1
|
Sharma A, Arya SK, Singh J, Kapoor B, Bhatti JS, Suttee A, Singh G. Prospects of chitinase in sustainable farming and modern biotechnology: an update on recent progress and challenges. Biotechnol Genet Eng Rev 2024; 40:310-340. [PMID: 36856523 DOI: 10.1080/02648725.2023.2183593] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Abstract
Chitinases are multifunctional biocatalysts for the pest control and useful in modern biotechnology and pharmaceutical industries. Chemical-based fungicides and insecticides have caused more severe effects on environment and human health. Many pathogenic fungal species and insects became resistant to the chemical pesticides. The resistant fungi emerged as a multidrug resistant also and less susceptible insects are not possible to control adequately. Chitinases have an immense potential to be exploited as a biopesticide against fungi and insects. The direct use of chitinase in liquid formulation or whole microbial enzyme producing cells, both act as antagonistically against the pests. Chitinase can disintegrate the fungal cell wall and insect integument that holds the chitin as a vital structural component. Moreover, chitinase is applied for the synthesis of pharmaceutically important chitooligosaccharides. Chitinase producing microbes have the huge potential to utilize against the waste management of sea food remains like shells of crustaceans. Chitinase is valuable for the synthesis of protoplasts from industrially important fungi, further it act as the biocontrol agent of malaria and dengue fever causing larvae of mosquitoes. Chitinases also have been successfully used in wine and single cell protein producing industries. Present review is illustrating the updated information on the state of the art of different applications of chitinases in agriculture and biotechnology industry. It also bestows the understanding to the readers about the areas of extensively studied and the field where there is still much left to be done.
Collapse
Affiliation(s)
- Anindita Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| | | | - Jatinder Singh
- Department of Horticulture, SAGR, Lovely Professional University, Phagwara, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, Phagwara, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine School of Health Sciences, Central University of Punjab, India
| | - Ashish Suttee
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University Phagwara, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
2
|
Konopová B, Buchberger E, Crisp A. Transcriptome of pleuropodia from locust embryos supports that these organs produce enzymes enabling the larva to hatch. Front Zool 2020; 17:4. [PMID: 31969926 PMCID: PMC6966819 DOI: 10.1186/s12983-019-0349-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/23/2019] [Indexed: 01/02/2023] Open
Abstract
Background Pleuropodia are limb-derived glandular organs that transiently appear on the first abdominal segment in embryos of insects from majority of “orders”. They are missing in the genetic model Drosophila and little is known about them. Experiments carried out on orthopteran insects 80 years ago indicated that the pleuropodia secrete a “hatching enzyme” that digests the serosal cuticle to enable the larva to hatch, but evidence by state-of-the-art molecular methods is missing. Results We used high-throughput RNA-sequencing to identify the genes expressed in the pleuropodia of the locust Schistocerca gregaria (Orthoptera). First, using transmission electron microscopy we studied the development of the pleuropodia during 11 stages of the locust embryogenesis. We show that the glandular cells differentiate and start secreting just before the definitive dorsal closure of the embryo and the secretion granules outside the cells become more abundant prior to hatching. Next, we generated a comprehensive embryonic reference transcriptome for the locust and used it to study genome wide gene expression across ten morphologicaly defined stages of the pleuropodia. We show that when the pleuropodia have morphological markers of functional organs and produce secretion, they are primarily enriched in transcripts associated with transport functions. They express genes encoding enzymes capable of digesting cuticular protein and chitin. These include the potent cuticulo-lytic Chitinase 5, whose transcript rises just before hatching. Unexpected finding was the enrichment in transcripts for immunity-related enzymes. This indicates that the pleuropodia are equipped with epithelial immunity similarly as barrier epithelia in postembryonic stages. Conclusions These data provide transcriptomic support for the historic hypothesis that pleuropodia produce cuticle-degrading enzymes and function in hatching. They may also have other functions, such as facilitation of embryonic immune defense. By the genes that they express the pleuropodia are specialized embryonic organs and apparently an important though neglected part of insect physiology.
Collapse
Affiliation(s)
- Barbora Konopová
- 1Department of Zoology, University of Cambridge, Cambridge, UK.,2Department of Evolutionary Developmental Genetics, University of Göttingen, Göttingen, Germany.,Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Elisa Buchberger
- 4Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
3
|
Zhang L, Guan Z, Pan Z, Ge H, Zhou D, Xu J, Zhang W. Functional expression of the Spodoptera exigua chitinase to examine the virtually screened inhibitor candidates. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:741-751. [PMID: 31113496 DOI: 10.1017/s0007485319000191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chitinase is responsible for insect chitin hydrolyzation, which is a key process in insect molting and pupation. However, little is known about the chitinase of Spodoptera exigua (SeChi). In this study, based on the SeChi gene (ADI24346) identified in our laboratory, we constructed the recombinant baculovirus P-Chi for the expression of recombinant SeChi (rSeChi) in Hi5 cells. The rSeChi was purified by chelate affinity chromatography, and the purified protein showed activity comparable with that of a commercial SgChi, suggesting that we harvested active SeChi for the first time. The purified protein was subsequently tested for enzymatic properties and revealed to exhibit its highest activity at pH 8 and 40 C. Using homology modeling and molecular docking techniques, the three-dimensional model of SeChi was constructed and screened for inhibitors. In two rounds of screening, twenty compounds were selected. With the purified rSeChi, we tested each of the twenty compounds for inhibitor activity against rSeChi, and seven compounds showed obvious activity. This study provided new information for the chitinase of beet armyworm and for chitinase inhibitor development.
