1
|
Pradhan L, Sah P, Nayak M, Upadhyay A, Pragya P, Tripathi S, Singh G, Mounika B, Paik P, Mukherjee S. Biosynthesized silver nanoparticles prevent bacterial infection in chicken egg model and mitigate biofilm formation on medical catheters. J Biol Inorg Chem 2024; 29:353-373. [PMID: 38744691 DOI: 10.1007/s00775-024-02050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/20/2024] [Indexed: 05/16/2024]
Abstract
Investigating the application of innovative antimicrobial surface coatings on medical devices is an important field of research. Many of these coatings have significant drawbacks, including biocompatibility, coating stability and the inability to effectively combat multiple drug-resistant bacteria. In this research, we developed an antibiofilm surface coating for medical catheters using biosynthesized silver nanoparticles (b-Cs-AgNPs) developed using leaves extract of Calliandra surinamensis. Various characterization techniques were employed to thoroughly characterize the synthesized b-Cs-AgNPs and c-AgNPs. b-Cs-AgNPs were compatible with human normal kidney cells and chicken embryos. It did not trigger any skin inflammatory response in in vivo rat model. b-Cs-AgNPs demonstrated potent zone of inhibition of 19.09 mm when subjected to the disc diffusion method in E. coli confirming strong antibacterial property. Different anti-bacterial assays including liquid growth curve, colony counting assay, biofilm formation assay supported the potent antimicrobial efficacy of b-Cs-AgNPs alone and when coated to medical grade catheters. Mechanistic studies reveal the presence of ferulic acid, that was important for the synthesis of b-AgNPs along with enhanced antibacterial effects of b-Cs-AgNPs compared to c-AgNPs, supported by molecular docking analysis. These results together demonstrated the effective role b-Cs-AgNPs in combating infections and mitigating biofilm formations, highlighting their need for further study in the field of biomedical applications.
Collapse
Affiliation(s)
- Lipi Pradhan
- School of Biomedical Engineering, IIT (BHU), Varanasi, India
| | - Prince Sah
- School of Biomedical Engineering, IIT (BHU), Varanasi, India
| | - Malay Nayak
- School of Biomedical Engineering, IIT (BHU), Varanasi, India
| | - Anjali Upadhyay
- School of Biomedical Engineering, IIT (BHU), Varanasi, India
| | - Pragya Pragya
- School of Biomedical Engineering, IIT (BHU), Varanasi, India
| | - Shikha Tripathi
- Department of Physics, IIT (BHU), Uttar Pradesh, Varanasi, India
| | - Gurmeet Singh
- School of Biomedical Engineering, IIT (BHU), Varanasi, India
| | - B Mounika
- School of Biomedical Engineering, IIT (BHU), Varanasi, India
| | - Pradip Paik
- School of Biomedical Engineering, IIT (BHU), Varanasi, India
| | - Sudip Mukherjee
- School of Biomedical Engineering, IIT (BHU), Varanasi, India.
| |
Collapse
|
2
|
Abstract
The method described here allows editing of the bacterial genome without leaving any secondary changes (scars) behind. This method uses a tripartite selectable and counterselectable cassette comprising an antibiotic-resistance gene (cat or kan) and the tetR repressor gene linked to a Ptet promoter-ccdB toxin gene fusion. In the absence of induction, the tetR gene product represses the Ptet promoter, preventing ccdB expression. The cassette is first inserted at the target site by selecting for chloramphenicol or kanamycin resistance. It is subsequently replaced by the sequence of interest by selecting for growth in the presence of anhydrotetracycline (AHTc), which inactivates the TetR repressor thereby causing CcdB-induced lethality. Unlike other CcdB-based counterselection schemes, which require specifically designed λ-Red delivery plasmids, the system described here uses the popular plasmid pKD46 as the source of λ-Red functions. This protocol allows a wide variety of modifications, including the intragenic insertion of fluorescent or epitope tags, gene replacements, deletions, and single base-pair substitutions, to be made. In addition, the procedure can be used to place the inducible Ptet promoter at a chosen position in the bacterial chromosome.
Collapse
Affiliation(s)
- Nara Figueroa-Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| | - Roberto Balbontín
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41080 Sevilla, Spain
| | - Lionello Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
In Vitro and In Vivo Properties of CUO246, a Novel Bacterial DNA Gyrase/Topoisomerase IV Inhibitor. Antimicrob Agents Chemother 2022; 66:e0092122. [PMID: 36448795 PMCID: PMC9765007 DOI: 10.1128/aac.00921-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
CUO246, a novel DNA gyrase/topoisomerase IV inhibitor, is active in vitro against a broad range of Gram-positive, fastidious Gram-negative, and atypical bacterial pathogens and retains activity against quinolone-resistant strains in circulation. The frequency of selection for single step mutants of wild-type S. aureus with reduced susceptibility to CUO246 was <4.64 × 10-9 at 4× and 8× MIC and remained low when using an isogenic QRDR mutant (<5.24 × 10-9 at 4× and 8× MIC). Biochemical assays indicated that CUO246 had potent inhibitory activity against both DNA gyrase (GyrAB) and topoisomerase IV (ParCE). Furthermore, CUO246 showed rapid bactericidal activity in time-kill assays and potent in vivo efficacy against S. aureus in a neutropenic murine thigh infection model. These results suggest that CUO246 may be useful in treating infections by various causative agents of acute skin and skin structure infections, respiratory tract infections, and sexually transmitted infections.
Collapse
|
4
|
Aribisala JO, Sabiu S. Redox Impact on Bacterial Macromolecule: A Promising Avenue for Discovery and Development of Novel Antibacterials. Biomolecules 2022; 12:1545. [PMID: 36358894 PMCID: PMC9688007 DOI: 10.3390/biom12111545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 07/30/2023] Open
Abstract
Antibiotic resistance in bacteria has remained a serious public health concern, resulting in substantial deaths and morbidity each year. Factors such as mutation and abuse of currently available antibiotics have contributed to the bulk of the menace. Hence, the introduction and implementation of new therapeutic strategies are imperative. Of these strategies, data supporting the role of reactive oxygen species (ROS) in bacterial lethality are intriguing, with several antimicrobials, including antibiotics such as fluoroquinolones, β-lactams, and aminoglycosides, as well as natural plant compounds, being remarkably implicated. Following treatment with ROS-inducing antimicrobials, ROS such as O2•-, •OH, and H2O2 generated in bacteria, which the organism is unable to detoxify, damage cellular macromolecules such as proteins, lipids, and nucleic acids and results in cell death. Despite the unique mechanism of action of ROS-inducing antibacterials and significant studies on ROS-mediated means of bacterial killing, the field remains a topical one, with contradicting viewpoints that require frequent review. Here, we appraised the antibacterial agents (antibiotics, natural and synthetic compounds) implicated in ROS generation and the safety concerns associated with their usage. Further, background information on the sources and types of ROS in bacteria, the mechanism of bacterial lethality via oxidative stress, as well as viewpoints on the ROS hypothesis undermining and solidifying this concept are discussed.
Collapse
|
5
|
Wang Y, Dong Q, Hu S, Zou H, Wu T, Shi J, Zhang H, Sheng Y, Sun W, Kong X, Chen L. Decoding microbial genomes to understand their functional roles in human complex diseases. IMETA 2022; 1:e14. [PMID: 38868571 PMCID: PMC10989872 DOI: 10.1002/imt2.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2024]
Abstract
Complex diseases such as cardiovascular disease (CVD), obesity, inflammatory bowel disease (IBD), kidney disease, type 2 diabetes (T2D), and cancer have become a major burden to public health and affect more than 20% of the population worldwide. The etiology of complex diseases is not yet clear, but they are traditionally thought to be caused by genetics and environmental factors (e.g., dietary habits), and by their interactions. Besides this, increasing pieces of evidence now highlight that the intestinal microbiota may contribute substantially to the health and disease of the human host via their metabolic molecules. Therefore, decoding the microbial genomes has been an important strategy to shed light on their functional potential. In this review, we summarize the roles of the gut microbiome in complex diseases from its functional perspective. We further introduce artificial tools in decoding microbial genomes to profile their functionalities. Finally, state-of-the-art techniques have been highlighted which may contribute to a mechanistic understanding of the gut microbiome in human complex diseases and promote the development of the gut microbiome-based personalized medicine.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Quanbin Dong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Shixian Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Huayiyang Zou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
| | - Tingting Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
| | - Jing Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Yanhui Sheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Lianmin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsuChina
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
- Department of Genetics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
6
|
Kamruzzaman M, Wu AY, Iredell JR. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 2021; 9:microorganisms9061276. [PMID: 34208120 PMCID: PMC8230891 DOI: 10.3390/microorganisms9061276] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
After the first discovery in the 1980s in F-plasmids as a plasmid maintenance system, a myriad of toxin-antitoxin (TA) systems has been identified in bacterial chromosomes and mobile genetic elements (MGEs), including plasmids and bacteriophages. TA systems are small genetic modules that encode a toxin and its antidote and can be divided into seven types based on the nature of the antitoxin molecules and their mechanism of action to neutralise toxins. Among them, type II TA systems are widely distributed in chromosomes and plasmids and the best studied so far. Maintaining genetic material may be the major function of type II TA systems associated with MGEs, but the chromosomal TA systems contribute largely to functions associated with bacterial physiology, including the management of different stresses, virulence and pathogenesis. Due to growing interest in TA research, extensive work has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules. However, there are still controversies about some of the functions associated with different TA systems. This review will discuss the most current findings and the bona fide functions of bacterial type II TA systems.
