1
|
Sanita Lima M, Silva Domingues D, Rossi Paschoal A, Smith DR. Long-read RNA sequencing can probe organelle genome pervasive transcription. Brief Funct Genomics 2024; 23:695-701. [PMID: 38880995 DOI: 10.1093/bfgp/elae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
40 years ago, organelle genomes were assumed to be streamlined and, perhaps, unexciting remnants of their prokaryotic past. However, the field of organelle genomics has exposed an unparallel diversity in genome architecture (i.e. genome size, structure, and content). The transcription of these eccentric genomes can be just as elaborate - organelle genomes are pervasively transcribed into a plethora of RNA types. However, while organelle protein-coding genes are known to produce polycistronic transcripts that undergo heavy posttranscriptional processing, the nature of organelle noncoding transcriptomes is still poorly resolved. Here, we review how wet-lab experiments and second-generation sequencing data (i.e. short reads) have been useful to determine certain types of organelle RNAs, particularly noncoding RNAs. We then explain how third-generation (long-read) RNA-Seq data represent the new frontier in organelle transcriptomics. We show that public repositories (e.g. NCBI SRA) already contain enough data for inter-phyla comparative studies and argue that organelle biologists can benefit from such data. We discuss the prospects of using publicly available sequencing data for organelle-focused studies and examine the challenges of such an approach. We highlight that the lack of a comprehensive database dedicated to organelle genomics/transcriptomics is a major impediment to the development of a field with implications in basic and applied science.
Collapse
Affiliation(s)
- Matheus Sanita Lima
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Douglas Silva Domingues
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Avenida Padua Dias 11, Piracicaba, SP 13418-900, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Bioinformatics and Pattern Recognition Group (BIOINFO-CP), Federal University of Technology - Paraná - UTFPR, Avenida Alberto Carazzai 1640, Cornélio Procópio, PR 86300000, Brazil
| | - David Roy Smith
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
2
|
Soe T, Kong J, Nie L, Wang J, Peng D, Tembrock LR, Wu Z. Organelle genome assembly, annotation, and comparative analyses of Typha latifolia and T. domingensis: two keystone species for wetlands worldwide. FRONTIERS IN PLANT SCIENCE 2024; 15:1484531. [PMID: 39703547 PMCID: PMC11655213 DOI: 10.3389/fpls.2024.1484531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Typha is a cosmopolitan aquatic plant genus that includes species with widespread global distributions. In previous studies, a revised molecular phylogeny was inferred using seven plastid loci from nine Typha species across different geographic regions. By utilizing complete organellar genomes, we aim to provide a more comprehensive dataset that offers a robust phylogenetic signal for resolving Typha species evolutionary relationships. Here, we assembled T. latifolia and T. domingensis mitochondrial genomes (mitogenomes) using a combination of short-read and long-read data (PacBio, ONT). The mitogenomes of both species are assembled into single circular molecules of 395,136 bp and 395,140 bp in length, respectively, with a similar GC content of 46.7%. A total of 39 protein-coding genes, 17 tRNA genes, and 3 rRNA genes were annotated in both mitogenomes. The plastid genomes (plastomes) of both species possess typical quadripartite structures observed across most plants, with sizes of 161,545 bp and 161,230 bp. The overall average GC content of the plastomes of both species was 36.6%. The comparative analysis of the plastome and mitogenome revealed that 12 mitogenome DNA fragments share similar sequences with in the repeat regions of the corresponding plastomes, suggesting a past transfer of repeat regions into the mitogenome. Additionally, the mitogenomes of the two Typha species exhibited high sequence conservation with several syntenic blocks. Phylogenetic analysis of the organellar genomes of the two Typha species and 10 related species produced congruent phylogenetic trees. The availability of these organellar genomes from two Typha species provide valuable genetic resources for studying the evolution of Typhaceae and will improve taxonomic classifications within the family.
Collapse
Affiliation(s)
- Thida Soe
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jiali Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Liyun Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Dan Peng
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
3
|
Chu L, Du Q, Zuo S, Liu G, Wang H, Liu G, Zhao L, Xu G. Assembly and comparative analysis of the complete mitochondrial genome of Vaccinium carlesii Dunn. Genomics 2024; 116:110897. [PMID: 39032617 DOI: 10.1016/j.ygeno.2024.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Vaccinium L. is an important fruit tree with nutritional, medicinal, and ornamental values. However, the mitochondrial (mt) genome of Vaccinium L. remains largely unexplored. Vaccinium carlesii Dunn is an endemic wild resource in China, which is crucial for blueberry breeding. The V. carlesii mt genomes were sequenced using Illumina and Nanopore, which total length was 636,904 bp with 37 protein coding genes, 20 tRNA genes, and three rRNA genes. We found four pairs of long repeat fragments homologous recombination mediated the generation of substructures in the V. carlesii mt genome. We predicted 383 RNA editing sites, all converting cytosine (C) to uracil (U). According to the phylogenetic analysis, V. carlesii and V. macrocarpon of the Ericaceae exhibited the closest genetic relationship. This study provides a theoretical basis for understanding the evolution of higher plants, species classification and identification, and will also be useful for further utilization of Vaccinium germplasm resources.