Collapse
Affiliation(s)
- L Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Z Guan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Z Pan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - H Ge
- Medical College, Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, China
| | - D Zhou
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - J Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - W Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Song Y, Villeneuve DL, Toyota K, Iguchi T, Tollefsen KE. Ecdysone Receptor Agonism Leading to Lethal Molting Disruption in Arthropods: Review and Adverse Outcome Pathway Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4142-4157. [PMID: 28355071 PMCID: PMC6135102 DOI: 10.1021/acs.est.7b00480] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molting is critical for growth, development, reproduction, and survival in arthropods. Complex neuroendocrine pathways are involved in the regulation of molting and may potentially become targets of environmental endocrine disrupting chemicals (EDCs). Based on several known ED mechanisms, a wide range of pesticides has been developed to combat unwanted organisms in food production activities such as agriculture and aquaculture. Meanwhile, these chemicals may also pose hazards to nontarget species by causing molting defects, and thus potentially affecting the health of the ecosystems. The present review summarizes the available knowledge on molting-related endocrine regulation and chemically mediated disruption in arthropods (with special focus on insects and crustaceans), to identify research gaps and develop a mechanistic model for assessing environmental hazards of these compounds. Based on the review, multiple targets of EDCs in the molting processes were identified and the link between mode of action (MoA) and adverse effects characterized to inform future studies. An adverse outcome pathway (AOP) describing ecdysone receptor agonism leading to incomplete ecdysis associated mortality was developed according to the OECD guideline and subjected to weight of evidence considerations by evolved Bradford Hill Criteria. This review proposes the first invertebrate ED AOP and may serve as a knowledge foundation for future environmental studies and AOP development.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
- Corresponding Author: Knut Erik Tollefsen, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00, , You Song, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00,
| | | | - Kenji Toyota
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Taisen Iguchi
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV). P.O. Box 5003, N-1432 Ås, Norway
- Corresponding Author: Knut Erik Tollefsen, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00, , You Song, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00,
| |
Collapse
|
5
|
Liao ZH, Kuo TC, Kao CH, Chou TM, Kao YH, Huang RN. Identification of the chitinase genes from the diamondback moth, Plutella xylostella. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:769-780. [PMID: 27417424 DOI: 10.1017/s0007485316000511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chitinases have an indispensable function in chitin metabolism and are well characterized in numerous insect species. Although the diamondback moth (DBM) Plutella xylostella, which has a high reproductive potential, short generation time, and characteristic adaptation to adverse environments, has become one of the most serious pests of cruciferous plants worldwide, the information on the chitinases of the moth is presently limited. In the present study, using degenerated polymerase chain reaction (PCR) and rapid amplification of cDNA ends-PCR strategies, four chitinase genes of P. xylostella were cloned, and an exhaustive search was conducted for chitinase-like sequences from the P. xylostella genome and transcriptomic database. Based on the domain analysis of the deduced amino acid sequences and the phylogenetic analysis of the catalytic domain sequences, we identified 15 chitinase genes from P. xylostella. Two of the gut-specific chitinases did not cluster with any of the known phylogenetic groups of chitinases and might be in a new group of the chitinase family. Moreover, in our study, group VIII chitinase was not identified. The structures, classifications and expression patterns of the chitinases of P. xylostella were further delineated, and with this information, further investigations on the functions of chitinase genes in DBM could be facilitated.
