M. Targeting the actin-binding protein VASP to late endosomes induces the formation of giant actin aggregates. Eur J Cell Biol 2009; 88:385-96. [DOI: 10.1016/j.ejcb.2009.02.185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 02/12/2009] [Accepted: 02/19/2009] [Indexed: 11/24/2022] Open
|
38
|
Lai FPL, Szczodrak M, Oelkers JM, Ladwein M, Acconcia F, Benesch S, Auinger S, Faix J, Small JV, Polo S, Stradal TEB, Rottner K. Cortactin promotes migration and platelet-derived growth factor-induced actin reorganization by signaling to Rho-GTPases. Mol Biol Cell 2009; 20:3209-23. [PMID: 19458196 DOI: 10.1091/mbc.e08-12-1180] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dynamic actin rearrangements are initiated and maintained by actin filament nucleators, including the Arp2/3-complex. This protein assembly is activated in vitro by distinct nucleation-promoting factors such as Wiskott-Aldrich syndrome protein/Scar family proteins or cortactin, but the relative in vivo functions of each of them remain controversial. Here, we report the conditional genetic disruption of murine cortactin, implicated previously in dynamic actin reorganizations driving lamellipodium protrusion and endocytosis. Unexpectedly, cortactin-deficient cells showed little changes in overall cell morphology and growth. Ultrastructural analyses and live-cell imaging studies revealed unimpaired lamellipodial architecture, Rac-induced protrusion, and actin network turnover, although actin assembly rates in the lamellipodium were modestly increased. In contrast, platelet-derived growth factor-induced actin reorganization and Rac activation were impaired in cortactin null cells. In addition, cortactin deficiency caused reduction of Cdc42 activity and defects in random and directed cell migration. Reduced migration of cortactin null cells could be restored, at least in part, by active Rac and Cdc42 variants. Finally, cortactin removal did not affect the efficiency of receptor-mediated endocytosis. Together, we conclude that cortactin is fully dispensable for Arp2/3-complex activation during lamellipodia protrusion or clathrin pit endocytosis. Furthermore, we propose that cortactin promotes cell migration indirectly, through contributing to activation of selected Rho-GTPases.
Collapse
Affiliation(s)
- Frank P L Lai
- Cytoskeleton Dynamics Group, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility. Nature 2009; 458:87-91. [PMID: 19262673 DOI: 10.1038/nature07773] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 01/12/2009] [Indexed: 11/08/2022]
Abstract
Understanding cell motility will require detailed knowledge not only of the localization of signalling networks regulating actin polymerization, but also of their dynamics. Unfortunately, many signalling networks are not amenable to such analysis, as they are frequently transient and dispersed. By contrast, the signalling pathways used by pathogens undergoing actin-based motility are highly localized and operate in a constitutive fashion. Taking advantage of this, we have analysed the dynamics of neuronal Wiskott-Aldrich syndrome protein (N-WASP), WASP-interacting protein (WIP), GRB2 and NCK, which are required to stimulate actin-related protein (ARP)2/3-complex-dependent actin-based motility of vaccinia virus, using fluorescence recovery after photobleaching. Here we show that all four proteins are rapidly exchanging, albeit at different rates, and that the turnover of N-WASP depends on its ability to stimulate ARP2/3-complex-mediated actin polymerization. Conversely, disruption of the interaction of N-WASP with GRB2 and/or the barbed ends of actin filaments increases its exchange rate and results in a faster rate of virus movement. We suggest that the exchange rate of N-WASP controls the rate of ARP2/3-complex-dependent actin-based motility by regulating the extent of actin polymerization by antagonizing filament capping.