Collapse
Affiliation(s)
- Liwei Chu
- College of Life and Health, Dalian University, Dalian 116622, China; Key Laboratory of Saccharide and Lipid Metabolism Research in Liaoning Province, Dalian University, Dalian 116622, China
| | - Qianhui Du
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Siyu Zuo
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Guiting Liu
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Hexin Wang
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Guoling Liu
- Dalian Senmao Modern Agriculture Co., Ltd., Dalian 116622, China
| | - Lina Zhao
- Dalian Senmao Modern Agriculture Co., Ltd., Dalian 116622, China
| | - Guohui Xu
- College of Life and Health, Dalian University, Dalian 116622, China.
| |
Collapse
|
4
|
Shtolz N, Mishmar D. The metazoan landscape of mitochondrial DNA gene order and content is shaped by selection and affects mitochondrial transcription. Commun Biol 2023; 6:93. [PMID: 36690686 PMCID: PMC9871016 DOI: 10.1038/s42003-023-04471-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial DNA (mtDNA) harbors essential genes in most metazoans, yet the regulatory impact of the multiple evolutionary mtDNA rearrangements has been overlooked. Here, by analyzing mtDNAs from ~8000 metazoans we found high gene content conservation (especially of protein and rRNA genes), and codon preferences for mtDNA-encoded tRNAs across most metazoans. In contrast, mtDNA gene order (MGO) was selectively constrained within but not between phyla, yet certain gene stretches (ATP8-ATP6, ND4-ND4L) were highly conserved across metazoans. Since certain metazoans with different MGOs diverge in mtDNA transcription, we hypothesized that evolutionary mtDNA rearrangements affected mtDNA transcriptional patterns. As a first step to test this hypothesis, we analyzed available RNA-seq data from 53 metazoans. Since polycistron mtDNA transcripts constitute a small fraction of the steady-state RNA, we enriched for polycistronic boundaries by calculating RNA-seq read densities across junctions between gene couples encoded either by the same strand (SSJ) or by different strands (DSJ). We found that organisms whose mtDNA is organized in alternating reverse-strand/forward-strand gene blocks (mostly arthropods), displayed significantly reduced DSJ read counts, in contrast to organisms whose mtDNA genes are preferentially encoded by one strand (all chordates). Our findings suggest that mtDNA rearrangements are selectively constrained and likely impact mtDNA regulation.
Collapse
Affiliation(s)
- Noam Shtolz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
5
|
Yim WC, Swain ML, Ma D, An H, Bird KA, Curdie DD, Wang S, Ham HD, Luzuriaga-Neira A, Kirkwood JS, Hur M, Solomon JKQ, Harper JF, Kosma DK, Alvarez-Ponce D, Cushman JC, Edger PP, Mason AS, Pires JC, Tang H, Zhang X. The final piece of the Triangle of U: Evolution of the tetraploid Brassica carinata genome. THE PLANT CELL 2022; 34:4143-4172. [PMID: 35961044 PMCID: PMC9614464 DOI: 10.1093/plcell/koac249] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/24/2022] [Indexed: 05/05/2023]
Abstract
Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.
Collapse
Affiliation(s)
| | | | - Dongna Ma
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201, USA
| | - Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - David D Curdie
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Samuel Wang
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Hyun Don Ham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Juan K Q Solomon
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - Annaliese S Mason
- Plant Breeding Department, INRES, The University of Bonn, Bonn 53115, Germany
| | - J Chris Pires
- Division of Biological Sciences, Bond Life Sciences Center, , University of Missouri, Columbia, Missouri 65211, USA
| | - Haibao Tang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Ni Y, Li J, Chen H, Yue J, Chen P, Liu C. Comparative analysis of the chloroplast and mitochondrial genomes of Saposhnikovia divaricata revealed the possible transfer of plastome repeat regions into the mitogenome. BMC Genomics 2022; 23:570. [PMID: 35945507 PMCID: PMC9364500 DOI: 10.1186/s12864-022-08821-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Saposhnikovia divaricata (Turcz.) Schischk. is a perennial herb whose dried roots are commonly used as a source of traditional medicines. To elucidate the organelle-genome-based phylogeny of Saposhnikovia species and the transfer of DNA between organelle genomes, we sequenced and characterised the mitochondrial genome (mitogenome) of S. divaricata. Results The mitogenome of S. divaricata is a circular molecule of 293,897 bp. The nucleotide composition of the mitogenome is as follows: A, 27.73%; T, 27.03%; C, 22.39%; and G, 22.85. The entire gene content is 45.24%. A total of 31 protein-coding genes, 20 tRNAs and 4 rRNAs, including one pseudogene (rpl16), were annotated in the mitogenome. Phylogenetic analysis of the organelle genomes from S. divaricata and 10 related species produced congruent phylogenetic trees. Selection pressure analysis revealed that most of the mitochondrial genes of related species are highly conserved. Moreover, 2 and 46 RNA-editing sites were found in the chloroplast genome (cpgenome) and mitogenome protein-coding regions, respectively. Finally, a comparison of the cpgenome and the mitogenome assembled from the same dataset revealed 10 mitochondrial DNA fragments with sequences similar to those in the repeat regions of the cpgenome, suggesting that the repeat regions might be transferred into the mitogenome. Conclusions In this study, we assembled and annotated the mitogenome of S. divaricata. This study provides valuable information on the taxonomic classification and molecular evolution of members of the family Apiaceae. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08821-0.
Collapse
Affiliation(s)
- Yang Ni
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, P. R. China
| | - Jingling Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, P. R. China
| | - Haimei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, P. R. China
| | - Jingwen Yue
- College of Agriculture, Fujian Agriculture and Forestry University, No.15, Shang Xiadian Road, Fuzhou, Fujian Province, 350002, P. R. China
| | - Pinghua Chen
- College of Agriculture, Fujian Agriculture and Forestry University, No.15, Shang Xiadian Road, Fuzhou, Fujian Province, 350002, P. R. China.
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, P. R. China.
| |
Collapse
|
7
|
Song MH, Yan C, Li JT. MEANGS: an efficient seed-free tool for de novo assembling animal mitochondrial genome using whole genome NGS data. Brief Bioinform 2021; 23:6481918. [PMID: 34941991 DOI: 10.1093/bib/bbab538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/23/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Advances in next-generation sequencing (NGS) technologies have led to an exponential increase in the number of whole genome sequences (WGS) in databases. This wealth of WGS data has greatly facilitated the recovery of full mitochondrial genomes (mitogenomes), which are vital for phylogenetic, evolutionary and ecological studies. Unfortunately, most existing software cannot easily assemble mitogenome reference sequences conveniently or efficiently. Therefore, we developed a seed-free de novo assembly tool, MEANGS, which applies the trie-search method to extend contigs from self-discovery seeds and assemble a mitogenome from animal WGS data. We then used data from 16 species with different qualities to compare the performance of MEANGS with three other available programs. MEANGS exhibited the best overall performance since it was the only one that completed all tests, and it assembled full or partial mitogenomes for all of the tested samples while the others failed. Furthermore, MEANGS selects superior assembly sequences and annotates protein-coding genes. Thus, MEANGS can be one of the most efficient software for generating high-quality mitogenomes so far, the further use of it will benefit the study on mitogenome based on whole genome NGS data. MEANGS is available at https://github.com/YanCCscu/meangs.
