1
|
Xu T, Wang S, Ma T, Dong Y, Ashby CR, Hao GF. The identification of essential cellular genes is critical for validating drug targets. Drug Discov Today 2024; 29:104215. [PMID: 39428084 DOI: 10.1016/j.drudis.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Accurately identifying biological targets is crucial for advancing treatment options. Essential genes, vital for cell or organism survival, hold promise as potential drug targets in disease treatment. Although many studies have sought to identify essential genes as therapeutic targets in medicine and bioinformatics, systematic reviews on their relationship with drug targets are relatively rare. This work presents a comprehensive analysis to aid in identifying essential genes as potential targets for drug discovery, encompassing their relevance, identification methods, successful case studies, and challenges. This work will facilitate the identification of essential genes as therapeutic targets, thereby boosting new drug development.
Collapse
Affiliation(s)
- Ting Xu
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Shuang Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Tingting Ma
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Yawen Dong
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China.
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, USA.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Trujillo Rodríguez L, Ellington AJ, Reisch CR, Chevrette MG. CRISPR-Associated Transposase for Targeted Mutagenesis in Diverse Proteobacteria. ACS Synth Biol 2023. [PMID: 37368499 PMCID: PMC10367135 DOI: 10.1021/acssynbio.3c00065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Genome editing tools, through the disruption of an organism's native genetic material or the introduction of non-native DNA, facilitate functional investigations to link genotypes to phenotypes. Transposons have been instrumental genetic tools in microbiology, enabling genome-wide, randomized disruption of genes and insertions of new genetic elements. Due to this randomness, identifying and isolating particular transposon mutants (i.e., those with modifications at a genetic locus of interest) can be laborious, often requiring one to sift through hundreds or thousands of mutants. Programmable, site-specific targeting of transposons became possible with recently described CRISPR-associated transposase (CASTs) systems, allowing the streamlined recovery of desired mutants in a single step. Like other CRISPR-derived systems, CASTs can be programmed by guide-RNA that is transcribed from short DNA sequence(s). Here, we describe a CAST system and demonstrate its function in bacteria from three classes of Proteobacteria. A dual plasmid strategy is demonstrated: (i) CAST genes are expressed from a broad-host-range replicative plasmid and (ii) guide-RNA and transposon are encoded on a high-copy, suicidal pUC plasmid. Using our CAST system, single-gene disruptions were performed with on-target efficiencies approaching 100% in Beta- and Gammaproteobacteria (Burkholderia thailandensis and Pseudomonas putida, respectively). We also report a peak efficiency of 45% in the Alphaproteobacterium Agrobacterium fabrum. In B. thailandensis, we performed simultaneous co-integration of transposons at two different target sites, demonstrating CAST's utility in multilocus strategies. The CAST system is also capable of high-efficiency large transposon insertion totaling over 11 kbp in all three bacteria tested. Lastly, the dual plasmid system allowed for iterative transposon mutagenesis in all three bacteria without loss of efficiency. Given these iterative capabilities and large payload capacity, this system will be helpful for genome engineering experiments across several fields of research.
Collapse
Affiliation(s)
- Lidimarie Trujillo Rodríguez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Adam J Ellington
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Christopher R Reisch
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Marc G Chevrette
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
- University of Florida Genetics Institute, Gainesville, Florida 32610, United States
| |
Collapse
|
3
|
Chen J, Byun H, Liu R, Jung IJ, Pu Q, Zhu CY, Tanchoco E, Alavi S, Degnan PH, Ma AT, Roggiani M, Beld J, Goulian M, Hsiao A, Zhu J. A commensal-encoded genotoxin drives restriction of Vibrio cholerae colonization and host gut microbiome remodeling. Proc Natl Acad Sci U S A 2022; 119:e2121180119. [PMID: 35254905 PMCID: PMC8931321 DOI: 10.1073/pnas.2121180119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/01/2022] [Indexed: 02/08/2023] Open
Abstract
SignificanceIn a polymicrobial battlefield where different species compete for nutrients and colonization niches, antimicrobial compounds are the sword and shield of commensal microbes in competition with invading pathogens and each other. The identification of an Escherichia coli-produced genotoxin, colibactin, and its specific targeted killing of enteric pathogens and commensals, including Vibrio cholerae and Bacteroides fragilis, sheds light on our understanding of intermicrobial interactions in the mammalian gut. Our findings elucidate the mechanisms through which genotoxins shape microbial communities and provide a platform for probing the larger role of enteric multibacterial interactions regarding infection and disease outcomes.
Collapse
Affiliation(s)
- Jiandong Chen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Hyuntae Byun
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Rui Liu
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - I-Ji Jung
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Qinqin Pu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | | | - Ethan Tanchoco
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Salma Alavi
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Patrick H. Degnan
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Amy T. Ma
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Jun Zhu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
4
|
Li Y, Jiang B, Dai W. A large-scale whole-genome sequencing analysis reveals false positives of bacterial essential genes. Appl Microbiol Biotechnol 2021; 106:341-347. [PMID: 34889987 DOI: 10.1007/s00253-021-11702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 11/26/2022]
Abstract
Essential genes are crucial for bacterial viability and represent attractive targets for novel anti-pathogen drug discovery. However, essential genes determined by the transposon insertion sequencing (Tn-seq) approach often contain many false positives. We hypothesized that some of those false positives are genes that are actually deleted from the genome, so they do not present any transposon insertion in the course of Tn-seq analysis. Based on this assumption, we performed a large-scale whole-genome sequencing analysis for the bacterium of interest. Our analysis revealed that some "essential genes" are indeed removed from the analyzed bacterial genomes. Since these genes were kicked out by bacteria, they should not be defined as essential. Our work showed that gene deletion is one of the false positive sources of essentiality determination, which is apparently underestimated in previous studies. We suggest subtracting the genome backgrounds before the evaluation of Tn-seq, and created a list of false positive gene essentiality as a reference for the downstream application. KEY POINTS: • Discovery of false positives of essential genes defined previously through the analyses of a large scale of whole-genome sequencing data • These false positives are the results of gene deletions in the studied genomes • Sequencing the target genome before Tn-seq analysis is of importance while some studies neglected it.
Collapse
Affiliation(s)
- Yuanhao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Bo Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Weijun Dai
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510006, China.
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Bekaert M, Goffin N, McMillan S, Desbois AP. Essential Genes of Vibrio anguillarum and Other Vibrio spp. Guide the Development of New Drugs and Vaccines. Front Microbiol 2021; 12:755801. [PMID: 34745063 PMCID: PMC8564382 DOI: 10.3389/fmicb.2021.755801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
Essential genes in bacterial pathogens are potential drug targets and vaccine candidates because disrupting their function is lethal. The development of new antibiotics, in addition to effective prevention measures such as vaccination, contributes to addressing the global problem of bacterial antibiotic resistance. The aim of this present study was to determine the essential genes of Vibrio anguillarum, a bacterial pathogen of aquatic animals, as a means to identify putative targets for novel drugs and to assist the prioritisation of potential vaccine candidates. Essential genes were characterised by a Tn-seq approach using the TnSC189 mariner transposon to construct a library of 52,662 insertion mutants. In total, 329 essential genes were identified, with 34.7% found within the core genome of this species; each of these genes represents a strong potential drug target. Seven essential gene products were predicted to reside in the cell membrane or be released extracellularly, thus serving as putative vaccine candidates. Comparison to essential gene data from five other studies of Vibrio species revealed 13 proteins to be conserved across the studies, while 25 genes were specific to V. anguillarum and not found to be essential in the other Vibrio spp. This study provides new information on the essential genes of Vibrio species and the methodology may be applied to other pathogens to guide the development of new drugs and vaccines, which will assist efforts to counter antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | - Andrew P. Desbois
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
6
|
Alkam D, Wongsurawat T, Nookaew I, Richardson AR, Ussery D, Smeltzer MS, Jenjaroenpun P. Is amplification bias consequential in transposon sequencing (TnSeq) assays? A case study with a Staphylococcus aureus TnSeq library subjected to PCR-based and amplification-free enrichment methods. Microb Genom 2021; 7:000655. [PMID: 34596508 PMCID: PMC8627206 DOI: 10.1099/mgen.0.000655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
As transposon sequencing (TnSeq) assays have become prolific in the microbiology field, it is of interest to scrutinize their potential drawbacks. TnSeq data consist of millions of nucleotide sequence reads that are generated by PCR amplification of transposon-genomic junctions. Reads mapping to the junctions are enumerated thus providing information on the number of transposon insertion mutations in each individual gene. Here we explore the possibility that PCR amplification of transposon insertions in a TnSeq library skews the results by introducing bias into the detection and/or enumeration of insertions. We compared the detection and frequency of mapped insertions when altering the number of PCR cycles, and when including a nested PCR, in the enrichment step. Additionally, we present nCATRAs - a novel, amplification-free TnSeq method where the insertions are enriched via CRISPR/Cas9-targeted transposon cleavage and subsequent Oxford Nanopore MinION sequencing. nCATRAs achieved 54 and 23% enrichment of the transposons and transposon-genomic junctions, respectively, over background genomic DNA. These PCR-based and PCR-free experiments demonstrate that, overall, PCR amplification does not significantly bias the results of TnSeq insofar as insertions in the majority of genes represented in our library were similarly detected regardless of PCR cycle number and whether or not PCR amplification was employed. However, the detection of a small subset of genes which had been previously described as essential is sensitive to the number of PCR cycles. We conclude that PCR-based enrichment of transposon insertions in a TnSeq assay is reliable, but researchers interested in profiling putative essential genes should carefully weigh the number of amplification cycles employed in their library preparation protocols. In addition, nCATRAs is comparable to traditional PCR-based methods (Kendall's correlation=0.896-0.897) although the latter remain superior owing to their accessibility and high sequencing depth.
