1
|
Ni H, Hou X, Tian S, Liu C, Zhang G, Peng Y, Chen L, Wang J, Chen Q, Xin D. Insights into the Early Steps of the Symbiotic Interaction between Soybean ( Glycine max) and Sinorhizobium fredii Symbiosis Using Transcriptome, Small RNA, and Degradome Sequencing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17084-17098. [PMID: 39013023 PMCID: PMC11299180 DOI: 10.1021/acs.jafc.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Abstract
Symbiotic nitrogen fixation carried out by the soybean-rhizobia symbiosis increases soybean yield and reduces the amount of nitrogen fertilizer that has been applied. MicroRNAs (miRNAs) are crucial in plant growth and development, prompting an investigation into their role in the symbiotic interaction of soybean with partner rhizobia. Through integrated small RNA, transcriptome, and degradome sequencing analysis, 1215 known miRNAs, 314 of them conserved, and 187 novel miRNAs were identified, with 44 differentially expressed miRNAs in soybean roots inoculated with Sinorhizobium fredii HH103 and a ttsI mutant. The study unveiled that the known miRNA gma-MIR398a-p5 was downregulated in the presence of the ttsI mutation, while the target gene of gma-MIR398a-p5, Glyma.06G007500, associated with nitrogen metabolism, was upregulated. The results of this study offer insights for breeding high-efficiency nitrogen-fixing soybean varieties, enhancing crop yield and quality.
Collapse
Affiliation(s)
| | | | - Siyi Tian
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Chunyan Liu
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Guoqing Zhang
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Yang Peng
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Lin Chen
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Jinhui Wang
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Qingshan Chen
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Dawei Xin
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| |
Collapse
|
2
|
Ensinck D, Gerhardt ECM, Rollan L, Huergo LF, Gramajo H, Diacovich L. The PII protein interacts with the Amt ammonium transport and modulates nitrate/nitrite assimilation in mycobacteria. Front Microbiol 2024; 15:1366111. [PMID: 38591044 PMCID: PMC11001197 DOI: 10.3389/fmicb.2024.1366111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
PII proteins are signal transduction proteins that belong to a widely distributed family of proteins involved in the modulation of different metabolisms in bacteria. These proteins are homotrimers carrying a flexible loop, named T-loop, which changes its conformation due to the recognition of diverse key metabolites, ADP, ATP, and 2-oxoglutarate. PII proteins interact with different partners to primarily regulate a set of nitrogen pathways. In some organisms, PII proteins can also control carbon metabolism by interacting with the biotin carboxyl carrier protein (BCCP), a key component of the acetyl-CoA carboxylase (ACC) enzyme complex, inhibiting its activity with the consequent reduction of fatty acid biosynthesis. Most bacteria contain at least two PII proteins, named GlnB and GlnK, with different regulatory roles. In mycobacteria, only one PII protein was identified, and the three-dimensional structure was solved, however, its physiological role is unknown. In this study we purified the Mycobacterium tuberculosis (M. tb) PII protein, named GlnB, and showed that it weakly interacts with the AccA3 protein, the α subunit shared by the three different, and essential, Acyl-CoA carboxylase complexes (ACCase 4, 5, and 6) present in M. tb. A M. smegmatis deletion mutant, ∆MsPII, exhibited a growth deficiency on nitrate and nitrite as unique nitrogen sources, and accumulated nitrite in the culture supernatant. In addition, M. tb PII protein was able to interact with the C-terminal domain of the ammonium transporter Amt establishing the ancestral role for this PII protein as a GlnK functioning protein.
Collapse
Affiliation(s)
- Delfina Ensinck
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Edileusa C. M. Gerhardt
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Lara Rollan
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Luciano F. Huergo
- Setor Litoral, Federal University of Paraná, Universidade Federal do Paraná (UFPR), Matinhos, Paraná, Brazil
- Graduated Program in Sciences-Biochemistry, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lautaro Diacovich
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
3
|
Díez J, López-Lozano A, Domínguez-Martín MA, Gómez-Baena G, Muñoz-Marín MC, Melero-Rubio Y, García-Fernández JM. Regulatory and metabolic adaptations in the nitrogen assimilation of marine picocyanobacteria. FEMS Microbiol Rev 2023; 47:6794272. [PMID: 36323406 DOI: 10.1093/femsre/fuac043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Prochlorococcus and Synechococcus are the two most abundant photosynthetic organisms on Earth, with a strong influence on the biogeochemical carbon and nitrogen cycles. Early reports demonstrated the streamlining of regulatory mechanisms in nitrogen metabolism and the removal of genes not strictly essential. The availability of a large series of genomes, and the utilization of latest generation molecular techniques have allowed elucidating the main mechanisms developed by marine picocyanobacteria to adapt to the environments where they thrive, with a particular interest in the strains inhabiting oligotrophic oceans. Given that nitrogen is often limited in those environments, a series of studies have explored the strategies utilized by Prochlorococcus and Synechococcus to exploit the low concentrations of nitrogen-containing molecules available in large areas of the oceans. These strategies include the reduction in the GC and the cellular protein contents; the utilization of truncated proteins; a reduced average amount of N in the proteome; the development of metabolic mechanisms to perceive and utilize nanomolar nitrate concentrations; and the reduced responsiveness of key molecular regulatory systems such as NtcA to 2-oxoglutarate. These findings are in sharp contrast with the large body of knowledge obtained in freshwater cyanobacteria. We will outline the main discoveries, stressing their relevance to the ecological success of these important microorganisms.
Collapse
Affiliation(s)
- J Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - A López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - M A Domínguez-Martín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - G Gómez-Baena
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - M C Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - Y Melero-Rubio
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - J M García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| |
Collapse
|
4
|
Harten T, Nimzyk R, Gawlick VEA, Reinhold-Hurek B. Elucidation of Essential Genes and Mutant Fitness during Adaptation toward Nitrogen Fixation Conditions in the Endophyte Azoarcus olearius BH72 Revealed by Tn-Seq. Microbiol Spectr 2022; 10:e0216222. [PMID: 36416558 PMCID: PMC9769520 DOI: 10.1128/spectrum.02162-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/05/2022] [Indexed: 11/24/2022] Open
Abstract
Azoarcus olearius BH72 is a diazotrophic model endophyte that contributes fixed nitrogen to its host plant, Kallar grass, and expresses nitrogenase genes endophytically. Despite extensive studies on biological nitrogen fixation (BNF) of diazotrophic endophytes, little is known about global genetic players involved in survival under respective physiological conditions. Here, we report a global genomic screen for putatively essential genes of A. olearius employing Tn5 transposon mutagenesis with a modified transposon combined with high-throughput sequencing (Tn-Seq). A large Tn5 master library of ~6 × 105 insertion mutants of strain BH72 was obtained. Next-generation sequencing identified 183,437 unique insertion sites into the 4,376,040-bp genome, displaying one insertion every 24 bp on average. Applying stringent criteria, we describe 616 genes as putatively essential for growth on rich medium. COG (Clusters of Orthologous Groups) assignment of the 564 identified protein-coding genes revealed enrichment of genes related to core cellular functions and cell viability. To mimic gradual adaptations toward BNF conditions, the Tn5 mutant library was grown aerobically in synthetic medium or microaerobically on either combined or atmospheric nitrogen. Enrichment and depletion analysis of Tn5 mutants not only demonstrated the role of BNF- and metabolism-related proteins but also revealed that, strikingly, many genes relevant for plant-microbe interactions decrease bacterial competitiveness in pure culture, such type IV pilus- and bacterial envelope-associated genes. IMPORTANCE A constantly growing world population and the daunting challenge of climate change demand new strategies in agricultural crop production. Intensive usage of chemical fertilizers, overloading the world's fields with organic input, threaten terrestrial and marine ecosystems as well as human health. Long overlooked, the beneficial interaction of endophytic bacteria and grasses has attracted ever-growing interest in research in the last decade. Capable of biological nitrogen fixation, diazotrophic endophytes not only provide a valuable source of combined nitrogen but also are known for diverse plant growth-promoting effects, thereby contributing to plant productivity. Elucidation of an essential gene set for a prominent model endophyte such as A. olearius BH72 provides us with powerful insights into its basic lifestyle. Knowledge about genes detrimental or advantageous under defined physiological conditions may point out a way of manipulating key steps in the bacterium's lifestyle and plant interaction toward a more sustainable agriculture.
Collapse
Affiliation(s)
- Theresa Harten
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| | - Rolf Nimzyk
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Nucleic Acid Analysis Facility (NAA), Bremen, Germany
| | - Vivian E. A. Gawlick
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| | - Barbara Reinhold-Hurek
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| |
Collapse
|
5
|
Forchhammer K, Selim KA. Carbon/nitrogen homeostasis control in cyanobacteria. FEMS Microbiol Rev 2020; 44:33-53. [PMID: 31617886 PMCID: PMC8042125 DOI: 10.1093/femsre/fuz025] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Carbon/nitrogen (C/N) balance sensing is a key requirement for the maintenance of cellular homeostasis. Therefore, cyanobacteria have evolved a sophisticated signal transduction network targeting the metabolite 2-oxoglutarate (2-OG), the carbon skeleton for nitrogen assimilation. It serves as a status reporter for the cellular C/N balance that is sensed by transcription factors NtcA and NdhR and the versatile PII-signaling protein. The PII protein acts as a multitasking signal-integrating regulator, combining the 2-OG signal with the energy state of the cell through adenyl-nucleotide binding. Depending on these integrated signals, PII orchestrates metabolic activities in response to environmental changes through binding to various targets. In addition to 2-OG, other status reporter metabolites have recently been discovered, mainly indicating the carbon status of the cells. One of them is cAMP, which is sensed by the PII-like protein SbtB. The present review focuses, with a main emphasis on unicellular model strains Synechoccus elongatus and Synechocystis sp. PCC 6803, on the physiological framework of these complex regulatory loops, the tight linkage to metabolism and the molecular mechanisms governing the signaling processes.