Collapse
Affiliation(s)
- Meng-Huan Song
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| |
Collapse
|
8
|
Zaccaron AZ, Stergiopoulos I. Characterization of the mitochondrial genomes of three powdery mildew pathogens reveals remarkable variation in size and nucleotide composition. Microb Genom 2021; 7. [PMID: 34890311 PMCID: PMC8767329 DOI: 10.1099/mgen.0.000720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Powdery mildews comprise a large group of economically important phytopathogenic fungi. However, limited information exists on their mitochondrial genomes. Here, we assembled and compared the mitochondrial genomes of the powdery mildew pathogens Blumeria graminis f. sp. tritici, Erysiphe pisi, and Golovinomyces cichoracearum. Included in the comparative analysis was also the mitochondrial genome of Erysiphe necator that was previously analysed. The mitochondrial genomes of the four Erysiphales exhibit a similar gene content and organization but a large variation in size, with sizes ranging from 109800 bp in B. graminis f. sp. tritici to 332165 bp in G. cichoracearum, which is the largest mitochondrial genome of a fungal pathogen reported to date. Further comparative analysis revealed an unusual bimodal GC distribution in the mitochondrial genomes of B. graminis f. sp. tritici and G. cichoracearum that was not previously observed in fungi. The cytochrome b (cob) genes of E. necator, E. pisi, and G. cichoracearum were also exceptionally rich in introns, which in turn harboured rare open reading frames encoding reverse transcriptases that were likely acquired horizontally. Golovinomyces cichoracearum had also the longest cob gene (45 kb) among 703 fungal cob genes analysed. Collectively, these results provide novel insights into the organization of mitochondrial genomes of powdery mildew pathogens and represent valuable resources for population genetics and evolutionary studies.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, CA, USA
| | | |
Collapse
|
9
|
Adrián‐Serrano S, Lozano‐Fernandez J, Pons J, Rozas J, Arnedo MA. On the shoulder of giants: Mitogenome recovery from non‐targeted genome projects for phylogenetic inference and molecular evolution studies. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Silvia Adrián‐Serrano
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
| | - Jesus Lozano‐Fernandez
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| | - Joan Pons
- Departament de Biodiversitat i Conservació Institut Mediterrani d'Estudis Avançats (CSIC‐UIB) Esporles Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística & Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
| | - Miquel A. Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
| |
Collapse
|
10
|
Zheng S, Poczai P, Hyvönen J, Tang J, Amiryousefi A. Chloroplot: An Online Program for the Versatile Plotting of Organelle Genomes. Front Genet 2020; 11:576124. [PMID: 33101394 PMCID: PMC7545089 DOI: 10.3389/fgene.2020.576124] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding the complexity of genomic structures and their unique architecture is linked with the power of visualization tools used to represent these features. Such tools should be able to provide a realistic and scalable version of genomic content. Here, we present an online organelle plotting tool focused on chloroplasts, which were developed to visualize the exclusive structure of these genomes. The distinguished unique features of this program include its ability to represent the Single Short Copy (SSC) regions in reverse complement, which allows the depiction of the codon usage bias index for each gene, along with the possibility of the minor mismatches between inverted repeat (IR) regions and user-specified plotting layers. The versatile color schemes and diverse functionalities of the program are specifically designed to reflect the accurate scalable representation of the plastid genomes. We introduce a Shiny app website for easy use of the program; a more advanced application of the tool is possible by further development and modification of the downloadable source codes provided online. The software and its libraries are completely coded in R, available at https://irscope.shinyapps.io/chloroplot/.
Collapse
Affiliation(s)
- Shuyu Zheng
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Peter Poczai
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland.,Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jaakko Hyvönen
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland.,Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ali Amiryousefi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Zheng S, Poczai P, Hyvönen J, Tang J, Amiryousefi A. Chloroplot: An Online Program for the Versatile Plotting of Organelle Genomes. Front Genet 2020. [PMID: 33101394 DOI: 10.3389/fgene.576124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Understanding the complexity of genomic structures and their unique architecture is linked with the power of visualization tools used to represent these features. Such tools should be able to provide a realistic and scalable version of genomic content. Here, we present an online organelle plotting tool focused on chloroplasts, which were developed to visualize the exclusive structure of these genomes. The distinguished unique features of this program include its ability to represent the Single Short Copy (SSC) regions in reverse complement, which allows the depiction of the codon usage bias index for each gene, along with the possibility of the minor mismatches between inverted repeat (IR) regions and user-specified plotting layers. The versatile color schemes and diverse functionalities of the program are specifically designed to reflect the accurate scalable representation of the plastid genomes. We introduce a Shiny app website for easy use of the program; a more advanced application of the tool is possible by further development and modification of the downloadable source codes provided online. The software and its libraries are completely coded in R, available at https://irscope.shinyapps.io/chloroplot/.
Collapse
Affiliation(s)
- Shuyu Zheng
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Peter Poczai
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
- Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jaakko Hyvönen
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
- Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ali Amiryousefi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Meng G, Li Y, Yang C, Liu S. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res 2019; 47:e63. [PMID: 30864657 PMCID: PMC6582343 DOI: 10.1093/nar/gkz173] [Citation(s) in RCA: 613] [Impact Index Per Article: 102.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/25/2019] [Accepted: 03/08/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial genome (mitogenome) plays important roles in evolutionary and ecological studies. It becomes routine to utilize multiple genes on mitogenome or the entire mitogenomes to investigate phylogeny and biodiversity of focal groups with the onset of High Throughput Sequencing (HTS) technologies. We developed a mitogenome toolkit MitoZ, consisting of independent modules of de novo assembly, findMitoScaf (find Mitochondrial Scaffolds), annotation and visualization, that can generate mitogenome assembly together with annotation and visualization results from HTS raw reads. We evaluated its performance using a total of 50 samples of which mitogenomes are publicly available. The results showed that MitoZ can recover more full-length mitogenomes with higher accuracy compared to the other available mitogenome assemblers. Overall, MitoZ provides a one-click solution to construct the annotated mitogenome from HTS raw data and will facilitate large scale ecological and evolutionary studies. MitoZ is free open source software distributed under GPLv3 license and available at https://github.com/linzhi2013/MitoZ.