Collapse
Affiliation(s)
- Duah Alkam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand,Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Anthony R. Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand,Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA,*Correspondence: Piroon Jenjaroenpun,
| |
Collapse
|
7
|
Improved Dynamic Range of a Rhamnose-Inducible Promoter for Gene Expression in Burkholderia spp. Appl Environ Microbiol 2021; 87:e0064721. [PMID: 34190606 DOI: 10.1128/aem.00647-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A diverse genetic toolkit is critical for understanding bacterial physiology and genotype-phenotype relationships. Inducible promoter systems are an integral part of this toolkit. In Burkholderia and related species, the l-rhamnose-inducible promoter is among the first choices due to its tight control and the lack of viable alternatives. To improve upon its maximum activity and dynamic range, we explored the effect of promoter system modifications in Burkholderia cenocepacia with a LacZ-based reporter. By combining the bacteriophage T7 gene 10 stem-loop and engineered rhaI transcription factor-binding sites, we obtained a rhamnose-inducible system with a 6.5-fold and 3.0-fold increases in maximum activity and dynamic range, respectively, compared to the native promoter. We then added the modified promoter system to pSCrhaB2 and pSC201, common genetic tools used for plasmid-based and chromosome-based gene expression, respectively, in Burkholderia, creating pSCrhaB2plus and pSC201plus. We demonstrated the utility of pSCrhaB2plus for gene expression in B. thailandensis, B. multivorans, and B. vietnamiensis and used pSC201plus to control highly expressed essential genes from the chromosome of B. cenocepacia. The utility of the modified system was demonstrated as we recovered viable mutants to control ftsZ, rpoBC, and rpsF, whereas the unmodified promoter was unable to control rpsF. The modified expression system allowed control of an essential gene depletion phenotype at lower levels of l-rhamnose, the inducer. pSCRhaB2plus and pSC201plus are expected to be valuable additions to the genetic toolkit for Burkholderia and related species. IMPORTANCE Species of Burkholderia are dually recognized as being of attractive biotechnological potential but also opportunistic pathogens for immunocompromised individuals. Understanding the genotype-phenotype relationship is critical for synthetic biology approaches in Burkholderia to disentangle pathogenic from beneficial traits. A diverse genetic toolkit, including inducible promoters, is the foundation for these investigations. Thus, we sought to improve on the commonly used rhamnose-inducible promoter system. Our modifications resulted in both higher levels of heterologous protein expression and broader control over highly expressed essential genes in B. cenocepacia. The significance of our work is in expanding the genetic toolkit to enable more comprehensive studies into Burkholderia and related bacteria.
Collapse
|
8
|
Liu X, Luo Y, He T, Ren M, Xu Y. Predicting essential genes of 37 prokaryotes by combining information-theoretic features. J Microbiol Methods 2021; 188:106297. [PMID: 34343487 DOI: 10.1016/j.mimet.2021.106297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Essential genes are required for the reproduction and survival of an organism. Rapid identification of essential genes has practical application value in biomedicine. Information theory is a discipline that studies information transmission. Based on the similarity between heredity and information transmission, measures derived from information theory can be applied to genetic sequence analysis on different scales. In this study, we employed 114 features extracted by information theory methods to construct an essential gene prediction model. We applied a backpropagation neural network to construct a classifier and employed it to predict essential genes of 37 prokaryotes. The performance of the classifier was evaluated by applying intra-organism prediction and leave-one-species-out prediction. Among 37 prokaryotes, intra-organism prediction and leave-one-species-out prediction yielded average AUC scores of 0.791 and 0.717, respectively. Considering the potential redundancy in the feature set, we performed feature selection and constructed a key feature subset. In the above two prediction methods, the average AUC scores of 37 organisms obtained by using key features were 0.786 and 0.714, respectively. The results show the potential and universality of information-theoretic features in the study of prokaryotic essential gene prediction.
Collapse
Affiliation(s)
- Xiao Liu
- School of Microelectronics and Communication Engineering, Chongqing University, 174 ShaPingBa District, Chongqing 400044, China.
| | - Yachuan Luo
- School of Microelectronics and Communication Engineering, Chongqing University, 174 ShaPingBa District, Chongqing 400044, China
| | - Ting He
- School of Microelectronics and Communication Engineering, Chongqing University, 174 ShaPingBa District, Chongqing 400044, China
| | - Meixiang Ren
- School of Microelectronics and Communication Engineering, Chongqing University, 174 ShaPingBa District, Chongqing 400044, China
| | - Yuqiao Xu
- School of Microelectronics and Communication Engineering, Chongqing University, 174 ShaPingBa District, Chongqing 400044, China
| |
Collapse
|
9
|
Nlebedim VU, Chaudhuri RR, Walters K. Probabilistic Identification of Bacterial Essential Genes via insertion density using TraDIS Data with Tn5 libraries. Bioinformatics 2021; 37:4343-4349. [PMID: 34255819 PMCID: PMC8652038 DOI: 10.1093/bioinformatics/btab508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/24/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022] Open
Abstract
Motivation Probabilistic Identification of bacterial essential genes using transposon-directed insertion-site sequencing (TraDIS) data based on Tn5 libraries has received relatively little attention in the literature; most methods are designed for mariner transposon insertions. Analysis of Tn5 transposon-based genomic data is challenging due to the high insertion density and genomic resolution. We present a novel probabilistic Bayesian approach for classifying bacterial essential genes using transposon insertion density derived from transposon insertion sequencing data. We implement a Markov chain Monte Carlo sampling procedure to estimate the posterior probability that any given gene is essential. We implement a Bayesian decision theory approach to selecting essential genes. We assess the effectiveness of our approach via analysis of both simulated data and three previously published Escherichia coli, Salmonella Typhimurium and Staphylococcus aureus datasets. These three bacteria have relatively well characterized essential genes which allows us to test our classification procedure using receiver operating characteristic curves and area under the curves. We compare the classification performance with that of Bio-Tradis, a standard tool for bacterial gene classification. Results Our method is able to classify genes in the three datasets with areas under the curves between 0.967 and 0.983. Our simulated synthetic datasets show that both the number of insertions and the extent to which insertions are tolerated in the distal regions of essential genes are both important in determining classification accuracy. Importantly our method gives the user the option of classifying essential genes based on the user-supplied costs of false discovery and false non-discovery. Availability and implementation An R package that implements the method presented in this paper is available for download from https://github.com/Kevin-walters/insdens. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Valentine U Nlebedim
- School of Mathematics and Statistics, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Roy R Chaudhuri
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Kevin Walters
- School of Mathematics and Statistics, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
10
|
Wang R, Chen D, Wang F, Fan X, Fan C, Tang T, Li P, Yang M, Zhao Y, Qi K. An insight into the exploration of proliferation of antibiotic resistance genes in high-fat diet induced obesity mice. Genomics 2021; 113:2503-2512. [PMID: 34089783 DOI: 10.1016/j.ygeno.2021.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 01/07/2023]
Abstract
Using mice as an animal model, we first demonstrated the significant proliferation of ARGs and the change of mobile genetic elements (MGEs) in high-fat diet induced obesity (DIO) mice, which the ermB and tnpA-03 genes mostly increased, illuminating that DIO could enrich the abundance of ARGs. Additionally, Lactobacillus sharply increased in the DIO mice and might contribute to the proliferation of ARGs and dramatical change of MGEs in the HFD groups. Finally, procrustes analysis showed the explanatory variables of the MGEs, the metabolites, and the microbial communities for the ARGs accounted for 94.3%, 53.4%, and 68.1%, respectively, and implying that MGEs might be the most direct factor affecting ARGs, and microbiota could be the main driver of the proliferation of ARGs in the DIO mice.