Collapse
Affiliation(s)
- Karl Forchhammer
- Lehrstuhl für Mikrobiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Khaled A Selim
- Lehrstuhl für Mikrobiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| |
Collapse
|
6
|
Complete Genome Sequence of Lactobacillus hilgardii LMG 7934, Carrying the Gene Encoding for the Novel PII-Like Protein PotN. Curr Microbiol 2020; 77:3538-3545. [PMID: 32803419 DOI: 10.1007/s00284-020-02161-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/07/2020] [Indexed: 02/02/2023]
Abstract
Lactic acid bacteria are widespread in various ecological niches with the excess of nutrients and have reduced capabilities to adapt to starvation. Among more than 280 Lactobacillus species known to the date, only five, including Lactobacillus hilgardii, carry in their genome the gene encoding for PII-like protein, one of the central regulators of cellular metabolism generally responding to energy- and carbon-nitrogen status in many free-living Bacteria, Archaea and in plant chloroplasts. In contrast to the classical PII encoding genes, in L. hilgardii genome the gene for PII homologue is located within the potABCD operon, encoding the ABC transporter for polyamines. Based on the unique genetic context and low sequence identity with genes of any other so-far characterized PII subfamilies, we termed this gene potN (Pot-protein, Nucleotide-binding). The second specific feature of L. hilgardii genome is that many genes encoding the proteins with similar function are present in two copies, while with low mutual identity. Thus, L. hilgardii LMG 7934 genome carries two genes of glutamine synthetase with 55% identity. One gene is located within classical glnRA operon with the gene of GlnR-like transcriptional regulator, while the second is monocistronic. Together with the relative large genome of L. hilgardii as compared to other Lactobacilli (2.771.862 bp vs ~ 2.2 Mbp in median), these data suggest significant re-arrangements of the genome and a wider range of adaptive capabilities of L. hilgardii in comparison to other bacteria of the genus Lactobacillus.
Collapse
|
7
|
Llebrés MT, Pascual MB, Valle C, de la Torre FN, Valderrama-Martin JM, Gómez L, Avila C, Cánovas FM. Structural and Functional Characteristics of Two Molecular Variants of the Nitrogen Sensor PII in Maritime Pine. FRONTIERS IN PLANT SCIENCE 2020; 11:823. [PMID: 32612622 PMCID: PMC7308587 DOI: 10.3389/fpls.2020.00823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/22/2020] [Indexed: 05/04/2023]
Abstract
High levels of nitrogen are stored as arginine during the last stages of seed formation in maritime pine (Pinus pinaster Aiton). The protein sensor PII regulates the feedback inhibition of arginine biosynthesis through interaction with the key enzyme N-acetylglutamate kinase (NAGK). In this study, the structural and functional characteristics of PII have been investigated in maritime pine to get insights into the regulation of arginine metabolism. Two different forms of PII have been identified, PpPIIa and PpPIIb, which differ in their amino acid sequence and most likely correspond to splicing variants of a single gene in the pine genome. Two PII variants are also present in other pine species but not in other conifers such as spruces. PpPIIa and PpPIIb are trimeric proteins for which structural modeling predicts similar tridimensional protein core structures. Both are located in the chloroplast, where the PII-target enzyme PpNAGK is also found. PpPIIa, PpPIIb, and PpNAGK have been recombinantly produced to investigate the formation of NAGK-PII complexes. The interaction of PpPIIa/PpPIIb and PpNAGK may be enhanced by glutamine and contribute to relieve the feedback inhibition of PpNAGK by arginine. Expression analysis of PpPII genes revealed that PpIIa transcripts were predominant during embryogenesis and germination. The potential roles of PpPIIa and PpPIIb in the regulation of arginine metabolism of maritime pine are discussed.
Collapse
Affiliation(s)
- María Teresa Llebrés
- Grupo de Biología Molecular y Biotecnología de Plantas, Departamento de Biología Molecular y Bioquímica, Faculty of Science, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - María Belén Pascual
- Grupo de Biología Molecular y Biotecnología de Plantas, Departamento de Biología Molecular y Bioquímica, Faculty of Science, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Carolina Valle
- Grupo de Biología Molecular y Biotecnología de Plantas, Departamento de Biología Molecular y Bioquímica, Faculty of Science, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Fernando N. de la Torre
- Grupo de Biología Molecular y Biotecnología de Plantas, Departamento de Biología Molecular y Bioquímica, Faculty of Science, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - José Miguel Valderrama-Martin
- Grupo de Biología Molecular y Biotecnología de Plantas, Departamento de Biología Molecular y Bioquímica, Faculty of Science, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Luis Gómez
- Centro de Biotecnología y Genómica de Plantas, Campus de Excelencia Internacional de Montegancedo, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Madrid, Spain
| | - Concepción Avila
- Grupo de Biología Molecular y Biotecnología de Plantas, Departamento de Biología Molecular y Bioquímica, Faculty of Science, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Francisco M. Cánovas
- Grupo de Biología Molecular y Biotecnología de Plantas, Departamento de Biología Molecular y Bioquímica, Faculty of Science, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
- *Correspondence: Francisco M. Cánovas,
| |
Collapse
|
8
|
Klähn S, Bolay P, Wright PR, Atilho RM, Brewer KI, Hagemann M, Breaker RR, Hess WR. A glutamine riboswitch is a key element for the regulation of glutamine synthetase in cyanobacteria. Nucleic Acids Res 2019; 46:10082-10094. [PMID: 30085248 PMCID: PMC6212724 DOI: 10.1093/nar/gky709] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
As the key enzyme of bacterial nitrogen assimilation, glutamine synthetase (GS) is tightly regulated. In cyanobacteria, GS activity is controlled by the interaction with inactivating protein factors IF7 and IF17 encoded by the genes gifA and gifB, respectively. We show that a glutamine-binding aptamer within the gifB 5′ UTR of Synechocystis sp. PCC 6803 is critical for the expression of IF17. Binding of glutamine induced structural re-arrangements in this RNA element leading to enhanced protein synthesis in vivo and characterizing it as a riboswitch. Mutagenesis showed the riboswitch mechanism to contribute at least as much to the control of gene expression as the promoter-mediated transcriptional regulation. We suggest this and a structurally related but distinct element, to be designated type 1 and type 2 glutamine riboswitches. Extended biocomputational searches revealed that glutamine riboswitches are exclusively but frequently found in cyanobacterial genomes, where they are primarily associated with gifB homologs. Hence, this RNA-based sensing mechanism is common in cyanobacteria and establishes a regulatory feedback loop that couples the IF17-mediated GS inactivation to the intracellular glutamine levels. Together with the previously described sRNA NsiR4, these results show that non-coding RNA is an indispensable component in the control of nitrogen assimilation in cyanobacteria.
Collapse
Affiliation(s)
- Stephan Klähn
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Department of Solar Materials, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Paul Bolay
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Patrick R Wright
- Bioinformatics, Technical Faculty, University of Freiburg, Freiburg, Germany
| | - Ruben M Atilho
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kenneth I Brewer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Martin Hagemann
- Department of Plant Physiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Ronald R Breaker
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies, University of Freiburg, Germany
| |
Collapse
|
9
|
The PII signaling protein from red algae represents an evolutionary link between cyanobacterial and Chloroplastida PII proteins. Sci Rep 2018; 8:790. [PMID: 29335634 PMCID: PMC5768801 DOI: 10.1038/s41598-017-19046-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022] Open
Abstract
PII superfamily consists of widespread signal transduction proteins found in all domains of life. Whereas they are well-studied in Archaea, Bacteria and Chloroplastida, no PII homolog has been analyzed in Rhodophyta (red algae), where PII is encoded by a chloroplast localized glnB gene. Here, we characterized relevant sensory properties of PII from the red alga Porphyra purpurea (PpPII) in comparison to PII proteins from different phyla of oxygenic phototrophs (cyanobacteria, Chlamydomonas and Physcomitrella) to assess evolutionary conservation versus adaptive properties. Like its cyanobacterial counterparts, PpPII binds ATP/ADP and 2-oxoglutarate in synergy with ATP. However, green algae and land plant PII proteins lost the ability to bind ADP. In contrast to PII proteins from green algae and land plants, PpPII enhances the activity of N-acetyl-L-glutamate kinase (NAGK) and relieves it from feedback inhibition by arginine in a glutamine-independent manner. Like PII from Chloroplastida, PpPII is not able to interact with the cyanobacterial transcriptional co-activator PipX. These data emphasize the conserved role of NAGK as a major PII-interactor throughout the evolution of oxygenic phototrophs, and confirms the specific role of PipX for cyanobacteria. Our results highlight the PII signaling system in red algae as an evolutionary intermediate between Cyanobacteria and Chlorophyta.