Collapse
Affiliation(s)
- Guanliang Meng
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yiyuan Li
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Chentao Yang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shanlin Liu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Khani-Juyabad F, Mohammadi P, Zarrabi M. Comparative analysis of Chlorosarcinopsis eremi mitochondrial genome with some Chlamydomonadales algae. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1301-1310. [PMID: 31564790 PMCID: PMC6745591 DOI: 10.1007/s12298-019-00696-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/07/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Chlorosarcinopsis eremi is a member of Chlamydomonadales algae which is isolated from terrestrial environments. In this study, the mitochondrial genome of C. eremi isolated from desert region of Iran, was represented for the first time. Following sequencing, assembly and annotation, comparative analyses of C. eremi and other available Chlamydomonadales algae complete mitochondrial genomes were performed. The mitochondrial genome of C. eremi was circular, had a low number of genes coding in the same strand with a minor amount of repeated sequences; same as other non-Reinhardtinia species of Chlamydomonadales algae. GC content of C. eremi mitochondrial genome was in normal range when compared with non-Chlamydomonadales organisms, but among Chlamydomonadales algae, C. eremi had a low GC content mitochondrial genome. C. eremi had the highest percent of non-coding sequences in comparison with other available Chlamydomonadales mitochondrial genomes which was related to intergenic regions. Identity analysis of protein-coding sequences of Chlamydomonadales mitochondrial genomes showed more divergences and may be related to the high mutation rate of mitochondrial genome reported in microbial eukaryotes.
Collapse
Affiliation(s)
- Fatemeh Khani-Juyabad
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mahbubeh Zarrabi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
14
|
Sablok G, Amiryousefi A, He X, Hyvönen J, Poczai P. Sequencing the Plastid Genome of Giant Ragweed ( Ambrosia trifida, Asteraceae) From a Herbarium Specimen. FRONTIERS IN PLANT SCIENCE 2019; 10:218. [PMID: 30873197 PMCID: PMC6403193 DOI: 10.3389/fpls.2019.00218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/08/2019] [Indexed: 05/09/2023]
Abstract
We report the first plastome sequence of giant ragweed (Ambrosia trifida); with this new genome information, we assessed the phylogeny of Asteraceae and the transcriptional profiling against glyphosate resistance in giant ragweed. Assembly and genic features show a normal angiosperm quadripartite plastome structure with no signatures of deviation in gene directionality. Comparative analysis revealed large inversions across the plastome of giant ragweed and the previously sequenced members of the plant family. Asteraceae plastid genomes contain two inversions of 22.8 and 3.3 kb; the former is located between trnS-GCU and trnG-UCC genes, and the latter between trnE-UUC and trnT-GGU genes. The plastid genome sequences of A. trifida and the related species, Ambrosia artemisiifolia, are identical in gene content and arrangement, but they differ in length. The phylogeny is well-resolved and congruent with previous hypotheses about the phylogenetic relationship of Asteraceae. Transcriptomic analysis revealed divergence in the relative expressions at the exonic and intronic levels, providing hints toward the ecological adaptation of the genus. Giant ragweed shows various levels of glyphosate resistance, with introns displaying higher expression patterns at resistant time points after the assumed herbicide treatment.
Collapse
Affiliation(s)
- Gaurav Sablok
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Ali Amiryousefi
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Xiaolan He
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jaakko Hyvönen
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Péter Poczai
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Ohta T, Kawashima T, Shinozaki NO, Dobashi A, Hiraoka S, Hoshino T, Kanno K, Kataoka T, Kawashima S, Matsui M, Nemoto W, Nishijima S, Suganuma N, Suzuki H, Taguchi YH, Takenaka Y, Tanigawa Y, Tsuneyoshi M, Yoshitake K, Sato Y, Yamashita R, Arakawa K, Iwasaki W. Collaborative environmental DNA sampling from petal surfaces of flowering cherry Cerasus × yedoensis 'Somei-yoshino' across the Japanese archipelago. JOURNAL OF PLANT RESEARCH 2018; 131:709-717. [PMID: 29460198 DOI: 10.1007/s10265-018-1017-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 01/23/2018] [Indexed: 11/25/2022]
Abstract
Recent studies have shown that environmental DNA is found almost everywhere. Flower petal surfaces are an attractive tissue to use for investigation of the dispersal of environmental DNA in nature as they are isolated from the external environment until the bud opens and only then can the petal surface accumulate environmental DNA. Here, we performed a crowdsourced experiment, the "Ohanami Project", to obtain environmental DNA samples from petal surfaces of Cerasus × yedoensis 'Somei-yoshino' across the Japanese archipelago during spring 2015. C. × yedoensis is the most popular garden cherry species in Japan and clones of this cultivar bloom simultaneously every spring. Data collection spanned almost every prefecture and totaled 577 DNA samples from 149 collaborators. Preliminary amplicon-sequencing analysis showed the rapid attachment of environmental DNA onto the petal surfaces. Notably, we found DNA of other common plant species in samples obtained from a wide distribution; this DNA likely originated from the pollen of the Japanese cedar. Our analysis supports our belief that petal surfaces after blossoming are a promising target to reveal the dynamics of environmental DNA in nature. The success of our experiment also shows that crowdsourced environmental DNA analyses have considerable value in ecological studies.
