1
|
Liu J, Han L, Li J, Du G, Zhang G. Modification of Flexible Regions for Enhanced Thermal Stability of Alkaline Amylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9973-9982. [PMID: 40209109 DOI: 10.1021/acs.jafc.5c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Alkali-stable amylases offer potential for integrating textile desizing and scouring processes. To meet industrial requirements, molecular engineering strategies were employed to enhance oxidative stability and catalytic efficiency of alkaline amylase. In this study, alkali-stable amylase Amy I from Bacillus halodurans was engineered by modifying multiple highly flexible regions. The sequential truncation of HFR I's N-terminal 40 residues yielded mutant T-40 with 77% higher residual activity than Amy I after incubation at 70 °C for 1 h. Saturation mutagenesis of HFR II/III generated mutant M4, showing 38.9% activity enhancement. CBM-25 substitution in HFR IV further increased activity by 7%. Finally, the integrated mutant Amy I-ML demonstrated exceptional performance with 14.5-fold higher specific activity and 29.6-fold extended half-life (29.4 min at 100 °C) compared to wild-type Amy I. These engineered features-combining thermostability reinforcement with catalytic optimization-establish Amy I-ML as a promising biocatalyst for industrial textile processing. The multiregion engineering approach provided a strategic framework for developing robust industrial enzymes through rational flexibility modulation.
Collapse
Affiliation(s)
- Jingya Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Laichuang Han
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Guoqiang Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Zhang C, Marcia M, Langer JD, Peng G, Michel H. Role of the N-terminal signal peptide in the membrane insertion ofAquifex aeolicusF1F0ATP synthase c-subunit. FEBS J 2013; 280:3425-35. [DOI: 10.1111/febs.12336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Chunli Zhang
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
| | - Marco Marcia
- Department of Molecular, Cellular and Developmental Biology; Yale University; New Haven CT USA
| | - Julian D. Langer
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
| | - Guohong Peng
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
- Institute of Oceanology; Chinese Academy of Sciences; Qingdao China
| | - Hartmut Michel
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
| |
Collapse
|
3
|
Wagner S, Bader ML, Drew D, de Gier JW. Rationalizing membrane protein overexpression. Trends Biotechnol 2006; 24:364-71. [PMID: 16820235 DOI: 10.1016/j.tibtech.2006.06.008] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/20/2006] [Accepted: 06/16/2006] [Indexed: 11/27/2022]
Abstract
Functional and structural studies of membrane proteins usually require overexpression of the proteins in question. Often, however, the 'trial and error' approaches that are mainly used to produce membrane proteins are not successful. Our rapidly increasing understanding of membrane protein insertion, folding and degradation means that membrane protein overexpression can be more rationalized, both at the level of the overexpression host and the overexpressed membrane protein. This change of mindset is likely to have a significant impact on membrane protein research.
Collapse
Affiliation(s)
- Samuel Wagner
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
4
|
Monné M, Chan KW, Slotboom DJ, Kunji ERS. Functional expression of eukaryotic membrane proteins in Lactococcus lactis. Protein Sci 2005; 14:3048-56. [PMID: 16260761 PMCID: PMC2253241 DOI: 10.1110/ps.051689905] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 09/16/2005] [Accepted: 09/16/2005] [Indexed: 10/25/2022]
Abstract
The overproduction of eukaryotic membrane proteins is a major impediment in their structural and functional characterization. Here we have used the nisin-inducible expression system of Lactococcus lactis for the overproduction of 11 mitochondrial transport proteins from yeast. They were expressed at high levels in a functional state in the cytoplasmic membrane. The results also show that the level of expression is influenced by the N-terminal regions of the transporters. Expression levels were improved >10-fold either by replacing or truncating these regions or by adding lactococcal signal peptides. The observed expression levels are now compatible with a realistic exploration of crystallization conditions. The lactococcal expression system may be used for the high-throughput functional characterization of eukaryotic membrane proteins and structural genomics.
Collapse
Affiliation(s)
- Magnus Monné
- The Medical Research Council, Dunn Human Nutrition Unit, Hills Road, Wellcome Trust/MRC Building, Cambridge CB2 2XY, UK
| | | | | | | |
Collapse
|
5
|
Yi L, Celebi N, Chen M, Dalbey RE. Sec/SRP Requirements and Energetics of Membrane Insertion of Subunits a, b, and c of the Escherichia coli F1F0 ATP Synthase. J Biol Chem 2004; 279:39260-7. [PMID: 15263011 DOI: 10.1074/jbc.m405490200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, the role of YidC in the membrane protein biogenesis of the F(0) sector of the Escherichia coli F(1)F(0) ATP synthase was investigated. Whereas subunits a and c of the F(1)F(0) ATP synthase were strictly dependent on YidC for membrane insertion, subunit b required YidC for efficient insertion (Yi, L., Jiang, F., Chen, M., Cain, B., Bolhuis, A., and Dalbey, R. E. (2003) Biochemistry 42, 10537-10544). In this paper, we investigated other protein components and energetics that are required in the membrane protein assembly of the F(0) sector subunits. We show here that the Sec translocase and the signal recognition particle (SRP) pathway are required for membrane insertion of subunits a and b. In contrast, subunit c required neither the Sec machinery nor the SRP pathway for insertion. While the proton motive force was not required for insertion of subunits b and c, it was required for translocation of the negatively charged periplasmic NH(2)-terminal tail of subunit a, whereas periplasmic loop 2 of subunit a could insert in a proton motive force-independent manner. Taken together, the in vivo data suggest that subunits a and b are inserted by the Sec/SRP pathway with the help of YidC, and subunit c is integrated into the membrane by the novel YidC pathway.