Collapse
Affiliation(s)
- Z H Liao
- Department of Life Science,National Central University,Chung-Li,Taoyuan,Taiwan 320,ROC
| | - T C Kuo
- Department of Biochemistry,Taipei Medical University,250 Wu-Hsing Street,Taipei 110,Taiwan
| | - C H Kao
- Applied Zoology Division,Taiwan Agricultural Research Institute,Council of Agriculture,Executive Yua,Wufeng,Taichung 41362,Taiwan
| | - T M Chou
- Applied Zoology Division,Taiwan Agricultural Research Institute,Council of Agriculture,Executive Yua,Wufeng,Taichung 41362,Taiwan
| | - Y H Kao
- Department of Life Science,National Central University,Chung-Li,Taoyuan,Taiwan 320,ROC
| | - R N Huang
- Department of Entomology,College of Bioresources and Agriculture, National Taiwan University,Taipei 106,Taiwan
| |
Collapse
|
6
|
Grassl J, Peng Y, Baer-Imhoof B, Welch M, Millar AH, Baer B. Infections with the Sexually Transmitted Pathogen Nosema apis Trigger an Immune Response in the Seminal Fluid of Honey Bees (Apis mellifera). J Proteome Res 2016; 16:319-334. [DOI: 10.1021/acs.jproteome.6b00051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julia Grassl
- Centre for Integrative Bee Research
(CIBER) and ARC Centre of Excellence
in Plant Energy Biology and ‡School of Animal Biology, The University of Western Australia, Bayliss Building, Crawley, WA 6009, Australia
| | - Yan Peng
- Centre for Integrative Bee Research
(CIBER) and ARC Centre of Excellence
in Plant Energy Biology and ‡School of Animal Biology, The University of Western Australia, Bayliss Building, Crawley, WA 6009, Australia
| | - Barbara Baer-Imhoof
- Centre for Integrative Bee Research
(CIBER) and ARC Centre of Excellence
in Plant Energy Biology and ‡School of Animal Biology, The University of Western Australia, Bayliss Building, Crawley, WA 6009, Australia
| | - Mat Welch
- Centre for Integrative Bee Research
(CIBER) and ARC Centre of Excellence
in Plant Energy Biology and ‡School of Animal Biology, The University of Western Australia, Bayliss Building, Crawley, WA 6009, Australia
| | - A. Harvey Millar
- Centre for Integrative Bee Research
(CIBER) and ARC Centre of Excellence
in Plant Energy Biology and ‡School of Animal Biology, The University of Western Australia, Bayliss Building, Crawley, WA 6009, Australia
| | - Boris Baer
- Centre for Integrative Bee Research
(CIBER) and ARC Centre of Excellence
in Plant Energy Biology and ‡School of Animal Biology, The University of Western Australia, Bayliss Building, Crawley, WA 6009, Australia
| |
Collapse
|
7
|
Transcriptional regulation of a chitinase gene by 20-hydroxyecdysone and starvation in the oriental fruit fly, Bactrocera dorsalis. Int J Mol Sci 2013; 14:20048-63. [PMID: 24113584 PMCID: PMC3821602 DOI: 10.3390/ijms141020048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 11/16/2022] Open
Abstract
Insect chitinases are hydrolytic enzymes that are required for the degradation of glycosidic bonds of chitin. In this study, we identified and characterized a full-length cDNA of the chitinase gene (BdCht2) in the oriental fruit fly, Bactrocera dorsalis. The cDNA contains an open reading frame (ORF) of 1449 bp that encodes 483 amino acid residues and 126- and 296-bp non-coding regions at the 5'- and 3'-ends, respectively. The BdCht2 genome has four exons and three introns. The predicted molecular mass of the deduced BdCht2 is approximately 54.3 kDa, with an isoelectric point of 5.97. The 977 bp 5' flanking region was identified and the transcription factor binding sites were predicted. Bioinformatic analyses showed that the deduced amino acid sequence of BdCht2 had 34%-66% identity to that of chitinases identified in other insect species. Quantitative real-time PCR (qPCR) analyses indicated that BdCht2 was mainly expressed during the larval-pupal and pupal-adult transitions. The tissue-specific expression showed that the highest expression was in the integument, followed by the fat body and other tissues. Moreover, the expression of BdCht2 was upregulated significantly upon 20-hydroxyecdysone (20E) at different dose injections after 8 h compared to that of the control. Starvation also increased the expression of BdCht2 in the third-instar larvae and was suppressed again by re-feeding the insects. These results suggest that BdCht2 plays an important role in the molting process of B. dorsalis larvae and can be regulated by 20E.
Collapse
|
8
|
Rider MA, Zou J, Vanlandingham D, Nuckols JT, Higgs S, Zhang Q, Lacey M, Kim J, Wang G, Hong YS. Quantitative proteomic analysis of the Anopheles gambiae (Diptera: Culicidae) midgut infected with o'nyong-nyong virus. JOURNAL OF MEDICAL ENTOMOLOGY 2013; 50:1077-1088. [PMID: 24180113 DOI: 10.1603/me12155] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Alphaviruses are arthropod-borne pathogens that infect a range of hosts. In humans and other mammals, alphavirus infection can cause severe disease. In mosquito hosts, however, there are generally few symptoms. Little is known about the cellular responses of mosquitoes that allow them to cope with infection. In this investigation, a six-plex tandem mass tagging proteomic approach was used to study protein accumulation changes in the midgut of Anopheles gambiae (Giles) (Diptera: Culicidae) mosquitoes infected with o'nyong-nyong virus (Togaviridae, Alphavirus). Five hundred thirty-six nonredundant proteins were identified. Twenty-two were found in significantly different quantities in infected midguts compared with controls. Of interest, analysis revealed molecular pathways possibly targeted by virus proteins, such as those involving TAF4 and DNA polymerase phi proteins. Also identified was an FK506-binding protein. FK506-binding protein orthologs have been described as conserved host resistance factors, which suppress dengue and West Nile virus infection in human HeLa cells. This investigation constitutes the first study of the midgut-specific proteome of An. gambiae in relation to alphavirus infection. Our findings offer insight into mosquito immunity, including factors that possibly contribute to the different pathological outcomes observed in vertebrate and insect hosts.