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Correspondence: (M.K.); (J.R.I.)
| | - Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence: (M.K.); (J.R.I.)
| |
Collapse
|
7
|
Identification of Three Type II Toxin-Antitoxin Systems in Model Bacterial Plant Pathogen Dickeya dadantii 3937. Int J Mol Sci 2021; 22:ijms22115932. [PMID: 34073004 PMCID: PMC8198452 DOI: 10.3390/ijms22115932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
Type II toxin-antitoxin (TA) systems are genetic elements usually encoding two proteins: a stable toxin and an antitoxin, which binds the toxin and neutralizes its toxic effect. The disturbance in the intracellular toxin and antitoxin ratio typically leads to inhibition of bacterial growth or bacterial cell death. Despite the fact that TA modules are widespread in bacteria and archaea, the biological role of these systems is ambiguous. Nevertheless, a number of studies suggests that the TA modules are engaged in such important processes as biofilm formation, stress response or virulence and maintenance of mobile genetic elements. The Dickeya dadantii 3937 strain serves as a model for pathogens causing the soft-rot disease in a wide range of angiosperm plants. Until now, several chromosome-encoded type II TA systems were identified in silico in the genome of this economically important bacterium, however so far only one of them was experimentally validated. In this study, we investigated three putative type II TA systems in D. dadantii 3937: ccdAB2Dda, phd-docDda and dhiTA, which represents a novel toxin/antitoxin superfamily. We provide an experimental proof for their functionality in vivo both in D. dadantii and Escherichia coli. Finally, we examined the prevalence of those systems across the Pectobacteriaceae family by a phylogenetic analysis.
Collapse
|
8
|
Warrier A, Mazumder N, Prabhu S, Satyamoorthy K, Murali TS. Photodynamic therapy to control microbial biofilms. Photodiagnosis Photodyn Ther 2020; 33:102090. [PMID: 33157331 DOI: 10.1016/j.pdpdt.2020.102090] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023]
Abstract
Microorganisms thrive in well-organized biofilm ecosystems. Biofilm-associated cells typically show increased resistance to antibiotics and contribute significantly to treatment failure. This has prompted investigations aimed at developing advanced and novel antimicrobial approaches that could effectively overcome the shortcomings associated with conventional antibiotic therapy. Studies are ongoing to develop effective curative strategies ranging from the use of peptides, small molecules, nanoparticles to bacteriophages, sonic waves, and light energy targeting various structural and physiological aspects of biofilms. In photodynamic therapy, a light source of a specific wavelength is used to irradiate non-toxic photosensitizers such as tetrapyrroles, synthetic dyes or, naturally occurring compounds to generate reactive oxygen species that can exert a lethal effect on the microbe especially by disrupting the biofilm. The photosensitizer preferentially binds to and accumulates in the microbial cells without causing any damage to the host tissue. Currently, photodynamic therapy is increasingly being used for the treatment of oral caries and dental plaque, chronic wound infections, infected diabetic foot ulcers, cystic fibrosis, chronic sinusitis, implant device-associated infections, etc. This approach is recognized as safe, as it is non-toxic and minimally invasive, making it a reliable, realistic, and promising therapeutic strategy for reducing the microbial burden and biofilm formation in chronic infections. In this review article, we discuss the current and future potential strategies of utilizing photodynamic therapy to extend our ability to impede and eliminate biofilms in various medical conditions.
Collapse
Affiliation(s)
- Anjali Warrier
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sudharshan Prabhu
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
9
|
Wu AY, Kamruzzaman M, Iredell JR. Specialised functions of two common plasmid mediated toxin-antitoxin systems, ccdAB and pemIK, in Enterobacteriaceae. PLoS One 2020; 15:e0230652. [PMID: 32603331 PMCID: PMC7326226 DOI: 10.1371/journal.pone.0230652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Toxin-antitoxin systems (TAS) are commonly found on bacterial plasmids and are generally involved in plasmid maintenance. In addition to plasmid maintenance, several plasmid-mediated TAS are also involved in bacterial stress response and virulence. Even though the same TAS are present in a variety of plasmid types and bacterial species, differences in their sequences, expression and functions are not well defined. Here, we aimed to identify commonly occurring plasmid TAS in Escherichia coli and Klebsiella pneumoniae and compare the sequence, expression and plasmid stability function of their variants. 27 putative type II TAS were identified from 1063 plasmids of Klebsiella pneumoniae in GenBank. Among these, ccdAB and pemIK were found to be most common, also occurring in plasmids of E. coli. Comparisons of ccdAB variants, taken from E. coli and K. pneumoniae, revealed sequence differences, while pemIK variants from IncF and IncL/M plasmids were almost identical. Similarly, the expression and plasmid stability functions of ccdAB variants varied according to the host strain and species, whereas the expression and functions of pemIK variants were consistent among host strains. The specialised functions of some TAS may determine the host specificity and epidemiology of major antibiotic resistance plasmids.
Collapse
Affiliation(s)
- Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- * E-mail: (MK); (JI)
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
- * E-mail: (MK); (JI)
| |
Collapse
|
10
|
Yi L, Lü X. New Strategy on Antimicrobial-resistance: Inhibitors of DNA Replication Enzymes. Curr Med Chem 2019; 26:1761-1787. [PMID: 29110590 DOI: 10.2174/0929867324666171106160326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/31/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Antimicrobial resistance is found in all microorganisms and has become one of the biggest threats to global health. New antimicrobials with different action mechanisms are effective weapons to fight against antibiotic-resistance. OBJECTIVE This review aims to find potential drugs which can be further developed into clinic practice and provide clues for developing more effective antimicrobials. METHODS DNA replication universally exists in all living organisms and is a complicated process in which multiple enzymes are involved in. Enzymes in bacterial DNA replication of initiation and elongation phases bring abundant targets for antimicrobial development as they are conserved and indispensable. In this review, enzyme inhibitors of DNA helicase, DNA primase, topoisomerases, DNA polymerase and DNA ligase were discussed. Special attentions were paid to structures, activities and action modes of these enzyme inhibitors. RESULTS Among these enzymes, type II topoisomerase is the most validated target with abundant inhibitors. For type II topoisomerase inhibitors (excluding quinolones), NBTIs and benzimidazole urea derivatives are the most promising inhibitors because of their good antimicrobial activity and physicochemical properties. Simultaneously, DNA gyrase targeted drugs are particularly attractive in the treatment of tuberculosis as DNA gyrase is the sole type II topoisomerase in Mycobacterium tuberculosis. Relatively, exploitation of antimicrobial inhibitors of the other DNA replication enzymes are primeval, in which inhibitors of topo III are even blank so far. CONCLUSION This review demonstrates that inhibitors of DNA replication enzymes are abundant, diverse and promising, many of which can be developed into antimicrobials to deal with antibioticresistance.
Collapse
Affiliation(s)
- Lanhua Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
11
|
Baishya S, Kangsa Banik S, Das Talukdar A, Anbarasu A, Bhattacharjee A, Dutta Choudhury M. Full title: Identification of potential drug targets against carbapenem resistant Enterobacteriaceae (CRE) strains using in silico gene network analysis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2018.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Xu F, Nazari B, Moon K, Bushin LB, Seyedsayamdost MR. Discovery of a Cryptic Antifungal Compound from Streptomyces albus J1074 Using High-Throughput Elicitor Screens. J Am Chem Soc 2017; 139:9203-9212. [PMID: 28590725 DOI: 10.1021/jacs.7b02716] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
An important unresolved issue in microbial secondary metabolite production is the abundance of biosynthetic gene clusters that are not expressed under typical laboratory growth conditions. These so-called silent or cryptic gene clusters are sources of new natural products, but how they are silenced, and how they may be rationally activated are areas of ongoing investigation. We recently devised a chemogenetic high-throughput screening approach ("HiTES") to discover small molecule elicitors of silent biosynthetic gene clusters. This method was successfully applied to a Gram-negative bacterium; it has yet to be implemented in the prolific antibiotic-producing streptomycetes. Herein we have developed a high-throughput transcriptional assay format in Streptomyces spp. by leveraging eGFP, inserted both at a neutral site and inside the biosynthetic cluster of interest, as a read-out for secondary metabolite synthesis. Using this approach, we successfully used HiTES to activate a silent gene cluster in Streptomyces albus J1074. Our results revealed the cytotoxins etoposide and ivermectin as potent inducers, allowing us to isolate and structurally characterize 14 novel small molecule products of the chosen cluster. One of these molecules is a novel antifungal, while several others inhibit a cysteine protease implicated in cancer. Studies addressing the mechanism of induction by the two elicitors led to the identification of a pathway-specific transcriptional repressor that silences the gene cluster under standard growth conditions. The successful application of HiTES will allow future interrogations of the biological regulation and chemical output of the countless silent gene clusters in Streptomyces spp.