Collapse
|
10
|
Li Y, Liu W, Sun LP, Zhou ZG. Evidence for PII with NAGK interaction that regulates Arg synthesis in the microalga Myrmecia incisa in response to nitrogen starvation. Sci Rep 2017; 7:16291. [PMID: 29176648 PMCID: PMC5701185 DOI: 10.1038/s41598-017-16644-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/15/2017] [Indexed: 11/12/2022] Open
Abstract
To understand why most eukaryotic microalgae accumulate lipids during nitrogen starvation stress, a gene, MiglnB, encoding PII, a signal transduction protein, was cloned from the arachidonic acid-rich microalga Myrmecia incisa Reisigl. Similarly to its homologues, MiPII contains three conserved T-, B-, and C-loops. In the presence of abundant Mg2+, ATP, and Gln, MiPII upregulates Arg biosynthesis by interacting with the rate-limiting enzyme, MiNAGK, as evidenced by yeast two-hybrid, co-immunoprecipitation assays, and kinetics analysis of enzyme-catalyzed reactions. However, this interaction of MiPII with MiNAGK is reversed by addition of 2-oxoglutarate (2-OG). Moreover, this interaction is present in the chloroplasts of M. incisa, as illustrated cytologically by both immunoelectron microscopy and agroinfiltration of Nicotiana benthamiana leaves to determine the subcellular localization of MiPII with MiNAGK. During the process of nitrogen starvation, soluble Arg levels in M. incisa are modulated by a change in MiNAGK enzymatic activity, both of which are significantly correlated (r = 0.854). A model for the manipulation of Arg biosynthesis via MiPII in M. incisa chloroplasts in response to nitrogen starvation is proposed. The ATP and 2-OG saved from Arg biosynthesis is thus suggested to facilitate the accumulation of fatty acids and triacylglycerol in M. incisa during exposure to nitrogen starvation.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Li-Ping Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China. .,National Demonstration Center for the Experimental Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China. .,International Research Center for Marine Biosciences Conferred by Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
11
|
Sacomboio ENM, Kim EYS, Ruchaud Correa HL, Bonato P, de Oliveira Pedrosa F, de Souza EM, Chubatsu LS, Müller-Santos M. The transcriptional regulator NtrC controls glucose-6-phosphate dehydrogenase expression and polyhydroxybutyrate synthesis through NADPH availability in Herbaspirillum seropedicae. Sci Rep 2017; 7:13546. [PMID: 29051509 PMCID: PMC5648810 DOI: 10.1038/s41598-017-12649-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/12/2017] [Indexed: 11/09/2022] Open
Abstract
The NTR system is the major regulator of nitrogen metabolism in Bacteria. Despite its broad and well-known role in the assimilation, biosynthesis and recycling of nitrogenous molecules, little is known about its role in carbon metabolism. In this work, we present a new facet of the NTR system in the control of NADPH concentration and the biosynthesis of molecules dependent on reduced coenzyme in Herbaspirillum seropedicae SmR1. We demonstrated that a ntrC mutant strain accumulated high levels of polyhydroxybutyrate (PHB), reaching levels up to 2-fold higher than the parental strain. In the absence of NtrC, the activity of glucose-6-phosphate dehydrogenase (encoded by zwf) increased by 2.8-fold, consequently leading to a 2.1-fold increase in the NADPH/NADP+ ratio. A GFP fusion showed that expression of zwf is likewise controlled by NtrC. The increase in NADPH availability stimulated the production of polyhydroxybutyrate regardless the C/N ratio in the medium. The mutant ntrC was more resistant to H2O2 exposure and controlled the propagation of ROS when facing the oxidative condition, a phenotype associated with the increase in PHB content.
Collapse
Affiliation(s)
- Euclides Nenga Manuel Sacomboio
- Department of Biochemistry and Molecular Biology, Laboratory of Nitrogen Fixation, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Edson Yu Sin Kim
- Department of Biochemistry and Molecular Biology, Laboratory of Nitrogen Fixation, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Henrique Leonardo Ruchaud Correa
- Department of Biochemistry and Molecular Biology, Laboratory of Nitrogen Fixation, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Paloma Bonato
- Department of Biochemistry and Molecular Biology, Laboratory of Nitrogen Fixation, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Fabio de Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Laboratory of Nitrogen Fixation, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Laboratory of Nitrogen Fixation, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Leda Satie Chubatsu
- Department of Biochemistry and Molecular Biology, Laboratory of Nitrogen Fixation, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Marcelo Müller-Santos
- Department of Biochemistry and Molecular Biology, Laboratory of Nitrogen Fixation, Federal University of Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|
12
|
Liu Y, Lardi M, Pedrioli A, Eberl L, Pessi G. NtrC-dependent control of exopolysaccharide synthesis and motility in Burkholderia cenocepacia H111. PLoS One 2017; 12:e0180362. [PMID: 28662146 PMCID: PMC5491218 DOI: 10.1371/journal.pone.0180362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
Burkholderia cenocepacia is a versatile opportunistic pathogen that survives in a wide variety of environments, which can be limited in nutrients such as nitrogen. We have previously shown that the sigma factor σ54 is involved in the control of nitrogen assimilation and virulence in B. cenocepacia H111. In this work, we investigated the role of the σ54 enhancer binding protein NtrC in response to nitrogen limitation and in the pathogenicity of H111. Of 95 alternative nitrogen sources tested the ntrC showed defects in the utilisation of nitrate, urea, L-citrulline, acetamide, DL-lactamide, allantoin and parabanic acid. RNA-Seq and phenotypic analyses of an ntrC mutant strain showed that NtrC positively regulates two important phenotypic traits: exopolysaccharide (EPS) production and motility. However, the ntrC mutant was not attenuated in C. elegans virulence.
Collapse
Affiliation(s)
- Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Martina Lardi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Alessandro Pedrioli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- * E-mail: (LE); (GP)
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- * E-mail: (LE); (GP)
| |
Collapse
|
13
|
Osanai T, Kuwahara A, Otsuki H, Saito K, Yokota Hirai M. ACR11 is an Activator of Plastid-Type Glutamine Synthetase GS2 in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2017; 58:650-657. [PMID: 28339983 DOI: 10.1093/pcp/pcx033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/21/2017] [Indexed: 05/03/2023]
Abstract
Glutamine synthetase (GS) is an important enzyme for nitrogen assimilation, and GS2, encoded by GLN2, is the only plastid-type GS in Arabidopsis thaliana. A co-expression analysis suggested that the expression level of the gene encoding a uridylyltransferase-like protein, ACR11, is strongly correlated with GLN2 expression levels. Here we showed that the recombinant ACR11 protein increased GS2 activity in vitro by reducing the Km values of its substrate glutamine. A T-DNA insertion mutant of ACR11 exhibited a reduced GS activity under low nitrate conditions and reduced glutamine levels. Biochemical analyses revealed that ACR11 and GS2 interacted both in vitro and in vivo. These data demonstrate that ACR11 is an activator of GS2, giving it a mechanistic role in the nitrogen assimilation of A. thaliana.
Collapse
Affiliation(s)
- Takashi Osanai
- RIKEN Center for Sustainable Resource Science, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
- PRESTO, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama, Japan
- Meiji University, Higashimita, Tama-ku, Kanagawa, Japan
| | - Ayuko Kuwahara
- RIKEN Center for Sustainable Resource Science, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Hitomi Otsuki
- RIKEN Center for Sustainable Resource Science, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
- Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| |
Collapse
|
14
|
Huang A, Sang Y, Sun W, Fu Y, Yang Z. Transcriptomic Analysis of Responses to Imbalanced Carbon: Nitrogen Availabilities in Rice Seedlings. PLoS One 2016; 11:e0165732. [PMID: 27820840 PMCID: PMC5098742 DOI: 10.1371/journal.pone.0165732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/17/2016] [Indexed: 11/19/2022] Open
Abstract
The internal C:N balance must be tightly controlled for the normal growth and development of plants. However, the underlying mechanisms, by which plants sense and balance the intracellular C:N status correspondingly to exogenous C:N availabilities remain elusive. In this study, we use comparative gene expression analysis to identify genes that are responsive to imbalanced C:N treatments in the aerial parts of rice seedlings. Transcripts of rice seedlings treated with four C:N availabilities (1:1, 1:60, 60:1 and 60:60) were compared and two groups of genes were classified: high C:low N responsive genes and low C:high N responsive genes. Our analysis identified several functional correlated genes including chalcone synthase (CHS), chlorophyll a-b binding protein (CAB) and other genes that are implicated in C:N balancing mechanism, such as alternative oxidase 1B (OsAOX1B), malate dehydrogenase (OsMDH) and lysine and histidine specific transporter 1 (OsLHT1). Additionally, six jasmonate synthetic genes and key regulatory genes involved in abiotic and biotic stresses, such as OsMYB4, autoinhibited calcium ATPase 3 (OsACA3) and pleiotropic drug resistance 9 (OsPDR9), were differentially expressed under high C:low N treatment. Gene ontology analysis showed that high C:low N up-regulated genes were primarily enriched in fatty acid biosynthesis and defense responses. Coexpression network analysis of these genes identified eight jasmonate ZIM domain protein (OsJAZ) genes and several defense response related regulators, suggesting that high C:low N status may act as a stress condition, which induces defense responses mediated by jasmonate signaling pathway. Our transcriptome analysis shed new light on the C:N balancing mechanisms and revealed several important regulators of C:N status in rice seedlings.
Collapse
Affiliation(s)
- Aobo Huang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuying Sang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenfeng Sun
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhenbiao Yang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
15
|
Wheatley NM, Eden KD, Ngo J, Rosinski JS, Sawaya MR, Cascio D, Collazo M, Hoveida H, Hubbell WL, Yeates TO. A PII-Like Protein Regulated by Bicarbonate: Structural and Biochemical Studies of the Carboxysome-Associated CPII Protein. J Mol Biol 2016; 428:4013-4030. [PMID: 27464895 PMCID: PMC5048545 DOI: 10.1016/j.jmb.2016.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022]
Abstract
Autotrophic bacteria rely on various mechanisms to increase intracellular concentrations of inorganic forms of carbon (i.e., bicarbonate and CO2) in order to improve the efficiency with which they can be converted to organic forms. Transmembrane bicarbonate transporters and carboxysomes play key roles in accumulating bicarbonate and CO2, but other regulatory elements of carbon concentration mechanisms in bacteria are less understood. In this study, after analyzing the genomic regions around α-type carboxysome operons, we characterize a protein that is conserved across these operons but has not been previously studied. On the basis of a series of apo- and ligand-bound crystal structures and supporting biochemical data, we show that this protein, which we refer to as the carboxysome-associated PII protein (CPII), represents a new and distinct subfamily within the broad superfamily of previously studied PII regulatory proteins, which are generally involved in regulating nitrogen metabolism in bacteria. CPII undergoes dramatic conformational changes in response to ADP binding, and the affinity for nucleotide binding is strongly enhanced by the presence of bicarbonate. CPII therefore appears to be a unique type of PII protein that senses bicarbonate availability, consistent with its apparent genomic association with the carboxysome and its constituents.