Collapse
Affiliation(s)
- Mark A Rider
- Department of Tropical Medicine, Tulane University, 1430 Tulane Ave, SL-17, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gu J, Huang LX, Gong YJ, Zheng SC, Liu L, Huang LH, Feng QL. De novo characterization of transcriptome and gene expression dynamics in epidermis during the larval-pupal metamorphosis of common cutworm. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:794-808. [PMID: 23796435 DOI: 10.1016/j.ibmb.2013.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/11/2013] [Accepted: 06/05/2013] [Indexed: 06/02/2023]
Abstract
Larval cuticle is degraded and replaced by the pupal counterpart during larval-pupal metamorphosis in the holometabolous insects. In addition to the extrinsic transformation, the epidermis goes through significant changes at molecular levels. To elucidate the intrinsic mechanism of epidermal metamorphosis, the dynamics of chitin content in the cuticle was examined in an important agricultural lepidopteran, the common cutworm, and the transcriptome was analyzed using Illumina sequencing technology. Gene expression profiles during the metamorphosis were further studied by both the digital gene expression (DGE) system and real-time quantitative PCR. The results showed that the chitin content decreased in prepupae and then increased in pupae. A total of 58 million sequencing reads were obtained and assembled into 70,346 unigenes. Over 9000 unigenes were identified to express differentially during the transformation process. As compared with the 6th instar feeding larvae, the most significant changes took place in the proteasome and metabolic pathways in prepupae and pupae, respectively. The cytochrome P450s, VHDLs, chitinase, serine protease and genes involved in sex pheromone biosynthesis changed their mRNA levels remarkably. Three chitinolytic enzymes (chitinase, β-N-acetylglucosaminidase and chitin deacetylase) showed distinct mRNA expression patterns, the former two enzymes revealed the highest expression in prepupae, however the latter one showed its climax mRNA level in pupae. The gene expression patterns suggest that chitinase and β-N-acetylglucosaminidase may be responsible for the degradation of larval cuticles, whereas chitin deacetylase may help to degrade the pupal counterparts. Gene expression dynamics also implied that the chitin of pupal cuticle might be formed by recycling of the degraded chitin of larval cuticle rather than through de novo synthesis. The 20E-induced nuclear receptors seem to be important factors regulating chitin metabolic enzymes during the cuticle remodeling. Our data provide a comprehensive resource for exploring the molecular mechanism of epidermal metamorphosis in insects.
Collapse
Affiliation(s)
- Jun Gu
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 55 W. Zhongshan Ave., Guangzhou 510631, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Wu Q, Liu T, Yang Q. Cloning, expression and biocharacterization of OfCht5, the chitinase from the insect Ostrinia furnacalis. INSECT SCIENCE 2013; 20:147-157. [PMID: 23955855 DOI: 10.1111/j.1744-7917.2012.01512.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chitinase catalyzes β-1,4-glycosidic linkages in chitin and has attracted research interest due to it being a potential pesticide target and an enzymatic tool for preparation of N-acetyl-β-D-glucosamine. An individual insect contains multiple genes encoding chitinases, which vary in domain architectures, expression patterns, physiological roles and biochemical properties. Herein, OfCht5, the glycoside hydrolase family 18 chitinase from the widespread lepidopteran pest Ostrinia furnacalis, was cloned, expressed in the yeast Pichia pastoris and biochemically characterized in an attempt to facilitate both pest control and biomaterial preparation. Complementary DNA sequence analysis indicated that OfCHT5 consisted of an open reading frame of 1 665-bp nucleotides. Phylogenic analysis suggested OfCht5 belongs to the Group I insect chitinases. Expression of OfCht5 in Pichia pastoris resulted in highest specific activity after 120 h of induction with methanol. Through two steps of purification, consisting of ammonium sulfate precipitation and metal chelating chromatography, about 7 mg of the recombinant OfCht5 was purified to homogeneity from 1 L culture supernatant. OfCht5 effectively converted colloidal chitin into chitobiose, but had relatively low activity toward α-chitin. When chitooligosaccharides [(GlcNAc)n , n= 3-6] were used as substrates, OfCht5 was observed to possess the highest catalytic efficiency parameter toward (GlcNAc)4 and predominantely hydrolyzed the second glycosidic bond from the non-reducing end. Together with β-N-acetyl-D-hexosaminidase OfHex1, OfCht5 achieved its highest efficiency in chitin degradation that yielded N-acetyl-β-D-glucosamine, a valuable pharmacological reagent and food supplement, within a molar concentration ratio of OfCht5 versus OfHex1 in the range of 9 : 1-15 : 1. This work provides an alternative to existing preparation of chitinase for pesticides and other applications.
