1
|
Liu C, Chen S, Chu J, Yang Y, Yuan B, Zhang H. Multi-Omics Analysis Reveals the Toxicity of Polyvinyl Chloride Microplastics toward BEAS-2B Cells. TOXICS 2024; 12:399. [PMID: 38922079 PMCID: PMC11209221 DOI: 10.3390/toxics12060399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
Polyvinyl chloride microplastics (PVC-MPs) are microplastic pollutants widely present in the environment, but their potential risks to human lung health and underlying toxicity mechanisms remain unknown. In this study, we systematically analyzed the effects of PVC-MPs on the transcriptome and metabolome of BEAS-2B cells using high-throughput RNA sequencing and untargeted metabolomics technologies. The results showed that exposure to PVC-MPs significantly reduced the viability of BEAS-2B cells, leading to the differential expression of 530 genes and 3768 metabolites. Further bioinformatics analyses showed that PVC-MP exposure influenced the expression of genes associated with fluid shear stress, the MAPK and TGF-β signaling pathways, and the levels of metabolites associated with amino acid metabolism. In particular, integrated pathway analysis showed that lipid metabolic pathways (including glycerophospholipid metabolism, glycerolipid metabolism, and sphingolipid metabolism) were significantly perturbed in BEAS-2B cells following PVC-MPs exposure. This study provides new insights and targets for a deeper understanding of the toxicity mechanism of PVC-MPs and for the prevention and treatment of PVC-MP-associated lung diseases.
Collapse
Affiliation(s)
- Chengzhi Liu
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (C.L.); (S.C.); (J.C.); (Y.Y.)
| | - Shuang Chen
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (C.L.); (S.C.); (J.C.); (Y.Y.)
| | - Jiangliang Chu
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (C.L.); (S.C.); (J.C.); (Y.Y.)
| | - Yifan Yang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (C.L.); (S.C.); (J.C.); (Y.Y.)
| | - Beilei Yuan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (C.L.); (S.C.); (J.C.); (Y.Y.)
| | - Huazhong Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Institute of Poisoning, Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
2
|
Sakai T, Choo YY, Mitsuhashi S, Ikebe R, Jeffers A, Idell S, Tucker TA, Ikebe M. Myocardin regulates fibronectin expression and secretion from human pleural mesothelial cells. Am J Physiol Lung Cell Mol Physiol 2024; 326:L419-L430. [PMID: 38349126 PMCID: PMC11281794 DOI: 10.1152/ajplung.00271.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 03/20/2024] Open
Abstract
During the progression of pleural fibrosis, pleural mesothelial cells (PMCs) undergo a phenotype switching process known as mesothelial-mesenchymal transition (MesoMT). During MesoMT, transformed PMCs become myofibroblasts that produce increased extracellular matrix (ECM) proteins, including collagen and fibronectin (FN1) that is critical to develop fibrosis. Here, we studied the mechanism that regulates FN1 expression in myofibroblasts derived from human pleural mesothelial cells (HPMCs). We found that myocardin (Myocd), a transcriptional coactivator of serum response factor (SRF) and a master regulator of smooth muscle and cardiac muscle differentiation, strongly controls FN1 gene expression. Myocd gene silencing markedly inhibited FN1 expression. FN1 promoter analysis revealed that deletion of the Smad3-binding element diminished FN1 promoter activity, whereas deletion of the putative SRF-binding element increased FN1 promoter activity. Smad3 gene silencing decreased FN1 expression, whereas SRF gene silencing increased FN1 expression. Moreover, SRF competes with Smad3 for binding to Myocd. These results indicate that Myocd activates FN1 expression through Smad3, whereas SRF inhibits FN1 expression in HPMCs. In HPMCs, TGF-β induced Smad3 nuclear localization, and the proximity ligation signal between Myocd and Smad3 was markedly increased after TGF-β stimulation at nucleus, suggesting that TGF-β facilitates nuclear translocation of Smad3 and interaction between Smad3 and Myocd. Moreover, Myocd and Smad3 were coimmunoprecipitated and isolated Myocd and Smad3 proteins directly bound each other. Chromatin immunoprecipitation assays revealed that Myocd interacts with the FN1 promoter at the Smad3-binding consensus sequence. The results indicate that Myocd regulates FN1 gene activation through interaction and activation of the Smad3 transcription factor.NEW & NOTEWORTHY During phenotype switching from mesothelial to mesenchymal, pleural mesothelial cells (PMCs) produce extracellular matrix (ECM) proteins, including collagen and fibronectin (FN1), critical components in the development of fibrosis. Here, we found that myocardin, a transcriptional coactivator of serum response factor (SRF), strongly activates FN1 expression through Smad3, whereas SRF inhibits FN1 expression. This study provides insights about the regulation of FN1 that could lead to the development of novel interventional approaches to prevent pleural fibrosis.