Collapse
Affiliation(s)
- Tazro Ohta
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, 411-8540, Japan.
| | | | - Natsuko O Shinozaki
- Division of Biomedical Information Analysis, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8573, Japan
| | - Akito Dobashi
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, 135-8550, Japan
| | - Satoshi Hiraoka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8568, Japan
| | - Tatsuhiko Hoshino
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, 783-8502, Japan
| | - Keiichi Kanno
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Takafumi Kataoka
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan
| | - Shuichi Kawashima
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), Kashiwa, Chiba, 277-0871, Japan
| | - Motomu Matsui
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0032, Japan
| | - Wataru Nemoto
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University (TDU), Hiki-gun, Saitama, 350-0394, Japan
| | - Suguru Nishijima
- Computational Bio-Big Data Open Innovation Lab., National Institute of Advanced Industrial Science and Technology, Shinjuku-ku, Tokyo, 169-0072, Japan
- Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8568, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Shinjuku-ku, Tokyo, 162-0072, Japan
| | - Natsuki Suganuma
- Institute of Health Sciences, Ezaki Glico Co. Ltd., Nishiyodogawa, Osaka, 555-8502, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
| | - Y-H Taguchi
- Department of Physics, Chuo University, Bunkyo, Tokyo, 112-8551, Japan
| | - Yoichi Takenaka
- Faculty of Informatics, Kansai University, Takatsuki, Osaka, 569-1052, Japan
| | - Yosuke Tanigawa
- Department of Bioinformatics and Systems Biology, Faculty of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0032, Japan
| | - Momoka Tsuneyoshi
- Advanced Microbiological Functions Research Group, Frontier Research Labs, Institute For Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, 210-8681, Japan
| | | | - Yukuto Sato
- Division of Biomedical Information Analysis, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, 980-8573, Japan
| | - Riu Yamashita
- Division of Biomedical Information Analysis, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, 980-8573, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0032, Japan
| |
Collapse
|
16
|
Machado DJ, Lyra ML, Grant T. Mitogenome assembly from genomic multiplex libraries: comparison of strategies and novel mitogenomes for five species of frogs. Mol Ecol Resour 2015; 16:686-93. [PMID: 26607054 DOI: 10.1111/1755-0998.12492] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 11/27/2022]
Abstract
Next-generation sequencing continues to revolutionize biodiversity studies by generating unprecedented amounts of DNA sequence data for comparative genomic analysis. However, these data are produced as millions or billions of short reads of variable quality that cannot be directly applied in comparative analyses, creating a demand for methods to facilitate assembly. We optimized an in silico strategy to efficiently reconstruct high-quality mitochondrial genomes directly from genomic reads. We tested this strategy using sequences from five species of frogs: Hylodes meridionalis (Hylodidae), Hyloxalus yasuni (Dendrobatidae), Pristimantis fenestratus (Craugastoridae), and Melanophryniscus simplex and Rhinella sp. (Bufonidae). These are the first mitogenomes published for these species, the genera Hylodes, Hyloxalus, Pristimantis, Melanophryniscus and Rhinella, and the families Craugastoridae and Hylodidae. Sequences were generated using only half of one lane of a standard Illumina HiqSeq 2000 flow cell, resulting in fewer than eight million reads. We analysed the reads of Hylodes meridionalis using three different assembly strategies: (1) reference-based (using bowtie2); (2) de novo (using abyss, soapdenovo2 and velvet); and (3) baiting and iterative mapping (using mira and mitobim). Mitogenomes were assembled exclusively with strategy 3, which we employed to assemble the remaining mitogenomes. Annotations were performed with mitos and confirmed by comparison with published amphibian mitochondria. In most cases, we recovered all 13 coding genes, 22 tRNAs, and two ribosomal subunit genes, with minor gene rearrangements. Our results show that few raw reads can be sufficient to generate high-quality scaffolds, making any Illumina machine run using genomic multiplex libraries a potential source of data for organelle assemblies as by-catch.
Collapse
Affiliation(s)
- D J Machado
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. do Matão 101, São Paulo, SP, CEP 05508-090, Brazil
| | - M L Lyra
- Department of Zoology, Institute of Biosciences, São Paulo State University, Campus Rio Claro, Av. 24-A 1515, Rio Claro, SP, CEP 13506-900, Brazil
| | - T Grant
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. do Matão 101, São Paulo, SP, CEP 05508-090, Brazil
| |
Collapse
|
17
|
Khan S, Shahbaaz M, Bisetty K, Ahmad F, Hassan MI. Classification and Functional Analyses of Putative Conserved Proteins from Chlamydophila pneumoniae CWL029. Interdiscip Sci 2015; 9:96-106. [PMID: 26649559 DOI: 10.1007/s12539-015-0134-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 12/01/2022]
Abstract
Chlamydophila pneumoniae, a Gram-negative bacterium belongs to the family Chlamydiaceae, is known to cause community-acquired pneumonia and bronchitis. There is a need for genomic analyses of C. pneumoniae as its chronic infections result in reactive airway disease, lung cancer and asthma. Recent advancement in the sequencing techniques led to the generation of large genomic data. In order to utilize these data, sequence-based function predictions were used for annotating the uncharacterized genes. The genome of C. pneumoniae encodes 1052 proteins, which include a group of 366 functionally uncharacterized proteins, known as "hypothetical proteins" (HPs). Functions of these HPs were predicted by utilizing an integrated approach that combines varieties of bioinformatics tools. The functions of 142 proteins were successfully predicted and categorized into different classes of enzymes, transport proteins, binding proteins and virulence factors. Among these functionally annotated HPs, we were able to identify 12 virulent HPs. Furthermore, the HP with the highest virulence score was subjected to molecular dynamics (MD) simulations to better understand their dynamical behavior in explicit water conditions. These analyses could be utilized for an in-depth understanding of virulence mechanism. The functional knowledge of these proteins could be useful in drug design and discovery process of infections caused by C. pneumoniae.