Collapse
Affiliation(s)
- Rui Wang
- Laboratory of Nutrition and Development,Beijing Pediatric Research Institute,Key Laboratory of Major Diseases in Children,Ministry of Education,Beijing Children's Hospital,Capital Medical University,National Center for Children's Health, Beijing 100045, PR China
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, PR China.
| | - Fang Wang
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiuqin Fan
- Laboratory of Nutrition and Development,Beijing Pediatric Research Institute,Key Laboratory of Major Diseases in Children,Ministry of Education,Beijing Children's Hospital,Capital Medical University,National Center for Children's Health, Beijing 100045, PR China
| | - Chaonan Fan
- Laboratory of Nutrition and Development,Beijing Pediatric Research Institute,Key Laboratory of Major Diseases in Children,Ministry of Education,Beijing Children's Hospital,Capital Medical University,National Center for Children's Health, Beijing 100045, PR China
| | - Tiantian Tang
- Laboratory of Nutrition and Development,Beijing Pediatric Research Institute,Key Laboratory of Major Diseases in Children,Ministry of Education,Beijing Children's Hospital,Capital Medical University,National Center for Children's Health, Beijing 100045, PR China
| | - Ping Li
- Laboratory of Nutrition and Development,Beijing Pediatric Research Institute,Key Laboratory of Major Diseases in Children,Ministry of Education,Beijing Children's Hospital,Capital Medical University,National Center for Children's Health, Beijing 100045, PR China
| | - Mengyi Yang
- Laboratory of Nutrition and Development,Beijing Pediatric Research Institute,Key Laboratory of Major Diseases in Children,Ministry of Education,Beijing Children's Hospital,Capital Medical University,National Center for Children's Health, Beijing 100045, PR China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, PR China
| | - Kemin Qi
- Laboratory of Nutrition and Development,Beijing Pediatric Research Institute,Key Laboratory of Major Diseases in Children,Ministry of Education,Beijing Children's Hospital,Capital Medical University,National Center for Children's Health, Beijing 100045, PR China.
| |
Collapse
|
11
|
Abstract
Genetic studies in Borrelia require special consideration of the highly segmented genome, complex growth requirements and evolutionary distance of spirochetes from other genetically tractable bacteria. Despite these challenges, a robust molecular genetic toolbox has been constructed to investigate the biology and pathogenic potential of these important human pathogens. In this review we summarize the tools and techniques that are currently available for the genetic manipulation of Borrelia, including the relapsing fever spirochetes, viewing them in the context of their utility and shortcomings. Our primary objective is to help researchers discern what is feasible and what is not practical when thinking about potential genetic experiments in Borrelia. We have summarized published methods and highlighted their critical elements, but we are not providing detailed protocols. Although many advances have been made since B. burgdorferi was first transformed over 25 years ago, some standard genetic tools remain elusive for Borrelia. We mention these limitations and why they persist, if known. We hope to encourage investigators to explore what might be possible, in addition to optimizing what currently can be achieved, through genetic manipulation of Borrelia.
Collapse
Affiliation(s)
- Patricia A. Rosa
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St. Hamilton, MT 59840 USA
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd, Orlando, FL 32827 USA
| |
Collapse
|
12
|
Xu JZ, Zhang WG. Strategies used for genetically modifying bacterial genome: site-directed mutagenesis, gene inactivation, and gene over-expression. J Zhejiang Univ Sci B 2016; 17:83-99. [PMID: 26834010 DOI: 10.1631/jzus.b1500187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the availability of the whole genome sequence of Escherichia coli or Corynebacterium glutamicum, strategies for directed DNA manipulation have developed rapidly. DNA manipulation plays an important role in understanding the function of genes and in constructing novel engineering bacteria according to requirement. DNA manipulation involves modifying the autologous genes and expressing the heterogenous genes. Two alternative approaches, using electroporation linear DNA or recombinant suicide plasmid, allow a wide variety of DNA manipulation. However, the over-expression of the desired gene is generally executed via plasmid-mediation. The current review summarizes the common strategies used for genetically modifying E. coli and C. glutamicum genomes, and discusses the technical problem of multi-layered DNA manipulation. Strategies for gene over-expression via integrating into genome are proposed. This review is intended to be an accessible introduction to DNA manipulation within the bacterial genome for novices and a source of the latest experimental information for experienced investigators.
Collapse
Affiliation(s)
- Jian-zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei-guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Johnson TJ, Gibbons JL, Gu L, Zhou R, Gibbons WR. Molecular genetic improvements of cyanobacteria to enhance the industrial potential of the microbe: A review. Biotechnol Prog 2016; 32:1357-1371. [DOI: 10.1002/btpr.2358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/30/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Tylor J. Johnson
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
- Dept. of MicrobiologyThe University of TennesseeKnoxville TN37996
| | - Jaimie L. Gibbons
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - Liping Gu
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - Ruanbao Zhou
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - William R. Gibbons
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| |
Collapse
|
14
|
Hassan A, Naz A, Obaid A, Paracha RZ, Naz K, Awan FM, Muhmmad SA, Janjua HA, Ahmad J, Ali A. Pangenome and immuno-proteomics analysis of Acinetobacter baumannii strains revealed the core peptide vaccine targets. BMC Genomics 2016; 17:732. [PMID: 27634541 PMCID: PMC5025611 DOI: 10.1186/s12864-016-2951-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/19/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Acinetobacter baumannii has emerged as a significant nosocomial pathogen during the last few years, exhibiting resistance to almost all major classes of antibiotics. Alternative treatment options such as vaccines tend to be most promising and cost effective approaches against this resistant pathogen. In the current study, we have explored the pan-genome of A. baumannii followed by immune-proteomics and reverse vaccinology approaches to identify potential core vaccine targets. RESULTS The pan-genome of all available A. baumannii strains (30 complete genomes) is estimated to contain 7,606 gene families and the core genome consists of 2,445 gene families (~32 % of the pan-genome). Phylogenetic tree, comparative genomic and proteomic analysis revealed both intra- and inter genomic similarities and evolutionary relationships. Among the conserved core genome, thirteen proteins, including P pilus assembly protein, pili assembly chaperone, AdeK, PonA, OmpA, general secretion pathway protein D, FhuE receptor, Type VI secretion system OmpA/MotB, TonB dependent siderophore receptor, general secretion pathway protein D, outer membrane protein, peptidoglycan associated lipoprotein and peptidyl-prolyl cis-trans isomerase are identified as highly antigenic. Epitope mapping of the target proteins revealed the presence of antigenic surface exposed 9-mer T-cell epitopes. Protein-protein interaction and functional annotation have shown their involvement in significant biological and molecular processes. The pipeline is validated by predicting already known immunogenic targets against Gram negative pathogen Helicobacter pylori as a positive control. CONCLUSION The study, based upon combinatorial approach of pan-genomics, core genomics, proteomics and reverse vaccinology led us to find out potential vaccine candidates against A. baumannii. The comprehensive analysis of all the completely sequenced genomes revealed thirteen putative antigens which could elicit substantial immune response. The integration of computational vaccinology strategies would facilitate in tackling the rapid dissemination of resistant A.baumannii strains. The scarcity of effective antibiotics and the global expansion of sequencing data making this approach desirable in the development of effective vaccines against A. baumannii and other bacterial pathogens.
Collapse
Affiliation(s)
- Afreenish Hassan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Anam Naz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Ayesha Obaid
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Kanwal Naz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Faryal Mehwish Awan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Syed Aun Muhmmad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Jamil Ahmad
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
- Department of Computer Science and Information Technology, Stratford University, Falls Church, VA 22043 USA
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| |
Collapse
|
15
|
O'Callaghan A, van Sinderen D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front Microbiol 2016; 7:925. [PMID: 27379055 PMCID: PMC4908950 DOI: 10.3389/fmicb.2016.00925] [Citation(s) in RCA: 579] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/31/2016] [Indexed: 12/11/2022] Open
Abstract
Members of the genus Bifidobacterium are among the first microbes to colonize the human gastrointestinal tract and are believed to exert positive health benefits on their host. Due to their purported health-promoting properties, bifidobacteria have been incorporated into many functional foods as active ingredients. Bifidobacteria naturally occur in a range of ecological niches that are either directly or indirectly connected to the animal gastrointestinal tract, such as the human oral cavity, the insect gut and sewage. To be able to survive in these particular ecological niches, bifidobacteria must possess specific adaptations to be competitive. Determination of genome sequences has revealed genetic attributes that may explain bifidobacterial ecological fitness, such as metabolic abilities, evasion of the host adaptive immune system and colonization of the host through specific appendages. However, genetic modification is crucial toward fully elucidating the mechanisms by which bifidobacteria exert their adaptive abilities and beneficial properties. In this review we provide an up to date summary of the general features of bifidobacteria, whilst paying particular attention to the metabolic abilities of this species. We also describe methods that have allowed successful genetic manipulation of bifidobacteria.
