1
|
Chen X, Zhai X, Shi J, Liu WW, Tao H, Sun X, Kang Z. Lactulose mediates suppression of dextran sodium sulfate-induced colon inflammation by increasing hydrogen production. Dig Dis Sci 2013; 58:1560-8. [PMID: 23371012 DOI: 10.1007/s10620-013-2563-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/03/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND Molecular hydrogen (H2) is a potent antioxidant and able to protect organs from oxidative stress injuries. Orally administered lactulose, a potent H2 inducer, is digested by colon microflora and significantly increases H2 production, indicating its potential anti-inflammatory action. OBJECTIVE To evaluate the anti-inflammatory effects of lactulose on dextran sodium sulfate (DSS)-induced colitis in mice. METHODS Mice were randomly assigned into seven groups, receiving regular distilled water, H2-rich saline (peritoneal injection), DSS, oral lactulose (0.1, 0.15, 0.2 ml/10 g, respectively), and lactulose (0.2 ml/10 g) + oral antibiotics. The mouse model of human ulcerative colitis was established by supplying mice with water containing DSS. The H2 breath test was used to determine the exhaled H2 concentration. Body weight, colitis score, colon length, pathological features and tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), maleic dialdehyde (MDA) and marrow peroxidase (MPO) levels in colon lesions were evaluated. RESULTS After 7 days, DSS-induced loss of body weight, increase of colitis score, shortening of colon length, pathological changes and elevated levels of TNF-α, IL-1β, MDA, and MPO in colon lesions, were significantly suppressed by oral lactulose administration and intraperitoneally injected H2-rich saline. Ingestion of antibiotics significantly compromised the anti-inflammatory effects of lactulose. The H2 breath test showed that lactulose administration significantly induced hydrogen production and that antibiotics administration could inhibit H2 production. CONCLUSION Lactulose can prevent the development of DSS-induced colitis and alleviate oxidative stress in the colon, as measured by MDA and MPO, probably by increasing endogenous H2 production.
Collapse
Affiliation(s)
- Xiao Chen
- Graduate Management Unit, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
2
|
Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, Shahbazkia HR, Awono-Ambene PH, Levashina EA, Christen R, Morlais I. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog 2012; 8:e1002742. [PMID: 22693451 PMCID: PMC3364955 DOI: 10.1371/journal.ppat.1002742] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/26/2012] [Indexed: 12/16/2022] Open
Abstract
The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission. During their development in the mosquito vector, Plasmodium parasites undergo complex developmental steps and incur severe bottlenecks. The largest parasite losses occur in the mosquito midgut where robust immune responses are activated. Variability in P. falciparum infection levels indicates that parasite transmission is the result of complex interactions between vectors and parasites, which rely on both genetic and environmental factors. However, in contrast to genetically encoded factors, the role of environmental factors in parasite transmission has received little attention. In this study, we characterized the midgut microbiota of mosquitoes derived from diverse breeding sites using pyrosequencing. We show that the composition of the midgut microbiota in adult mosquitoes exhibits great variability, which is likely determined by bacterial richness of the larval habitats. When field mosquitoes were collected at late immature stages in natural breeding sites and the emerging females challenged with Plasmodium falciparum in the laboratory, significant correlation was observed between P. falciparum infection and the presence of Enterobacteriaceae in the mosquito midgut. Greater understanding of these malaria-bacteria interactions may lead to novel malaria control strategies.