Collapse
Affiliation(s)
- Shama Khan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Shahbaaz
- Department of Chemistry, Durban University of Technology, Durban, 4000, South Africa
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, Durban, 4000, South Africa
| | - Faizan Ahmad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
18
|
Nagpure NS, Rashid I, Pathak AK, Singh M, Pati R, Singh SP, Sarkar UK. FMiR: A Curated Resource of Mitochondrial DNA Information for Fish. PLoS One 2015; 10:e0136711. [PMID: 26317619 PMCID: PMC4552752 DOI: 10.1371/journal.pone.0136711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial genome sequences have been widely used for evolutionary and phylogenetic studies. Among vertebrates, fish are an important, diverse group, and their mitogenome sequences are growing rapidly in public repositories. To facilitate mitochondrial genome analysis and to explore the valuable genetic information, we developed the Fish Mitogenome Resource (FMiR) database to provide a workbench for mitogenome annotation, species identification and microsatellite marker mining. The microsatellites are also known as simple sequence repeats (SSRs) and used as molecular markers in studies on population genetics, gene duplication and marker assisted selection. Here, easy-to-use tools have been implemented for mining SSRs and for designing primers to identify species/habitat specific markers. In addition, FMiR can analyze complete or partial mitochondrial genome sequence to identify species and to deduce relational distances among sequences across species. The database presently contains curated mitochondrial genomes from 1302 fish species belonging to 297 families and 47 orders reported from saltwater and freshwater ecosystems. In addition, the database covers information on fish species such as conservation status, ecosystem, family, distribution and occurrence downloaded from the FishBase and IUCN Red List databases. Those fish information have been used to browse mitogenome information for the species belonging to a particular category. The database is scalable in terms of content and inclusion of other analytical modules. The FMiR is running under Linux operating platform on high performance server accessible at URL http://mail.nbfgr.res.in/fmir.
Collapse
Affiliation(s)
- Naresh Sahebrao Nagpure
- Division of Molecular Biology and Biotechnology, National Bureau of Fish Genetic Resources, Lucknow-226002, India
| | - Iliyas Rashid
- Division of Molecular Biology and Biotechnology, National Bureau of Fish Genetic Resources, Lucknow-226002, India
| | - Ajey Kumar Pathak
- Division of Fish Taxonomy and Resources, National Bureau of Fish Genetic Resources, Lucknow-226002, India
| | - Mahender Singh
- Division of Molecular Biology and Biotechnology, National Bureau of Fish Genetic Resources, Lucknow-226002, India
- * E-mail:
| | - Rameshwar Pati
- Division of Molecular Biology and Biotechnology, National Bureau of Fish Genetic Resources, Lucknow-226002, India
| | - Shri Prakash Singh
- Division of Fish Taxonomy and Resources, National Bureau of Fish Genetic Resources, Lucknow-226002, India
| | - Uttam Kumar Sarkar
- Division of Fish Taxonomy and Resources, National Bureau of Fish Genetic Resources, Lucknow-226002, India
| |
Collapse
|
19
|
Bernt M, Braband A, Middendorf M, Misof B, Rota-Stabelli O, Stadler PF. Bioinformatics methods for the comparative analysis of metazoan mitochondrial genome sequences. Mol Phylogenet Evol 2013; 69:320-7. [DOI: 10.1016/j.ympev.2012.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/31/2012] [Accepted: 09/17/2012] [Indexed: 01/25/2023]
|
20
|
D'Onorio de Meo P, D'Antonio M, Griggio F, Lupi R, Borsani M, Pavesi G, Castrignanò T, Pesole G, Gissi C. MitoZoa 2.0: a database resource and search tools for comparative and evolutionary analyses of mitochondrial genomes in Metazoa. Nucleic Acids Res 2011; 40:D1168-72. [PMID: 22123747 PMCID: PMC3245153 DOI: 10.1093/nar/gkr1144] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The MITOchondrial genome database of metaZOAns (MitoZoa) is a public resource for comparative analyses of metazoan mitochondrial genomes (mtDNA) at both the sequence and genomic organizational levels. The main characteristics of the MitoZoa database are the careful revision of mtDNA entry annotations and the possibility of retrieving gene order and non-coding region (NCR) data in appropriate formats. The MitoZoa retrieval system enables basic and complex queries at various taxonomic levels using different search menus. MitoZoa 2.0 has been enhanced in several aspects, including: a re-annotation pipeline to check the correctness of protein-coding gene predictions; a standardized annotation of introns and of precursor ORFs whose functionality is post-transcriptionally recovered by RNA editing or programmed translational frameshifting; updates of taxon-related fields and a BLAST sequence similarity search tool. Database novelties and the definition of standard mtDNA annotation rules, together with the user-friendly retrieval system and the BLAST service, make MitoZoa a valuable resource for comparative and evolutionary analyses as well as a reference database to assist in the annotation of novel mtDNA sequences. MitoZoa is freely accessible at http://www.caspur.it/mitozoa.
Collapse
Affiliation(s)
- Paolo D'Onorio de Meo
- CASPUR, Consorzio interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang JS, Nagasawa H, Fujiwara Y, Tsuchida S, Yang WJ. The complete mitogenome of the hydrothermal vent crab Gandalfus yunohana (Crustacea: Decapoda: Brachyura): a link between the Bythograeoidea and Xanthoidea. ZOOL SCR 2010. [DOI: 10.1111/j.1463-6409.2010.00442.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
MitoZoa: A curated mitochondrial genome database of metazoans for comparative genomics studies. Mitochondrion 2010; 10:192-9. [DOI: 10.1016/j.mito.2010.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/14/2009] [Accepted: 01/08/2010] [Indexed: 11/23/2022]
|
23
|
Lee W, Park J, Choi J, Jung K, Park B, Kim D, Lee J, Ahn K, Song W, Kang S, Lee YH, Lee S. IMGD: an integrated platform supporting comparative genomics and phylogenetics of insect mitochondrial genomes. BMC Genomics 2009; 10:148. [PMID: 19351385 PMCID: PMC2681477 DOI: 10.1186/1471-2164-10-148] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 04/07/2009] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Sequences and organization of the mitochondrial genome have been used as markers to investigate evolutionary history and relationships in many taxonomic groups. The rapidly increasing mitochondrial genome sequences from diverse insects provide ample opportunities to explore various global evolutionary questions in the superclass Hexapoda. To adequately support such questions, it is imperative to establish an informatics platform that facilitates the retrieval and utilization of available mitochondrial genome sequence data. RESULTS The Insect Mitochondrial Genome Database (IMGD) is a new integrated platform that archives the mitochondrial genome sequences from 25,747 hexapod species, including 112 completely sequenced and 20 nearly completed genomes and 113,985 partially sequenced mitochondrial genomes. The Species-driven User Interface (SUI) of IMGD supports data retrieval and diverse analyses at multi-taxon levels. The Phyloviewer implemented in IMGD provides three methods for drawing phylogenetic trees and displays the resulting trees on the web. The SNP database incorporated to IMGD presents the distribution of SNPs and INDELs in the mitochondrial genomes of multiple isolates within eight species. A newly developed comparative SNU Genome Browser supports the graphical presentation and interactive interface for the identified SNPs/INDELs. CONCLUSION The IMGD provides a solid foundation for the comparative mitochondrial genomics and phylogenetics of insects. All data and functions described here are available at the web site (http://www.imgd.org/).