Collapse
Affiliation(s)
- Amy O'Callaghan
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork Cork, Ireland
| | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork Cork, Ireland
| |
Collapse
|
16
|
Machtel P, Bąkowska-Żywicka K, Żywicki M. Emerging applications of riboswitches - from antibacterial targets to molecular tools. J Appl Genet 2016; 57:531-541. [PMID: 27020791 PMCID: PMC5061826 DOI: 10.1007/s13353-016-0341-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 01/01/2023]
Abstract
The ability to precisely regulate gene expression is one of the most important features of the living cells as it enables the adaptation and survival in different environmental conditions. The majority of regulatory mechanisms involve protein action, however, multiple genes are controlled by nucleic acids. Among RNA-based regulators, the riboswitches present a large group of specific domains within messenger RNAs able to respond to small metabolites, tRNA, secondary messengers, ions, vitamins or amino acids. A simple, accurate, and efficient mechanism of action as well as easiness in handling and engineering make the riboswitches a potent practical tool in industry, medicine, pharmacy or environmental protection. Hereby, we summarize the current achievements and challenges in designing and practical employment of the riboswitch-based tools.
Collapse
Affiliation(s)
- Piotr Machtel
- Department of RNA Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Kamilla Bąkowska-Żywicka
- Department of RNA Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Marek Żywicki
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland.
| |
Collapse
|
17
|
Vibrio cholerae represses polysaccharide synthesis to promote motility in mucosa. Infect Immun 2015; 83:1114-21. [PMID: 25561707 DOI: 10.1128/iai.02841-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The viscoelastic mucus layer of gastrointestinal tracts is a host defense barrier that a successful enteric pathogen, such as Vibrio cholerae, must circumvent. V. cholerae, the causative agent of cholera, is able to penetrate the mucosa and colonize the epithelial surface of the small intestine. In this study, we found that mucin, the major component of mucus, promoted V. cholerae movement on semisolid medium and in liquid medium. A genome-wide screen revealed that Vibrio polysaccharide (VPS) production was inversely correlated with mucin-enhanced motility. Mucin adhesion assays indicated that VPS bound to mucin. Moreover, we found that vps expression was reduced upon exposure to mucin. In an infant mouse colonization model, mutants that overexpressed VPS colonized less effectively than wild-type strains in more distal intestinal regions. These results suggest that V. cholerae is able to sense mucosal signals and modulate vps expression accordingly so as to promote fast motion in mucus, thus allowing for rapid spread throughout the intestines.
Collapse
|
18
|
Deng J. A statistical framework for improving genomic annotations of transposon mutagenesis (TM) assigned essential genes. Methods Mol Biol 2015; 1279:153-65. [PMID: 25636618 DOI: 10.1007/978-1-4939-2398-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Whole-genome transposon mutagenesis (TM) experiment followed by sequence-based identification of insertion sites is the most popular genome-wise experiment to identify essential genes in Prokaryota. However, due to the limitation of high-throughput technique, this approach yields substantial systematic biases resulting in the incorrect assignments of many essential genes. To obtain unbiased and accurate annotations of essential genes from TM experiments, we developed a novel Poisson model based statistical framework to refine these TM assignments. In the model, first we identified and incorporated several potential factors such as gene length and TM insertion information which may cause the TM assignment biases into the basic Poisson model. Then we calculated the conditional probability of an essential gene given the observed TM insertion number. By factorizing this probability through introducing a latent variable the real insertion number, we formalized the statistical framework. Through iteratively updating and optimizing model parameters to maximize the goodness-of-fit of the model to the observed TM insertion data, we finalized the model. Using this model, we are able to assign the probability score of essentiality to each individual gene given its TM assignment, which subsequently correct the experimental biases. To enable our model widely useable, we established a user-friendly Web-server that is accessible to the public: http://research.cchmc.org/essentialgene/.
Collapse
Affiliation(s)
- Jingyuan Deng
- Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati Medical Center, 3223 Eden Av. ML 56, Cincinnati, OH, 45267-0056, USA,
| |
Collapse
|
19
|
Meredith TC, Wang H, Beaulieu P, Gründling A, Roemer T. Harnessing the power of transposon mutagenesis for antibacterial target identification and evaluation. Mob Genet Elements 2014; 2:171-178. [PMID: 23094235 PMCID: PMC3469428 DOI: 10.4161/mge.21647] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Determining the mechanism of action of bacterial growth inhibitors can be a formidable challenge in the progression of small molecules into antibacterial therapies. To help address this bottleneck, we have developed a robust transposon mutagenesis system using a suite of outward facing promoters in order to generate a comprehensive range of expression genotypes in Staphylococcus aureus from which to select defined compound-resistant transposon insertion mutants. Resistance stemming from either gene or operon over/under-expression, in addition to deletion, provides insight into multiple factors that contribute to a compound's observed activity, including means of cell envelope penetration and susceptibility to efflux. By profiling the entire resistome, the suitability of an antibacterial target itself is also evaluated, sometimes with unanticipated results. We herein show that for the staphylococcal signal peptidase (SpsB) inhibitors, modulating expression of lipoteichoic acid synthase (LtaS) confers up to a 100-fold increase in the minimal inhibitory concentration. As similarly efficient transposition systems are or will become established in other bacteria and cell types, we discuss the utility, limitations and future promise of Tnp mutagenesis for determining both a compound's mechanism of action and in the evaluation of novel targets.
Collapse
Affiliation(s)
- Timothy C Meredith
- Infectious Diseases Division; Merck Frosst Center for Therapeutic Research; Kirkland, Quebec, Canada
| | | | | | | | | |
Collapse
|
20
|
Mulder KCL, Schumann W. Construction and analysis of a modified transposable element carrying an outward directed inducible promoter for Bacillus subtilis. Curr Microbiol 2013; 68:569-74. [PMID: 24370625 DOI: 10.1007/s00284-013-0503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/01/2013] [Indexed: 10/25/2022]
Abstract
Transposons are important tools to inactivate chromosomal genes followed by a correlation with a particular phenotype or genotype. Here we demonstrated the development of a special type of genetically engineered transposon carrying an outward-directed inducible promoter in order to allow transcription of nearby genes. We have modified the mariner transposon TnYLB able to transpose in B. subtilis. This modified TnYLB carries an expression unit consisting of the xylose repressor xylR and an outward-directed promoter negatively controlled by this repressor. This TnYLB-XylOut transposon is able to turn on gene expression if insertion occurs close to a promoter-less gene. It will be an important tool to identify the function of genes either by turning on their expression or by enhanced expression depending on the xylose concentration.
Collapse
|
21
|
Abstract
We constructed a near-saturation transposon mutant library for Burkholderia thailandensis, a low-virulence surrogate for the causative agent of melioidosis (Burkholderia pseudomallei). A primary set of nearly 42,000 unique mutants (~7.5 mutants/gene) was generated using transposon Tn5 derivatives. The strains carry insertions in 87% of the predicted protein-coding genes of the organism, corresponding to nearly all of those nonessential for growth on nutrient agar. To achieve high genome coverage, we developed procedures for efficient sequence identification of insertions in extremely GC-rich regions of DNA. To facilitate strain distribution, we created a secondary library with two mutants per gene for which most transposon locations had been confirmed by resequencing. A map of mutations in the two-allele library and procedures for obtaining strains can be found at http://tools.nwrce.org/tn_mutants/ and http://www.gs.washington.edu/labs/manoil/. The library should facilitate comprehensive mutant screens and serve as a source of strains to test predicted genotype-phenotype associations. The Gram-negative bacterium Burkholderia pseudomallei is a biothreat agent due to its potential for aerosol delivery and intrinsic antibiotic resistance and because exposure produces pernicious infections. Large-scale studies of B. pseudomallei are limited by the fact that the organism must be manipulated under biological safety level 3 conditions. A close relative of B. pseudomallei called Burkholderia thailandensis, which can be studied under less restrictive conditions, has been validated as a low-virulence surrogate in studies of virulence, antibiotic resistance and other traits. To facilitate large-scale studies of B. thailandensis, we created a near-saturation, sequence-defined transposon mutant library of the organism. The library facilitates genetic studies that identify genotype-phenotype associations conserved in B. pseudomallei.