Collapse
|
40
|
Kudryashev M, Cyrklaff M, Baumeister W, Simon MM, Wallich R, Frischknecht F. Comparative cryo-electron tomography of pathogenic Lyme disease spirochetes. Mol Microbiol 2009; 71:1415-34. [PMID: 19210619 DOI: 10.1111/j.1365-2958.2009.06613.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Spirochetes of the Borrelia burgdorferi sensu lato group, the causative agents of Lyme borreliosis, exhibit a complex biology evolved in its zoonotic cycle. Cryo-electron tomography was used to investigate structural features of three species, B. burgdorferi, B. garinii and B. afzelii, known to cause different clinical manifestations in humans. All three organisms revealed an overall similar architecture and showed different numbers of periplasmic flagellar filaments, polar periplasmic void regions, vesicles budding from the outer membrane sheath, which was covered by an amorphous slime layer. The latter was shown to be distinct in its density when comparing the three human-pathogenic Lyme disease spirochetes and Borrelia hermsii, a species causing relapsing fever. Tomograms of dividing bacteria revealed vesicles near the site of division and new basal bodies that were attached at each end of newly establishing cytoplasmic cylinder poles, while periplasmic flagellar filaments still passed the impending site of division. Two different kinds of cytoplasmic filaments showed similarities to MreB or FtsZ filaments of other bacteria. The similar and distinct structural features of Borrelia and the previously investigated pathogenic and non-pathogenic Treponema species emphasize the importance of further studying phylogenetically distant spirochetes.
Collapse
Affiliation(s)
- Mikhail Kudryashev
- Department of Parasitology, Hygiene Institute, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The initial stages of animal virus infection are generally described as the binding of free virions to permissive target cells followed by entry and replication. Although this route of infection is undoubtedly important, many viruses that are pathogenic for humans, including HIV-1, herpes simplex virus and measles, can also move between cells without diffusing through the extracellular environment. Cell-to-cell spread not only facilitates rapid viral dissemination, but may also promote immune evasion and influence disease. This Review discusses the various mechanisms by which viruses move directly between cells and the implications of this for viral dissemination and pathogenesis.
Collapse
Affiliation(s)
- Quentin Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
42
|
Semenova I, Burakov A, Berardone N, Zaliapin I, Slepchenko B, Svitkina T, Kashina A, Rodionov V. Actin dynamics is essential for myosin-based transport of membrane organelles. Curr Biol 2008; 18:1581-6. [PMID: 18951026 PMCID: PMC2583120 DOI: 10.1016/j.cub.2008.08.070] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 08/25/2008] [Accepted: 08/26/2008] [Indexed: 01/11/2023]
Abstract
Actin filaments that serve as "rails" for the myosin-based transport of membrane organelles [1-4] continuously turn over by concurrent growth and shortening at the opposite ends [5]. Although it is known that dynamics of actin filaments is essential for many of the actin cytoskeleton functions, the role of such dynamics in myosin-mediated organelle transport was never studied before. Here, we addressed the role of turnover of actin filaments in the myosin-based transport of membrane organelles by treating cells with the drugs that suppress actin-filament dynamics and found that such a suppression significantly inhibited organelle transport along the actin filaments without inhibiting their intracellular distribution or the activity of the myosin motors. We conclude that dynamics of actin filaments is essential for myosin-based transport of membrane organelles and suggest a previously unknown role of actin-filament dynamics in providing the "rails" for continuous organelle movement resulting in the increased distances traveled by membrane organelles along the actin filaments.
Collapse
Affiliation(s)
- Irina Semenova
- Department of Cell Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06032-1507
| | - Anton Burakov
- Department of Cell Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06032-1507
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | - Neda Berardone
- Department of Cell Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06032-1507
| | - Ilya Zaliapin
- Department of Mathematics and Statistics, University of Nevada, Reno, NV 89557
| | - Boris Slepchenko
- Department of Cell Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06032-1507
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Anna Kashina
- Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Vladimir Rodionov
- Department of Cell Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06032-1507
| |
Collapse
|
43
|
Kruchten AE, Krueger EW, Wang Y, McNiven MA. Distinct phospho-forms of cortactin differentially regulate actin polymerization and focal adhesions. Am J Physiol Cell Physiol 2008; 295:C1113-22. [PMID: 18768925 DOI: 10.1152/ajpcell.00238.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cortactin is an actin-binding protein that is overexpressed in many cancers and is a substrate for both tyrosine and serine/threonine kinases. Tyrosine phosphorylation of cortactin has been observed to increase cell motility and invasion in vivo, although it has been reported to have both positive and negative effects on actin polymerization in vitro. In contrast, serine phosphorylation of cortactin has been shown to stimulate actin assembly in vitro. Currently, the effects of cortactin serine phosphorylation on cell migration are unclear, and furthermore, how the distinct phospho-forms of cortactin may differentially contribute to cell migration has not been directly compared. Therefore, we tested the effects of different tyrosine and serine phospho-mutants of cortactin on lamellipodial protrusion, actin assembly within cells, and focal adhesion dynamics. Interestingly, while expression of either tyrosine or serine phospho-mimetic cortactin mutants resulted in increased lamellipodial protrusion and cell migration, these effects appeared to be via distinct processes. Cortactin mutants mimicking serine phosphorylation appeared to predominantly affect actin polymerization, whereas mutation of cortactin tyrosine residues resulted in alterations in focal adhesion turnover. Thus these findings provide novel insights into how distinct phospho-forms of cortactin may differentially contribute to actin and focal adhesion dynamics to control cell migration.