Collapse
Affiliation(s)
- Wonhoon Lee
- Insect Biosystematics Laboratory, Seoul National University, Seoul 151–921, Korea
- Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 151–921, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea
| | - Jongsun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151–921, Korea
- Center for Fungal Pathogenesis, Seoul National University, Seoul 151–921, Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul 151–921, Korea
| | - Jaeyoung Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151–921, Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul 151–921, Korea
| | - Kyongyong Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151–921, Korea
| | - Bongsoo Park
- Department of Plant Pathology, Penn State University, University Park, PA 16802, USA
| | - Donghan Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151–921, Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul 151–921, Korea
| | - Jaeyoung Lee
- Insect Biosystematics Laboratory, Seoul National University, Seoul 151–921, Korea
| | - Kyohun Ahn
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151–921, Korea
| | - Wonho Song
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151–921, Korea
| | - Seogchan Kang
- Department of Plant Pathology, Penn State University, University Park, PA 16802, USA
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151–921, Korea
- Center for Fungal Pathogenesis, Seoul National University, Seoul 151–921, Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul 151–921, Korea
- Center for Agricultural Biomaterials, Seoul National University, Seoul 151–921, Korea
| | - Seunghwan Lee
- Insect Biosystematics Laboratory, Seoul National University, Seoul 151–921, Korea
- Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 151–921, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea
| |
Collapse
|
24
|
Gissi C, Iannelli F, Pesole G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity (Edinb) 2008; 101:301-20. [PMID: 18612321 DOI: 10.1038/hdy.2008.62] [Citation(s) in RCA: 433] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The mitochondrial genome (mtDNA) of Metazoa is a good model system for evolutionary genomic studies and the availability of more than 1000 sequences provides an almost unique opportunity to decode the mechanisms of genome evolution over a large phylogenetic range. In this paper, we review several structural features of the metazoan mtDNA, such as gene content, genome size, genome architecture and the new parameter of gene strand asymmetry in a phylogenetic framework. The data reviewed here show that: (1) the plasticity of Metazoa mtDNA is higher than previously thought and mainly due to variation in number and location of tRNA genes; (2) an exceptional trend towards stabilization of genomic features occurred in deuterostomes and was exacerbated in vertebrates, where gene content, genome architecture and gene strand asymmetry are almost invariant. Only tunicates exhibit a very high degree of genome variability comparable to that found outside deuterostomes. In order to analyse the genomic evolutionary process at short evolutionary distances, we have also compared mtDNAs of species belonging to the same genus: the variability observed in congeneric species significantly recapitulates the evolutionary dynamics observed at higher taxonomic ranks, especially for taxa showing high levels of genome plasticity and/or fast nucleotide substitution rates. Thus, the analysis of congeneric species promises to be a valuable approach for the assessment of the mtDNA evolutionary trend in poorly or not yet sampled metazoan groups.
Collapse
Affiliation(s)
- C Gissi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Milano, Italy.
| | | | | |
Collapse
|
25
|
Yang JS, Nagasawa H, Fujiwara Y, Tsuchida S, Yang WJ. The complete mitochondrial genome sequence of the hydrothermal vent galatheid crab Shinkaia crosnieri (Crustacea: Decapoda: Anomura): a novel arrangement and incomplete tRNA suite. BMC Genomics 2008; 9:257. [PMID: 18510775 PMCID: PMC2442616 DOI: 10.1186/1471-2164-9-257] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Accepted: 05/30/2008] [Indexed: 11/10/2022] Open
Abstract
Background Metazoan mitochondrial genomes usually consist of the same 37 genes. Such genes contain useful information for phylogenetic analyses and evolution modelling. Although complete mitochondrial genomes have been determined for over 1,000 animals to date, hydrothermal vent species have, thus far, remained excluded due to the scarcity of collected specimens. Results The mitochondrial genome of the hydrothermal vent galatheid crab Shinkaia crosnieri is 15,182 bp in length, and is composed of 13 protein-coding genes, two ribosomal RNA genes and only 18 transfer RNA genes. The total AT content of the genome, as is typical for decapods, is 72.9%. We identified a non-coding control region of 327 bp according to its location and AT-richness. This is the smallest control region discovered in crustaceans so far. A mechanism of cytoplasmic tRNA import was addressed to compensate for the four missing tRNAs. The S. crosnieri mitogenome exhibits a novel arrangement of mitochondrial genes. We investigated the mitochondrial gene orders and found that at least six rearrangements from the ancestral pancrustacean (crustacean + hexapod) pattern have happened successively. The codon usage, nucleotide composition and bias show no substantial difference with other decapods. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of the 13 protein-coding genes prove consistent with the previous classification based upon their morphology. Conclusion The present study will supply considerable data of use for both genomic and evolutionary research on hydrothermal vent ecosystems. The mitochondrial genetic characteristics of decapods are sustained in this case of S. crosnieri despite the absence of several tRNAs and a number of dramatic rearrangements. Our results may provide evidence for the immigrating hypothesis about how vent species originate.