Collapse
Affiliation(s)
- Qingyue Wu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | | | | |
Collapse
|
11
|
Insect-Derived Chitinases. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 136:19-50. [DOI: 10.1007/10_2013_207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
The tsetse fly obligate mutualist Wigglesworthia morsitans alters gene expression and population density via exogenous nutrient provisioning. Appl Environ Microbiol 2012; 78:7792-7. [PMID: 22904061 DOI: 10.1128/aem.02052-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The obligate mutualist Wigglesworthia morsitans provisions nutrients to tsetse flies. The symbiont's response to thiamine (B(1)) supplementation of blood meals, specifically towards the regulation of thiamine biosynthesis and population density, is described. Despite an ancient symbiosis and associated genome tailoring, Wigglesworthia responds to nutrient availability, potentially accommodating a decreased need.
Collapse
|
13
|
Khajuria C, Buschman LL, Chen MS, Muthukrishnan S, Zhu KY. A gut-specific chitinase gene essential for regulation of chitin content of peritrophic matrix and growth of Ostrinia nubilalis larvae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:621-629. [PMID: 20542114 DOI: 10.1016/j.ibmb.2010.06.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 05/29/2023]
Abstract
Chitinases belong to a large and diverse family of hydrolytic enzymes that break down glycosidic bonds of chitin. However, very little is known about the function of chitinase genes in regulating the chitin content in peritrophic matrix (PM) of the midgut in insects. We identified a cDNA putatively encoding a chitinase (OnCht) in European corn borer (ECB; Ostrinia nubilalis). The OnCht transcript was predominately found in larval midgut but undetectable in eggs, pupae, or adults. When the larvae were fed on an artificial diet, the OnCht transcript level increased by 4.4-fold but the transcript level of a gut-specific chitin synthase (OnCHS2) gene decreased by 2.5-fold as compared with those of unfed larvae. In contrast, when the larvae were fed with the food and then starved for 24h, the OnCht transcript level decreased by 1.8-fold but the transcript level of OnCHS2 increased by 1.8-fold. Furthermore, there was a negative relationship between OnCht transcript level and chitin content in the midgut. By using a feeding-based RNAi technique, we were able to reduce the OnCht transcript level by 63-64% in the larval midgut. Consequently, these larvae showed significantly increased chitin content (26%) in the PM but decreased larval body weight (54%) as compared with the control larvae fed on the diet containing GFP dsRNA. Therefore, for the first time, we provide strong evidence that OnCht plays an important role in regulating chitin content of the PM and subsequently affecting the growth and development of the ECB larvae.
Collapse
Affiliation(s)
- Chitvan Khajuria
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
14
|
Arakane Y, Muthukrishnan S. Insect chitinase and chitinase-like proteins. Cell Mol Life Sci 2010; 67:201-16. [PMID: 19816755 PMCID: PMC11115512 DOI: 10.1007/s00018-009-0161-9] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 12/24/2022]
Abstract
Insect chitinases belong to family 18 glycosylhydrolases that hydrolyze chitin by an endo-type of cleavage while retaining the anomeric beta-(1-->4) configuration of products. There are multiple genes encoding chitinases and chitinase-like proteins in all insect species studied using bioinformatics searches. These chitinases differ in size, domain organization, physical, chemical and enzymatic properties, and in patterns of their expression during development. There are also differences in tissue specificity of expression. Based on a phylogenetic analysis, insect chitinases and chitinase-like proteins have been classified into several different groups. Results of RNA interference experiments demonstrate that at least some of these chitinases belonging to different groups serve non-redundant functions and are essential for insect survival, molting or development. Chitinases have been utilized for biological control of insect pests on transgenic plants either alone or in combination with other insecticidal proteins. Specific chitinases may prove to be useful as biocontrol agents and/or as vaccines.