Collapse
Affiliation(s)
- Anne Boissière
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Montpellier, France
| | - Majoline T. Tchioffo
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Montpellier, France
- Laboratoire de Recherche sur le Paludisme, IRD-OCEAC, BP288, Yaoundé, Cameroun
| | - Dipankar Bachar
- UMR 7138 Systématique Adaptation Evolution, Université de Nice-Sophia Antipolis, Parc Valrose, France
| | - Luc Abate
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Montpellier, France
| | - Alexandra Marie
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Montpellier, France
| | - Sandrine E. Nsango
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Montpellier, France
- Laboratoire de Recherche sur le Paludisme, IRD-OCEAC, BP288, Yaoundé, Cameroun
- CNRS UPR 9022, Inserm U963, Université de Strasbourg, Strasbourg, France
| | - Hamid R. Shahbazkia
- UMR 7138 Systématique Adaptation Evolution, Université de Nice-Sophia Antipolis, Parc Valrose, France
- Área Departamental de Engenharia Electrónica e Computação, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | | | - Elena A. Levashina
- CNRS UPR 9022, Inserm U963, Université de Strasbourg, Strasbourg, France
| | - Richard Christen
- UMR 7138 Systématique Adaptation Evolution, Université de Nice-Sophia Antipolis, Parc Valrose, France
| | - Isabelle Morlais
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Montpellier, France
- Laboratoire de Recherche sur le Paludisme, IRD-OCEAC, BP288, Yaoundé, Cameroun
- * E-mail:
| |
Collapse
|
3
|
Pihl M, Davies JR, Chávez de Paz LE, Svensäter G. Differential effects ofPseudomonas aeruginosaon biofilm formation by different strains ofStaphylococcus epidermidis. ACTA ACUST UNITED AC 2010; 59:439-46. [DOI: 10.1111/j.1574-695x.2010.00697.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Kajiya M, Sato K, Silva MJB, Ouhara K, Do PM, Shanmugam KT, Kawai T. Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis. Biochem Biophys Res Commun 2009; 386:316-21. [PMID: 19523450 DOI: 10.1016/j.bbrc.2009.06.024] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 06/06/2009] [Indexed: 10/20/2022]
Abstract
It is well known that some intestinal bacteria, such as Escherichia coli, can produce a remarkable amount of molecular hydrogen (H(2)). Although the antioxidant effects of H(2) are well documented, the present study examined whether H(2) released from intestinally colonized bacteria could affect Concanavalin A (ConA)-induced mouse hepatitis. Systemic antibiotics significantly decreased the level of H(2) in both liver and intestines along with suppression of intestinal bacteria. As determined by the levels of AST, ALT, TNF-alpha and IFN-gamma in serum, suppression of intestinal bacterial flora by antibiotics increased the severity of ConA-induced hepatitis, while reconstitution of intestinal flora with H(2)-producing E. coli, but not H(2)-deficient mutant E. coli, down-regulated the ConA-induced liver inflammation. Furthermore, in vitro production of both TNF-alpha and IFN-gamma by ConA-stimulated spleen lymphocytes was significantly inhibited by the introduction of H(2). These results indicate that H(2) released from intestinal bacteria can suppress inflammation induced in liver by ConA.
Collapse
Affiliation(s)
- Mikihito Kajiya
- Department of Immunology, The Forsyth Institute, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Self-regulation of Candida albicans population size during GI colonization. PLoS Pathog 2008; 3:e184. [PMID: 18069889 PMCID: PMC2134954 DOI: 10.1371/journal.ppat.0030184] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 10/22/2007] [Indexed: 12/03/2022] Open
Abstract
Interactions between colonizing commensal microorganisms and their hosts play important roles in health and disease. The opportunistic fungal pathogen Candida albicans is a common component of human intestinal flora. To gain insight into C. albicans colonization, genes expressed by fungi grown within a host were studied. The EFH1 gene, encoding a putative transcription factor, was highly expressed during growth of C. albicans in the intestinal tract. Counterintuitively, an efh1 null mutant exhibited increased colonization of the murine intestinal tract, a model of commensal colonization, whereas an EFH1 overexpressing strain exhibited reduced colonization of the intestinal tract and of the oral cavity of athymic mice, the latter situation modeling human mucosal candidiasis. When inoculated into the bloodstream of mice, both efh1 null and EFH1 overexpressing strains caused lethal infections. In contrast, other mutants are attenuated in virulence following intravenous inoculation but exhibited normal levels of intestinal colonization. Finally, although expression of several genes is dependent on transcription factor Efg1p during laboratory growth, Efg1p-independent expression of these genes was observed during growth within the murine intestinal tract. These results show that expression of EFH1 regulated the level of colonizing fungi, favoring commensalism as opposed to candidiasis. Also, different genes are required in different host niches and the pathway(s) that regulates gene expression during host colonization can differ from well-characterized pathways used during laboratory growth. Although the fungus Candida albicans commonly colonizes the human gastrointestinal tract as a commensal, the organism is also an opportunistic pathogen, responsible for a wide range of infections in immunocompromised persons. While numerous studies of infection have been conducted, few studies have analyzed the commensal state. The studies described here analyze C. albicans cells colonizing the intestinal tract of immunocompetent mice in the absence of disease, a model for commensalism. Results showed that expression of the putative transcription factor Efh1p by cells colonizing the intestinal tract was relatively high, but paradoxically, expression of Efh1p was associated with lower colonization. Efh1p had no detectable effect on the ability of C. albicans to cause lethal disseminated infection in mice. In contrast, Rbt1p and Rbt4p, two proteins of poorly defined function required for normal disseminated infection, were not required for intestinal colonization. These results argue that the commensal state is distinct from the pathogenic state and that different factors are important in different states. Also, the regulation of expression of genes RBT1, RBT4, and ECE1 during intestinal colonization differed from their well-characterized regulation during laboratory growth. Further studies of commensal colonization are needed to understand this important stage of C. albicans biology.