Collapse
Affiliation(s)
- Fei Xu
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Behnam Nazari
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Kyuho Moon
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Leah B Bushin
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States.,Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
13
|
Colavecchio A, Goodridge LD. Phage Therapy Approaches to Reducing Pathogen Persistence and Transmission in Animal Production Environments: Opportunities and Challenges. Microbiol Spectr 2017; 5:10.1128/microbiolspec.pfs-0017-2017. [PMID: 28664828 PMCID: PMC11687507 DOI: 10.1128/microbiolspec.pfs-0017-2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 01/21/2023] Open
Abstract
The era of genomics has allowed for characterization of phages for use as antimicrobials to treat animal infections with a level of precision never before realized. As more research in phage therapy has been conducted, several advantages of phage therapy have been realized, including the ubiquitous nature, specificity, prevalence in the biosphere, and low inherent toxicity of phages, which makes them a safe and sustainable technology for control of animal diseases. These unique qualities of phages have led to several opportunities with respect to emerging trends in infectious disease treatment. However, the opportunities are tempered by several challenges to the successful implementation of phage therapy, such as the fact that an individual phage can only infect one or a few bacterial strains, meaning that large numbers of different phages will likely be needed to treat infections caused by multiple species of bacteria. In addition, phages are only effective if enough of them can reach the site of bacterial colonization, but clearance by the immune system upon introduction to the animal is a reality that must be overcome. Finally, bacterial resistance to the phages may develop, resulting in treatment failure. Even a successful phage infection and lysis of its host has consequences, because large amounts of endotoxin are released upon lysis of Gram-negative bacteria, which can lead to local and systemic complications. Overcoming these challenges will require careful design and development of phage cocktails, including comprehensive characterization of phage host range and assessment of immunological risks associated with phage treatment.
Collapse
Affiliation(s)
- Anna Colavecchio
- Department of Food Science and Agricultural Chemistry, Food Safety and Quality Program, McGill University, Ste Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Lawrence D Goodridge
- Department of Food Science and Agricultural Chemistry, Food Safety and Quality Program, McGill University, Ste Anne de Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
14
|
Chan WT, Espinosa M. The Streptococcus pneumoniae pezAT Toxin-Antitoxin System Reduces β-Lactam Resistance and Genetic Competence. Front Microbiol 2016; 7:1322. [PMID: 27610103 PMCID: PMC4997998 DOI: 10.3389/fmicb.2016.01322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022] Open
Abstract
Chromosomally encoded Type II Toxin–Antitoxin operons are ubiquitous in bacteria and archaea. Antitoxins neutralize the toxic effect of cognate Toxins by protein–protein interactions and sequestering the active residues of the Toxin. Toxins target essential bacterial processes, mostly translation and replication. However, one class apart is constituted by the PezAT pair because the PezT toxin target cell wall biosynthesis. Here, we have examined the role of the pezAT toxin–antitoxin genes in its natural host, the pathogenic bacterium Streptococcus pneumoniae. The pezAT operon on Pneumococcal Pathogenicity Island 1 was deleted from strain R6 and its phenotypic traits were compared with those of the wild type. The mutant cells formed shorter chains during exponential phase, leading to increased colony-forming units. At stationary phase, the mutant was more resilient to lysis. Importantly, the mutant exhibited higher resistance to antibiotics targeting cell walls (β-lactams), but not to antibiotics acting at other levels. In addition, the mutants also showed enhanced genetic competence. We suggest that PezAT participates in a subtle equilibrium between loss of functions (resistance to β-lactams and genetic competence) and gain of other traits (virulence).
Collapse
Affiliation(s)
- Wai T Chan
- Bacterial Gene Expression and Gene Transfer, Molecular Microbiology and Infectious Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Espinosa
- Bacterial Gene Expression and Gene Transfer, Molecular Microbiology and Infectious Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
15
|
Ruhe ZC, Nguyen JY, Chen AJ, Leung NY, Hayes CS, Low DA. CDI Systems Are Stably Maintained by a Cell-Contact Mediated Surveillance Mechanism. PLoS Genet 2016; 12:e1006145. [PMID: 27355474 PMCID: PMC4927057 DOI: 10.1371/journal.pgen.1006145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/07/2016] [Indexed: 11/17/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) systems are widespread amongst Gram-negative bacteria where they play important roles in inter-cellular competition and biofilm formation. CDI+ bacteria use cell-surface CdiA proteins to bind neighboring bacteria and deliver C-terminal toxin domains. CDI+ cells also express CdiI immunity proteins that specifically neutralize toxins delivered from adjacent siblings. Genomic analyses indicate that cdi loci are commonly found on plasmids and genomic islands, suggesting that these Type 5 secretion systems are spread through horizontal gene transfer. Here, we examine whether CDI toxin and immunity activities serve to stabilize mobile genetic elements using a minimal F plasmid that fails to partition properly during cell division. This F plasmid is lost from Escherichia coli populations within 50 cell generations, but is maintained in ~60% of the cells after 100 generations when the plasmid carries the cdi gene cluster from E. coli strain EC93. By contrast, the ccdAB "plasmid addiction" module normally found on F exerts only a modest stabilizing effect. cdi-dependent plasmid stabilization requires the BamA receptor for CdiA, suggesting that plasmid-free daughter cells are inhibited by siblings that retain the CDI+ plasmid. In support of this model, the CDI+ F plasmid is lost rapidly from cells that carry an additional cdiI immunity gene on a separate plasmid. These results indicate that plasmid stabilization occurs through elimination of non-immune cells arising in the population via plasmid loss. Thus, genetic stabilization reflects a strong selection for immunity to CDI. After long-term passage for more than 300 generations, CDI+ plasmids acquire mutations that increase copy number and result in 100% carriage in the population. Together, these results show that CDI stabilizes genetic elements through a toxin-mediated surveillance mechanism in which cells that lose the CDI system are detected and eliminated by their siblings.
Collapse
Affiliation(s)
- Zachary C Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Josephine Y Nguyen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Annette J Chen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Nicole Y Leung
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - David A Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
16
|
Baker O, Gupta A, Obst M, Zhang Y, Anastassiadis K, Fu J, Stewart AF. RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses. Sci Rep 2016; 6:25529. [PMID: 27216209 PMCID: PMC4877586 DOI: 10.1038/srep25529] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/13/2016] [Indexed: 11/30/2022] Open
Abstract
A fluent method for gene targeting to establish protein tagged and ligand inducible conditional loss-of-function alleles is described. We couple new recombineering applications for one-step cloning of gRNA oligonucleotides and rapid generation of short-arm (~1 kb) targeting constructs with the power of Cas9-assisted targeting to establish protein tagged alleles in embryonic stem cells at high efficiency. RAC (Recombineering And Cas9)-tagging with Venus, BirM, APEX2 and the auxin degron is facilitated by a recombineering-ready plasmid series that permits the reuse of gene-specific reagents to insert different tags. Here we focus on protein tagging with the auxin degron because it is a ligand-regulated loss-of-function strategy that is rapid and reversible. Furthermore it includes the additional challenge of biallelic targeting. Despite high frequencies of monoallelic RAC-targeting, we found that simultaneous biallelic targeting benefits from long-arm (>4 kb) targeting constructs. Consequently an updated recombineering pipeline for fluent generation of long arm targeting constructs is also presented.
Collapse
Affiliation(s)
- Oliver Baker
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| | - Ashish Gupta
- Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| | - Mandy Obst
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
- Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| | - Youming Zhang
- Shandong University–Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| | - Jun Fu
- Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
- Shandong University–Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - A. Francis Stewart
- Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| |
Collapse
|
17
|
Abstract
Toxin-antitoxin (TA) systems are small genetic modules formed by a stable toxin and an unstable antitoxin that are widely present in plasmids and in chromosomes of Bacteria and Archaea. Toxins can interfere with cell growth or viability, targeting a variety of key processes. Antitoxin inhibits expression of the toxin, interacts with it, and neutralizes its effect. In a plasmid context, toxins are kept silent by the continuous synthesis of the unstable antitoxins; in plasmid-free cells (segregants), toxins can be activated owing to the faster decay of the antitoxin, and this results in the elimination of these cells from the population (postsegregational killing [PSK]) and in an increase of plasmid-containing cells in a growing culture. Chromosomal TA systems can also be activated in particular circumstances, and the interference with cell growth and viability that ensues contributes in different ways to the physiology of the cell. In this article, we review the conditional activation of TAs in selected plasmidic and chromosomal TA pairs and the implications of this activation. On the whole, the analysis underscores TA interactions involved in PSK and points to the effective contribution of TA systems to the physiology of the cell.
Collapse
|
18
|
Abstract
Early research on the origins and mechanisms of mutation led to the establishment of the dogma that, in the absence of external forces, spontaneous mutation rates are constant. However, recent results from a variety of experimental systems suggest that mutation rates can increase in response to selective pressures. This chapter summarizes data demonstrating that,under stressful conditions, Escherichia coli and Salmonella can increase the likelihood of beneficial mutations by modulating their potential for genetic change.Several experimental systems used to study stress-induced mutagenesis are discussed, with special emphasison the Foster-Cairns system for "adaptive mutation" in E. coli and Salmonella. Examples from other model systems are given to illustrate that stress-induced mutagenesis is a natural and general phenomenon that is not confined to enteric bacteria. Finally, some of the controversy in the field of stress-induced mutagenesis is summarized and discussed, and a perspective on the current state of the field is provided.