Collapse
Affiliation(s)
- Nicole M Wheatley
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| | - Kevin D Eden
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Joanna Ngo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Justin S Rosinski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Michael R Sawaya
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| | - Duilio Cascio
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| | - Michael Collazo
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| | - Hamidreza Hoveida
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Wayne L Hubbell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; Jules Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Todd O Yeates
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
16
|
Yoo W, Yoon H, Seok YJ, Lee CR, Lee HH, Ryu S. Fine-tuning of amino sugar homeostasis by EIIA(Ntr) in Salmonella Typhimurium. Sci Rep 2016; 6:33055. [PMID: 27628932 PMCID: PMC5024086 DOI: 10.1038/srep33055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/17/2016] [Indexed: 11/08/2022] Open
Abstract
The nitrogen-metabolic phosphotransferase system, PTS(Ntr), consists of the enzymes I(Ntr), NPr and IIA(Ntr) that are encoded by ptsP, ptsO, and ptsN, respectively. Due to the proximity of ptsO and ptsN to rpoN, the PTS(Ntr) system has been postulated to be closely related with nitrogen metabolism. To define the correlation between PTS(Ntr) and nitrogen metabolism, we performed ligand fishing with EIIA(Ntr) as a bait and revealed that D-glucosamine-6-phosphate synthase (GlmS) directly interacted with EIIA(Ntr). GlmS, which converts D-fructose-6-phosphate (Fru6P) into D-glucosamine-6-phosphate (GlcN6P), is a key enzyme producing amino sugars through glutamine hydrolysis. Amino sugar is an essential structural building block for bacterial peptidoglycan and LPS. We further verified that EIIA(Ntr) inhibited GlmS activity by direct interaction in a phosphorylation-state-dependent manner. EIIA(Ntr) was dephosphorylated in response to excessive nitrogen sources and was rapidly degraded by Lon protease upon amino sugar depletion. The regulation of GlmS activity by EIIA(Ntr) and the modulation of glmS translation by RapZ suggest that the genes comprising the rpoN operon play a key role in maintaining amino sugar homeostasis in response to nitrogen availability and the amino sugar concentration in the bacterial cytoplasm.
Collapse
Affiliation(s)
- Woongjae Yoo
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Korea
| | - Yeong-Jae Seok
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido 17058, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
17
|
Deciphering the Principles of Bacterial Nitrogen Dietary Preferences: a Strategy for Nutrient Containment. mBio 2016; 7:mBio.00792-16. [PMID: 27435461 PMCID: PMC4958250 DOI: 10.1128/mbio.00792-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fundamental question in microbial physiology concerns why organisms prefer certain nutrients to others. For example, among different nitrogen sources, ammonium is the preferred nitrogen source, supporting fast growth, whereas alternative nitrogen sources, such as certain amino acids, are considered to be poor nitrogen sources, supporting much slower exponential growth. However, the physiological/regulatory logic behind such nitrogen dietary choices remains elusive. In this study, by engineering Escherichia coli, we switched the dietary preferences toward amino acids, with growth rates equivalent to that of the wild-type strain grown on ammonia. However, when the engineered strain was cultured together with wild-type E. coli, this growth advantage was diminished as a consequence of ammonium leakage from the transport-and-catabolism (TC)-enhanced (TCE) cells, which are preferentially utilized by wild-type bacteria. Our results reveal that the nitrogen regulatory (Ntr) system fine tunes the expression of amino acid transport and catabolism components to match the flux through the ammonia assimilation pathway such that essential nutrients are retained, but, as a consequence, the fast growth rate on amino acids is sacrificed. Bacteria exhibit different growth rates under various nutrient conditions. These environmentally related behaviors reflect the coordination between metabolism and the underlying regulatory networks. In the present study, we investigated the intertwined nitrogen metabolic and nitrogen regulatory systems to understand the growth differences between rich and poor nitrogen sources. Although maximal growth rate is considered to be evolutionarily advantageous for bacteria (as remarked by François Jacob, who said that the “dream” of every cell is to become two cells), we showed that negative-feedback loops in the regulatory system inhibit growth rates on amino acids. We demonstrated that in the absence of regulatory feedback, amino acids are capable of supporting fast growth rates, but this results in ammonia leaking out from cells as “waste,” benefiting the growth of competitors. These findings provide important insights into the regulatory logic that controls metabolic flux and ensures nutrient containment but consequently sacrifices growth rate.
Collapse
|
18
|
Bren A, Park JO, Towbin BD, Dekel E, Rabinowitz JD, Alon U. Glucose becomes one of the worst carbon sources for E.coli on poor nitrogen sources due to suboptimal levels of cAMP. Sci Rep 2016; 6:24834. [PMID: 27109914 PMCID: PMC4843011 DOI: 10.1038/srep24834] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/05/2016] [Indexed: 12/20/2022] Open
Abstract
In most conditions, glucose is the best carbon source for E. coli: it provides faster growth than other sugars, and is consumed first in sugar mixtures. Here we identify conditions in which E. coli strains grow slower on glucose than on other sugars, namely when a single amino acid (arginine, glutamate, or proline) is the sole nitrogen source. In sugar mixtures with these nitrogen sources, E. coli still consumes glucose first, but grows faster rather than slower after exhausting glucose, generating a reversed diauxic shift. We trace this counterintuitive behavior to a metabolic imbalance: levels of TCA-cycle metabolites including α-ketoglutarate are high, and levels of the key regulatory molecule cAMP are low. Growth rates were increased by experimentally increasing cAMP levels, either by adding external cAMP, by genetically perturbing the cAMP circuit or by inhibition of glucose uptake. Thus, the cAMP control circuitry seems to have a ‘bug’ that leads to slow growth under what may be an environmentally rare condition.
Collapse
Affiliation(s)
- Anat Bren
- Dept. of Molecular Cell Biology, Weizmann Institute of Science, Rehovot Israel 76100
| | - Junyoung O Park
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Benjamin D Towbin
- Dept. of Molecular Cell Biology, Weizmann Institute of Science, Rehovot Israel 76100
| | - Erez Dekel
- Dept. of Molecular Cell Biology, Weizmann Institute of Science, Rehovot Israel 76100
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Uri Alon
- Dept. of Molecular Cell Biology, Weizmann Institute of Science, Rehovot Israel 76100
| |
Collapse
|
19
|
Brunwasser-Meirom M, Pollak Y, Goldberg S, Levy L, Atar O, Amit R. Using synthetic bacterial enhancers to reveal a looping-based mechanism for quenching-like repression. Nat Commun 2016; 7:10407. [PMID: 26832446 PMCID: PMC4740811 DOI: 10.1038/ncomms10407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 12/02/2015] [Indexed: 01/20/2023] Open
Abstract
We explore a model for 'quenching-like' repression by studying synthetic bacterial enhancers, each characterized by a different binding site architecture. To do so, we take a three-pronged approach: first, we compute the probability that a protein-bound dsDNA molecule will loop. Second, we use hundreds of synthetic enhancers to test the model's predictions in bacteria. Finally, we verify the mechanism bioinformatically in native genomes. Here we show that excluded volume effects generated by DNA-bound proteins can generate substantial quenching. Moreover, the type and extent of the regulatory effect depend strongly on the relative arrangement of the binding sites. The implications of these results are that enhancers should be insensitive to 10-11 bp insertions or deletions (INDELs) and sensitive to 5-6 bp INDELs. We test this prediction on 61 σ(54)-regulated qrr genes from the Vibrio genus and confirm the tolerance of these enhancers' sequences to the DNA's helical repeat.
Collapse
Affiliation(s)
- Michal Brunwasser-Meirom
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Yaroslav Pollak
- Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Sarah Goldberg
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Lior Levy
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Orna Atar
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Roee Amit
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
- Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
20
|
Forchhammer K, Lüddecke J. Sensory properties of the PII signalling protein family. FEBS J 2015; 283:425-37. [PMID: 26527104 DOI: 10.1111/febs.13584] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/06/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022]
Abstract
PII signalling proteins constitute one of the largest families of signalling proteins in nature. An even larger superfamily of trimeric sensory proteins with the same architectural principle as PII proteins appears in protein structure databases. Large surface-exposed flexible loops protrude from the intersubunit faces, where effector molecules are bound that tune the conformation of the loops. Via this mechanism, PII proteins control target proteins in response to cellular ATP/ADP levels and the 2-oxoglutarate status, thereby coordinating the cellular carbon/nitrogen balance. The antagonistic (ATP versus ADP) and synergistic (2-oxoglutarate and ATP) mode of effector molecule binding is further affected by PII -receptor interaction, leading to a highly sophisticated signalling network organized by PII . Altogether, it appears that PII is a multitasking information processor that, depending on its interaction environment, differentially transmits information on the energy status and the cellular 2-oxoglutarate level. In addition to the basic mode of PII function, several bacterial PII proteins may transmit a signal of the cellular glutamine status via covalent modification. Remarkably, during the evolution of plant chloroplasts, glutamine signalling by PII proteins was re-established by acquisition of a short sequence extension at the C-terminus. This plant-specific C-terminus makes the interaction of plant PII proteins with one of its targets, the arginine biosynthetic enzyme N-acetyl-glutamate kinase, glutamine-dependent.