Collapse
Affiliation(s)
- Liang Yi
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
6
|
Stuart R. Insertion of proteins into the inner membrane of mitochondria: the role of the Oxa1 complex. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:79-87. [PMID: 12191770 DOI: 10.1016/s0167-4889(02)00266-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The inner mitochondrial membrane harbors a large number of proteins that display a wide range of topological arrangements. The majority of these proteins are encoded in the cell's nucleus, but a few polytopic proteins, all subunits of respiratory chain complexes are encoded by the mitochondrial genome. A number of distinct sorting mechanisms exist to direct these proteins into the mitochondrial inner membrane. One of these pathways involves the export of proteins from the matrix into the inner membrane and is used by both proteins synthesized within the mitochondria, as well as by a subset of nuclear encoded proteins. Prior to embarking on the export pathway, nuclear encoded proteins using this sorting route are initially imported into the mitochondrial matrix from the cytosol, their site of synthesis. Protein export from the matrix into the inner membrane bears similarities to Sec-independent protein export in bacteria and requires the function of the Oxa1 protein. Oxa1 is a component of a general protein insertion site in yeast mitochondrial inner membrane used by both nuclear and mitochondrial DNA encoded proteins. Oxa1 is a member of the conserved Oxa1/YidC/Alb3 protein family found throughout prokaryotes throughout eukaryotes (where it is found in mitochondria and chloroplasts). The evidence to demonstrate that the Oxa1/YidC/Alb3 protein family represents a novel evolutionarily conserved membrane insertion machinery is reviewed here.
Collapse
Affiliation(s)
- Rosemary Stuart
- Department of Biology, Marquette University, 530 N. 15th Street, Milwaukee, WI 53233, USA.
| |
Collapse
|
7
|
Koch HG, Moser M, Schimz KL, Muller M. The integration of YidC into the cytoplasmic membrane of Escherichia coli requires the signal recognition particle, SecA and SecYEG. J Biol Chem 2002; 277:5715-8. [PMID: 11777926 DOI: 10.1074/jbc.c100683200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integration of the polytopic membrane protein YidC into the inner membrane of Escherichia coli was analyzed employing an in vitro system. Upon integration of in vitro synthesized YidC, a 42-kDa membrane protected fragment was detected, which could be immunoprecipitated with polyclonal anti-YidC antibodies. The occurrence of this fragment is in agreement with the predicted topology of YidC and probably encompasses the first two transmembrane domains and the connecting 320-amino acid-long periplasmic loop. The integration of YidC was strictly dependent on the signal recognition particle and SecA. YidC could not be integrated in the absence of SecY, SecE, or SecG, suggesting that YidC, in contrast to its mitochondrial orthologue Oxa1p, cannot engage a SecYEG-independent protein-conducting channel.
Collapse
Affiliation(s)
- Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, University Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg,
| | | | | | | |
Collapse
|
8
|
Luirink J, Samuelsson T, de Gier JW. YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly. FEBS Lett 2001; 501:1-5. [PMID: 11457446 DOI: 10.1016/s0014-5793(01)02616-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This review focuses on a novel, evolutionarily conserved mediator of membrane protein assembly in bacteria, mitochondria and chloroplasts. This factor is designated YidC in Escherichia coli, and is localized in the inner membrane. YidC is homologous to Oxa1p in the mitochondrial inner membrane and Alb3 in the chloroplast thylakoid membrane, but does not seem to have a homologue in the endoplasmic reticulum membrane. It has been suggested that YidC operates both as a separate unit and in connection with the SecYEG-translocon depending on the substrate membrane protein that is integrated into the membrane. Mitochondria do not possess a SecYEG-like complex and Oxa1p is thought to form, or to contribute to the formation of, a novel translocon in the mitochondrial inner membrane. Alb3 in the chloroplast thylakoid membrane is, just like YidC and Oxa1p, involved in membrane protein assembly, but only few details are known.
Collapse
Affiliation(s)
- J Luirink
- Department of Microbiology, BioCentrum Amsterdam, The Netherlands.
| | | | | |
Collapse
|
9
|
Abstract
The t protein of bacteriophage T4 shares with other holins the ability to cause the formation of a lethal membrane lesion which allows the phage endolysin to attack the peptidoglycan. Moreover, T, like other holins, acts in a saltatory manner at a precisely programmed time in the vegetative cycle. Unlike other holins, however, T has the unique ability to postpone its lethal function in response to a secondary infection by a T-even phage during the vegetative cycle. A signal transduction system that responds to the secondary infection is thought to be encoded by some of the numerous r genes, defined by mutations that abolish this lysis-inhibition (LIN) response. The primary structure of T differs from two main structural patterns found in more than 30 orthologous groups of holins. Genetic approaches were taken to probe the t sequence for features involved in membrane localization, functional timing and LIN regulation. Gene fusion analysis indicates that T has a single TMD near the N-terminus, with the bulk of the protein residing in the periplasm. Mapping and phenotypic analysis of deletion and point mutations in t indicates that the periplasmic domain of T is the major determinant of the timing mechanism and is involved in the LIN response.