Collapse
|
22
|
Abstract
Owing to the absence of antiparasitic vaccines and the constant threat of drug resistance, the development of novel antiparasitic chemotherapies remains of major importance for disease control. A better understanding of drug transport (uptake and efflux), drug metabolism and the identification of drug targets, and mechanisms of drug resistance would facilitate the development of more effective therapies. Here, we focus on malaria and African trypanosomiasis. We review existing drugs and drug development, emphasizing high-throughput genomic and genetic approaches, which hold great promise for elucidating antiparasitic mechanisms. We describe the approaches and technologies that have been influential for each parasite and develop new ideas for future research directions, including mode-of-action studies for drug target deconvolution.
Collapse
Affiliation(s)
- David Horn
- Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Manoj T. Duraisingh
- Harvard School of Public Health, 665 Huntington Avenue, Building 1, Room 715, Boston, Massachusetts 02115, USA
| |
Collapse
|
23
|
Ruiz L, Motherway MO, Lanigan N, van Sinderen D. Transposon mutagenesis in Bifidobacterium breve: construction and characterization of a Tn5 transposon mutant library for Bifidobacterium breve UCC2003. PLoS One 2013; 8:e64699. [PMID: 23737995 PMCID: PMC3667832 DOI: 10.1371/journal.pone.0064699] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/17/2013] [Indexed: 01/20/2023] Open
Abstract
Bifidobacteria are claimed to contribute positively to human health through a range of beneficial or probiotic activities, including amelioration of gastrointestinal and metabolic disorders, and therefore this particular group of gastrointestinal commensals has enjoyed increasing industrial and scientific attention in recent years. However, the molecular mechanisms underlying these probiotic mechanisms are still largely unknown, mainly due to the fact that molecular tools for bifidobacteria are rather poorly developed, with many strains lacking genetic accessibility. In this work, we describe the generation of transposon insertion mutants in two bifidobacterial strains, B. breve UCC2003 and B. breve NCFB2258. We also report the creation of the first transposon mutant library in a bifidobacterial strain, employing B. breve UCC2003 and a Tn5-based transposome strategy. The library was found to be composed of clones containing single transposon insertions which appear to be randomly distributed along the genome. The usefulness of the library to perform phenotypic screenings was confirmed through identification and analysis of mutants defective in D-galactose, D-lactose or pullulan utilization abilities.
Collapse
Affiliation(s)
- Lorena Ruiz
- Department of Microbiology and Alimentary Pharmabiotic Centre, National University of Ireland, Cork, Ireland
| | - Mary O’Connell Motherway
- Department of Microbiology and Alimentary Pharmabiotic Centre, National University of Ireland, Cork, Ireland
| | - Noreen Lanigan
- Department of Microbiology and Alimentary Pharmabiotic Centre, National University of Ireland, Cork, Ireland
| | - Douwe van Sinderen
- Department of Microbiology and Alimentary Pharmabiotic Centre, National University of Ireland, Cork, Ireland
- * E-mail:
| |
Collapse
|
24
|
A statistical framework for improving genomic annotations of prokaryotic essential genes. PLoS One 2013; 8:e58178. [PMID: 23520492 PMCID: PMC3592911 DOI: 10.1371/journal.pone.0058178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/31/2013] [Indexed: 11/19/2022] Open
Abstract
Large-scale systematic analysis of gene essentiality is an important step closer toward unraveling the complex relationship between genotypes and phenotypes. Such analysis cannot be accomplished without unbiased and accurate annotations of essential genes. In current genomic databases, most of the essential gene annotations are derived from whole-genome transposon mutagenesis (TM), the most frequently used experimental approach for determining essential genes in microorganisms under defined conditions. However, there are substantial systematic biases associated with TM experiments. In this study, we developed a novel Poisson model–based statistical framework to simulate the TM insertion process and subsequently correct the experimental biases. We first quantitatively assessed the effects of major factors that potentially influence the accuracy of TM and subsequently incorporated relevant factors into the framework. Through iteratively optimizing parameters, we inferred the actual insertion events occurred and described each gene’s essentiality on probability measure. Evaluated by the definite mapping of essential gene profile in Escherichia coli, our model significantly improved the accuracy of original TM datasets, resulting in more accurate annotations of essential genes. Our method also showed encouraging results in improving subsaturation level TM datasets. To test our model’s broad applicability to other bacteria, we applied it to Pseudomonas aeruginosa PAO1 and Francisella tularensis novicida TM datasets. We validated our predictions by literature as well as allelic exchange experiments in PAO1. Our model was correct on six of the seven tested genes. Remarkably, among all three cases that our predictions contradicted the TM assignments, experimental validations supported our predictions. In summary, our method will be a promising tool in improving genomic annotations of essential genes and enabling large-scale explorations of gene essentiality. Our contribution is timely considering the rapidly increasing essential gene sets. A Webserver has been set up to provide convenient access to this tool. All results and source codes are available for download upon publication at http://research.cchmc.org/essentialgene/.
Collapse
|
25
|
Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity. PLoS One 2012; 7:e47532. [PMID: 23133514 PMCID: PMC3485029 DOI: 10.1371/journal.pone.0047532] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/12/2012] [Indexed: 11/20/2022] Open
Abstract
The identification of genes important in the pathogenesis of Lyme disease Borrelia has been hampered by exceedingly low transformation rates in low-passage, infectious organisms. Using the infectious, moderately transformable B. burgdorferi derivative 5A18NP1 and signature-tagged versions of the Himar1 transposon vector pGKT, we have constructed a defined transposon library for the efficient genome-wide investigation of genes required for wild-type pathogenesis, in vitro growth, physiology, morphology, and plasmid replication. To facilitate analysis, the insertion sites of 4,479 transposon mutants were determined by sequencing. The transposon insertions were widely distributed across the entire B. burgdorferi genome, with an average of 2.68 unique insertion sites per kb DNA. The 10 linear plasmids and 9 circular plasmids had insertions in 33 to 100 percent of their predicted genes. In contrast, only 35% of genes in the 910 kb linear chromosome had incapacitating insertions; therefore, the remaining 601 chromosomal genes may represent essential gene candidates. In initial signature-tagged mutagenesis (STM) analyses, 434 mutants were examined at multiple tissue sites for infectivity in mice using a semi-quantitative, Luminex-based DNA detection method. Examples of genes found to be important in mouse infectivity included those involved in motility, chemotaxis, the phosphoenolpyruvate phosphotransferase system, and other transporters, as well as putative plasmid maintenance genes. Availability of this ordered STM library and a high-throughput screening method is expected to lead to efficient assessment of the roles of B. burgdorferi genes in the infectious cycle and pathogenesis of Lyme disease.
Collapse
|
26
|
A riboswitch-based inducible gene expression system for mycobacteria. PLoS One 2012; 7:e29266. [PMID: 22279533 PMCID: PMC3261144 DOI: 10.1371/journal.pone.0029266] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/23/2011] [Indexed: 12/19/2022] Open
Abstract
Research on the human pathogen Mycobacterium tuberculosis (Mtb) would benefit from novel tools for regulated gene expression. Here we describe the characterization and application of a synthetic riboswitch-based system, which comprises a mycobacterial promoter for transcriptional control and a riboswitch for translational control. The system was used to induce and repress heterologous protein overexpression reversibly, to create a conditional gene knockdown, and to control gene expression in a macrophage infection model. Unlike existing systems for controlling gene expression in Mtb, the riboswitch does not require the co-expression of any accessory proteins: all of the regulatory machinery is encoded by a short DNA segment directly upstream of the target gene. The inducible riboswitch platform has the potential to be a powerful general strategy for creating customized gene regulation systems in Mtb.
Collapse
|
27
|
Gomez JE, Clatworthy A, Hung DT. Probing bacterial pathogenesis with genetics, genomics, and chemical biology: past, present, and future approaches. Crit Rev Biochem Mol Biol 2011; 46:41-66. [PMID: 21250782 DOI: 10.3109/10409238.2010.538663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Classical genetic approaches for studying bacterial pathogenesis have provided a solid foundation for our current understanding of microbial physiology and the interactions between pathogen and host. During the past decade however, advances in several arenas have expanded the ways in which the biology of pathogens can be studied. This review discussed the impact of these advances on bacterial genetics, including the application of genomics and chemical biology to the study of pathogenesis.