Collapse
Affiliation(s)
- Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Germany
| | - Jan Lüddecke
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Germany
| |
Collapse
|
21
|
Zalutskaya Z, Kharatyan N, Forchhammer K, Ermilova E. Reduction of PII signaling protein enhances lipid body production in Chlamydomonas reinhardtii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:1-9. [PMID: 26475183 DOI: 10.1016/j.plantsci.2015.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/17/2015] [Accepted: 08/25/2015] [Indexed: 06/05/2023]
Abstract
In all examined organisms that have the PII signal transduction machinery, PII coordinates the central C/N anabolic metabolism. In green algae and land plants, PII is localized in the chloroplast and controls the L-arginine biosynthetic pathway pathway. To elucidate additional functions of PII in the model photosynthetic organism Chlamydomonas reinhardtii (CrPII), we generated and analyzed four strains, in which PII was strongly under-expressed by artificial microRNA (GLB1-amiRNA strains). In response to nitrogen deficiency, Chlamydomonas produces triacylglycerols (TAGs) that are accumulated in lipid bodies (LB). Quantification of LBs by confocal microscopy in four GLB1-amiRNA strains showed that reduced PII levels resulted in over-accumulation of LBs compared to their parental strains. Moreover, knock-down of PII caused also an increase in the total TAG level. We propose that the larger yields of TAG-filled LBs in N-starved GLB1-amiRNA cells can be attributed to the strain's depleted PII level and their inability to properly control acetyl-CoA carboxylase activity (ACCase). Together, our results imply that PII in Chlamydomonas negatively controls TAG accumulation in LBs during acclimation to nitrogen starvation of the alga.
Collapse
Affiliation(s)
- Zhanneta Zalutskaya
- Laboratory of Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034 Saint-Petersburg, Russia
| | - Nina Kharatyan
- Laboratory of Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034 Saint-Petersburg, Russia
| | - Karl Forchhammer
- Department of Microbiology/Organismic Interactions, Faculty of Biology, University of Tübingen, Auf der Morgenstelle 28, 72,076 Tübingen, Germany
| | - Elena Ermilova
- Laboratory of Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034 Saint-Petersburg, Russia.
| |
Collapse
|
22
|
Minaeva E, Forchhammer K, Ermilova E. Glutamine Assimilation and Feedback Regulation of L-acetyl-N-glutamate Kinase Activity in Chlorella variabilis NC64A Results in Changes in Arginine Pools. Protist 2015; 166:493-505. [PMID: 26356535 DOI: 10.1016/j.protis.2015.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/07/2015] [Accepted: 08/01/2015] [Indexed: 11/16/2022]
Abstract
Glutamine is a metabolite of central importance in nitrogen metabolism of microorganisms and plants. The Chlorella PII signaling protein controls, in a glutamine-dependent manner, the key enzyme of the ornithine/arginine biosynthesis pathway, N-acetyl-L-glutamate kinase (NAGK) that leads to arginine formation. We provide evidence that glutamine promotes effective growth of C. variabilis strain NC64A. The present study shows that externally supplied glutamine directly influences the internal pool of arginine in NC64A. Glutamine synthetase (GS) catalyzes the ATP-dependent conversion of glutamate and ammonium to glutamine. The results of this study demonstrate that glutamine acts as a negative effector of GS activity. These data emphasize the importance of glutamine-dependent coupling of metabolism and signaling as components of an efficient pathway allowing the maintenance of metabolic homeostasis and sustaining growth of Chlorella.
Collapse
Affiliation(s)
- Ekaterina Minaeva
- Lab Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034 Saint-Petersburg, Russia
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Elena Ermilova
- Lab Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034 Saint-Petersburg, Russia.
| |
Collapse
|
23
|
Chellamuthu VR, Ermilova E, Lapina T, Lüddecke J, Minaeva E, Herrmann C, Hartmann MD, Forchhammer K. A widespread glutamine-sensing mechanism in the plant kingdom. Cell 2015; 159:1188-1199. [PMID: 25416954 DOI: 10.1016/j.cell.2014.10.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/13/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022]
Abstract
Glutamine is the primary metabolite of nitrogen assimilation from inorganic nitrogen sources in microorganisms and plants. The ability to monitor cellular nitrogen status is pivotal for maintaining metabolic homeostasis and sustaining growth. The present study identifies a glutamine-sensing mechanism common in the entire plant kingdom except Brassicaceae. The plastid-localized PII signaling protein controls, in a glutamine-dependent manner, the key enzyme of the ornithine synthesis pathway, N-acetyl-l-glutamate kinase (NAGK), that leads to arginine and polyamine formation. Crystal structures reveal that the plant-specific C-terminal extension of PII, which we term the Q loop, forms a low-affinity glutamine-binding site. Glutamine binding alters PII conformation, promoting interaction and activation of NAGK. The binding motif is highly conserved in plants except Brassicaceae. A functional Q loop restores glutamine sensing in a recombinant Arabidopsis thaliana PII protein, demonstrating the modular concept of the glutamine-sensing mechanism adopted by PII proteins during the evolution of plant chloroplasts.
Collapse
Affiliation(s)
- Vasuki-Ranjani Chellamuthu
- Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; Department of Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Elena Ermilova
- Lab Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034 Saint-Petersburg, Russia
| | - Tatjana Lapina
- Lab Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034 Saint-Petersburg, Russia
| | - Jan Lüddecke
- Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ekaterina Minaeva
- Lab Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034 Saint-Petersburg, Russia
| | - Christina Herrmann
- Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
24
|
Gusyatiner MM, Ziyatdinov MK. 2-Hydroxyglutarate production is necessary for the reaction catalyzed by 3-phosphoglycerate dehydrogenase in Escherichia coli. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s2079978015010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Reddy MM, Ulaganathan K. Nitrogen Nutrition, Its Regulation and Biotechnological Approaches to Improve Crop Productivity. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.618275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Palanca C, Pedro-Roig L, Llácer JL, Camacho M, Bonete MJ, Rubio V. The structure of a PII signaling protein from a halophilic archaeon reveals novel traits and high-salt adaptations. FEBS J 2014; 281:3299-314. [PMID: 24946894 DOI: 10.1111/febs.12881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/06/2014] [Accepted: 06/17/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED To obtain insights into archaeal nitrogen signaling and haloadaptation of the nitrogen/carbon/energy-signaling protein PII, we determined crystal structures of recombinantly produced GlnK2 from the extreme halophilic archaeon Haloferax mediterranei, complexed with AMP or with the PII effectors ADP or ATP, at respective resolutions of 1.49 Å, 1.45 Å, and 2.60 Å. A unique trait of these structures was a three-tongued crown protruding from the trimer body convex side, formed by an 11-residue, N-terminal, highly acidic extension that is absent from structurally studied PII proteins. This extension substantially contributed to the very low pI value, which is a haloadaptive trait of H. mediterranei GlnK2, and participated in hexamer-forming contacts in one crystal. Similar acidic N-extensions are shown here to be common among PII proteins from halophilic organisms. Additional haloadaptive traits prominently represented in H. mediterranei GlnK2 are a very high ratio of small residues to large hydrophobic aliphatic residues, and the highest ratio of polar to nonpolar exposed surface for any structurally characterized PII protein. The presence of a dense hydration layer in the region between the three T-loops might also be a haloadaptation. Other unique findings revealed by the GlnK2 structure that might have functional relevance are: the adoption by its T-loop of a three-turn α-helical conformation, perhaps related to the ability of GlnK2 to directly interact with glutamine synthetase; and the firm binding of AMP, confirmed by biochemical binding studies with ATP, ADP, and AMP, raising the possibility that AMP could be an important PII effector, at least in archaea. DATABASE The atomic coordinates and structure factors have been deposited in the Protein Data Bank under the accession numbers 4OZL (hmGlnK2-AMP), 4OZJ (hmGlnK2-ADP), and 4OZN (hmGlnK2-ATP). STRUCTURED DIGITAL ABSTRACT hmGlnK2 and hmGlnK2 bind by x-ray crystallography (View interaction).
Collapse
Affiliation(s)
- Carles Palanca
- Instituto de Biomedicina de Valencia of the CSIC (IBV-CSIC), Spain
| | | | | | | | | | | |
Collapse
|
27
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
28
|
Jain S, Mandal RS, Anand S, Maiti S, Ramachandran S. Probing the amino acids critical for protein oligomerisation and protein-nucleotide interaction in Mycobacterium tuberculosis PII protein through integration of computational and experimental approaches. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2736-49. [PMID: 24129075 DOI: 10.1016/j.bbapap.2013.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 11/26/2022]
Abstract
We investigated the interacting amino acids critical for the stability and ATP binding of Mycobacterium tuberculosis PII protein through a series of site specific mutagenesis experiments. We assessed the effect of mutants using glutaraldehyde crosslinking and size exclusion chromatography and isothermal titration calorimetry. Mutations in the amino acid pair R60-E62 affecting central electrostatic interaction resulted in insoluble proteins. Multiple sequence alignment of PII orthologs displayed a conserved pattern of charged residues at these positions. Mutation of amino acid D97 to a neutral residue was tolerated whereas positive charge was not acceptable. Mutation of R107 alone had no effect on trimer formation. However, the combination of neutral residues both at positions 97 and 107 was not acceptable even with the pair at 60-62 intact. Reversal of charge polarity could partially restore the interaction. The residues including K90, R101 and R103 with potential to form H-bonds to ATP are conserved throughout across numerous orthologs of PII but when mutated to Alanine, they did not show significant differences in the total free energy change of the interaction as examined through isothermal titration calorimetry. The ATP binding pattern showed anti-cooperativity using three-site binding model. We observed compensatory effect in enthalpy and entropy changes and these may represent structural adjustments to accommodate ATP in the cavity even in absence of some interactions to perform the requisite function. In this respect these small differences between the PII orthologs may have evolved to suite species specific physiological niches.