Collapse
Affiliation(s)
- Anne E Kruchten
- Dept. of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. SW, Guggenheim 1637, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
44
|
Sherer NM, Mothes W. Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis. Trends Cell Biol 2008; 18:414-20. [PMID: 18703335 PMCID: PMC2628975 DOI: 10.1016/j.tcb.2008.07.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 07/17/2008] [Accepted: 07/18/2008] [Indexed: 01/16/2023]
Abstract
Cells use a variety of intercellular structures, including gap junctions and synapses, for cell-cell communication. Here, we present recent advances in the understanding of thin membrane bridges that function in cell-cell signaling and intercellular transport. Cytonemes or filopodial bridges connect neighboring cells via mechanisms of adhesion, which enable ligand-receptor-mediated transfer of surface-associated cargoes from cell to cell. By contrast, tunneling nanotubes establish tubular conduits between cells that provide for the exchange of both cell-surface molecules and cytoplasmic content. We propose models for the biogenesis of both types of membrane bridges and describe how viruses use these structures for the purpose of cell-to-cell spread.
Collapse
Affiliation(s)
- Nathan M Sherer
- Department of Infectious Diseases, King's College London School of Medicine, London Bridge, London SE19RT, UK
| | | |
Collapse
|
45
|
Li Y, Grenklo S, Higgins T, Karlsson R. The profilin:actin complex localizes to sites of dynamic actin polymerization at the leading edge of migrating cells and pathogen-induced actin tails. Eur J Cell Biol 2008; 87:893-904. [PMID: 18707793 DOI: 10.1016/j.ejcb.2008.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 12/11/2022] Open
Abstract
A unique set of affinity-purified anti-profilin and anti-actin antibodies generated against a covalently coupled version of the profilin:actin complex was used to assess the distribution of profilin and non-filamentous actin in mouse melanoma cells. In agreement with the profilin:actin complex being the principal source of actin for filament formation, we observed extensive co-distribution of both antibody preparations with vasodilator-stimulated phosphoprotein (VASP) and the p34 subunit of the Arp2/3 complex, both of which are components of actin polymer-forming protein complexes in the cell. This suggests that the localization of profilin and actin revealed with these antibodies in fact reflects the distribution of the profilin:actin complex rather than the two proteins separately. Significantly, protruding lamellipodia and filopodia showed intensive labeling. The two antibody preparations were also used to stain HeLa cells infected with Listeria monocytogenes or vaccinia virus. In both cases, the pattern of antibody staining of the pathogen-induced microfilament arrangement differed, suggesting a varying accessibility for the antibody-binding epitopes.
Collapse
Affiliation(s)
- Yu Li
- Department of Cell Biology, WGI, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
46
|
Abstract
Trypanosoma cruzi is the protozoan parasite that causes Chagas' disease, a highly prevalent vector-borne disease in Latin America. Chagas' disease is a major public health problem in endemic regions with an estimated 18 million people are infected with T. cruzi and another 100 million at risk (http://www.who.int/ctd/chagas/disease.htm). During its life cycle, T. cruzi alternates between triatomine insect vectors and mammalian hosts. While feeding on host's blood, infected triatomines release in their feces highly motile and infective metacyclic trypomastigotes that may initiate infection. Metacyclic trypomastigotes promptly invade host cells (including gastric mucosa) and once free in the cytoplasm, differentiate into amastigotes that replicate by binary fission. Just before disruption of the parasite-laden cell, amastigotes differentiate back into trypomastigotes which are then released into the tissue spaces and access the circulation. Circulating trypomastigotes that disseminate the infection in the mammalian host may be taken up by feeding triatomines and may also transform, extracellularly, into amastigote-like forms. Unlike their intracellular counterparts, these amastigote-like forms, henceforth called amastigotes, are capable of infecting host cells. Studies in which the mechanisms of amastigote invasion of host cells have been compared to metacyclic trypomastigote entry have revealed interesting differences regarding the involvement of the target cell actin microfilament system.