Collapse
Affiliation(s)
- Jin-Shu Yang
- Institute of Cell Biology and Genetics, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | | | | | | | | |
Collapse
|
26
|
Lee YS, Oh J, Kim YU, Kim N, Yang S, Hwang UW. Mitome: dynamic and interactive database for comparative mitochondrial genomics in metazoan animals. Nucleic Acids Res 2007; 36:D938-42. [PMID: 17940090 PMCID: PMC2238945 DOI: 10.1093/nar/gkm763] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitome is a specialized mitochondrial genome database designed for easy comparative analysis of various features of metazoan mitochondrial genomes such as base frequency, A+T skew, codon usage and gene arrangement pattern. A particular function of the database is the automatic reconstruction of phylogenetic relationships among metazoans selected by a user from a taxonomic tree menu based on nucleotide sequences, amino acid sequences or gene arrangement patterns. Mitome also enables us (i) to easily find the taxonomic positions of organisms of which complete mitochondrial genome sequences are publicly available; (ii) to acquire various metazoan mitochondrial genome characteristics through a graphical genome browser; (iii) to search for homology patterns in mitochondrial gene arrangements; (iv) to download nucleotide or amino acid sequences not only of an entire mitochondrial genome but also of each component; and (v) to find interesting references easily through links with PubMed. In order to provide users with a dynamic, responsive, interactive and faster web database, Mitome is constructed using two recently highlighted techniques, Ajax (Asynchronous JavaScript and XML) and Web Services. Mitome has the potential to become very useful in the fields of molecular phylogenetics and evolution and comparative organelle genomics. The database is available at: http://www.mitome.info.
Collapse
Affiliation(s)
- Yong Seok Lee
- Department of Biology, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | | | | | |
Collapse
|
27
|
Feijão PC, Neiva LS, de Azeredo-Espin AML, Lessinger AC. AMiGA: the arthropodan mitochondrial genomes accessible database. Bioinformatics 2006; 22:902-3. [PMID: 16446277 DOI: 10.1093/bioinformatics/btl021] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
UNLABELLED The Arthropodan Mitochondrial Genomes Accessible database (AMiGA) is a relational database developed to help in managing access to the increasing amount of data arising from developments in arthropodan mitochondrial genomics (136 mitochondrial genomes as of September 2005). The strengths of AMiGA include (1) a more accessible and up-to-date database containing a more comprehensive set of mitochondrial genomes for this phylum, (2) the provision of flexible search options for retrieving detailed information such as bibliographical data, genomic graphics, FASTA sequences and taxonomical status, (3) the possibility of enhanced comparative analyses by multiple alignment of single or concatenated sets of genes, (4) more accurate and updated information resulting from a specific curation process called AMiGA Notes and (5) the possibility of including unpublished sequences in a password-restricted area for comparative analysis with the other sequences stored in the database. AVAILABILITY http://amiga.cbmeg.unicamp.br CONTACT lessinger@amiga.cbmeg.unicamp.br SUPPLEMENTARY INFORMATION Detailed information, including an illustrated tutorial, is available from the above URL.
Collapse
Affiliation(s)
- Pedro Cipriano Feijão
- Laboratório de Genética Animal, Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), CP 6010, CEP 13035-875, Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
28
|
Guy L, Roten CAH. Genometric analyses of the organization of circular chromosomes: a universal pressure determines the direction of ribosomal RNA genes transcription relative to chromosome replication. Gene 2004; 340:45-52. [PMID: 15556293 DOI: 10.1016/j.gene.2004.06.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 06/08/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
Selective pressures related to gene function and chromosomal architecture are acting on genome sequences and can be revealed, for instance, by appropriate genometric methods. Cumulative nucleotide skew analyses, i.e., GC, TA, and ORF orientation skews, predict the location of the origin of DNA replication for 88 out of 100 completely sequenced bacterial chromosomes. These methods appear fully reliable for proteobacteria, Gram-positives, and spirochetes as well as for euryarchaeotes. Based on this genome architecture information, coorientation analyses reveal that in prokaryotes, ribosomal RNA (rRNA) genes encoding the small and large ribosomal subunits are all transcribed in the same direction as DNA replication; that is, they are located along the leading strand. This result offers a simple and reliable method for circumscribing the region containing the origin of the DNA replication and reveals a strong selective pressure acting on the orientation of rRNA genes similar to the weaker one acting on the orientation of ORFs. Rate of coorientation of transfer RNA (tRNA) genes with DNA replication appears to be taxon-specific. Analyzing nucleotide biases such as GC and TA skews of genes and plotting one against the other reveals a taxonomic clusterization of species. All ribosomal RNA genes are enriched in Gs and depleted in Cs, the only so far known exception being the rRNA genes of deuterostomian mitochondria. However, this exception can be explained by the fact that in the chromosome of the human mitochondrion, the model of the deuterostomian organelle genome, DNA replication, and rRNA transcription proceed in opposite directions. A general rule is deduced from prokaryotic and mitochondrial genomes: ribosomal RNA genes that are transcribed in the same direction as the DNA replication are enriched in Gs, and those transcribed in the opposite direction are depleted in Gs.
Collapse
MESH Headings
- Base Composition/genetics
- Chromosomes, Archaeal/genetics
- Chromosomes, Bacterial/genetics
- DNA Replication/genetics
- DNA, Circular/genetics
- DNA, Mitochondrial/genetics
- Databases, Nucleic Acid
- Genome, Archaeal
- Genome, Bacterial
- Humans
- Models, Genetic
- Phylogeny
- RNA, Ribosomal/genetics
- Replication Origin/genetics
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Lionel Guy
- Département de Microbiologie Fondamentale, Faculté de Biologie et de Médecine, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
29
|
Metzler DE, Metzler CM, Sauke DJ. Electron Transport, Oxidative Phosphorylation, and Hydroxylation. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|