Collapse
Affiliation(s)
- Sriyans Jain
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110 007, India
| | | | | | | | | |
Collapse
|
29
|
Dron A, Rabouille S, Claquin P, Talec A, Raimbault V, Sciandra A. Photoperiod length paces the temporal orchestration of cell cycle and carbon-nitrogen metabolism in Crocosphaera watsonii. Environ Microbiol 2013; 15:3292-304. [PMID: 23841885 DOI: 10.1111/1462-2920.12163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 05/14/2013] [Accepted: 05/24/2013] [Indexed: 11/29/2022]
Abstract
We analysed the effect of photoperiod length (PPL) (16:8 and 8:16 h of light-dark regime, named long and short PPL, respectively) on the temporal orchestration of the two antagonistic, carbon and nitrogen acquisitions in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii strain WH8501 growing diazotrophically. Carbon and nitrogen metabolism were monitored at high frequency, and their patterns were compared with the cell cycle progression. The oxygen-sensitive N2 fixation process occurred mainly during the dark period, where photosynthesis cannot take place, inducing a light-dark cycle of cellular C : N ratio. Examination of circadian patterns in the cell cycle revealed that cell division occurred during the midlight period, (8 h and 4 h into the light in the long and short PPL conditions, respectively), thus timely separated from the energy-intensive diazotrophic process. Results consistently show a nearly 5 h time lag between the end of cell division and the onset of N2 fixation. Shorter PPLs affected DNA compaction of C. watsonii cells and also led to a decrease in the cell division rate. Therefore, PPL paces the growth of C. watsonii: a long PPL enhances cell division while a short PPL favours somatic growth (biomass production) with higher carbon and nitrogen cell contents.
Collapse
Affiliation(s)
- Anthony Dron
- UMR 7093, UPMC Univ Paris 06, LOV, Observatoire Océanologique, F-06234, Villefranche/mer, France; UMR 7093, CNRS, LOV, Observatoire Océanologique, F-06234, Villefranche/mer, France
| | | | | | | | | | | |
Collapse
|
30
|
Corrigan RM, Gründling A. Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 2013; 11:513-24. [PMID: 23812326 DOI: 10.1038/nrmicro3069] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nucleotide signalling molecules contribute to the regulation of cellular pathways in all forms of life. In recent years, the discovery of new signalling molecules in bacteria and archaea, as well as the elucidation of the pathways they regulate, has brought insights into signalling mechanisms not only in bacterial and archaeal cells but also in eukaryotic host cells. Here, we provide an overview of the synthesis and regulation of cyclic di-AMP (c-di-AMP), one of the latest cyclic nucleotide second messengers to be discovered in bacteria. We also discuss the currently known receptor proteins and pathways that are directly or indirectly controlled by c-di-AMP, the domain structure of the enzymes involved in its production and degradation, and the recognition of c-di-AMP by the eukaryotic host.
Collapse
Affiliation(s)
- Rebecca M Corrigan
- Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | | |
Collapse
|
31
|
Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc Natl Acad Sci U S A 2013; 110:9084-9. [PMID: 23671116 DOI: 10.1073/pnas.1300595110] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nucleotide signaling molecules are important messengers in key pathways that allow cellular responses to changing environments. Canonical secondary signaling molecules act through specific receptor proteins by direct binding to alter their activity. Cyclic diadenosine monophosphate (c-di-AMP) is an essential signaling molecule in bacteria that has only recently been discovered. Here we report on the identification of four Staphylococcus aureus c-di-AMP receptor proteins that are also widely distributed among other bacteria. Using an affinity pull-down assay we identified the potassium transporter-gating component KtrA as a c-di-AMP receptor protein, and it was further shown that this protein, together with c-di-AMP, enables S. aureus to grow in low potassium conditions. We defined the c-di-AMP binding activity within KtrA to the RCK_C (regulator of conductance of K(+)) domain. This domain is also found in a second S. aureus protein, a predicted cation/proton antiporter, CpaA, which as we show here also directly binds c-di-AMP. Because RCK_C domains are found in proteinaceous channels, transporters, and antiporters from all kingdoms of life, these findings have broad implications for the regulation of different pathways through nucleotide-dependent signaling. Using a genome-wide nucleotide protein interaction screen we further identified the histidine kinase protein KdpD that in many bacteria is also involved in the regulation of potassium transport and a PII-like signal transduction protein, which we renamed PstA, as c-di-AMP binding proteins. With the identification of these widely distributed c-di-AMP receptor proteins we link the c-di-AMP signaling network to a central metabolic process in bacteria.
Collapse
|
32
|
Bauer S, Endres M, Lange M, Schmidt T, Schumbrutzki C, Sickmann A, Beier D. Novel function assignment to a member of the essential HP1043 response regulator family of epsilon-proteobacteria. Microbiology (Reading) 2013; 159:880-889. [DOI: 10.1099/mic.0.066548-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Susanne Bauer
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Michelle Endres
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Manuel Lange
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Theresa Schmidt
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Cornelia Schumbrutzki
- Leibnitz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Str. 6B, D-44227 Dortmund, Germany
| | - Albert Sickmann
- Leibnitz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Str. 6B, D-44227 Dortmund, Germany
| | - Dagmar Beier
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
33
|
Lee CR, Park YH, Kim M, Kim YR, Park S, Peterkofsky A, Seok YJ. Reciprocal regulation of the autophosphorylation of enzyme INtr by glutamine and α-ketoglutarate in Escherichia coli. Mol Microbiol 2013; 88:473-85. [PMID: 23517463 DOI: 10.1111/mmi.12196] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 11/28/2022]
Abstract
In addition to the phosphoenolpyruvate:sugar phosphotransferase system (sugar PTS), most proteobacteria possess a paralogous system (nitrogen phosphotransferase system, PTS(Ntr)). The first proteins in both pathways are enzymes (enzyme I(sugar) and enzyme I(Ntr)) that can be autophosphorylated by phosphoenolpyruvate. The most striking difference between enzyme I(sugar) and enzyme I(Ntr) is the presence of a GAF domain at the N-terminus of enzyme I(Ntr). Since the PTS(Ntr) was identified in 1995, it has been implicated in a variety of cellular processes in many proteobacteria and many of these regulations have been shown to be dependent on the phosphorylation state of PTS(Ntr) components. However, there has been little evidence that any component of this so-called PTS(Ntr) is directly involved in nitrogen metabolism. Moreover, a signal regulating the phosphorylation state of the PTS(Ntr) had not been uncovered. Here, we demonstrate that glutamine and α-ketoglutarate, the canonical signals of nitrogen availability, reciprocally regulate the phosphorylation state of the PTS(Ntr) by direct effects on enzyme I(Ntr) autophosphorylation and the GAF signal transduction domain is necessary for the regulation of enzyme I(Ntr) activity by the two signal molecules. Taken together, our results suggest that the PTS(Ntr) senses nitrogen availability.
Collapse
Affiliation(s)
- Chang-Ro Lee
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Yurgel SN, Rice J, Kahn ML. Transcriptome analysis of the role of GlnD/GlnBK in nitrogen stress adaptation by Sinorhizobium meliloti Rm1021. PLoS One 2013; 8:e58028. [PMID: 23516427 PMCID: PMC3596328 DOI: 10.1371/journal.pone.0058028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/30/2013] [Indexed: 11/19/2022] Open
Abstract
Transcriptional changes in the nitrogen stress response (NSR) of wild type S. meliloti Rm1021, and isogenic strains missing both PII proteins, GlnB and GlnK, or carrying a ΔglnD-sm2 mutation were analyzed using whole-genome microarrays. This approach allowed us to identify a number of new genes involved in the NSR and showed that the response of these bacteria to nitrogen stress overlaps with other stress responses, including induction of the fixK2 transcriptional activator and genes that are part of the phosphate stress response. Our data also show that GlnD and GlnBK proteins may regulate many genes that are not part of the NSR. Analysis of transcriptome profiles of the Rm1021 ΔglnD-sm2 strain allowed us to identify several genes that appear to be regulated by GlnD without the participation of the PII proteins.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA.
| | | | | |
Collapse
|
35
|
Huergo LF, Chandra G, Merrick M. PIIsignal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 2013; 37:251-83. [DOI: 10.1111/j.1574-6976.2012.00351.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
|
36
|
Shimizu K. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism. ISRN BIOCHEMISTRY 2013; 2013:645983. [PMID: 25937963 PMCID: PMC4393010 DOI: 10.1155/2013/645983] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Fukuoka, Iizuka 820-8502, Japan
- Institute of Advanced Bioscience, Keio University, Yamagata, Tsuruoka 997-0017, Japan
| |
Collapse
|
37
|
Chellamuthu VR, Alva V, Forchhammer K. From cyanobacteria to plants: conservation of PII functions during plastid evolution. PLANTA 2013. [PMID: 23192387 DOI: 10.1007/s00425-012-1801-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This article reviews the current state-of-the-art concerning the functions of the signal processing protein PII in cyanobacteria and plants, with a special focus on evolutionary aspects. We start out with a general introduction to PII proteins, their distribution, and their evolution. We also discuss PII-like proteins and domains, in particular, the similarity between ATP-phosphoribosyltransferase (ATP-PRT) and its PII-like domain and the complex between N-acetyl-L-glutamate kinase (NAGK) and its PII activator protein from oxygenic phototrophs. The structural basis of the function of PII as an ATP/ADP/2-oxoglutarate signal processor is described for Synechococcus elongatus PII. In both cyanobacteria and plants, a major target of PII regulation is NAGK, which catalyzes the committed step of arginine biosynthesis. The common principles of NAGK regulation by PII are outlined. Based on the observation that PII proteins from cyanobacteria and plants can functionally replace each other, the hypothesis that PII-dependent NAGK control was under selective pressure during the evolution of plastids of Chloroplastida and Rhodophyta is tested by bioinformatics approaches. It is noteworthy that two lineages of heterokont algae, diatoms and brown algae, also possess NAGK, albeit lacking PII; their NAGK however appears to have descended from an alphaproteobacterium and not from a cyanobacterium as in plants. We end this article by coming to the conclusion that during the evolution of plastids, PII lost its function in coordinating gene expression through the PipX-NtcA network but preserved its role in nitrogen (arginine) storage metabolism, and subsequently took over the fine-tuned regulation of carbon (fatty acid) storage metabolism, which is important in certain developmental stages of plants.