Collapse
|
6
|
LeBlanc F, Gallant D, Vasseur L, Léger L. Unequal summer use of beaver ponds by river otters: influence of beaver activity, pond size, and vegetation cover. CAN J ZOOL 2007. [DOI: 10.1139/z07-056] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
River otters ( Lontra canadensis (Schreber, 1777)) and beavers ( Castor canadensis Kuhl, 1820) are semi-aquatic mammals that can occur sympatrically in freshwater ecosystems of North America, including beaver ponds. Although little research has been done on the relationship between these species, it has been described as commensal. Relatively little is known about what pond characteristics potentially influence otter use. During the summer of 2004, we documented otter activity signs (i.e., feces) at 56 beaver ponds located in Kouchibouguac National Park of Canada, along the east coast of New Brunswick. We sought to identify which of 16 variables describing pond attributes were related to otter use. Otter activity at beaver ponds was positively associated with beaver presence, pond size, and vegetation cover. We discuss how these pond characteristics can benefit otters in terms of two key habitat needs, availability of prey and shelter. Our results are a first indication that the source–sink dynamic of beavers, whereby ponds are created, expanded, and abandoned, will create a mosaic of ponds that ultimately influences the river otter’s own pattern of habitat use and distribution.
Collapse
Affiliation(s)
- F.A. LeBlanc
- Département de Biologie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Maîtrise en Études de l’Environnement, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - D. Gallant
- Département de Biologie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Maîtrise en Études de l’Environnement, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - L. Vasseur
- Département de Biologie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Maîtrise en Études de l’Environnement, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - L. Léger
- Département de Biologie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Maîtrise en Études de l’Environnement, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
7
|
|
8
|
De Keersmaecker SCJ, Marchal K, Verhoeven TLA, Engelen K, Vanderleyden J, Detweiler CS. Microarray analysis and motif detection reveal new targets of the Salmonella enterica serovar Typhimurium HilA regulatory protein, including hilA itself. J Bacteriol 2005; 187:4381-91. [PMID: 15968047 PMCID: PMC1151768 DOI: 10.1128/jb.187.13.4381-4391.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA regulatory motifs reflect the direct transcriptional interactions between regulators and their target genes and contain important information regarding transcriptional networks. In silico motif detection strategies search for DNA patterns that are present more frequently in a set of related sequences than in a set of unrelated sequences. Related sequences could be genes that are coexpressed and are therefore expected to share similar conserved regulatory motifs. We identified coexpressed genes by carrying out microarray-based transcript profiling of Salmonella enterica serovar Typhimurium in response to the spent culture supernatant of the probiotic strain Lactobacillus rhamnosus GG. Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. They are known to antagonize intestinal pathogens in vivo, including salmonellae. S. enterica serovar Typhimurium causes human gastroenteritis. Infection is initiated by entry of salmonellae into intestinal epithelial cells. The expression of invasion genes is tightly regulated by environmental conditions, as well as by many bacterial factors including the key regulator HilA. One mechanism by which probiotics may antagonize intestinal pathogens is by influencing invasion gene expression. Our microarray experiment yielded a cluster of coexpressed Salmonella genes that are predicted to be down-regulated by spent culture supernatant. This cluster was enriched for genes known to be HilA dependent. In silico motif detection revealed a motif that overlaps the previously described HilA box in the promoter region of three of these genes, spi4_H, sicA, and hilA. Site-directed mutagenesis, beta-galactosidase reporter assays, and gel mobility shift experiments indicated that sicA expression requires HilA and that hilA is negatively autoregulated.
Collapse
|
9
|
Abstract
Treponema primitia, an H2-consuming CO2-reducing homoacetogenic spirochete in termite hindguts, requires an exogenous source of folate for growth. Tetrahydrofolate (THF) acts as a C1 carrier in CO2-reductive acetogenesis, a microbially mediated process important to the carbon and energy requirements of termites. To examine the hypothesis that other termite gut microbes probably supply some form of folate to T. primitia in situ, we used a bioassay to screen for and isolate folate-secreting bacteria from hindguts of Zootermopsis angusticollis, which is the host of T. primitia. Based on morphology, physiology, and 16S rRNA gene sequences, the major folate secretors were identified as strains of Lactococcus lactis and Serratia grimesii. During growth, these isolates secreted 5-formyl-THF at levels up to 146 ng/ml, and their cell-free culture fluids satisfied the folate requirement of T. primitia strains in vitro. Analysis of Z. angusticollis hindgut fluid revealed that 5-formyl-THF was the only detectable folate compound and occurred at an in situ concentration (1.3 mug/ml) which was more than sufficient to support the growth of T. primitia. These results imply that cross-feeding of 5-formyl-THF by other community members is important for growth of symbiotic hindgut spirochetes and thus termite nutrition and survival.