Collapse
Affiliation(s)
- Yasuyuki Arakane
- Department of Biochemistry, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506-3702 USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506-3702 USA
| |
Collapse
|
15
|
Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S. Characterization of recombinant chitinase-like proteins of Drosophila melanogaster and Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:467-477. [PMID: 18342251 DOI: 10.1016/j.ibmb.2007.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 06/23/2007] [Accepted: 06/27/2007] [Indexed: 05/26/2023]
Abstract
Insect chitinase (CHT) family proteins are encoded by as many as 16 genes depending upon the species of interest. We have classified these proteins in three species into five different groups based on amino acid sequence similarities (Zhu et al., companion paper). The functions of most of the individual proteins of this family during growth and development are largely unknown. To help determine their enzymatic properties and physiological roles, we expressed representative members belonging to this protein family from Drosophila melanogaster (Dm) and Tribolium castaneum (Tc), and characterized their kinetic and carbohydrate-binding properties. Seven proteins, including DmCHT 4, 5, 9 and DmDS47 from Drosophila, and TcCHT5, TcIDGF2 and TcIDGF4 from Tribolium, belonging to groups I, IV or V of the chitinase-like family were expressed in a baculovirus-insect cell line expression system, purified and characterized. Their enzymatic and chitin-binding properties were compared to those of the well-characterized chitinase, MsCHT535, from Manduca sexta (Ms). All of these proteins, except those belonging to group V that are related to imaginal disc growth factors (IDGFs), exhibited chitinolytic activity against the long polymeric substrate, CM-Chitin-RBV, and/or the short oligomeric substrate, MU-(GlcNAc)(3). TcCHT5, DmCHT5 and MsCHT535, which are members of group I chitinases, cleaved both polymeric and oligomeric substrates. Their enzymatic properties, including pH optima, kinetic parameters, and susceptibility to substrate inhibition by chitooligosaccharides, were similar. Two group IV chitinases, DmCHT4 and DmCHT9, also were characterized. DmCHT4 had one optimum pH of 6 towards the polymeric substrate and no detectable chitinolytic activity towards an oligosaccharide substrate. DmCHT9 had high activity from pH 4 to 8 towards the polymeric substrate and exhibited low activity towards the oligosaccharide substrate. The group V proteins, TcIDGF2 and TcIDGF4, contain all of the catalytically critical residues within conserved region II of family 18 chitinases but neither exhibited chitinolytic activity. Another group V protein, DmDS47, which lacks the critical glutamate residue in region II and the C-terminal CBD, also exhibited no chitinolytic activity. However, all three of the group V proteins bound to chitin tightly. A comparison of the amino acid sequences and homology model structures of group V proteins with enzymatically active members of the chitinase family indicated that the presence of additional loops of amino acids within the (betaalpha)(8)-barrel structure of these proteins interferes with productive substrate binding and/or catalysis.
Collapse
Affiliation(s)
- Qingsong Zhu
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
16
|
Zhu Q, Arakane Y, Banerjee D, Beeman RW, Kramer KJ, Muthukrishnan S. Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:452-466. [PMID: 18342250 DOI: 10.1016/j.ibmb.2007.06.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 06/20/2007] [Accepted: 06/27/2007] [Indexed: 05/26/2023]
Abstract
A bioinformatics-based investigation of three insect species with completed genome sequences has revealed that insect chitinase-like proteins (glycosylhydrolase family 18) are encoded by a rather large and diverse group of genes. We identified 16, 16 and 13 putative chitinase-like genes in the genomic databases of the red flour beetle, Tribolium castaneum, the fruit fly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae, respectively. Chitinase-like proteins encoded by this gene family were classified into five groups based on phylogenetic analyses. Group I chitinases are secreted proteins that are the most abundant such enzymes in molting fluid and/or integument, and represent the prototype enzyme of the family, with a single copy each of the catalytic domain and chitin-binding domain (ChBD) connected by an S/T-rich linker polypeptide. Group II chitinases are unusually larger-sized secreted proteins that contain multiple catalytic domains and ChBDs. Group III chitinases contain two catalytic domains and are predicted to be membrane-anchored proteins. Group IV chitinases are the most divergent. They usually lack a ChBD and/or an S/T-rich linker domain, and are known or predicted to be secreted proteins found in gut or fat body. Group V proteins include the putative chitinase-like imaginal disc growth factors (IDGFs). In each of the three insect genomes, multiple genes encode group IV and group V chitinase-like proteins. In contrast, groups I-III are each represented by only a singe gene in each species.
Collapse
Affiliation(s)
- Qingsong Zhu
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | |
Collapse
|
17
|
Rio RV, Wu YN, Filardo G, Aksoy S. Dynamics of multiple symbiont density regulation during host development: tsetse fly and its microbial flora. Proc Biol Sci 2006; 273:805-14. [PMID: 16618673 PMCID: PMC1560226 DOI: 10.1098/rspb.2005.3399] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Symbiotic associations often enhance hosts' physiological capabilities, allowing them to expand into restricted terrains, thus leading to biological diversification. Stable maintenance of partners is essential for the overall biological system to succeed. The viviparous tsetse fly (Diptera: Glossinidae) offers an exceptional system to examine factors that influence the maintenance of multiple symbiotic organisms within a single eukaryotic host. This insect harbours three different symbionts representing diverse associations, coevolutionary histories and transmission modes. The enterics, obligate mutualist Wigglesworthia and beneficial Sodalis, are maternally transmitted to the intrauterine larvae, while parasitic Wolbachia infects the developing oocyte. In this study, the population dynamics of these three symbionts were examined through host development and during potentially disruptive events, including host immune challenge, the presence of third parties (such as African trypanosomes) and environmental perturbations (such as fluctuating humidity levels). While mutualistic partners exhibited well-regulated density profiles over different host developmental stages, parasitic Wolbachia infections varied in individual hosts. Host immune status and the presence of trypanosome infections did not impact the steady-state density levels observed for mutualistic microbes in either sex, while these factors resulted in an increase in Wolbachia density in males. Interestingly, perturbation of the maternal environment resulted in the deposition of progeny harbouring greater overall symbiont loads. The regulation of symbiont density, arising from coadaptive processes, may be an important mechanism driving inter-specific relations to ensure their competitive survival and to promote specialization of beneficial associations.