Collapse
Affiliation(s)
- E Ramanculov
- Department of Biochemistry and Biophysics, 2128 TAMU, Texas A&M University, 77843-2128, College Station, TX, USA
| | | |
Collapse
|
10
|
Abstract
Two proteins, an endolysin and a holin, are essential for host lysis by bacteriophage. Endolysin is the term for muralytic enzymes that degrade the cell wall; endolysins accumulate in the cytosol fully folded during the vegetative cycle. Holins are small membrane proteins that accumulate in the membrane until, at a specific time that is "programmed" into the holin gene, the membrane suddenly becomes permeabilized to the fully folded endolysin. Destruction of the murein and bursting of the cell are immediate sequelae. Holins control the length of the infective cycle for lytic phages and so are subject to intense evolutionary pressure to achieve lysis at an optimal time. Holins are regulated by protein inhibitors of several different kinds. Holins constitute one of the most diverse functional groups, with >100 known or putative holin sequences, which form >30 ortholog groups.
Collapse
Affiliation(s)
- I N Wang
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas 77843-2128, USA.
| | | | | |
Collapse
|
11
|
Gründling A, Smith DL, Bläsi U, Young R. Dimerization between the holin and holin inhibitor of phage lambda. J Bacteriol 2000; 182:6075-81. [PMID: 11029427 PMCID: PMC94741 DOI: 10.1128/jb.182.21.6075-6081.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2000] [Accepted: 07/28/2000] [Indexed: 11/20/2022] Open
Abstract
Holins are integral membrane proteins that control the access of phage-encoded muralytic enzymes, or endolysins, to the cell wall by the sudden formation of an uncharacterized homo-oligomeric lesion, or hole, in the membrane, at a precisely defined time. The timing of lambda-infected cell lysis depends solely on the 107 codon S gene, which encodes two proteins, S105 and S107, which are the holin and holin inhibitor, respectively. Here we report the results of biochemical and genetic studies on the interaction between the holin and the holin inhibitor. A unique cysteine at position 51, in the middle of the second transmembrane domain, is shown to cause the formation of disulfide-linked dimers during detergent membrane extraction. Forced oxidation of membranes containing S molecules also results in the formation of covalently linked dimers. This technique is used to demonstrate efficient dimeric interactions between S105 and S107. These results, coupled with the previous finding that the timing of lysis depends on the excess of the amount of S105 over S107, suggest a model in which the inhibitor functions by titrating out the effector in a stoichiometric fashion. This provides a basis for understanding two evolutionary advantages provided by the inhibitor system, in which the production of the inhibitor not only causes a delay in the timing of lysis, allowing the assembly of more virions, but also increases effective hole formation after triggering.
Collapse
Affiliation(s)
- A Gründling
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA
| | | | | | | |
Collapse
|
12
|
Nakai K. Protein sorting signals and prediction of subcellular localization. ADVANCES IN PROTEIN CHEMISTRY 2000; 54:277-344. [PMID: 10829231 DOI: 10.1016/s0065-3233(00)54009-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- K Nakai
- Human Genome Center, Institute of Medical Science, University of Tokyo, Japan
| |
Collapse
|
13
|
Nilsson I, Witt S, Kiefer H, Mingarro I, von Heijne G. Distant downstream sequence determinants can control N-tail translocation during protein insertion into the endoplasmic reticulum membrane. J Biol Chem 2000; 275:6207-13. [PMID: 10692414 DOI: 10.1074/jbc.275.9.6207] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the membrane insertion of ProW, an Escherichia coli inner membrane protein with seven transmembrane segments and a large periplasmic N-terminal tail, into endoplasmic reticulum (ER)-derived dog pancreas microsomes. Strikingly, significant levels of N-tail translocation is seen only when a minimum of four of the transmembrane segments are present; for constructs with fewer transmembrane segments, the N-tail remains mostly nontranslocated and the majority of the molecules adopt an "inverted" topology where normally nontranslocated parts are translocated and vice versa. N-tail translocation can also be promoted by shortening of the N-tail and by the addition of positively charged residues immediately downstream of the first trasnmembrane segment. We conclude that as many as four consecutive transmembrane segments may be collectively involved in determining membrane protein topology in the ER and that the effects of downstream sequence determinants may vary depending on the size and charge of the N-tail. We also provide evidence to suggest that the ProW N-tail is translocated across the ER membrane in a C-to-N-terminal direction.
Collapse
Affiliation(s)
- I Nilsson
- Department of Biochemistry, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
14
|
Abstract
Most phages accomplish host lysis using a muralytic enzyme, or endolysin, and a holin, which permeabilizes the membrane at a programmed time and thus controls the length of the vegetative cycle. By contrast, lytic single-stranded RNA and DNA phages accomplish lysis by producing a single lysis protein without muralytic activity.