Collapse
Affiliation(s)
- Vasuki Ranjani Chellamuthu
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen, Germany.
| | | | | |
Collapse
|
38
|
Lubambo A, Benelli E, Klein J, Schreiner W, Silveira E, de Camargo P. Tuning protein GlnB-Hs surface interaction with silicon: FTIR-ATR, AFM and XPS study. Colloids Surf B Biointerfaces 2013; 102:348-53. [DOI: 10.1016/j.colsurfb.2012.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 11/26/2022]
|
39
|
Williams KJ, Bennett MH, Barton GR, Jenkins VA, Robertson BD. Adenylylation of mycobacterial Glnk (PII) protein is induced by nitrogen limitation. Tuberculosis (Edinb) 2013; 93:198-206. [PMID: 23352854 PMCID: PMC3612183 DOI: 10.1016/j.tube.2012.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/17/2012] [Accepted: 12/22/2012] [Indexed: 12/03/2022]
Abstract
PII proteins are pivotal regulators of nitrogen metabolism in most prokaryotes, controlling the activities of many targets, including nitrogen assimilation enzymes, two component regulatory systems and ammonium transport proteins. Escherichia coli contains two PII-like proteins, PII (product of glnB) and GlnK, both of which are uridylylated under nitrogen limitation at a conserved Tyrosine-51 residue by GlnD (a uridylyl transferase). PII-uridylylation in E. coli controls glutamine synthetase (GS) adenylylation by GlnE and mediates the NtrB/C transcriptomic response. Mycobacteria contain only one PII protein (GlnK) which in environmental Actinomycetales is adenylylated by GlnD under nitrogen limitation. However in mycobacteria, neither the type of GlnK (PII) covalent modification nor its precise role under nitrogen limitation is known. In this study, we used LC-Tandem MS to analyse the modification state of mycobacterial GlnK (PII), and demonstrate that during nitrogen limitation GlnK from both non-pathogenic Mycobacterium smegmatis and pathogenic Mycobacterium tuberculosis is adenylylated at the Tyrosine-51 residue; we also show that GlnD is the adenylyl transferase enzyme responsible. Further analysis shows that in contrast to E. coli, GlnK (PII) adenylylation in M. tuberculosis does not regulate GS adenylylation, nor does it mediate the transcriptomic response to nitrogen limitation.
Collapse
Affiliation(s)
- Kerstin J Williams
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
40
|
The nitrogenase regulatory enzyme dinitrogenase reductase ADP-ribosyltransferase (DraT) is activated by direct interaction with the signal transduction protein GlnB. J Bacteriol 2012; 195:279-86. [PMID: 23144248 DOI: 10.1128/jb.01517-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fe protein (dinitrogenase reductase) activity is reversibly inactivated by dinitrogenase reductase ADP-ribosyltransferase (DraT) in response to an increase in the ammonium concentration or a decrease in cellular energy in Azospirillum brasilense, Rhodospirillum rubrum, and Rhodobacter capsulatus. The ADP-ribosyl is removed by the dinitrogenase reductase-activating glycohydrolase (DraG), promoting Fe protein reactivation. The signaling pathway leading to DraT activation by ammonium is still not completely understood, but the available evidence shows the involvement of direct interaction between the enzyme and the nitrogen-signaling P(II) proteins. In A. brasilense, two P(II) proteins, GlnB and GlnZ, were identified. We used Fe protein from Azotobacter vinelandii as the substrate to assess the activity of A. brasilense DraT in vitro complexed or not with P(II) proteins. Under our conditions, GlnB was necessary for DraT activity in the presence of Mg-ADP. The P(II) effector 2-oxoglutarate, in the presence of Mg-ATP, inhibited DraT-GlnB activity, possibly by inducing complex dissociation. DraT was also activated by GlnZ and by both uridylylated P(II) proteins, but not by a GlnB variant carrying a partial deletion of the T loop. Kinetics studies revealed that the A. brasilense DraT-GlnB complex was at least 18-fold more efficient than DraT purified from R. rubrum, but with a similar K(m) value for NAD(+). Our results showed that ADP-ribosylation of the Fe protein does not affect the electronic state of its metal cluster and prevents association between the Fe and MoFe proteins, thus inhibiting electron transfer.
Collapse
|
41
|
|
42
|
Yurgel SN, Rice J, Kahn ML. Nitrogen metabolism in Sinorhizobium meliloti-alfalfa symbiosis: dissecting the role of GlnD and PII proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:355-362. [PMID: 22074345 DOI: 10.1094/mpmi-09-11-0249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To contribute nitrogen for plant growth and establish an effective symbiosis with alfalfa, Sinorhizobium meliloti Rm1021 needs normal operation of the GlnD protein, a bifunctional uridylyltransferase/uridylyl-cleavage enzyme that measures cellular nitrogen status and initiates a nitrogen stress response (NSR). However, the only two known targets of GlnD modification in Rm1021, the PII proteins GlnB and GlnK, are not necessary for effectiveness. We introduced a Tyr→Phe variant of GlnB, which cannot be uridylylated, into a glnBglnK background to approximate the expected state in a glnD-sm2 mutant, and this strain was effective. These results suggested that unmodified PII does not inhibit effectiveness. We also generated a glnBglnK-glnD triple mutant and used this and other mutants to dissect the role of these proteins in regulating the free-living NSR and nitrogen metabolism in symbiosis. The glnD-sm2 mutation was dominant to the glnBglnK mutations in symbiosis but recessive in some free-living phenotypes. The data show that the GlnD protein has a role in free-living growth and in symbiotic nitrogen exchange that does not depend on the PII proteins, suggesting that S. meliloti GlnD can communicate with the cell by alternate mechanisms.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman 99164-6340, USA.
| | | | | |
Collapse
|
43
|
Amit R. Anti-cooperative and cooperative protein-protein interactions between TetR isoforms on synthetic enhancers. J Comput Biol 2012; 19:115-25. [PMID: 22300314 DOI: 10.1089/cmb.2011.0257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein-protein interactions play an important role in determining the regulatory output of cis regulatory regions. In this work, we revisit the regulatory output functions recorded for the synthetic enhancers that contain binding sites for TetR. We use our thermodynamic model as an analysis tool to infer that two different types of interactions may take place between the TetR molecules. First, a strong mutually exclusive anti-cooperative interaction precludes the synthetic enhancer from being occupied by more than one AT (the aTc bound TetR isoform) protein, and a second weak cooperative interaction exists between the aTc-free TetR isoform (T). Consequently, this work highlights the power of the synthetic enhancer approach as a tool for studying protein-protein interactions via an experimentally verifiable prediction for the general mode of binding of the TetR repressor.
Collapse
Affiliation(s)
- Roee Amit
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
44
|
Crystal structure of the GlnZ-DraG complex reveals a different form of PII-target interaction. Proc Natl Acad Sci U S A 2011; 108:18972-6. [PMID: 22074780 DOI: 10.1073/pnas.1108038108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitrogen metabolism in bacteria and archaea is regulated by a ubiquitous class of proteins belonging to the P(II)family. P(II) proteins act as sensors of cellular nitrogen, carbon, and energy levels, and they control the activities of a wide range of target proteins by protein-protein interaction. The sensing mechanism relies on conformational changes induced by the binding of small molecules to P(II) and also by P(II) posttranslational modifications. In the diazotrophic bacterium Azospirillum brasilense, high levels of extracellular ammonium inactivate the nitrogenase regulatory enzyme DraG by relocalizing it from the cytoplasm to the cell membrane. Membrane localization of DraG occurs through the formation of a ternary complex in which the P(II) protein GlnZ interacts simultaneously with DraG and the ammonia channel AmtB. Here we describe the crystal structure of the GlnZ-DraG complex at 2.1 Å resolution, and confirm the physiological relevance of the structural data by site-directed mutagenesis. In contrast to other known P(II) complexes, the majority of contacts with the target protein do not involve the T-loop region of P(II). Hence this structure identifies a different mode of P(II) interaction with a target protein and demonstrates the potential for P(II) proteins to interact simultaneously with two different targets. A structural model of the AmtB-GlnZ-DraG ternary complex is presented. The results explain how the intracellular levels of ATP, ADP, and 2-oxoglutarate regulate the interaction between these three proteins and how DraG discriminates GlnZ from its close paralogue GlnB.
Collapse
|
45
|
Masaki K, Maeda K, Kurata H. Biological design principles of complex feedback modules in the E. coli ammonia assimilation system. ARTIFICIAL LIFE 2011; 18:53-90. [PMID: 22035079 DOI: 10.1162/artl_a_00049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To synthesize natural or artificial life, it is critically important to understand the design principles of how biochemical networks generate particular cellular functions and evolve complex systems in comparison with engineering systems. Cellular systems maintain their robustness in the face of perturbations arising from environmental and genetic variations. In analogy to control engineering architectures, the complexity of modular structures within a cell can be attributed to the necessity of achieving robustness. To reveal such biological design, the E. coli ammonia assimilation system is analyzed, which consists of complex but highly structured modules: the glutamine synthetase (GS) activity feedback control module with bifunctional enzyme cascades for catalyzing reversible reactions, and the GS synthesis feedback control module with positive and negative feedback loops. We develop a full-scale dynamic model that unifies the two modules, and we analyze its robustness and fine tuning with respect to internal and external perturbations. The GS activity control is added to the GS synthesis module to improve its transient response to ammonia depletion, compensating the tradeoffs of each module, but its robustness to internal perturbations is lost. These findings suggest some design principles necessary for the synthesis of life.