Collapse
|
18
|
Ramalho-Ortigão JM, Kamhawi S, Joshi MB, Reynoso D, Lawyer PG, Dwyer DM, Sacks DL, Valenzuela JG. Characterization of a blood activated chitinolytic system in the midgut of the sand fly vectors Lutzomyia longipalpis and Phlebotomus papatasi. INSECT MOLECULAR BIOLOGY 2005; 14:703-12. [PMID: 16313571 DOI: 10.1111/j.1365-2583.2005.00601.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We characterized a cDNA from Phlebotomus papatasi, PpChit1, which encodes a midgut specific chitinase and show the presence of a functional, blood-induced chitinolytic system in sand flies. PpChit1 is detected only in the midgut and is regulated by blood feeding. A recombinant protein (rPpChit1) produced in HEK 293-F cells exhibited a similar activity profile to that found in the native protein against several specific substrates, including an oligomeric glycol chitin and synthetic 4-methyl-umbelliferone labelled substrates. Western blotting showed that the native protein is recognized by mouse polyclonal antibodies against rPpChit1. Additionally, the rPpChit1 and the native chitinase displayed similar retention times in a HPLC size fractionation column. When added to rPpChit1 or to midgut lysates, PpChit1 sera reduced chitinolytic activity by 65-70%.
Collapse
Affiliation(s)
- J M Ramalho-Ortigão
- Intracellular Parasite Biology Section, Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852-8132, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Han JH, Lee KS, Li J, Kim I, Je YH, Kim DH, Sohn HD, Jin BR. Cloning and expression of a fat body-specific chitinase cDNA from the spider, Araneus ventricosus. Comp Biochem Physiol B Biochem Mol Biol 2005; 140:427-35. [PMID: 15694591 DOI: 10.1016/j.cbpc.2004.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 11/09/2004] [Accepted: 11/14/2004] [Indexed: 11/19/2022]
Abstract
A fat body-specific chitinase cDNA was cloned from the spider, Araneus ventricosus. The cDNA encoding A. ventricosus chitinase (AvChit1) is 1515 bp long with an open reading frame (ORF) of 431 amino acid residues. AvChit1 possesses the chitinase family 18 active site signature and one N-glycosylation site. The deduced amino acid sequence of AvChit1 cDNA showed 43% identity to both Glossina morsitans morsitans chitinase and a human chitotriosidase, and 30-40% to some insect chitinases which lack both the serine/threonine and chitin binding domains. Southern blot analysis of genomic DNA suggested the presence of AvChit1 gene as a single copy. Northern and Western blot analysis and enzyme activity assay showed the tissue-specific expression of AvChit1 in the A. ventricosus fat body. The AvChit1 cDNA was expressed as a 61 kDa polypeptide in baculovirus-infected insect Sf9 cells and the recombinant AvChit1 showed activity in the chitinase enzyme assay using 0.1% glycol chitin as a substrate. Treatment of recombinant virus-infected Sf9 cells with tunicamycin, a specific inhibitor of N-glycosylation, revealed that AvChit1 is N-glycosylated, but the carbohydrate moieties are not essential for chitinolytic activity.
Collapse
Affiliation(s)
- Ji Hee Han
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hu Y, Aksoy S. An antimicrobial peptide with trypanocidal activity characterized from Glossina morsitans morsitans. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:105-115. [PMID: 15681221 DOI: 10.1016/j.ibmb.2004.10.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 10/05/2004] [Indexed: 05/24/2023]
Abstract
Tsetse flies (Diptera:Glossinidae) are vectors of African trypanosomes, the protozoan agents of devastating diseases in humans and animals. Prior studies in trypanosome infected Glossina morsitans morsitans have shown induced expression and synthesis of several antimicrobial peptides in fat body tissue. Here, we have expressed one of these peptides, Attacin (GmAttA1) in Drosophila (S2) cells in vitro. We show that the purified recombinant protein (recGmAttA1) has strong antimicrobial activity against Escherichia coli-K12, but not against the enteric gram-negative symbiont of tsetse, Sodalis glossinidius. The recGmAttA1 also demonstrated inhibitory effects against both the mammalian bloodstream form and the insect stage Trypanosoma brucei in vitro (minimal inhibitory concentration MIC50 0.075 microM). When blood meals were supplemented with purified recGmAttA1 during the course of parasite infection, the prevalence of trypanosome infections in tsetse midgut was significantly reduced. Feeding fertile females GmAttA1 did not affect the fecundity or the longevity of mothers, nor did it affect the hatchability of their offspring. We discuss a paratransgenic strategy, which involves the expression of trypanocidal molecules such as recGmAttA1 in the midgut symbiont Sodalis in vivo to reduce trypanosome transmission.