Collapse
Affiliation(s)
- James E Gomez
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | |
Collapse
|
28
|
Ahmed A, Frey G, Michel CJ. Essential molecular functions associated with the circular code evolution. J Theor Biol 2010; 264:613-22. [PMID: 20153338 DOI: 10.1016/j.jtbi.2010.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 01/17/2010] [Accepted: 02/05/2010] [Indexed: 11/27/2022]
Abstract
A circular code is a set of trinucleotides allowing the reading frames in genes to be retrieved locally, i.e. anywhere in genes and in particular without start codons, and automatically with a window of few nucleotides. In 1996, a common circular code, called X, was identified in large populations of eukaryotic and prokaryotic genes. Hence, it is believed to be an ancestral structural property of genes. A new computational approach based on comparative genomics is developed to identify essential molecular functions associated with circular codes. It is based on a quantitative and sensitive statistical method (FPTF) to identify three permuted trinucleotide sets in the three frames of genes, a flower automaton algorithm to determine if a trinucleotide set is a circular code or not, and an integrated Gene Ontology and Taxonomy (iGOT) database. By carrying out automatic circular code analyses on a huge number of gene populations where each population is associated with a particular molecular function, it identifies 266 gene populations having circular codes close to X. Surprisingly, their molecular functions include 98% of those covered by the essential genes of the DEG database (Database of Essential Genes). Furthermore, three trinucleotides GTG, AAG and GCG, replacing three trinucleotides of the code X and called "evolutionary" trinucleotides, significantly occur in these 266 gene populations. Finally, a new method developed to analyse and quantify the stability of a set of trinucleotides demonstrates that these evolutionary trinucleotides are associated with a significant increase of the stability of the common circular code X. Indeed, its stability increases from the 1502th rank to the 16th rank after the replacement of the three evolutionary trinucleotides among 9920 possible trinucleotide replacement sets.
Collapse
Affiliation(s)
- Ahmed Ahmed
- Equipe de Bioinformatique Théorique, FDBT, LSIIT UMR CNRS-ULP 7005, Université de Strasbourg, Pôle API, Boulevard Sébastien Brant, 67400 Illkirch, France.
| | | | | |
Collapse
|
29
|
Zhang R, Lin Y. DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res 2008; 37:D455-8. [PMID: 18974178 PMCID: PMC2686491 DOI: 10.1093/nar/gkn858] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Essential genes are those indispensable for the survival of an organism, and their functions are therefore considered a foundation of life. Determination of a minimal gene set needed to sustain a life form, a fundamental question in biology, plays a key role in the emerging field, synthetic biology. Five years after we constructed DEG, a database of essential genes, DEG 5.0 has significant advances over the 2004 version in both the number of essential genes and the number of organisms in which these genes are determined. The number of prokaryotic essential genes in DEG has increased about 10-fold, mainly owing to genome-wide gene essentiality screens performed in a wide range of bacteria. The number of eukaryotic essential genes has increased more than 5-fold, because DEG 1.0 only had yeast ones, but DEG 5.0 also has those in humans, mice, worms, fruit flies, zebrafish and the plant Arabidopsis thaliana. These updates not only represent significant advances of DEG, but also represent the rapid progress of the essential-gene field. DEG is freely available at the website http://tubic.tju.edu.cn/deg or http://www.essentialgene.org.
Collapse
Affiliation(s)
- Ren Zhang
- Department of Epidemiology and Biostatistics, Tianjin Cancer Institute and Hospital, Tianjin 300060, China.
| | | |
Collapse
|
30
|
Kim JN, Youm GW, Kwon YM. Essential genes in Salmonella enteritidis as identified by TnAraOut mutagenesis. Curr Microbiol 2008; 57:391-4. [PMID: 18704577 DOI: 10.1007/s00284-008-9225-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
TnAraOut is a mariner-based transposon containing an arabinose-inducible promoter P(BAD) facing outward. TnAraOut mutagenesis previously used to identify essential genes in Vibrio cholerae can also be used to identify in vitro essential genes in Salmonella enteritidis. A mutant screen was conducted based on the assumption that a mutant-harboring TnAraOut insertion in the promoter region of an essential gene should exhibit arabinose-dependent growth phenotype. Among five isolated mutants with such growth phenotype, DNA sequencing revealed that two of them have insertions in the upstream region of atpI and the coding region of yigP gene such that P(BAD) promoter drives the expression of the downstream gene(s). Growth assay showed that the growth defects of these two mutants were fully restored by arabinose induction.
Collapse
Affiliation(s)
- Jeong Nam Kim
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | |
Collapse
|
31
|
Dias MVS, Basso LR, Coelho PSR. New transposons to generate GFP protein fusions in Candida albicans. Gene 2008; 417:13-8. [DOI: 10.1016/j.gene.2008.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 03/11/2008] [Accepted: 03/11/2008] [Indexed: 11/17/2022]
|
32
|
Sikora AE, Lybarger SR, Sandkvist M. Compromised outer membrane integrity in Vibrio cholerae Type II secretion mutants. J Bacteriol 2007; 189:8484-95. [PMID: 17890307 PMCID: PMC2168955 DOI: 10.1128/jb.00583-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The type II secretion (T2S) system of Vibrio cholerae is a multiprotein complex that spans the cell envelope and secretes proteins important for pathogenesis as well as survival in different environments. Here we report that, in addition to the loss of extracellular secretion, removal or inhibition of expression of the T2S genes, epsC-N, results in growth defects and a broad range of alterations in the outer membrane that interfere with its barrier function. Specifically, the sensitivity to membrane-perturbing agents such as bile salts and the antimicrobial peptide polymyxin B is increased, and periplasmic constituents leak out into the culture medium. As a consequence, the sigma(E) stress response is induced. Furthermore, due to the defects caused by inactivation of the T2S system, the Deltaeps deletion mutant of V. cholerae strain N16961 is incapable of surviving the passage through the infant mouse gastrointestinal tract. The growth defect and leaky outer membrane phenotypes are suppressed when the culture medium is supplemented with 5% glucose or sucrose, although the eps mutants remain sensitive to membrane-damaging agents. This suggests that the sugars do not restore the integrity of the outer membrane in the eps mutant strains per se but may provide osmoprotective functions.
Collapse
Affiliation(s)
- Aleksandra E Sikora
- University of Michigan Medical School, Department of Microbiology and Immunology, 1150 West Medical Center Drive, 6741 Medical Science Building II, Ann Arbor, MI 48109-0620, USA
| | | | | |
Collapse
|
33
|
Fehér T, Papp B, Pal C, Pósfai G. Systematic genome reductions: theoretical and experimental approaches. Chem Rev 2007; 107:3498-513. [PMID: 17636890 DOI: 10.1021/cr0683111] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tamas Fehér
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | |
Collapse
|
34
|
Abstract
The rapid expanse of microbial genome databases provides incentive and opportunity to study organismal behavior at the whole-genome level. While many newly sequenced genes are assigned names based on homology to previously characterized genes, many putative open reading frames remain to be annotated. The use of microarrays enables functional characterization of the entire genome with respect to genes important for different growth conditions including nutrient deprivation, stress responses, and virulence. The methods described here combine advancements in the identification of genomic sequences flanking insertional mutants with microarray methodology. The combination of these methods facilitates tracking large numbers of mutants for phenotypic studies. This improves both the efficiency of genome-saturating library screens and contributes to the functional annotation of unknown genes.
Collapse
Affiliation(s)
- David N Baldwin
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
35
|
Gallagher L, Turner C, Ramage E, Manoil C. Creating recombination-activated genes and sequence-defined mutant libraries using transposons. Methods Enzymol 2007; 421:126-40. [PMID: 17352920 DOI: 10.1016/s0076-6879(06)21012-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The properties of a collection of transposon Tn5 derivatives that generate reporter gene fusions and internal protein tags are summarized. Procedures utilizing several of the transposons for generating genes activated by Cre-loxP recombination and for creating large sequence-defined mutant libraries are described in detail.
Collapse
Affiliation(s)
- Larry Gallagher
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
36
|
Bubunenko M, Baker T, Court DL. Essentiality of ribosomal and transcription antitermination proteins analyzed by systematic gene replacement in Escherichia coli. J Bacteriol 2007; 189:2844-53. [PMID: 17277072 PMCID: PMC1855809 DOI: 10.1128/jb.01713-06] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 01/18/2007] [Indexed: 11/20/2022] Open
Abstract
We describe here details of the method we used to identify and distinguish essential from nonessential genes on the bacterial Escherichia coli chromosome. Three key features characterize our method: high-efficiency recombination, precise replacement of just the open reading frame of a chromosomal gene, and the presence of naturally occurring duplications within the bacterial genome. We targeted genes encoding functions critical for processes of transcription and translation. Proteins from three complexes were evaluated to determine if they were essential to the cell by deleting their individual genes. The transcription elongation Nus proteins and termination factor Rho, which are involved in rRNA antitermination, the ribosomal proteins of the small 30S ribosome subunit, and minor ribosome-associated proteins were analyzed. It was concluded that four of the five bacterial transcription antitermination proteins are essential, while all four of the minor ribosome-associated proteins examined (RMF, SRA, YfiA, and YhbH), unlike most ribosomal proteins, are dispensable. Interestingly, although most 30S ribosomal proteins were essential, the knockouts of six ribosomal protein genes, rpsF (S6), rpsI (S9), rpsM (S13), rpsO (S15), rpsQ (S17), and rpsT (S20), were viable.