Collapse
|
19
|
Wessels U, Stech O, Abdelwhab ESM, Judel A, Mettenleiter TC, Stech J. Improved universal cloning of influenza A virus genes by LacZα-mediated blue/white selection. J Virol Methods 2015; 225:87-9. [PMID: 26404948 DOI: 10.1016/j.jviromet.2015.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 01/29/2023]
Abstract
Reverse genetics of influenza A viruses facilitates both basic research and vaccine development. However, efficient cloning of virus gene segments was cumbersome in established systems due to the necessary cleavage of amplicons with outside cutter restriction enzymes followed by ligation. Occasionally, virus genes may contain cleavage sites for those enzymes. To circumvent that problem, we previously established target-primed plasmid amplification using the negative selection marker ccdB cloned into the plasmid pHW2000, flanked by the highly conserved gene segment termini. Here, we further introduced the LacZα fragment downstream of the ccdB region for additional ad-hoc selection of transformed bacteria by blue/white pre-screening. For comparison, we cloned three gene segments (PA, HA, and NS) from the influenza strain A/Swine/Belgium/1/1979 (H1N1) (SwBelg79) into plasmid vectors pHWSccdB and pHWSccdB-LacZα and observed same cloning efficiency. Furthermore, the plasmid pHWSccdB-LacZα allows easy elimination of bacterial colonies containing empty plasmid clones. Using this improved plasmid, we obtained the complete genomic set of eight functional plasmids for SwBelg79.
Collapse
Affiliation(s)
- Ute Wessels
- Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Olga Stech
- Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - El-Sayed M Abdelwhab
- Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Andreas Judel
- Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Jürgen Stech
- Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493 Greifswald - Insel Riems, Germany.
| |
Collapse
|
20
|
Adenylylation of Gyrase and Topo IV by FicT Toxins Disrupts Bacterial DNA Topology. Cell Rep 2015; 12:1497-507. [PMID: 26299961 DOI: 10.1016/j.celrep.2015.07.056] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 01/10/2023] Open
Abstract
Toxin-antitoxin (TA) modules are ubiquitous molecular switches controlling bacterial growth via the release of toxins that inhibit cell proliferation. Most of these toxins interfere with protein translation, but a growing variety of other mechanisms hints at a diversity that is not yet fully appreciated. Here, we characterize a group of FIC domain proteins as toxins of the conserved and abundant FicTA family of TA modules, and we reveal that they act by suspending control of cellular DNA topology. We show that FicTs are enzymes that adenylylate DNA gyrase and topoisomerase IV, the essential bacterial type IIA topoisomerases, at their ATP-binding site. This modification inactivates both targets by blocking their ATPase activity, and, consequently, causes reversible growth arrest due to the knotting, catenation, and relaxation of cellular DNA. Our results give insight into the regulation of DNA topology and highlight the remarkable plasticity of FIC domain proteins.
Collapse
|
21
|
Krom RJ, Bhargava P, Lobritz MA, Collins JJ. Engineered Phagemids for Nonlytic, Targeted Antibacterial Therapies. NANO LETTERS 2015; 15:4808-4813. [PMID: 26044909 DOI: 10.1021/acs.nanolett.5b01943] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The increasing incidence of antibiotic-resistant bacterial infections is creating a global public health threat. Because conventional antibiotic drug discovery has failed to keep pace with the rise of resistance, a growing need exists to develop novel antibacterial methodologies. Replication-competent bacteriophages have been utilized in a limited fashion to treat bacterial infections. However, this approach can result in the release of harmful endotoxins, leading to untoward side effects. Here, we engineer bacterial phagemids to express antimicrobial peptides (AMPs) and protein toxins that disrupt intracellular processes, leading to rapid, nonlytic bacterial death. We show that this approach is highly modular, enabling one to readily alter the number and type of AMPs and toxins encoded by the phagemids. Furthermore, we demonstrate the effectiveness of engineered phagemids in an in vivo murine peritonitis infection model. This work shows that targeted, engineered phagemid therapy can serve as a viable, nonantibiotic means to treat bacterial infections, while avoiding the health issues inherent to lytic and replicative bacteriophage use.
Collapse
Affiliation(s)
- Russell J Krom
- †Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- ‡Harvard-MIT Program in Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
- ∥Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- ⊥Department of Molecular and Translational Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Prerna Bhargava
- †Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- §Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- ∥Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Michael A Lobritz
- †Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- §Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- ∥Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- #Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - James J Collins
- †Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- ‡Harvard-MIT Program in Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
- §Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- ∥Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
22
|
Heinrich K, Leslie DJ, Jonas K. Modulation of bacterial proliferation as a survival strategy. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:127-71. [PMID: 26003935 DOI: 10.1016/bs.aambs.2015.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cell cycle is one of the most fundamental processes in biology, underlying the proliferation and growth of all living organisms. In bacteria, the cell cycle has been extensively studied since the 1950s. Most of this research has focused on cell cycle regulation in a few model bacteria, cultured under standard growth conditions. However in nature, bacteria are exposed to drastic environmental changes. Recent work shows that by modulating their own growth and proliferation bacteria can increase their survival under stressful conditions, including antibiotic treatment. Here, we review the mechanisms that allow bacteria to integrate environmental information into their cell cycle. In particular, we focus on mechanisms controlling DNA replication and cell division. We conclude this chapter by highlighting the importance of understanding bacterial cell cycle and growth control for future research as well as other disciplines.
Collapse
|
23
|
Wang H, Bian X, Xia L, Ding X, Müller R, Zhang Y, Fu J, Stewart AF. Improved seamless mutagenesis by recombineering using ccdB for counterselection. Nucleic Acids Res 2013; 42:e37. [PMID: 24369425 PMCID: PMC3950717 DOI: 10.1093/nar/gkt1339] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombineering, which is the use of homologous recombination for DNA engineering in Escherichia coli, usually uses antibiotic selection to identify the intended recombinant. When combined in a second step with counterselection using a small molecule toxin, seamless products can be obtained. Here, we report the advantages of a genetic strategy using CcdB as the counterselectable agent. Expression of CcdB is toxic to E. coli in the absence of the CcdA antidote so counterselection is initiated by the removal of CcdA expression. CcdB counterselection is robust and does not require titrations or experiment-to-experiment optimization. Because counterselection strategies necessarily differ according to the copy number of the target, we describe two variations. For multi-copy targets, we use two E. coli hosts so that counterselection is exerted by the transformation step that is needed to separate the recombined and unrecombined plasmids. For single copy targets, we put the ccdA gene onto the temperature-sensitive pSC101 Red expression plasmid so that counterselection is exerted by the standard temperature shift to remove the expression plasmid. To reduce unwanted intramolecular recombination, we also combined CcdB counterselection with Redα omission. These options improve the use of counterselection in recombineering with BACs, plasmids and the E. coli chromosome.
Collapse
Affiliation(s)
- Hailong Wang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, College of Life Science, Hunan Normal University, 410081 Changsha, People's Republic of China, Department of Genomics, Dresden University of Technology, BioInnovations-Zentrum, Tatzberg 47-51, 01307 Dresden, Germany, Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China, Helmholtz Institute for Pharmaceutical Research, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, PO Box 151150, 66041 Saarbrücken, Germany and Gene Bridges GmbH, Building C2.3, Saarland University, 66123 Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mayer C, Janin YL. Non-quinolone inhibitors of bacterial type IIA topoisomerases: a feat of bioisosterism. Chem Rev 2013; 114:2313-42. [PMID: 24313284 DOI: 10.1021/cr4003984] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Claudine Mayer
- Unité de Microbiologie Structurale, Département de Biologie Structurale et Chimie, Institut Pasteur , 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
25
|
Oyamada Y, Yamagishi JI, Kihara T, Yoshida H, Wachi M, Ito H. Mechanism of Inhibition of DNA Gyrase by ES-1273, a Novel DNA Gyrase Inhibitor. Microbiol Immunol 2013; 51:977-84. [DOI: 10.1111/j.1348-0421.2007.tb03994.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yoshihiro Oyamada
- Pharmacology Research Laboratories; Dainippon Sumitomo Pharma Co., Ltd.; Suita Osaka 564-0053 Japan
| | - Jun-ichi Yamagishi
- Technology Research & Development Center; Dainippon Sumitomo Pharma Co., Ltd.; Osaka Osaka 553-0001 Japan
| | - Takahiro Kihara
- Genomic Science Laboratories; Dainippon Sumitomo Pharma Co., Ltd.; Osaka Osaka 554-0022 Japan
| | - Hiroaki Yoshida
- Pharmacology Research Laboratories; Dainippon Sumitomo Pharma Co., Ltd.; Suita Osaka 564-0053 Japan
| | - Masaaki Wachi
- Department of Bioengineering; Tokyo Institute of Technology; Yokohama Kanagawa 226-8501 Japan
| | - Hideaki Ito
- Pharmacology Research Laboratories; Dainippon Sumitomo Pharma Co., Ltd.; Suita Osaka 564-0053 Japan
| |
Collapse
|
26
|
Mruk I, Kobayashi I. To be or not to be: regulation of restriction-modification systems and other toxin-antitoxin systems. Nucleic Acids Res 2013; 42:70-86. [PMID: 23945938 PMCID: PMC3874152 DOI: 10.1093/nar/gkt711] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the simplest classes of genes involved in programmed death is that containing the toxin–antitoxin (TA) systems of prokaryotes. These systems are composed of an intracellular toxin and an antitoxin that neutralizes its effect. These systems, now classified into five types, were initially discovered because some of them allow the stable maintenance of mobile genetic elements in a microbial population through postsegregational killing or the death of cells that have lost these systems. Here, we demonstrate parallels between some TA systems and restriction–modification systems (RM systems). RM systems are composed of a restriction enzyme (toxin) and a modification enzyme (antitoxin) and limit the genetic flux between lineages with different epigenetic identities, as defined by sequence-specific DNA methylation. The similarities between these systems include their postsegregational killing and their effects on global gene expression. Both require the finely regulated expression of a toxin and antitoxin. The antitoxin (modification enzyme) or linked protein may act as a transcriptional regulator. A regulatory antisense RNA recently identified in an RM system can be compared with those RNAs in TA systems. This review is intended to generalize the concept of TA systems in studies of stress responses, programmed death, genetic conflict and epigenetics.