Collapse
Affiliation(s)
- I Young
- Dept of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| | | | | |
Collapse
|
15
|
Amer AO, Valvano MA. The N-terminal region of the Escherichia coli WecA (Rfe) protein, containing three predicted transmembrane helices, is required for function but not for membrane insertion. J Bacteriol 2000; 182:498-503. [PMID: 10629198 PMCID: PMC94301 DOI: 10.1128/jb.182.2.498-503.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The correct site for translation initiation for Escherichia coli WecA (Rfe), presumably involved in catalyzing the transfer of N-acetylglucosamine 1-phosphate to undecaprenylphosphate, was determined by using its FLAG-tagged derivatives. The N-terminal region containing three predicted transmembrane helices was found to be necessary for function but not for membrane localization of this protein.
Collapse
Affiliation(s)
- A O Amer
- Department of Microbiology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
16
|
Cristóbal S, Scotti P, Luirink J, von Heijne G, de Gier JW. The signal recognition particle-targeting pathway does not necessarily deliver proteins to the sec-translocase in Escherichia coli. J Biol Chem 1999; 274:20068-70. [PMID: 10400614 DOI: 10.1074/jbc.274.29.20068] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ProW is an Escherichia coli inner membrane protein that consists of a 100-residue-long periplasmic N-terminal tail (N-tail) followed by seven closely spaced transmembrane segments. N-tail translocation presumably proceeds in a C-to-N-terminal direction and represents a poorly understood aspect of membrane protein biogenesis. Here, using an in vivo depletion approach, we show that N-tail translocation in a ProW derivative comprising the N-tail and the first transmembrane segment fused to the globular P2 domain of leader peptidase depends both on the bacterial signal recognition particle (SRP) and the Sec-translocase. Surprisingly, however, a deletion construct with only one transmembrane segment downstream of the N-tail can assemble properly even under severe depletion of SecE, a central component of the Sec-translocase, but not under SRP-depletion conditions. To our knowledge, this is the first demonstration that the SRP-targeting pathway does not necessarily deliver SRP-dependent inner membrane proteins to the Sec-translocase. The data further suggest that N-tail translocation can proceed in the absence of a functional Sec-translocase.
Collapse
Affiliation(s)
- S Cristóbal
- Department of Biochemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
17
|
Rojo EE, Guiard B, Neupert W, Stuart RA. N-terminal tail export from the mitochondrial matrix. Adherence to the prokaryotic "positive-inside" rule of membrane protein topology. J Biol Chem 1999; 274:19617-22. [PMID: 10391898 DOI: 10.1074/jbc.274.28.19617] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Export of N-terminal tails of mitochondrial inner membrane proteins from the mitochondrial matrix is a membrane potential-dependent process, mediated by the Oxa1p translocation machinery. The hydrophilic segments of these membrane proteins, which undergo export, display a characteristic charge profile where intermembrane space-localized segments bear a net negative charge, whereas those remaining in the matrix have a net positive one. Using a model protein, preSu9(1-112)-dihydrofolate reductase (DHFR), which undergoes Oxa1p-mediated N-tail export, we demonstrate here that the net charge of N- and C-flanking regions of the transmembrane domain play a critical role in determining the orientation of the insertion process. The N-tail must bear a net negative charge to be exported to the intermembrane space. Furthermore, a net positive charge of the C-terminal region supports this N-tail export event. These data provide experimental evidence that protein export in mitochondria adheres to the "positive-inside" rule, described for sec-independent sorting of membrane proteins in prokaryotes. We propose here that the importance of a charge profile reflects a need for specific protein-protein interactions to occur in the export reaction, presumably at the level of the Oxa1p export machinery.
Collapse
Affiliation(s)
- E E Rojo
- Institut für Physiologische Chemie der Universität München, Goethestrasse 33, 80336 München, Germany
| | | | | | | |
Collapse
|
18
|
Schuenemann TA, Delgado-Nixon VM, Dalbey RE. Direct evidence that the proton motive force inhibits membrane translocation of positively charged residues within membrane proteins. J Biol Chem 1999; 274:6855-64. [PMID: 10066738 DOI: 10.1074/jbc.274.11.6855] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The M13 phage procoat protein requires both its signal sequence and its membrane anchor sequence in the mature part of the protein for membrane insertion. Translocation of its short acidic periplasmic loop is stimulated by the proton motive force (pmf) and does not require the Sec components. We now find that the pmf becomes increasingly important for the translocation of negatively charged residues within procoat when the hydrophobicity of the signal or membrane anchor is incrementally reduced. In contrast, we find that the pmf inhibits translocation of the periplasmic loop when it contains one or two positively charged residues. This inhibitory effect of the pmf is stronger when the hydrophobicity of the inserting procoat protein is compromised. No pmf effect is observed for translocation of an uncharged periplasmic loop even when the hydrophobicity is reduced. We also show that the Delta Psi component of the pmf is necessary and sufficient for insertion of representative constructs and that the translocation effects of charged residues are primarily due to the DeltaPsi component of the pmf and not the pH component.