Collapse
Affiliation(s)
- Mikhail Bubunenko
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
37
|
Winterberg KM, Reznikoff WS. Screening Transposon Mutant Libraries Using Full‐Genome Oligonucleotide Microarrays. Methods Enzymol 2007; 421:110-25. [PMID: 17352919 DOI: 10.1016/s0076-6879(06)21011-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The experimental details for a high-throughput microarray-based screening technique for both detecting and mapping Tn5 insertion mutants in parallel within a library are presented. Following Tn5 mutagenesis, viable mutants are pooled and grown competitively under selective conditions. Chromosomal DNA is then isolated from each mutant pool. Biotin-labeled run-off in vitro RNA transcripts, representing the neighboring chromosomal DNA for each insertion remaining in the population, are generated using T7 promoters located at the ends of the transposon. Custom-designed, whole-genome oligonucleotide microarrays are used to analyze the labeled RNA transcripts and to detect each mutant in the library. Microarray data comparisons for each growth condition allow the identification of mutants that failed to survive the imposed growth selection. In addition, due to the density of the microarrays the genomic locations of the individual transposon insertions within each library can be identified to within 50 base pairs. Details for the in vivo Tn5 mutagenesis procedure, mutant library construction and competitive outgrowth, T7 in vitro transcription/labeling, and microarray data analysis will be provided.
Collapse
|
38
|
Gerdes S, Edwards R, Kubal M, Fonstein M, Stevens R, Osterman A. Essential genes on metabolic maps. Curr Opin Biotechnol 2006; 17:448-56. [PMID: 16978855 DOI: 10.1016/j.copbio.2006.08.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 08/10/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
Within the past five years genome-scale gene essentiality data sets have been published for ten diverse bacterial species. These data are a rich source of information about cellular networks that we are only beginning to explore. The analysis of these data, very heterogeneous in nature, is a challenging task. Even the definition of 'essential genes' in various genome-scale studies varies from genes 'absolutely required for survival' to those 'strongly contributing to fitness' and robust competitive growth. A comparative analysis of gene essentiality across multiple organisms based on projection of experimentally observed essential genes to functional roles in a collection of metabolic pathways and subsystems is emerging as a powerful tool of systems biology.
Collapse
Affiliation(s)
- Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, IL 60527, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Simser JA, Rahman MS, Dreher-Lesnick SM, Azad AF. A novel and naturally occurring transposon, ISRpe1 in the Rickettsia peacockii genome disrupting the rickA gene involved in actin-based motility. Mol Microbiol 2006; 58:71-9. [PMID: 16164550 DOI: 10.1111/j.1365-2958.2005.04806.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While examining the molecular basis for the lack of actin-based motility for the non-pathogenic spotted fever group (SFG) R. peacockii, we identified a novel insertion sequence (IS) element, ISRpe1, disrupting the coding sequence of rickA, demonstrated to induce actin-tail polymerization for the SFG rickettsiae. This rickettsial IS element appears to be active in that complete terminal inverted repeat and recombinase/transposase open reading frame sequences are present and the transposase is transcriptionally expressed. Phylogenetically, ISRpe1 belongs to a new IS family that is most closely related to those transposable elements of other intracellular bacteria like Wolbachia spp. ISRpe1 was demonstrated to be present in at least 10 locations throughout the R. peacockii genome, including one that disrupted the putative cell surface antigen encoding gene, sca1 considered to be involved in adhesion and virulence of the rickettsiae. Additionally, three IS sites demonstrated rearrangements/relocations of the R. peacockii genome when compared to those of other SFG rickettsiae. Our findings of the disruptions of rickA and sca1 along with the comparative genomic reassortments associated with ISRpe1 in the non-virulent R. peacockii provides opportunities to uncover molecular mechanisms underlying the pathogenesis and evolution of rickettsiae as well as its potential to be used in rickettsial transposon-based mutagenesis.
Collapse
Affiliation(s)
- Jason A Simser
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
40
|
Fortune SM, Chase MR, Rubin EJ. Dividing oceans into pools: strategies for the global analysis of bacterial genes. Microbes Infect 2006; 8:1631-6. [PMID: 16697239 DOI: 10.1016/j.micinf.2005.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 11/30/2005] [Indexed: 11/20/2022]
Abstract
In bacterial pathogenesis, it is often easy to accept the results of large-scale screens without independent verification of the results. How can one critically read this literature? Here we review issues inherent in genome-wide screens in bacteria, focusing on experiments that attempt to comprehensively identify genes required for bacterial growth under specific conditions. Our analysis suggests that the methodologies employed undoubtedly shape the results. It is clear, however, that the question is not which method is better but which provides the data most suited to a given question.
Collapse
Affiliation(s)
- Sarah M Fortune
- Division of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
41
|
Bertram R, Köstner M, Müller J, Ramos JV, Hillen W. Integrative elements for Bacillus subtilis yielding tetracycline-dependent growth phenotypes. Nucleic Acids Res 2005; 33:e153. [PMID: 16221969 PMCID: PMC1253839 DOI: 10.1093/nar/gni154] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We describe the construction and application of elements for random insertion of promoter containing DNA into the genome of Bacillus subtilis. The outward-facing promoter of these integrative elements termed InsTet(G+) is inducible by tetracycline so that conditional mutants are generated. We constructed three InsTet(G+) variants using different regulatory windows. In the first, the regulator gene tetR is located within the element, allowing one-step mutagenesis. The second contains tetR in the chromosome and yields the best regulation efficiency. The third exploits xylose-dependent tetR expression from a plasmid, enabling induction of TetR synthesis so that distinct expression levels of an affected gene can be adjusted. We have obtained mutant strains with all three variants. For some of them, growth can be modulated by the presence of effectors. Most growth defects occur in the presence of inducers, presumably due to regulated expression of antisense RNA.
Collapse
Affiliation(s)
| | | | | | | | - Wolfgang Hillen
- To whom correspondence should be addressed. Tel: +49 9131 85 28081; Fax: +49 9131 85 28082;
| |
Collapse
|
42
|
Clark KJ, Geurts AM, Bell JB, Hackett PB. Transposon vectors for gene-trap insertional mutagenesis in vertebrates. Genesis 2005; 39:225-33. [PMID: 15286994 DOI: 10.1002/gene.20049] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The function of most vertebrate genes remains unknown or uncertain. Insertional mutagenesis offers one approach to identify and understand the function of these genes. Transposons have been used successfully in lower organisms and plants for insertional mutagenesis, but until activation of the Sleeping Beauty (SB) transposon system, there was no indication of active DNA-based transposons in vertebrates. Investigator-driven insertional mutagenesis in vertebrates has relied on retroviral insertions or selection of low-frequency integration of naked DNA in ES cell lines. We have combined the highly active SB transposon with gene-trapping technology to demonstrate that transposon traps can be used for insertional mutagenesis screens in vertebrates. In our studies about one-fourth of the trap insertions appear to be in transcriptional units, a rate that is commensurate with random integration. We show that gene-traps coupled to a fluorescent protein reporter gene can be used to detect insertions into genes active in specific cells of living zebrafish embryos, supporting use of our transposon traps for high-throughput functional genomic screens in vertebrates.
Collapse
Affiliation(s)
- Karl J Clark
- Department of Genetics, Cell Biology, and Development, Arnold and Mabel Beckman Center for Transposon Research at the University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
43
|
Zhang C, Kitsberg D, Chy H, Zhou Q, Morrison JR. Transposon-mediated generation of targeting vectors for the production of gene knockouts. Nucleic Acids Res 2005; 33:e24. [PMID: 15699181 PMCID: PMC549422 DOI: 10.1093/nar/gni014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vectors used for gene targeting experiments usually consist of a selectable marker flanked by two regions of homology to the targeted gene. In a homologous recombination event, the selectable marker replaces an essential element of the target gene rendering it inactive. Other applications of gene targeting technology include gene replacement (knockins) and conditional vectors which allow for the generation of inducible or tissue-specific gene-targeting events. The assembly of gene-targeting vectors is generally a laborious process requiring considerable technical skill. The procedures presented here report the application of transposons as tools for the construction of targeting vectors. Two mini-Mu transposons were sequentially inserted by in vitro transposition at each side of the region targeted for deletion. One such transposon carries an antibiotic resistance marker suitable for selection in mammalian cells. A deletion is then generated between the two transposons either by LoxP-induced recombination or by restriction digestion followed by ligation. This deletion removes part of both transposons plus the targeted region in between, leaving a transposon carrying the selectable marker flanked by two arms which are homologous to the targeted gene. Targeting vectors constructed using these transposons were electroporated into embryonic stem cells and shown to be effective in gene-targeting events.