Collapse
Affiliation(s)
- Iwona Mruk
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan and Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | |
Collapse
|
27
|
Vatansever F, de Melo WCMA, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP, Hamblin MR. Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 2013; 37:955-89. [PMID: 23802986 DOI: 10.1111/1574-6976.12026] [Citation(s) in RCA: 631] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction in molecular oxygen. Four major ROS are recognized comprising superoxide (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen ((1)O2), but they display very different kinetics and levels of activity. The effects of O2•- and H2O2 are less acute than those of •OH and (1)O2, because the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and nonenzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or (1)O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics and nonpharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma, and medicinal honey. A brief final section covers reactive nitrogen species and related therapeutics, such as acidified nitrite and nitric oxide-releasing nanoparticles.
Collapse
Affiliation(s)
- Fatma Vatansever
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Westra ER, Staals RH, Gort G, Høgh S, Neumann S, de la Cruz F, Fineran PC, Brouns SJ. CRISPR-Cas systems preferentially target the leading regions of MOBF conjugative plasmids. RNA Biol 2013; 10:749-61. [PMID: 23535265 PMCID: PMC3737333 DOI: 10.4161/rna.24202] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 12/21/2022] Open
Abstract
Most prokaryotes contain CRISPR-Cas immune systems that provide protection against mobile genetic elements. We have focused on the ability of CRISPR-Cas to block plasmid conjugation, and analyzed the position of target sequences (protospacers) on conjugative plasmids. The analysis reveals that protospacers are non-uniformly distributed over plasmid regions in a pattern that is determined by the plasmid's mobilization type (MOB). While MOBP plasmids are most frequently targeted in the region entering the recipient cell last (lagging region), MOBF plasmids are mostly targeted in the region entering the recipient cell first (leading region). To explain this protospacer distribution bias, we propose two mutually non-exclusive hypotheses: (1) spacers are acquired more frequently from either the leading or lagging region depending on the MOB type (2) CRISPR-interference is more efficient when spacers target these preferred regions. To test the latter hypothesis, we analyzed Type I-E CRISPR-interference against MOBF prototype plasmid F in Escherichia coli. Our results show that plasmid conjugation is effectively inhibited, but the level of immunity is not affected by targeting the plasmid in the leading or lagging region. Moreover, CRISPR-immunity levels do not depend on whether the incoming single-stranded plasmid DNA, or the DNA strand synthesized in the recipient is targeted. Our findings indicate that single-stranded DNA may not be a target for Type I-E CRISPR-Cas systems, and suggest that the protospacer distribution bias might be due to spacer acquisition preferences.
Collapse
Affiliation(s)
- Edze R. Westra
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
| | - Raymond H.J. Staals
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
| | - Gerrit Gort
- Biometris; Wageningen University and Research Center; Wageningen, The Netherlands
| | - Søren Høgh
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
| | - Sarah Neumann
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
| | - Fernando de la Cruz
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria; Universidad de Cantabria-Consejo Superior de Investigaciones Científicas-SODERCAN; Santander, Spain
| | - Peter C. Fineran
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
- Department of Microbiology and Immunology; University of Otago; Dunedin, New Zealand
| | - Stan J.J. Brouns
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
| |
Collapse
|
29
|
BapE DNA endonuclease induces an apoptotic-like response to DNA damage in Caulobacter. Proc Natl Acad Sci U S A 2012; 109:18096-101. [PMID: 23074244 DOI: 10.1073/pnas.1213332109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the presence of extensive DNA damage, eukaryotes activate endonucleases to fragment their chromosomes and induce apoptotic cell death. Apoptotic-like responses have recently been described in bacteria, but primarily in specialized mutant backgrounds, and the factors responsible for DNA damage-induced chromosome fragmentation and death have not been identified. Here we find that wild-type Caulobacter cells induce apoptotic-like cell death in response to extensive DNA damage. The bacterial apoptosis endonuclease (BapE) protein is induced by damage but not involved in DNA repair itself, and mediates this cell fate decision. BapE fragments chromosomes by cleaving supercoiled DNA in a sequence-nonspecific manner, thereby perturbing chromosome integrity both in vivo and in vitro. This damage-induced chromosome fragmentation pathway resembles that of eukaryotic apoptosis. We propose that damage-induced programmed cell death can be a primary stress response for some bacterial species, providing isogenic bacterial communities with advantages similar to those that apoptosis provides to multicellular organisms.
Collapse
|
30
|
Smith AB, López-Villarejo J, Diago-Navarro E, Mitchenall LA, Barendregt A, Heck AJ, Lemonnier M, Maxwell A, Díaz-Orejas R. A common origin for the bacterial toxin-antitoxin systems parD and ccd, suggested by analyses of toxin/target and toxin/antitoxin interactions. PLoS One 2012; 7:e46499. [PMID: 23029540 PMCID: PMC3460896 DOI: 10.1371/journal.pone.0046499] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 08/31/2012] [Indexed: 11/18/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) systems encode two proteins, a potent inhibitor of cell proliferation (toxin) and its specific antidote (antitoxin). Structural data has revealed striking similarities between the two model TA toxins CcdB, a DNA gyrase inhibitor encoded by the ccd system of plasmid F, and Kid, a site-specific endoribonuclease encoded by the parD system of plasmid R1. While a common structural fold seemed at odds with the two clearly different modes of action of these toxins, the possibility of functional crosstalk between the parD and ccd systems, which would further point to their common evolutionary origin, has not been documented. Here, we show that the cleavage of RNA and the inhibition of protein synthesis by the Kid toxin, two activities that are specifically counteracted by its cognate Kis antitoxin, are altered, but not inhibited, by the CcdA antitoxin. In addition, Kis was able to inhibit the stimulation of DNA gyrase-mediated cleavage of DNA by CcdB, albeit less efficiently than CcdA. We further show that physical interactions between the toxins and antitoxins of the different systems do occur and define the stoichiometry of the complexes formed. We found that CcdB did not degrade RNA nor did Kid have any reproducible effect on the tested DNA gyrase activities, suggesting that these toxins evolved to reach different, rather than common, cellular targets.
Collapse
Affiliation(s)
- Andrew B. Smith
- Departament of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Juan López-Villarejo
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Elizabeth Diago-Navarro
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Lesley A. Mitchenall
- Departament of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Albert J. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Marc Lemonnier
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Anthony Maxwell
- Departament of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Ramón Díaz-Orejas
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
31
|
Moll I, Engelberg-Kulka H. Selective translation during stress in Escherichia coli. Trends Biochem Sci 2012; 37:493-8. [PMID: 22939840 DOI: 10.1016/j.tibs.2012.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/18/2022]
Abstract
The bacterial stress response, a strategy to cope with environmental changes, is generally known to operate on the transcriptional level. Here, we discuss a novel paradigm for stress adaptation at the post-transcriptional level, based on the recent discovery of a stress-induced modified form of the translation machinery in Escherichia coli that is generated by MazF, the toxin component of the toxin-antitoxin (TA) module mazEF. Under stress, the induced endoribonuclease MazF removes the 3'-terminal 43 nucleotides of the 16S rRNA of ribosomes and, concomitantly, the 5'-untranslated regions (UTRs) of specific transcripts. This elegant mechanism enables selective translation due to the complementary effect of MazF on ribosomes and mRNAs, and also represents the first example of functional ribosome heterogeneity based on rRNA alteration.
Collapse
Affiliation(s)
- Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria.
| | | |
Collapse
|
32
|
Additional role for the ccd operon of F-plasmid as a transmissible persistence factor. Proc Natl Acad Sci U S A 2012; 109:12497-502. [PMID: 22802647 DOI: 10.1073/pnas.1121217109] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Toxin-antitoxin (TA) systems are found on both bacterial plasmids and chromosomes, but in most cases their functional role is unclear. Gene knockouts often yield limited insights into functions of individual TA systems because of their redundancy. The well-characterized F-plasmid-based CcdAB TA system is important for F-plasmid maintenance. We have isolated several point mutants of the toxin CcdB that fail to bind to its cellular target, DNA gyrase, but retain binding to the antitoxin, CcdA. Expression of such mutants is shown to result in release of the WT toxin from a functional preexisting TA complex as well as derepression of the TA operon. One such inactive, active-site mutant of CcdB was used to demonstrate the contribution of CcdB to antibiotic persistence. Transient activation of WT CcdB either by coexpression of the mutant or by antibiotic/heat stress was shown to enhance the generation of drug-tolerant persisters in a process dependent on Lon protease and RecA. An F-plasmid containing a ccd locus can, therefore, function as a transmissible persistence factor.