Collapse
|
46
|
Moure VR, Razzera G, Araújo LM, Oliveira MAS, Gerhardt ECM, Müller-Santos M, Almeida F, Pedrosa FO, Valente AP, Souza EM, Huergo LF. Heat stability of Proteobacterial PII protein facilitate purification using a single chromatography step. Protein Expr Purif 2011; 81:83-88. [PMID: 21963770 DOI: 10.1016/j.pep.2011.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 09/14/2011] [Accepted: 09/18/2011] [Indexed: 02/05/2023]
Abstract
The P(II) proteins comprise a family of widely distributed signal transduction proteins that integrate the signals of cellular nitrogen, carbon and energy status, and then regulate, by protein-protein interaction, the activity of a variety of target proteins including enzymes, transcriptional regulators and membrane transporters. We have previously shown that the P(II) proteins from Azospirillum brasilense, GlnB and GlnZ, do not alter their migration behavior under native gel electrophoresis following incubated for a few minutes at 95°C. This data suggested that P(II) proteins were either resistant to high temperatures and/or that they could return to their native state after having been unfolded by heat. Here we used (1)H NMR to show that the A. brasilense GlnB is stable up to 70°C. The melting temperature (Tm) of GlnB was determined to be 84°C using the fluorescent dye Sypro-Orange. P(II) proteins from other Proteobacteria also showed a high Tm. We exploited the thermo stability of P(II) by introducing a thermal treatment step in the P(II) purification protocol, this step significantly improved the homogeneity of A. brasilense GlnB and GlnZ, Herbaspirillum seropedicae GlnB and GlnK, and of Escherichia coli GlnK. Only a single chromatography step was necessary to obtain homogeneities higher than 95%. NMR(1) and in vitro uridylylation analysis showed that A. brasilense GlnB purified using the thermal treatment maintained its folding and activity. The purification protocol described here can facilitate the study of P(II) protein family members.
Collapse
Affiliation(s)
- Vivian R Moure
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Guilherme Razzera
- Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Rio de Janeiro, Brazil
| | - Luíza M Araújo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Marco A S Oliveira
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Edileusa C M Gerhardt
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Marcelo Müller-Santos
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Fabio Almeida
- Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Rio de Janeiro, Brazil
| | - Fabio O Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Ana P Valente
- Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Rio de Janeiro, Brazil
| | - Emanuel M Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Luciano F Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil.
| |
Collapse
|
47
|
Amit R, Garcia HG, Phillips R, Fraser SE. Building enhancers from the ground up: a synthetic biology approach. Cell 2011; 146:105-18. [PMID: 21729783 DOI: 10.1016/j.cell.2011.06.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 01/25/2011] [Accepted: 06/14/2011] [Indexed: 11/25/2022]
Abstract
A challenge of the synthetic biology approach is to use our understanding of a system to recreate a biological function with specific properties. We have applied this framework to bacterial enhancers, combining a driver, transcription factor binding sites, and a poised polymerase to create synthetic modular enhancers. Our findings suggest that enhancer-based transcriptional control depends critically and quantitatively on DNA looping, leading to complex regulatory effects when the enhancer cassettes contain additional transcription factor binding sites for TetR, a bacterial transcription factor. We show through a systematic interplay of experiment and thermodynamic modeling that the level of gene expression can be modulated to convert a variable inducer concentration input into discrete or step-like output expression levels. Finally, using a different DNA-binding protein (TraR), we show that the regulatory output is not a particular feature of the specific DNA-binding protein used for the enhancer but a general property of synthetic bacterial enhancers.
Collapse
Affiliation(s)
- Roee Amit
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
48
|
Sung TY, Chung TY, Hsu CP, Hsieh MH. The ACR11 encodes a novel type of chloroplastic ACT domain repeat protein that is coordinately expressed with GLN2 in Arabidopsis. BMC PLANT BIOLOGY 2011; 11:118. [PMID: 21861936 PMCID: PMC3173338 DOI: 10.1186/1471-2229-11-118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/24/2011] [Indexed: 05/08/2023]
Abstract
BACKGROUND The ACT domain, named after bacterial aspartate kinase, chorismate mutase and TyrA (prephenate dehydrogenase), is a regulatory domain that serves as an amino acid-binding site in feedback-regulated amino acid metabolic enzymes. We have previously identified a novel type of ACT domain-containing protein family, the ACT domain repeat (ACR) protein family, in Arabidopsis. Members of the ACR family, ACR1 to ACR8, contain four copies of the ACT domain that extend throughout the entire polypeptide. Here, we describe the identification of four novel ACT domain-containing proteins, namely ACR9 to ACR12, in Arabidopsis. The ACR9 and ACR10 proteins contain three copies of the ACT domain, whereas the ACR11 and ACR12 proteins have a putative transit peptide followed by two copies of the ACT domain. The functions of these plant ACR proteins are largely unknown. RESULTS The ACR11 and ACR12 proteins are predicted to target to chloroplasts. We used protoplast transient expression assay to demonstrate that the Arabidopsis ACR11- and ACR12-green fluorescent fusion proteins are localized to the chloroplast. Analysis of an ACR11 promoter-β-glucuronidase (GUS) fusion in transgenic Arabidopsis revealed that the GUS activity was mainly detected in mature leaves and sepals. Interestingly, coexpression analysis revealed that the GLN2, which encodes a chloroplastic glutamine synthetase, has the highest mutual rank in the coexpressed gene network connected to ACR11. We used RNA gel blot analysis to confirm that the expression pattern of ACR11 is similar to that of GLN2 in various organs from 6-week-old Arabidopsis. Moreover, the expression of ACR11 and GLN2 is highly co-regulated by sucrose and light/dark treatments in 2-week-old Arabidopsis seedlings. CONCLUSIONS This study reports the identification of four novel ACT domain repeat proteins, ACR9 to ACR12, in Arabidopsis. The ACR11 and ACR12 proteins are localized to the chloroplast, and the expression of ACR11 and GLN2 is highly coordinated. These results suggest that the ACR11 and GLN2 genes may belong to the same functional module. The Arabidopsis ACR11 protein may function as a regulatory protein that is related to glutamine metabolism or signaling in the chloroplast.
Collapse
Affiliation(s)
- Tzu-Ying Sung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tsui-Yun Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Ping Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
49
|
Kirkilionis M, Janus U, Sbano L. Multi-scale genetic dynamic modelling II: application to synthetic biology: an algorithmic Markov chain based approach. Theory Biosci 2011; 130:183-201. [PMID: 21509695 DOI: 10.1007/s12064-011-0126-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
We model in detail a simple synthetic genetic clock that was engineered in Atkinson et al. (Cell 113(5):597-607, 2003) using Escherichia coli as a host organism. Based on this engineered clock its theoretical description uses the modelling framework presented in Kirkilionis et al. (Theory Biosci. doi: 10.1007/s12064-011-0125-0 , 2011, this volume). The main goal of this accompanying article was to illustrate that parts of the modelling process can be algorithmically automatised once the model framework we called 'average dynamics' is accepted (Sbano and Kirkilionis, WMI Preprint 7/2007, 2008c; Kirkilionis and Sbano, Adv Complex Syst 13(3):293-326, 2010). The advantage of the 'average dynamics' framework is that system components (especially in genetics) can be easier represented in the model. In particular, if once discovered and characterised, specific molecular players together with their function can be incorporated. This means that, for example, the 'gene' concept becomes more clear, for example, in the way the genetic component would react under different regulatory conditions. Using the framework it has become a realistic aim to link mathematical modelling to novel tools of bioinformatics in the future, at least if the number of regulatory units can be estimated. This should hold in any case in synthetic environments due to the fact that the different synthetic genetic components are simply known (Elowitz and Leibler, Nature 403(6767):335-338, 2000; Gardner et al., Nature 403(6767):339-342, 2000; Hasty et al., Nature 420(6912):224-230, 2002). The paper illustrates therefore as a necessary first step how a detailed modelling of molecular interactions with known molecular components leads to a dynamic mathematical model that can be compared to experimental results on various levels or scales. The different genetic modules or components are represented in different detail by model variants. We explain how the framework can be used for investigating other more complex genetic systems in terms of regulation and feedback.
Collapse
|
50
|
Hart Y, Madar D, Yuan J, Bren A, Mayo AE, Rabinowitz JD, Alon U. Robust control of nitrogen assimilation by a bifunctional enzyme in E. coli. Mol Cell 2011; 41:117-27. [PMID: 21211727 DOI: 10.1016/j.molcel.2010.12.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 08/05/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
Abstract
Bacteria regulate the assimilation of multiple nutrients to enable growth. How is balanced utilization achieved, despite fluctuations in the concentrations of the enzymes that make up the regulatory circuitry? Here we address this question by studying the nitrogen system of E. coli. A mechanism based on the avidity of a bifunctional enzyme, adenylyltransferase (AT/AR), to its multimeric substrate, glutamine synthetase, is proposed to maintain a robust ratio between two key metabolites, glutamine and α-ketoglutarate. This ratio is predicted to be insensitive to variations in protein levels of the core circuit and to the rate of nitrogen utilization. We find using mass spectrometry that the metabolite ratio is robust to variations in protein levels and that this robustness depends on the bifunctional enzyme. Moreover, robustness carries through to the bacteria growth rate. Interrupting avidity by adding a monofunctional AT/AR mutant to the native system abolishes robustness, as predicted by the proposed mechanism.
Collapse
Affiliation(s)
- Yuval Hart
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|