Collapse
Affiliation(s)
- T A Schuenemann
- Department of Chemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
19
|
McMurry JL, Kendall DA. An artificial transmembrane segment directs SecA, SecB, and electrochemical potential-dependent translocation of a long amino-terminal tail. J Biol Chem 1999; 274:6776-82. [PMID: 10037778 DOI: 10.1074/jbc.274.10.6776] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many integral membrane proteins contain an amino-terminal segment, often referred to as an N-tail, that is translocated across a membrane. In many cases, translocation of the N-tail is initiated by a cleavable, amino-terminal signal peptide. For N-tail proteins lacking a signal peptide, translocation is initiated by a transmembrane segment that is carboxyl to the translocated segment. The mechanism of membrane translocation of these segments, although poorly understood, has been reported to be independent of the protein secretion machinery. In contrast, here we describe alkaline phosphatase mutants containing artificial transmembrane segments that demonstrate that translocation of a long N-tail across the membrane is dependent upon SecA, SecB, and the electrochemical potential in the absence of a signal peptide. The corresponding mutants containing signal peptides also use the secretion machinery but are less sensitive to inhibition of its components. We present evidence that inhibition of SecA by sodium azide is incomplete even at high concentrations of inhibitor, which suggests why SecA-dependent translocation may not have been detected in other systems. Furthermore, by varying the charge around the transmembrane segment, we find that in the absence of a signal peptide, the orientation of the membrane-bound alkaline phosphatase is dictated by the positive inside rule. However, the presence of a signal peptide is an overriding factor in membrane orientation and renders all mutants in an Nout-Cin orientation.
Collapse
Affiliation(s)
- J L McMurry
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
20
|
Abstract
Proteins that perform their activity within the cytoplasmic membrane or outside this cell boundary must be targeted to the translocation site prior to their insertion and/or translocation. In bacteria, several targeting routes are known; the SecB- and the signal recognition particle-dependent pathways are the best characterized. Recently, evidence for the existence of a third major route, the twin-Arg pathway, was gathered. Proteins that use either one of these three different pathways possess special features that enable their specific interaction with the components of the targeting routes. Such targeting information is often contained in an N-terminal extension, the signal sequence, but can also be found within the mature domain of the targeted protein. Once the nascent chain starts to emerge from the ribosome, competition for the protein between different targeting factors begins. After recognition and binding, the targeting factor delivers the protein to the translocation sites at the cytoplasmic membrane. Only by means of a specific interaction between the targeting component and its receptor is the cargo released for further processing and translocation. This mechanism ensures the high-fidelity targeting of premembrane and membrane proteins to the translocation site.
Collapse
Affiliation(s)
- P Fekkes
- Department of Microbiology and Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
21
|
Dalbey RE, Robinson C. Protein translocation into and across the bacterial plasma membrane and the plant thylakoid membrane. Trends Biochem Sci 1999; 24:17-22. [PMID: 10087917 DOI: 10.1016/s0968-0004(98)01333-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over the past decade, some familiar themes have emerged on how proteins are inserted into or translocated across the plant chloroplast thylakoid membrane and bacterial inner membranes. In the SecA and signal recognition particle (SRP) pathways, nucleotides and soluble factors are used to translocate proteins across the membrane bilayer in the unfolded state. However, the delta pH-dependent pathway in thylakoids uses a radically different mechanism: transport of proteins across the membrane is driven by the transmembrane pH gradient, and neither stromal factors nor nucleotide triphosphates are needed. In addition, this pathway, which requires the membrane-bound protein Hcf106, appears to translocate proteins in a tightly folded form. Recently, a similar pathway has been shown to operate in eubacteria, and several of its components have been identified.
Collapse
Affiliation(s)
- R E Dalbey
- Dept of Chemistry, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
22
|
Chipot C, Pohorille A. Folding and translocation of the undecamer of poly-L-leucine across the water-hexane interface. A molecular dynamics study. J Am Chem Soc 1998; 120:11912-24. [PMID: 11542762 DOI: 10.1021/ja980010o] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The undecamer of poly-L-leucine at the water-hexane interface is studied by molecular dynamics simulations. This represents a simple model relevant to folding and insertion of hydrophobic peptides into membranes. The peptide, initially placed in a random coil conformation on the aqueous side of the system, rapidly translocates toward the hexane phase and undergoes interfacial folding into an alpha-helix in the subsequent 36 ns. Folding is nonsequential and highly dynamic. The initially formed helical segment at the N-terminus of the undecamer becomes transiently broken and, subsequently, reforms before the remainder of the peptide folds from the C-terminus. The formation of intramolecular hydrogen bonds during the folding of the peptide is preceded by a dehydration of the participating polar groups, as they become immersed in hexane. Folding proceeds through a short-lived intermediate, a 3(10)-helix, which rapidly interconverts to an alpha-helix. Both helices contribute to the equilibrium ensemble of folded structures. The helical peptide is largely buried in hexane, yet remains adsorbed at the interface. Its preferred orientation is parallel to the interface, although the perpendicular arrangement with the N-terminus immersed in hexane is only slightly less favorable. In contrast, the reversed orientation is highly unfavorable, because it would require dehydration of C-terminus carbonyl groups that do not participate in intramolecular hydrogen bonding. For the same reason, the transfer of the undecamer from the interface to the bulk hexane is also unfavorable. The results suggest that hydrophobic peptides fold in the interfacial region and, simultaneously, translocate into the nonpolar side of the interface. It is further implied that peptide insertion into the membrane is accomplished by rotating from the parallel to the perpendicular orientation, most likely in such a way that the N-terminus penetrates the bilayer.