Collapse
|
33
|
Barbosa LCB, Garrido SS, Garcia A, Delfino DB, Santos LDN, Marchetto R. Design and synthesis of peptides from bacterial ParE toxin as inhibitors of topoisomerases. Eur J Med Chem 2012; 54:591-6. [PMID: 22749642 DOI: 10.1016/j.ejmech.2012.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 12/16/2022]
Abstract
Toxin-antitoxin (TA) proteic systems encode a toxin and an antitoxin that regulate the growth and death of bacterial cells under various stress conditions. The ParE protein is a toxin that inhibits DNA gyrase activity and thereby blocks DNA replication. Based on the Escherichia coli ParE structure, a series of linear peptides were designed and synthesized by solid-phase methodology. The ability of the peptides to inhibit the activity of bacterial topoisomerases was investigated. Four peptides (ParELC3, ParELC8, ParELC10 and ParELC12), showed complete inhibition of DNA gyrase supercoiling activity with an IC(100) between 20 and 40 μmol L(-1). In contrast to wild-type ParE, the peptide analogues were able to inhibit the DNA relaxation of topoisomerase IV, another type IIA bacterial topoisomerase, with lower IC(100) values. Interestingly only ParELC12 displayed inhibition of the relaxation activity of human topoisomerase II. Our findings reveal new inhibitors of bacterial topoisomerases and are a good starting point for the development of a new class of antibacterial agents that targets the DNA topoisomerases.
Collapse
Affiliation(s)
- Luiz Carlos Bertucci Barbosa
- UNESP - Institute of Chemistry, Department of Biochemistry and Technological Chemistry, Caixa Postal 355, 14800-900 Araraquara, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol 2012; 10:e1001281. [PMID: 22412352 PMCID: PMC3295820 DOI: 10.1371/journal.pbio.1001281] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 01/26/2012] [Indexed: 12/17/2022] Open
Abstract
A newly discovered apoptotic-like death is inhibited by the previously described mazEF-mediated death pathway, revealing two programmed cell death systems in Escherichia coli. In eukaryotes, the classical form of programmed cell death (PCD) is apoptosis, which has as its specific characteristics DNA fragmentation and membrane depolarization. In Escherichia coli a different PCD system has been reported. It is mediated by the toxin–antitoxin system module mazEF. The E. coli mazEF module is one of the most thoroughly studied toxin–antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. mazEF-mediated cell death is a population phenomenon requiring the quorum-sensing pentapeptide NNWNN designated Extracellular Death Factor (EDF). mazEF is triggered by several stressful conditions, including severe damage to the DNA. Here, using confocal microscopy and FACS analysis, we show that under conditions of severe DNA damage, the triggered mazEF-mediated cell death pathway leads to the inhibition of a second cell death pathway. The latter is an apoptotic-like death (ALD); ALD is mediated by recA and lexA. The mazEF-mediated pathway reduces recA mRNA levels. Based on these results, we offer a molecular model for the maintenance of an altruistic characteristic in cell populations. In our model, the ALD pathway is inhibited by the altruistic EDF-mazEF-mediated death pathway. The enteric bacterium Escherichia coli, like most other bacteria, carries on its chromosome a pair of genes, mazE and mazF (mazEF): mazF specifies a toxin, and mazE specifies an antitoxin. Previously, we have shown that E. coli mazEF is responsible for bacterial programmed cell death in response to stressors such as DNA damage. Here, we report that extensive DNA damage can induce a second mode of cell death, which we call apoptotic-like death (ALD). ALD is like apoptosis—a mode of cell death that has previously been recorded only in eukaryotes. During ALD, the cell membrane is depolarized, and the DNA is fragmented and can be detected using the classical TUNEL assay. The MazEF death pathway, however, shows neither of those features, yet also kills the cell. We show that ALD is mediated by two proteins, RecA and LexA, which are noteworthy because LexA is an inhibitor of the SOS response (which is a global response to DNA damage in which the cell cycle is arrested and DNA repair is induced). This defines ALD as a form of SOS response. Furthermore, MazEF and its downstream components cause reduction of recA mRNA levels, which could explain how the MazEF pathway inhibits the ALD pathway. We conclude that the E. coli ALD pathway is a back-up system for the traditional mazEF cell death pathway. Should one of the components of the mazEF pathway be inactivated, bacterial cell death would occur through ALD. These findings also have implications for the mechanisms of “altruistic” cell death among bacterial populations.
Collapse
|
35
|
Abstract
Almost all bacteria and many archaea contain genes whose expression inhibits cell growth and may lead to cell death when overproduced, reminiscent of apoptotic genes in higher systems. The cellular targets of these toxins are quite diverse and include DNA replication, mRNA stability, protein synthesis, cell-wall biosynthesis, and ATP synthesis. These toxins are co-expressed and neutralized with their cognate antitoxins from a TA (toxin-antitoxin) operon in normally growing cells. Antitoxins are more labile than toxins and are readily degraded under stress conditions, allowing the toxins to exert their toxic effect. Presence of at least 33 TA systems in Escherichia coli and more than 60 TA systems in Mycobacterium tuberculosis suggests that the TA systems are involved not only in normal bacterial physiology but also in pathogenicity of bacteria. The elucidation of their cellular function and regulation is thus crucial for our understanding of bacterial physiology under various stress conditions.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Department of Biochemistry, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
36
|
Shapira A, Shapira S, Gal-Tanamy M, Zemel R, Tur-Kaspa R, Benhar I. Removal of hepatitis C virus-infected cells by a zymogenized bacterial toxin. PLoS One 2012; 7:e32320. [PMID: 22359682 PMCID: PMC3281143 DOI: 10.1371/journal.pone.0032320] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/26/2012] [Indexed: 11/19/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and has become a global health threat. No HCV vaccine is currently available and treatment with antiviral therapy is associated with adverse side effects. Moreover, there is no preventive therapy for recurrent hepatitis C post liver transplantation. The NS3 serine protease is necessary for HCV replication and represents a prime target for developing anti HCV therapies. Recently we described a therapeutic approach for eradication of HCV infected cells that is based on protein delivery of two NS3 protease-activatable recombinant toxins we named "zymoxins". These toxins were inactivated by fusion to rationally designed inhibitory peptides via NS3-cleavable linkers. Once delivered to cells where NS3 protease is present, the inhibitory peptide is removed resulting in re-activation of cytotoxic activity. The zymoxins we described suffered from two limitations: they required high levels of protease for activation and had basal activities in the un-activated form that resulted in a narrow potential therapeutic window. Here, we present a solution that overcame the major limitations of the "first generation zymoxins" by converting MazF ribonuclease, the toxic component of the E. coli chromosomal MazEF toxin-antitoxin system, into an NS3-activated zymoxin that is introduced to cells by means of gene delivery. We constructed an expression cassette that encodes for a single polypeptide that incorporates both the toxin and a fragment of its potent natural antidote, MazE, linked via an NS3-cleavable linker. While covalently paired to its inhibitor, the ribonuclease is well tolerated when expressed in naïve, healthy cells. In contrast, activating proteolysis that is induced by even low levels of NS3, results in an eradication of NS3 expressing model cells and HCV infected cells. Zymoxins may thus become a valuable tool in eradicating cells infected by intracellular pathogens that express intracellular proteases.
Collapse
Affiliation(s)
- Assaf Shapira
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
- Molecular Hepatology Research Laboratory, Sackler School of Medicine, Felsenstein Medical Research Center, Tel-Aviv University, Petah Tikva, Israel
| | - Shiran Shapira
- The Integrated Cancer Prevention Center, Tel Aviv Medical Center, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Meital Gal-Tanamy
- Molecular Hepatology Research Laboratory, Sackler School of Medicine, Felsenstein Medical Research Center, Tel-Aviv University, Petah Tikva, Israel
| | - Romy Zemel
- Molecular Hepatology Research Laboratory, Sackler School of Medicine, Felsenstein Medical Research Center, Tel-Aviv University, Petah Tikva, Israel
| | - Ran Tur-Kaspa
- Molecular Hepatology Research Laboratory, Sackler School of Medicine, Felsenstein Medical Research Center, Tel-Aviv University, Petah Tikva, Israel
- Department of Medicine D and Liver Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Itai Benhar
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
- * E-mail:
| |
Collapse
|
37
|
Fajardo C, Ortíz LT, Rodríguez-Membibre ML, Nande M, Lobo MC, Martin M. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. CHEMOSPHERE 2012; 86:802-8. [PMID: 22169206 DOI: 10.1016/j.chemosphere.2011.11.041] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/07/2011] [Accepted: 11/07/2011] [Indexed: 05/20/2023]
Abstract
In this work, nanoscale zero-valent iron (NZVI) particles have been used as an immobilisation strategy to reduce Pb and Zn availability and mobility in polluted soils. The application of NZVI to two soil microcosms (MPb and MZn) at a dose of 34 mg g(-1) soil efficiently immobilised Pb (25%) and zinc (20%). Exposure to NZVI had little impact on the microbial cellular viability and biological activity in the soils. Three bacterial genes (narG, nirS and gyrA) were used as treatment-related biomarkers. These biomarkers ruled out a broad bactericidal effect on the bulk soil microbial community. A transcriptome analysis of the genes did not reveal any changes in their expression ratios after the NZVI treatment: 1.6 (narG), 0.8 (nirS) and 0.7 (gyrA) in the MPb microcosm and 0.6 (narG), 1.2 (nirS) and 0.5 (gyrA) in the MZn microcosm. However, significant changes in the structure and composition of the soil bacteria population were detected by fluorescence in situ hybridisation. Thus, our results showed that NZVI toxicity could be highly dose and species dependent, and the effective applicability of the proposed molecular approach in assessing the impact of this immobilisation strategy on soil microbial population.