Collapse
Affiliation(s)
- Joseph R Graber
- Department of Microbiology and Molecular Genetics and Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA.
| | | |
Collapse
|
10
|
Ueta M, Nochi T, Jang MH, Park EJ, Igarashi O, Hino A, Kawasaki S, Shikina T, Hiroi T, Kinoshita S, Kiyono H. Intracellularly expressed TLR2s and TLR4s contribution to an immunosilent environment at the ocular mucosal epithelium. THE JOURNAL OF IMMUNOLOGY 2004; 173:3337-47. [PMID: 15322197 DOI: 10.4049/jimmunol.173.5.3337] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epithelial cells are key players in the first line of defense offered by the mucosal immune system against invading pathogens. In the present study we sought to determine whether human corneal epithelial cells expressing Toll-like receptors (TLRs) function as pattern-recognition receptors in the innate immune system and, if so, whether these TLRs act as a first line of defense in ocular mucosal immunity. Incubation of human primary corneal epithelial cells and the human corneal epithelial cell line (HCE-T) with peptidoglycan or LPS did not lead to activation, at the level of DNA transcription, of NF-kappaB or the secretion of inflammation-associated molecules such as IL-6, IL-8, and human beta-defensin-2. However, when incubated with IL-1alpha to activate NF-kappaB, the production by these cells of such inflammatory mediators was enhanced. Human corneal epithelial cells were observed to express both TLR2- and TLR4-specific mRNA as well as their corresponding proteins intracellularly, but not at the cell surface. However, even when LPS was artificially introduced into the cytoplasm, it did not lead to the activation of epithelial cells. Taken together, our results demonstrate that the intracellular expression of TLR2 and TLR4 in human corneal epithelial cells fails to elicit innate immune responses and therefore, perhaps purposely, contributes to an immunosilent environment at the ocular mucosal epithelium.
Collapse
Affiliation(s)
- Mayumi Ueta
- Department of Mucosal Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nielsen DS, Møller PL, Rosenfeldt V, Paerregaard A, Michaelsen KF, Jakobsen M. Case study of the distribution of mucosa-associated Bifidobacterium species, Lactobacillus species, and other lactic acid bacteria in the human colon. Appl Environ Microbiol 2004; 69:7545-8. [PMID: 14660412 PMCID: PMC309914 DOI: 10.1128/aem.69.12.7545-7548.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution of mucosa-associated bacteria, bifidobacteria and lactobacilli and closely related lactic acid bacteria, in biopsy samples from the ascending, transverse, and descending parts of the colon from four individuals was investigated by denaturing gradient gel electrophoresis (DGGE). Bifidobacterial genus-specific, Lactobacillus group-specific, and universal bacterial primers were used in a nested PCR approach to amplify a fragment of the 16S rRNA gene. DGGE profiles of the bifidobacterial community were relatively simple, with one or two amplicons detected at most sampling sites in the colon. DGGE profiles obtained with Lactobacillus group-specific primers were complex and varied with host and sampling site in the colon. The overall bacterial community varied with host but not sampling site.
Collapse
Affiliation(s)
- D S Nielsen
- Department of Dairy and Food Science, Center for Advanced Food Studies, Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | | | | | | | |
Collapse
|
12
|
O'Neil DA. Regulation of expression of beta-defensins: endogenous enteric peptide antibiotics. Mol Immunol 2003; 40:445-50. [PMID: 14568390 DOI: 10.1016/s0161-5890(03)00161-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Evidence for the central role that intestinal beta-defensins play in maintaining gut health continues to accumulate within the literature. Two epithelially-derived enteric beta-defensins, hBD1 and hBD2, have been identified thus far and the following chapter reviews our current understanding of how the expression and secretion of these endogenous antimicrobial, chemotactic and adjuvant peptides is regulated within the context of the most microbe-rich of mucosal environments, the gastrointestinal tract. The agonists and microbial moieties identified as being responsible for the direct receptor-mediated induction of enteric epithelial beta-defensins, the signaling and nuclear events that are triggered as a consequence and which drive defensin gene transcription, the potential antimicrobial and immunomodulatory consequences of beta-defensin release within the luminal and mucosal aspects of the alimentary tract thereafter and the validity of animal models for the study of these key immune effector molecules in vivo are discussed. These significant and recent discoveries have provided much in the way of momentum for the pace with which this exciting and dynamic area of mucosal immunology research continues to move forward.
Collapse
Affiliation(s)
- Deborah A O'Neil
- Gut Immunology Group, The Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB51 0UX, UK.
| |
Collapse
|