Collapse
Affiliation(s)
- C Chipot
- Universite Henri Poincare-Nancy I, Vandoeuvre-les-Nancy, France
| | | |
Collapse
|
23
|
Harley CA, Holt JA, Turner R, Tipper DJ. Transmembrane protein insertion orientation in yeast depends on the charge difference across transmembrane segments, their total hydrophobicity, and its distribution. J Biol Chem 1998; 273:24963-71. [PMID: 9733804 DOI: 10.1074/jbc.273.38.24963] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The determinants of transmembrane protein insertion orientation at the endoplasmic reticulum have been investigated in Saccharomyces cerevisiae using variants of a Type III (naturally exofacial N terminus (Nexo)) transmembrane fusion protein derived from the N terminus of Ste2p, the alpha-factor receptor. Small positive and negative charges adjacent to the transmembrane segment had equal and opposite effects on orientation, and this effect was independent of N- or C-terminal location, consistent with a purely electrostatic interaction with response mechanisms. A 3:1 bias toward Nexo insertion, observed in the absence of a charge difference, was shown to reflect the Nexo bias conferred by longer transmembrane segments. Orientation correlated best with total hydrophobicity rather than length, but it was also strongly affected by the distribution of hydrophobicity within the transmembrane segment. The most hydrophobic terminus was preferentially translocated. Insertion orientation thus depends on integration of responses to at least three parameters: charge difference across a transmembrane segment, its total hydrophobicity, and its hydrophobicity gradient. Relative signal strengths were estimated, and consequences for topology prediction are discussed. Responses to transmembrane sequence may depend on protein-translocon interactions, but responses to charge difference may be mediated by the electrostatic field provided by anionic phospholipids.
Collapse
Affiliation(s)
- C A Harley
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
24
|
Béguin P, Hasler U, Beggah A, Horisberger JD, Geering K. Membrane integration of Na,K-ATPase alpha-subunits and beta-subunit assembly. J Biol Chem 1998; 273:24921-31. [PMID: 9733799 DOI: 10.1074/jbc.273.38.24921] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The control of membrane insertion of polytopic proteins is still poorly understood. We carried out in vivo translation/insertion experiments in Xenopus oocytes with combined wild type or mutant membrane segments of the alpha-subunit of the heterodimeric Na, K-ATPase linked to a glycosylation reporter sequence. We confirm that the four N-terminal hydrophobic segments of the alpha-subunit behave as alternating signal anchor/stop transfer motifs necessary for two lipid-inserted membrane pairs. For the six C-terminal membrane segments, however, proper packing depends on specific sequence information and association with the beta-subunit. M5 is a very inefficient signal anchor sequence due to the presence of prolines and polar amino acids. Its correct membrane insertion is probably mediated by posttranslational hairpin formation with M6, which is favored by a proline pair in the connecting loop. M7 has partial signal anchor function, which may be mediated by the presence of glycine and glutamine residues. The formation of a transmembrane M7/M8 pair requires the association of the beta-subunit, which induces a conformational change in the connecting extracytoplasmic loop that favors M7/M8 packing. The formation of the M9/M10 pair appears to be predominantly mediated by the efficient stop transfer function of M10. Mutations that provide signal anchor function to M5, M7, and M9 abolish or impede the transport activity of the enzyme. These data illustrate the importance of specific amino acids near or within hydrophobic regions as well as of subunit oligomerization for correct topographical alignment that is necessary for proper folding and/or activity of oligomeric membrane proteins.
Collapse
Affiliation(s)
- P Béguin
- Institut de Pharmacologie et de Toxicologie de l'Université, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Delgado-Partin VM, Dalbey RE. The proton motive force, acting on acidic residues, promotes translocation of amino-terminal domains of membrane proteins when the hydrophobicity of the translocation signal is low. J Biol Chem 1998; 273:9927-34. [PMID: 9545336 DOI: 10.1074/jbc.273.16.9927] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that the first transmembrane segment of leader peptidase can function to translocate the polar amino-terminal Pf3 domain across the membrane into the periplasm independently of the proton motive force (pmf) (Lee, J. I., Kuhn, A., and Dalbey, R. E. (1992) J. Biol. Chem. 267, 938-943). We now show that when the first transmembrane segment lacks a strong hydrophobic character, the pmf is required for translocation. In addition, we find that the amino-terminal acidic residue proximal to the transmembrane domain plays a critical role in pmf-dependent amino-terminal translocation. Moreover, the pmf is required to hold the amino-terminal domain in the periplasm to prevent it from slipping such that the amino terminus is no longer exposed to the periplasm. In all cases, translocation occurs under conditions in which the function of the Sec machinery is impaired. These studies show that the low hydrophobicity of the first apolar domain (the translocation signal) can be compensated for by a negative charge in the amino-terminal region, upon which the pmf acts.