Collapse
|
47
|
Gill MB, Edgar R, May JS, Stevenson PG. A gamma-herpesvirus glycoprotein complex manipulates actin to promote viral spread. PLoS One 2008; 3:e1808. [PMID: 18350146 PMCID: PMC2262946 DOI: 10.1371/journal.pone.0001808] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 02/10/2008] [Indexed: 11/19/2022] Open
Abstract
Viruses lack self-propulsion. To move in multi-cellular hosts they must therefore manipulate infected cells. Herpesviruses provide an archetype for many aspects of host manipulation, but only for alpha-herpesviruses in is there much information about they move. Other herpesviruses are not necessarily the same. Here we show that Murine gamma-herpesvirus-68 (MHV-68) induces the outgrowth of long, branched plasma membrane fronds to create an intercellular network for virion traffic. The fronds were actin-based and RhoA-dependent. Time-lapse imaging showed that the infected cell surface became highly motile and that virions moved on the fronds. This plasma membrane remodelling was driven by the cytoplasmic tail of gp48, a MHV-68 glycoprotein previously implicated in intercellular viral spread. The MHV-68 ORF58 was also required, but its role was simply transporting gp48 to the plasma membrane, since a gp48 mutant exported without ORF58 did not require ORF58 to form membrane fronds either. Together, gp48/ORF58 were sufficient to induce fronds in transfected cells, as were the homologous BDLF2/BMRF2 of Epstein-Barr virus. Gp48/ORF58 therefore represents a conserved module by which gamma-herpesviruses rearrange cellular actin to increase intercellular contacts and thereby promote their spread.
Collapse
Affiliation(s)
- Michael B. Gill
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Rachel Edgar
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Janet S. May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Philip G. Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
48
|
Abstract
The actin cytoskeleton is required for many important processes during embryonic development. In later stages of life, important homeostatic processes depend on the actin cytoskeleton, such as immune response, haemostasis and blood vessel preservation. Therefore, the function of the actin cytoskeleton must be tightly regulated, and aberrant regulation may cause disease. A growing number of proteins have been described to bind and regulate the actin cytoskeleton. Amongst them, Ena/VASP proteins function as anti-capping proteins, thereby directly modulating the actin ultrastructure. Ena/VASP function is regulated by their recruitment into protein complexes downstream of plasma membrane receptors and by phosphorylation. As regulators of the actin ultrastructure, Ena/VASP proteins are involved in crucial cellular functions, such as shape change, adhesion, migration and cell-cell interaction and hence are important targets for therapeutic intervention. In this chapter, we will first describe the structure, function and regulation of Ena/VASP proteins. Then, we will review the involvement of Ena/VASP proteins in the development of human diseases. Growing evidence links Ena/VASP proteins to important human diseases, such as thrombosis, cancer, arteriosclerosis, cardiomyopathy and nephritis. Finally, present and future perspectives for the development of therapeutic molecules interfering with Ena/VASP-mediated protein-protein interactions are presented.
Collapse
Affiliation(s)
- G Pula
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | | |
Collapse
|
49
|
Gimona M. Protein Linguistics and the Modular Code of the Cytoskeleton. BIOSEMIOTICS 2008:189-206. [DOI: 10.1007/978-1-4020-6340-4_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
50
|
The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin. Cell Host Microbe 2007; 1:227-40. [PMID: 18005701 DOI: 10.1016/j.chom.2007.04.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 02/24/2007] [Accepted: 04/18/2007] [Indexed: 10/23/2022]
Abstract
Prior to being released from the infected cell, intracellular enveloped vaccinia virus particles are transported from their perinuclear assembly site to the plasma membrane along microtubules by the motor kinesin-1. After fusion with the plasma membrane, stimulation of actin tails beneath extracellular virus particles acts to enhance cell-to-cell virus spread. However, we lack molecular understanding of events that occur at the cell periphery just before and during the liberation of virus particles. Using live cell imaging, we show that virus particles move in the cell cortex, independently of actin tail formation. These cortical movements and the subsequent release of virus particles, which are both actin dependent, require F11L-mediated inhibition of RhoA-mDia signaling. We suggest that the exit of vaccinia virus from infected cells has strong parallels to exocytosis, as it is dependent on the assembly and organization of actin in the cell cortex.
Collapse
|