Collapse
Affiliation(s)
- C Fajardo
- Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
38
|
Sahoo AK, Sk MP, Ghosh SS, Chattopadhyay A. Plasmid DNA linearization in the antibacterial action of a new fluorescent Ag nanoparticle-paracetamol dimer composite. NANOSCALE 2011; 3:4226-4233. [PMID: 21897984 DOI: 10.1039/c1nr10389j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Herein, we report the generation of a composite comprised of p-hydroxyacetanilide dimer and Ag nanoparticles (NPs) by reaction of AgNO(3) and p-hydroxyacetanilide. The formation of the composite was established by UV-vis, FTIR and NMR spectroscopy, transmission electron microscopy and X-ray diffraction along with substantiation by mass spectrometry. Interestingly, the composite exhibited an emission spectrum with a peak at 435 nm when excited by light of wavelength 320 nm. The composite showed superior antimicrobial activity with respect to its individual components against a wide range of Gram positive and Gram negative bacteria at relatively low concentrations of Ag NPs and at which there was no apparent cytotoxicity against mammalian cells. Our results suggest that the composite strongly interacted with the bacterial cell walls leading to cell bursting. Interestingly, enhancement in the reactive oxygen species (ROS) generation in bacteria was observed in the presence of the composite. It is proposed that the ROS generation led to oxidation of the dimer to N-acetyl-p-benzoquinone imine (NAPQI). The generated NAPQI acted as a DNA gyrase inhibitor causing cell death following linearization of DNA.
Collapse
Affiliation(s)
- Amaresh Kumar Sahoo
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | | | | | |
Collapse
|
39
|
Ghilarov D, Serebryakova M, Shkundina I, Severinov K. A major portion of DNA gyrase inhibitor microcin B17 undergoes an N,O-peptidyl shift during synthesis. J Biol Chem 2011; 286:26308-18. [PMID: 21628468 PMCID: PMC3143593 DOI: 10.1074/jbc.m111.241315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/12/2011] [Indexed: 11/06/2022] Open
Abstract
Microcin B17 (McB) is a 43-amino acid antibacterial peptide targeting the DNA gyrase. The McB precursor is ribosomally produced and then post-translationally modified by the McbBCD synthase. Active mature McB contains eight oxazole and thiazole heterocycles. Here, we show that a major portion of mature McB contains an additional unusual modification, a backbone ester bond connecting McB residues 51 and 52. The modification results from an N → O shift of the Ser(52) residue located immediately downstream of one of McB thiazole heterocycles. We speculate that the N,O-peptidyl shift undergone by Ser(52) is an intermediate of post-translational modification reactions catalyzed by the McbBCD synthase that normally lead to formation of McB heterocycles.
Collapse
Affiliation(s)
- Dmitry Ghilarov
- From the Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Marina Serebryakova
- From the Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- the Institute of Physicochemical Medicine Federal Medico-Biological Agency, Moscow, 119992 Russia, Russia
| | - Irina Shkundina
- From the Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- the Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Konstantin Severinov
- From the Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- the Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
- the Waksman Institute of Microbiology, Piscataway, New Jersey 08854, and
- the Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| |
Collapse
|
40
|
Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria. Infect Immun 2011; 79:2502-9. [PMID: 21555398 DOI: 10.1128/iai.00127-11] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulence functions of pathogenic bacteria are often encoded on large extrachromosomal plasmids. These plasmids are maintained at low copy number to reduce the metabolic burden on their host. Low-copy-number plasmids risk loss during cell division. This is countered by plasmid-encoded systems that ensure that each cell receives at least one plasmid copy. Plasmid replication and recombination can produce plasmid multimers that hinder plasmid segregation. These are removed by multimer resolution systems. Equitable distribution of the resulting monomers to daughter cells is ensured by plasmid partition systems that actively segregate plasmid copies to daughter cells in a process akin to mitosis in higher organisms. Any plasmid-free cells that still arise due to occasional failures of replication, multimer resolution, or partition are eliminated by plasmid-encoded postsegregational killing systems. Here we argue that all of these three systems are essential for the stable maintenance of large low-copy-number plasmids. Thus, they should be found on all large virulence plasmids. Where available, well-annotated sequences of virulence plasmids confirm this. Indeed, virulence plasmids often appear to contain more than one example conforming to each of the three system classes. Since these systems are essential for virulence, they can be regarded as ubiquitous virulence factors. As such, they should be informative in the search for new antibacterial agents and drug targets.
Collapse
|
41
|
Smith RB, Faki H, Leslie R. Limitations of the Jacobs–Gould Reaction Using Microwave Irradiation. SYNTHETIC COMMUN 2011. [DOI: 10.1080/00397911.2010.486515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Yuan J, Sterckx Y, Mitchenall LA, Maxwell A, Loris R, Waldor MK. Vibrio cholerae ParE2 poisons DNA gyrase via a mechanism distinct from other gyrase inhibitors. J Biol Chem 2010; 285:40397-408. [PMID: 20952390 PMCID: PMC3001019 DOI: 10.1074/jbc.m110.138776] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 09/23/2010] [Indexed: 01/21/2023] Open
Abstract
DNA gyrase is an essential bacterial enzyme required for the maintenance of chromosomal DNA topology. This enzyme is the target of several protein toxins encoded in toxin-antitoxin (TA) loci as well as of man-made antibiotics such as quinolones. The genome of Vibrio cholerae, the cause of cholera, contains three putative TA loci that exhibit modest similarity to the RK2 plasmid-borne parDE TA locus, which is thought to target gyrase although its mechanism of action is uncharacterized. Here we investigated the V. cholerae parDE2 locus. We found that this locus encodes a functional proteic TA pair that is active in Escherichia coli as well as V. cholerae. ParD2 co-purified with ParE2 and interacted with it directly. Unlike many other antitoxins, ParD2 could prevent but not reverse ParE2 toxicity. ParE2, like the unrelated F-encoded toxin CcdB and quinolones, targeted the GyrA subunit and stalled the DNA-gyrase cleavage complex. However, in contrast to other gyrase poisons, ParE2 toxicity required ATP, and it interfered with gyrase-dependent DNA supercoiling but not DNA relaxation. ParE2 did not bind GyrA fragments bound by CcdB and quinolones, and a set of strains resistant to a variety of known gyrase inhibitors all exhibited sensitivity to ParE2. Together, our findings suggest that ParE2 and presumably its many plasmid- and chromosome-encoded homologues inhibit gyrase in a different manner than previously described agents.
Collapse
Affiliation(s)
- Jie Yuan
- From the Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School
- the Howard Hughes Medical Institute, and
- the Program in Immunology, Tufts University School of Medicine, Boston, Massachusetts 02115
| | - Yann Sterckx
- Structural Biology Brussels, Vrije Universiteit Brussel Pleinlaan 2, Brussels 1050, Belgium
- the Department of Molecular and Cellular Interactions, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, Brussels 1050, Belgium, and
| | - Lesley A. Mitchenall
- the Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Anthony Maxwell
- the Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel Pleinlaan 2, Brussels 1050, Belgium
- the Department of Molecular and Cellular Interactions, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, Brussels 1050, Belgium, and
| | - Matthew K. Waldor
- From the Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School
- the Howard Hughes Medical Institute, and
- the Program in Immunology, Tufts University School of Medicine, Boston, Massachusetts 02115
| |
Collapse
|
43
|
Saisongkorh W, Robert C, La Scola B, Raoult D, Rolain JM. Evidence of transfer by conjugation of type IV secretion system genes between Bartonella species and Rhizobium radiobacter in amoeba. PLoS One 2010; 5:e12666. [PMID: 20856925 PMCID: PMC2938332 DOI: 10.1371/journal.pone.0012666] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/15/2010] [Indexed: 11/24/2022] Open
Abstract
Background Bartonella species cospeciate with mammals and live within erythrocytes. Even in these specific niches, it has been recently suggested by bioinformatic analysis of full genome sequences that Lateral Gene Transfer (LGT) may occur but this has never been demonstrated biologically. Here we describe the sequence of the B. rattaustraliani (AUST/NH4T) circular plasmid (pNH4) that encodes the tra cluster of the Type IV secretion system (T4SS) and we eventually provide evidence that Bartonella species may conjugate and exchange this plasmid inside amoeba. Principal Findings The T4SS of pNH4 is critical for intracellular viability of bacterial pathogens, exhibits bioinformatic evidence of LGT among bacteria living in phagocytic protists. For instance, 3 out of 4 T4SS encoding genes from pNH4 appear to be closely related to Rhizobiales, suggesting that gene exchange occurs between intracellular bacteria from mammals (bartonellae) and plants (Rhizobiales). We show that B. rattaustraliani and Rhizobium radiobacter both survived within the amoeba Acanthamoeba polyphaga and can conjugate together. Our findings further support the hypothesis that tra genes might also move into and out of bacterial communities by conjugation, which might be the primary means of genomic evolution for intracellular adaptation by cross-talk of interchangeable genes between Bartonella species and plant pathogens. Conclusions Based on this, we speculate that amoeba favor the transfer of genes as phagocytic protists, which allows for intraphagocytic survival and, as a consequence, promotes the creation of potential pathogenic organisms.