Collapse
Affiliation(s)
- V M Delgado-Partin
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
26
|
Hell K, Herrmann JM, Pratje E, Neupert W, Stuart RA. Oxa1p, an essential component of the N-tail protein export machinery in mitochondria. Proc Natl Acad Sci U S A 1998; 95:2250-5. [PMID: 9482871 PMCID: PMC19309 DOI: 10.1073/pnas.95.5.2250] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/1997] [Accepted: 12/17/1997] [Indexed: 02/06/2023] Open
Abstract
A number of nuclear encoded inner membrane proteins of mitochondria span the membrane in such a manner that their N termini are located in the intermembrane space. Many of these proteins attain this membrane orientation by undergoing an export step from the matrix across the inner membrane. This export process, which resembles bacterial N-tail export from energetic and topogenic signal requirements, is facilitated by Oxa1p, a protein that has homologues throughout prokaryotes and eukaryotes. Oxa1p, as we have previously shown, is required to export the N and C termini of the mitochondrially encoded pCoxII to the intermembrane space. We demonstrate here that imported nuclear encoded proteins physically interact with Oxa1p and depend on Oxa1p for efficient export of their N termini to the intermembrane space. Furthermore, Oxa1p interacts with nascent polypeptide chains synthesized in mitochondria, including the fully synthesized pCoxII and CoxIII species. Thus, Oxa1p represents a component of a general export machinery of the mitochondrial inner membrane.
Collapse
Affiliation(s)
- K Hell
- Institut für Physiologische Chemie der Universität München, Goethestrasse 33, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- K E Matlack
- Howard Hughes Medical Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
28
|
Mitsopoulos C, Hashemzadeh-Bonehi L, Broome-Smith JK. N-tail translocation of mature beta-lactamase across the Escherichia coli cytoplasmic membrane. FEBS Lett 1997; 419:18-22. [PMID: 9426211 DOI: 10.1016/s0014-5793(97)01413-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mature beta-lactamase was attached to the N-terminus of human glycophorin C, an N-out membrane protein lacking a cleavable signal peptide (an N-tail membrane protein). When synthesised in Escherichia coli more than 30% of the intact mature beta-lactamase-glycophorin C molecules assembled N-out, C-in into the cytoplasmic membrane. The N-tail translocated beta-lactamase folded into an enzymatically active form, but it was more susceptible to proteolysis than the equivalent portion of beta-lactamase-glycophorin C synthesised with an N-terminal signal peptide. Its translocation was virtually abolished when the N-out domain of glycophorin C was truncated or when the basic residues C-terminally flanking the glycophorin C membrane-spanning segment were replaced with neutral ones.
Collapse
Affiliation(s)
- C Mitsopoulos
- Biochemistry Group, School of Biological Sciences, University of Sussex, Falmer, Brighton, UK
| | | | | |
Collapse
|
29
|
He S, Fox TD. Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export of N and C termini and dependence on the conserved protein Oxa1p. Mol Biol Cell 1997; 8:1449-60. [PMID: 9285818 PMCID: PMC276169 DOI: 10.1091/mbc.8.8.1449] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To study in vivo the export of mitochondrially synthesized protein from the matrix to the intermembrane space, we have fused a synthetic mitochondrial gene, ARG8m, to the Saccharomyces cerevisiae COX2 gene in mitochondrial DNA. The Arg8mp moiety was translocated through the inner membrane when fused to the Cox2p C terminus by a mechanism dependent on topogenic information at least partially contained within the exported Cox2p C-terminal tail. The pre-Cox2p leader peptide did not signal translocation. Export of the Cox2p C-terminal tail, but not the N-terminal tail, was dependent on the inner membrane potential. The mitochondrial export system does not closely resemble the bacterial Sec translocase. However, normal translocation of both exported domains of Cox2p was defective in cells lacking the widely conserved inner membrane protein Oxa1p.
Collapse
Affiliation(s)
- S He
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
30
|
Kiefer D, Hu X, Dalbey R, Kuhn A. Negatively charged amino acid residues play an active role in orienting the Sec-independent Pf3 coat protein in the Escherichia coli inner membrane. EMBO J 1997; 16:2197-204. [PMID: 9171335 PMCID: PMC1169822 DOI: 10.1093/emboj/16.9.2197] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The coat protein of Pseudomonas aeruginosa phage Pf3 is transiently inserted into the bacterial inner membrane with a single transmembrane anchor sequence in the N(out)C(in) orientation. The N-terminal sequence immediately flanking the membrane anchor contains one negatively charged residue, whereas the C-terminal hydrophilic segment has two positively charged residues. To investigate how the orientation of this protein is achieved, the three flanking charged amino acid residues were altered. Membrane insertion was analyzed in vivo using the accessibility to externally added protease and in vitro by testing the insertion into inverted Escherichia coli membrane vesicles. In both systems, the orientation of the protein was completely reversed for the oppositely charged mutant coat protein (RD mutant). In addition, we show in vivo that the electrochemical membrane potential is necessary for the translocation of both the wild-type and the mutant Pf3 coat proteins, suggesting that membrane insertion is driven by electrophoretic forces.