Collapse
Affiliation(s)
- Youjia Hu
- Department of Epidemiology and Public Health, Section of Vector Biology, Yale University, School of Medicine, 60 College St., 606 LEPH, New Haven, CT 06510, USA
| | | |
Collapse
|
21
|
Merzendorfer H, Zimoch L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 2003; 206:4393-412. [PMID: 14610026 DOI: 10.1242/jeb.00709] [Citation(s) in RCA: 758] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SUMMARY
Chitin is one of the most important biopolymers in nature. It is mainly produced by fungi, arthropods and nematodes. In insects, it functions as scaffold material, supporting the cuticles of the epidermis and trachea as well as the peritrophic matrices lining the gut epithelium. Insect growth and morphogenesis are strictly dependent on the capability to remodel chitin-containing structures. For this purpose, insects repeatedly produce chitin synthases and chitinolytic enzymes in different tissues. Coordination of chitin synthesis and its degradation requires strict control of the participating enzymes during development. In this review, we will summarize recent advances in understanding chitin synthesis and its degradation in insects.
Collapse
Affiliation(s)
- Hans Merzendorfer
- Department of Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany.
| | | |
Collapse
|
22
|
Ahmad T, Rajagopal R, Bhatnagar RK. Molecular characterization of chitinase from polyphagous pest Helicoverpa armigera. Biochem Biophys Res Commun 2003; 310:188-95. [PMID: 14511669 DOI: 10.1016/j.bbrc.2003.08.136] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chitinase from a polyphagous pest, Helicoverpa armigera, has been cloned and expressed. The Helicoverpa chitinase cDNA is 2870 bp in length and contains an open reading frame of 1767 bp. The cDNA encodes a polypeptide of 588 residues with a predicted molecular weight of 66 kDa and a pI of 5.99. The polypeptide has distinct catalytic and substrate binding domains at the N- and the C termini, respectively. The two domains are held together by a proline, threonine rich linker region. The catalytic and the substrate binding domains shared a high level of homology with other lepidopteran chitinases, but the proline and threonine rich region is longer in H. armigera chitinase than in other lepidopteran chitinases. The transcription of chitinase at different developmental stages and in different tissues was analysed by RT-PCR. Chitinase transcript was found in the integument, gut, and fat bodies but was absent in the haemocytes. The levels of chitinase mRNA were abundant at the moulting stages and a basal level of transcript was maintained throughout the development of the insect. Interestingly, Western blot analysis of total proteins from the integument and the gut showed the presence of chitinase in the moulting stages but was absent in the intermoult periods, suggesting post-transcriptional control. The chitinase cDNA was expressed in bacteria and in insect cells. The insect cell expressed chitinase was glycosylated and catalytically active against the simple and complex substrates. The chitinase gene spans about 6.8 kb of genomic DNA and is organized into 10 exons and 9 introns. The 6.8 kb genomic clone of chitinase revealed a high degree of conservation in the position and size of the exons with other lepidopteran insects.
Collapse
Affiliation(s)
- Tarannum Ahmad
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, PO Box 10504, New Delhi 110067, India
| | | | | |
Collapse
|
23
|
Ramalho-Ortigão JM, Traub-Csekö YM. Molecular characterization of Llchit1, a midgut chitinase cDNA from the leishmaniasis vector Lutzomyia longipalpis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:279-287. [PMID: 12609513 DOI: 10.1016/s0965-1748(02)00209-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During development within the midgut of the sand fly vector, Leishmania parasites after undergoing differentiation and multiplication must escape the peritrophic matrix (PM). Although Leishmania chitinase is believed to take part in promoting the escape of the parasite from the PM by inducing degradation of chitin fibers, it is conceivable that a sand fly-derived chitinase can also have a role in such an event. Here we describe the molecular cloning and partial characterization of a complete cDNA from a putative gut-specific, blood-induced chitinase from the sand fly vector Lutzomyia longipalpis. Llchit1 has an ORF of 1425 bp that encodes a predicted 51.6 kDa mature protein showing high similarity with chitinases from several different organisms. Messenger RNA expression studies indicate that Llchit1 is detected only in the blood fed midgut and it seems to reach a peak at approximately 72 h post blood meal (PBM). To date, only one midgut-specific chitinase from an insect disease vector, AgChi-1 from Anopheles gambiae, has been characterized. As with its mosquito counterpart, Llchit1 can be a target for development of a transmission blocking vaccine.
Collapse
Affiliation(s)
- J M Ramalho-Ortigão
- Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil 4365, 22461-900, Rio de Janeiro RJ, Brazil.
| | | |
Collapse
|