Collapse
Affiliation(s)
- Chunfang Zhang
- CopyRat Pty Ltd 27-31 Wright Street, Clayton, Victoria 3168, Australia.
| | | | | | | | | |
Collapse
|
44
|
Holeva MC, Bell KS, Hyman LJ, Avrova AO, Whisson SC, Birch PRJ, Toth IK. Use of a pooled transposon mutation grid to demonstrate roles in disease development for Erwinia carotovora subsp. atroseptica putative type III secreted effector (DspE/A) and helper (HrpN) proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:943-950. [PMID: 15384484 DOI: 10.1094/mpmi.2004.17.9.943] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Soft rot Erwinia spp., like other closely related plant pathogens, possess a type III secretion system (TTSS) (encoded by the hrp gene cluster) implicated in disease development. We report the sequence of the entire hrp gene cluster and adjacent dsp genes in Erwinia carotovora subsp. atroseptica SCRI1039. The cluster is similar in content and structural organization to that in E. amylovora. However, eight putative genes of unknown function located within the E. carotovora subsp. atroseptica cluster do not have homologues in the E. amylovora cluster. An arrayed set of Tn5 insertional mutants (mutation grid) was constructed and pooled to allow rapid isolation of mutants for any given gene by polymerase chain reaction screening. This novel approach was used to obtain mutations in two structural genes (hrcC and hrcV), the effector gene dspE/A, and the helper gene hrpN. An improved pathogenicity assay revealed that these mutations led to significantly reduced virulence, showing that both the putative E. carotovora subsp. atroseptica TTSS-delivered effector and helper proteins are required for potato infection.
Collapse
Affiliation(s)
- Maria C Holeva
- Plant-Pathogen Interactions Programme, Scottish Crop Research Institute, Dundee, DD2 5DA, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Gil R, Silva FJ, Peretó J, Moya A. Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 2004; 68:518-537. [PMID: 15353568 PMCID: PMC515251 DOI: 10.1128/mmbr.68.3.518-537.2004] [Citation(s) in RCA: 393] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The availability of a large number of complete genome sequences raises the question of how many genes are essential for cellular life. Trying to reconstruct the core of the protein-coding gene set for a hypothetical minimal bacterial cell, we have performed a computational comparative analysis of eight bacterial genomes. Six of the analyzed genomes are very small due to a dramatic genome size reduction process, while the other two, corresponding to free-living relatives, are larger. The available data from several systematic experimental approaches to define all the essential genes in some completely sequenced bacterial genomes were also considered, and a reconstruction of a minimal metabolic machinery necessary to sustain life was carried out. The proposed minimal genome contains 206 protein-coding genes with all the genetic information necessary for self-maintenance and reproduction in the presence of a full complement of essential nutrients and in the absence of environmental stress. The main features of such a minimal gene set, as well as the metabolic functions that must be present in the hypothetical minimal cell, are discussed.
Collapse
Affiliation(s)
- Rosario Gil
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartat Oficial 2085, 46071 València, Spain.
| | | | | | | |
Collapse
|
46
|
Knuth K, Niesalla H, Hueck CJ, Fuchs TM. Large-scale identification of essential Salmonella genes by trapping lethal insertions. Mol Microbiol 2004; 51:1729-44. [PMID: 15009898 DOI: 10.1046/j.1365-2958.2003.03944.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel screening approach based on insertion-duplication mutagenesis (IDM) was established to efficiently screen for essential genes of Salmonella enterica serovar Typhimurium under laboratory conditions. Small, randomly generated genomic fragments were cloned into a conditionally replicating vector, and the resulting library of single Salmonella clones was grown under permissive conditions. Upon switching to non-permissive temperature, discrimination between lethal and non-lethal insertions following homologous recombination allowed the trapping of genes with essential functions. Further characterization of a total of 498 fragments resulting in such lethal knockout revealed 145 known essential genes and 112 functionally characterized or hypothetical genes not yet shown to encode essential genes, among them three Salmonella-specific genes. The essentiality was demonstrated for a prioritised set of 15 putative indispensable genes by creating conditional lethal phenotypes. The results of this large-scale screening indicate that in rich media, the class of Salmonella genes indispensable for growth is composed of approximately 490 genes.
Collapse
Affiliation(s)
- Karin Knuth
- CREATOGEN AG, Ulmer Str 160a, D-86156 Augsburg, Germany
| | | | | | | |
Collapse
|
47
|
Merritt J, Edwards JS. Assaying gene function by growth competition experiment. Metab Eng 2004; 6:212-9. [PMID: 15256211 DOI: 10.1016/j.ymben.2003.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 10/23/2003] [Indexed: 11/26/2022]
Abstract
High-throughput screening and analysis is one of the emerging paradigms in biotechnology. In particular, high-throughput methods are essential in the field of functional genomics because of the vast amount of data generated in recent and ongoing genome sequencing efforts. In this report we discuss integrated functional analysis methodologies which incorporate both a growth competition component and a highly parallel assay used to quantify results of the growth competition. Several applications of the two most widely used technologies in the field, i.e., transposon mutagenesis and deletion strain library growth competition, and individual applications of several developing or less widely reported technologies are presented.
Collapse
Affiliation(s)
- Joshua Merritt
- Department of Chemical Engineering, University of Delaware, Newark 19716, USA
| | | |
Collapse
|
48
|
Abstract
Transposons are mobile genetic elements that can relocate from one genomic location to another. As well as modulating gene expression and contributing to genome plasticity and evolution, transposons are remarkably diverse molecular tools for both whole-genome and single-gene studies in bacteria, yeast, and other microorganisms. Efficient but simple in vitro transposition reactions now allow the mutational analysis of previously recalcitrant microorganisms. Transposon-based signature-tagged mutagenesis and genetic footprinting strategies have pinpointed essential genes and genes that are crucial for the infectivity of a variety of human and other pathogens. Individual proteins and protein complexes can be dissected by transposon-mediated scanning linker mutagenesis. These and other transposon-based approaches have reaffirmed the usefulness of these elements as simple yet highly effective mutagens for both functional genomic and proteomic studies of microorganisms.
Collapse
Affiliation(s)
- Finbarr Hayes
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England.
| |
Collapse
|
49
|
Koonin EV. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 2003; 1:127-36. [PMID: 15035042 DOI: 10.1038/nrmicro751] [Citation(s) in RCA: 410] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Comparative genomics, using computational and experimental methods, enables the identification of a minimal set of genes that is necessary and sufficient for sustaining a functional cell. For most essential cellular functions, two or more unrelated or distantly related proteins have evolved; only about 60 proteins, primarily those involved in translation, are common to all cellular life. The reconstruction of ancestral life-forms is based on the principle of evolutionary parsimony, but the size and composition of the reconstructed ancestral gene-repertoires depend on relative rates of gene loss and horizontal gene-transfer. The present estimate suggests a simple last universal common ancestor with only 500-600 genes.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, NIH Building 38A, 8600 Rockville Pike, Bethesda, Maryland 20894, USA.
| |
Collapse
|
50
|
Opperman T, Ling LL, Moir DT. Microbial pathogen genomes - new strategies for identifying therapeutic and vaccine targets. Expert Opin Ther Targets 2003; 7:469-73. [PMID: 12885266 DOI: 10.1517/14728222.7.4.469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Efficient mining of genomic sequence information from multiple pathogens for therapeutic and vaccine targets requires efficient tools. Fortunately, robust methods applicable to whole genomes have been developed and applied in the past few years to identify genes essential for growth or virulence and to detect potential vaccine targets. Successful approaches to identify potential therapeutic targets include a variety of ingenious uses of nearly random transposon insertions, more directed methods such as antisense and insertion-duplication mutagenesis, and expression profiling facilitated by microarrays. Vaccine targets have been identified by gene fusion and expression experiments to discover gene products that are immunogenic in humans or animal models. All genome-wide methods require focused secondary assays to validate the findings, but these genomic methods excel at reducing to a manageable number the genes to be examined further. This editorial reviews the latest developments in genome-wide target identification tools.
Collapse
|