Collapse
Affiliation(s)
- Watcharee Saisongkorh
- URMITE, CNRS-IRD UMR 6236, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Catherine Robert
- URMITE, CNRS-IRD UMR 6236, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Bernard La Scola
- URMITE, CNRS-IRD UMR 6236, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Didier Raoult
- URMITE, CNRS-IRD UMR 6236, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
- * E-mail: (JMR); (DR)
| | - Jean-Marc Rolain
- URMITE, CNRS-IRD UMR 6236, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
- * E-mail: (JMR); (DR)
| |
Collapse
|
44
|
Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proc Natl Acad Sci U S A 2010; 107:15898-903. [PMID: 20713708 DOI: 10.1073/pnas.1009747107] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The development of biomolecular devices that interface with biological systems to reveal new insights and produce novel functions is one of the defining goals of synthetic biology. Our lab previously described a synthetic, riboregulator system that affords for modular, tunable, and tight control of gene expression in vivo. Here we highlight several experimental advantages unique to this RNA-based system, including physiologically relevant protein production, component modularity, leakage minimization, rapid response time, tunable gene expression, and independent regulation of multiple genes. We demonstrate this utility in four sets of in vivo experiments with various microbial systems. Specifically, we show that the synthetic riboregulator is well suited for GFP fusion protein tracking in wild-type cells, tight regulation of toxic protein expression, and sensitive perturbation of stress response networks. We also show that the system can be used for logic-based computing of multiple, orthogonal inputs, resulting in the development of a programmable kill switch for bacteria. This work establishes a broad, easy-to-use synthetic biology platform for microbiology experiments and biotechnology applications.
Collapse
|
45
|
Davies BW, Kohanski MA, Simmons LA, Winkler JA, Collins JJ, Walker GC. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol Cell 2010; 36:845-60. [PMID: 20005847 DOI: 10.1016/j.molcel.2009.11.024] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 07/13/2009] [Accepted: 08/13/2009] [Indexed: 01/18/2023]
Abstract
Hydroxyurea (HU) specifically inhibits class I ribonucleotide reductase (RNR), depleting dNTP pools and leading to replication fork arrest. Although HU inhibition of RNR is well recognized, the mechanism by which it leads to cell death remains unknown. To investigate the mechanism of HU-induced cell death, we used a systems-level approach to determine the genomic and physiological responses of E. coli to HU treatment. Our results suggest a model by which HU treatment rapidly induces a set of protective responses to manage genomic instability. Continued HU stress activates iron uptake and toxins MazF and RelE, whose activity causes the synthesis of incompletely translated proteins and stimulation of envelope stress responses. These effects alter the properties of one of the cell's terminal cytochrome oxidases, causing an increase in superoxide production. The increased superoxide production, together with the increased iron uptake, fuels the formation of hydroxyl radicals that contribute to HU-induced cell death.
Collapse
Affiliation(s)
- Bryan W Davies
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
46
|
Three Mycobacterium tuberculosis Rel toxin-antitoxin modules inhibit mycobacterial growth and are expressed in infected human macrophages. J Bacteriol 2008; 191:1618-30. [PMID: 19114484 DOI: 10.1128/jb.01318-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis protein pairs Rv1246c-Rv1247c, Rv2865-Rv2866, and Rv3357-Rv3358, here named RelBE, RelFG, and RelJK, respectively, were identified based on homology to the Escherichia coli RelBE toxin:antitoxin (TA) module. In this study, we have characterized each Rel protein pair and have established that they are functional TA modules. Overexpression of individual M. tuberculosis rel toxin genes relE, relG, and relK induced growth arrest in Mycobacterium smegmatis; a phenotype that was completely reversible by expression of their cognate antitoxin genes, relB, relF, and relJ, respectively. We also provide evidence that RelB and RelE interact directly, both in vitro and in vivo. Analysis of the genetic organization and regulation established that relBE, relFG, and relJK form bicistronic operons that are cotranscribed and autoregulated, in a manner unlike typical TA modules. RelB and RelF act as transcriptional activators, inducing expression of their respective promoters. However, RelBE, RelFG, and RelJK (together) repress expression to basal levels of activity, while RelJ represses promoter activity altogether. Finally, we have determined that all six rel genes are expressed in broth-grown M. tuberculosis, whereas relE, relF, and relK are expressed during infection of human macrophages. This is the first demonstration of M. tuberculosis expressing TA modules in broth culture and during infection of human macrophages.
Collapse
|
47
|
Trovatti E, Cotrim CA, Garrido SS, Barros RS, Marchetto R. Peptides based on CcdB protein as novel inhibitors of bacterial topoisomerases. Bioorg Med Chem Lett 2008; 18:6161-4. [PMID: 18938079 DOI: 10.1016/j.bmcl.2008.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
|
48
|
Stech J, Stech O, Herwig A, Altmeppen H, Hundt J, Gohrbandt S, Kreibich A, Weber S, Klenk HD, Mettenleiter TC. Rapid and reliable universal cloning of influenza A virus genes by target-primed plasmid amplification. Nucleic Acids Res 2008; 36:e139. [PMID: 18832366 PMCID: PMC2588516 DOI: 10.1093/nar/gkn646] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Reverse genetics has become pivotal in influenza virus research relying on rapid generation of tailored recombinant influenza viruses. They are rescued from transfected plasmids encoding the eight influenza virus gene segments, which have been cloned using restriction endonucleases and DNA ligation. However, suitable restriction cleavage sites often are not available. Here, we describe a cloning method universal for any influenza A virus strain which is independent of restriction sites. It is based on target-primed plasmid amplification in which the insert provides two megaprimers and contains termini homologous to plasmid regions adjacent to the insertion site. For improved efficiency, a cloning vector was designed containing the negative selection marker ccdB flanked by the highly conserved influenza A virus gene termini. Using this method, we generated complete sets of functional gene segments from seven influenza A strains and three haemagglutinin genes from different serotypes amounting to 59 cloned influenza genes. These results demonstrate that this approach allows rapid and reliable cloning of any segment from any influenza A strain without any information about restriction sites. In case the PCR amplicon ends are homologous to the plasmid annealing sites only, this method is suitable for cloning of any insert with conserved termini.
Collapse
Affiliation(s)
- Jürgen Stech
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Guglielmini J, Szpirer C, Milinkovitch MC. Automated discovery and phylogenetic analysis of new toxin-antitoxin systems. BMC Microbiol 2008; 8:104. [PMID: 18578869 PMCID: PMC2446400 DOI: 10.1186/1471-2180-8-104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 06/25/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although often viewed as elements "at the service of" bacteria, plasmids exhibit replication and maintenance mechanisms that make them purely "selfish DNA" candidates. Toxin-antitoxin (TA) systems are a spectacular example of such mechanisms: a gene coding for a cytotoxic stable protein is preceded by a gene coding for an unstable antitoxin. The toxin being more stable than the antitoxin, absence of the operon causes a reduction of the amount of the latter relative to the amount of the former. Thus, a cell exhibiting a TA system on a plasmid is 'condemned' either not to loose it or to die. RESULTS Different TA systems have been described and classified in several families, according to similarity and functional parameters. However, given the small size and large divergence among TA system sequences, it is likely that many TA systems are not annotated as such in the rapidly accumulating NCBI database. To detect these putative TA systems, we developed an algorithm that searches public databases on the basis of predefined similarity and TA-specific structural constraints. This approach, using a single starting query sequence for each of the ParE, Doc, and VapC families, and two starting sequences for the MazF/CcdB family, identified over 1,500 putative TA systems. These groups of sequences were analyzed phylogenetically for a better classification and understanding of TA systems evolution. CONCLUSION The phylogenetic distributions of the newly uncovered TA systems are very different within the investigated families. The resulting phylogenetic trees are available for browsing and searching through a java program available at http://ueg.ulb.ac.be/tiq/.
Collapse
Affiliation(s)
- Julien Guglielmini
- Laboratory of Evolutionary Genetics, Institute for Molecular Biology & Medicine, Université Libre de Bruxelles (ULB), 12 rue Jeener & Brachet, 6041 Gosselies, Belgium.
| | | | | |
Collapse
|
50
|
Florek P, Muchová K, Pavelcíková P, Barák I. Expression of functional Bacillus SpoIISAB toxin-antitoxin modules in Escherichia coli. FEMS Microbiol Lett 2008; 278:177-84. [PMID: 18096016 DOI: 10.1111/j.1574-6968.2007.00984.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
SpoIISA and SpoIISB proteins from Bacillus subtilis belong to a recently described bacterial programmed-cell death system. The current work demonstrates that the toxin-antitoxin module is also functional in Escherichia coli cells, where the expression of SpoIISA toxin leads to transient growth arrest coupled with cell lysis, and SpoIISA-induced death can be prevented by coexpression of its cognate antitoxin, SpoIISB. Escherichia coli cells appear to be able to escape the SpoIISA killing by activation of a specific, as yet unidentified protease that cleaves out the cytosolic part of the protein. Analysis of the toxic effects of the transmembrane and cytosolic portions of SpoIISA showed that neither of them separately can function as a toxin; therefore, both parts of the protein have to act in concert to exert the killing. This work also identifies genes encoding putative homologues of SpoIISA and SpoIISB proteins on chromosomes of other Bacilli species. The SpoIISA-like proteins from Bacillus anthracis and Bacillus cereus were shown to manifest the same effect on the viability of E. coli as their homologue from B. subtilis. Moreover, expression of the proposed spoIISB-like gene rescues E. coli cells from death induced by the SpoIISA homologue.
Collapse
|