Collapse
Affiliation(s)
- D Kiefer
- Department of Microbiology, University of Karlsruhe, Germany
| | | | | | | |
Collapse
|
31
|
Herrmann JM, Neupert W, Stuart RA. Insertion into the mitochondrial inner membrane of a polytopic protein, the nuclear-encoded Oxa1p. EMBO J 1997; 16:2217-26. [PMID: 9171337 PMCID: PMC1169824 DOI: 10.1093/emboj/16.9.2217] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Oxa1p, a nuclear-encoded protein of the mitochondrial inner membrane with five predicted transmembrane (TM) segments is synthesized as a precursor (pOxa1p) with an N-terminal presequence. It becomes imported in a process requiring the membrane potential, matrix ATP, mt-Hsp70 and the mitochondrial processing peptidase (MPP). After processing, the negatively charged N-terminus of Oxa1p (approximately 90 amino acid residues) is translocated back across the inner membrane into the intermembrane space and thereby attains its native N(out)-C(in) orientation. This export event is dependent on the membrane potential. Chimeric preproteins containing N-terminal stretches of increasing lengths of Oxa1p fused on mouse dehydrofolate reductase (DHFR) were imported into isolated mitochondria. In each case, their DHFR moieties crossed the inner membrane into the matrix. Thus Oxa1p apparently does not contain a stop transfer signal. Instead the TM segments are inserted into the membrane from the matrix side in a pairwise fashion. The sorting pathway of pOxa1p is suggested to combine the pathways of general import into the matrix with a bacterial-type export process. We postulate that at least two different sorting pathways exist in mitochondria for polytopic inner membrane proteins, the evolutionarily novel pathway for members of the ADP/ATP carrier family and a conserved Oxa1p-type pathway.
Collapse
Affiliation(s)
- J M Herrmann
- Institut für Physiologische Chemie der Universität München, Germany
| | | | | |
Collapse
|
32
|
Abstract
Protein transport across or insertion into a membrane is facilitated by multicomponent protein complexes that reside in the bilayer. Current models propose that these complexes mediate translocation and integration by an obligate sequence of interactions between the substrate polypeptide and other components. Recent discoveries extend and complicate these models, but, more importantly, they remind us that our current level of understanding of the actual molecular mechanisms involved is crude and represents only the tip of the iceberg.
Collapse
|
33
|
Abstract
Mitochondria import many hundreds of different proteins that are encoded by nuclear genes. These proteins are targeted to the mitochondria, translocated through the mitochondrial membranes, and sorted to the different mitochondrial subcompartments. Separate translocases in the mitochondrial outer membrane (TOM complex) and in the inner membrane (TIM complex) facilitate recognition of preproteins and transport across the two membranes. Factors in the cytosol assist in targeting of preproteins. Protein components in the matrix partake in energetically driving translocation in a reaction that depends on the membrane potential and matrix-ATP. Molecular chaperones in the matrix exert multiple functions in translocation, sorting, folding, and assembly of newly imported proteins.
Collapse
Affiliation(s)
- W Neupert
- Institut für Physiologische Chemie der Universität München, Germany
| |
Collapse
|
34
|
Harley CA, Tipper DJ. The role of charged residues in determining transmembrane protein insertion orientation in yeast. J Biol Chem 1996; 271:24625-33. [PMID: 8798728 DOI: 10.1074/jbc.271.40.24625] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The first 79 residues of the yeast Ste2p G protein-coupled pheromone receptor, including the negatively charged N-terminal domain, the first transmembrane segment, and the following positively charged cytoplasmic loop, has been fused to a Kex2p-cleavable beta-lactamase reporter. Insertion orientation was determined by analysis of cell-associated and secreted beta-lactamase activities and independently corroborated by analysis of membrane association and glycosylation patterns. This fusion inserts with exclusively N terminus exofacial (Nexo) topology, serving as a model type III membrane protein. Orientation is unaffected by removal of all three positively charged residues in the cytoplasmic loop or by deletion of all but 12 residues from the N-terminal domain. The residual -2 N-terminal charge apparently provides a signal sufficient to determine Nexo topology. This is entirely consistent with the statistically derived rule in which the charge difference, Delta(C-N), counted for the 15 immediately flanking residues, is the primary topology determinant. Mutations altering Delta(C-N) to zero favors Nexo insertion by 3 to 1, whereas increasingly negative values cause increasing inversion of orientation. All results are consistent with the charge difference rule and indicate that whereas positive charges promote cytoplasmic retention, negative charges promote translocation.
Collapse
Affiliation(s)
- C A Harley
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
35
|
Abstract
Numerous components have been identified that participate at various stages in the biogenesis of mitochondria. For many of these components, their specific functions have recently been defined through detailed investigations of the molecular mechanisms underlying protein targeting, translocation across the mitochondrial outer and inner membranes, membrane insertion, suborganellar sorting, and protein folding.
Collapse
Affiliation(s)
- R Lill
- Adolf-Butenandt-Institut für Physiologische Chemie der Universität München, Goethestrasse 3380336, München, Germany.
| | | | | |
Collapse
|
36
|
|
37
|
Abstract
The increasing incidence of bacterial drug-resistance is stimulating the development of strategies targeting previously unexploited mechanisms of antibiotic action. Combinatorial chemistry, which generates molecularly diverse compounds, target-directed strategies, and high-throughput screens are being used to detect potential antibacterial agents. Bacterial DNA replication and cell division are the targets of new screening methods, as are membrane proteins, particularly those constituting efflux pumps; two-component signalling systems are also being targeted. Secondary-screening methods are being developed to find antibiotics that destroy slowly growing or resting bacteria, and to evaluate whether new antibiotics will be active against intracellular bacteria.
Collapse
Affiliation(s)
- J F Desnottes
- Rhône-Poulenc Rorer, Central Research, Vitry sur Seine, France
| |
Collapse
|