Collapse
Affiliation(s)
- Tsuyoshi Sakai
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, United States
| | - Young-Yeon Choo
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, United States
| | - Shinya Mitsuhashi
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, United States
| | - Reiko Ikebe
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, United States
| | - Ann Jeffers
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, United States
| | - Steven Idell
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, United States
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, United States
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, United States
| |
Collapse
|
3
|
Balasundaram A, Kumar S U, D TK, Anil Dedge A, R G, K SS, R S, C GPD. The targeted next-generation sequence revealed SMAD4, AKT1, and TP53 mutations from circulating cell-free DNA of breast cancer and its effect on protein structure - A computational approach. J Biomol Struct Dyn 2023; 41:15584-15597. [PMID: 37011004 DOI: 10.1080/07391102.2023.2191122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Breast cancer biomarkers that detect marginally advanced stages are still challenging. The detection of specific abnormalities, targeted therapy selection, prognosis, and monitoring of treatment effectiveness over time are all made possible by circulating free DNA (cfDNA) analysis. The proposed study will detect specific genetic abnormalities from the plasma cfDNA of a female breast cancer patient by sequencing a cancer-related gene panel (MGM455 - Oncotrack Ultima), including 56 theranostic genes (SNVs and small INDELs). Initially, we determined the pathogenicity of the observed mutations using PredictSNP, iStable, Align-GVGD, and ConSurf servers. As a next step, molecular dynamics (MD) was implemented to determine the functional significance of SMAD4 mutation (V465M). Lastly, the mutant gene relationships were examined using the Cytoscape plug-in GeneMANIA. Using ClueGO, we determined the gene's functional enrichment and integrative analysis. The structural characteristics of SMAD4 V465M protein by MD simulation analysis further demonstrated that the mutation was deleterious. The simulation showed that the native structure was more significantly altered by the SMAD4 (V465M) mutation. Our findings suggest that SMAD4 V465M mutation might be significantly associated with breast cancer, and other patient-found mutations (AKT1-E17K and TP53-R175H) are synergistically involved in the process of SMAD4 translocate to nuclease, which affects the target gene translation. Therefore, this combination of gene mutations could alter the TGF-β signaling pathway in BC. We further proposed that the SMAD4 protein loss may contribute to an aggressive phenotype by inhibiting the TGF-β signaling pathway. Thus, breast cancer's SMAD4 (V465M) mutation might increase their invasive and metastatic capabilities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ambritha Balasundaram
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Udhaya Kumar S
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Thirumal Kumar D
- Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| | - Aditi Anil Dedge
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gnanasambandan R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Satish Srinivas K
- Department of Radiation Oncology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Siva R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Valat A, Fourel L, Sales A, Machillot P, Bouin AP, Fournier C, Bosc L, Arboléas M, Bourrin-Reynard I, Wagoner Johnson AJ, Bruckert F, Albigès-Rizo C, Picart C. Interplay between integrins and cadherins to control bone differentiation upon BMP-2 stimulation. Front Cell Dev Biol 2023; 10:1027334. [PMID: 36684447 PMCID: PMC9846056 DOI: 10.3389/fcell.2022.1027334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: Upon BMP-2 stimulation, the osteoblastic lineage commitment in C2C12 myoblasts is associated with a microenvironmental change that occurs over several days. How does BMP-2 operate a switch in adhesive machinery to adapt to the new microenvironment and to drive bone cell fate is not well understood. Here, we addressed this question for BMP-2 delivered either in solution or physically bound of a biomimetic film, to mimic its presentation to cells via the extracellular matrix (ECM). Methods: Biommetics films were prepared using a recently developed automated method that enable high content studies of cellular processes. Comparative gene expressions were done using RNA sequencing from the encyclopedia of the regulatory elements (ENCODE). Gene expressions of transcription factors, beta chain (1, 3, 5) integrins and cadherins (M, N, and Cad11) were studied using quantitative PCR. ECM proteins and adhesion receptor expressions were also quantified by Western blots and dot blots. Their spatial organization in and around cells was studied using immuno-stainings. The individual effect of each receptor on osteogenic transcription factors and alkaline phosphatase expression were studied using silencing RNA of each integrin and cadherin receptor. The organization of fibronectin was studied using immuno-staining and quantitative microscopic analysis. Results: Our findings highlight a switch of integrin and cadherin expression during muscle to bone transdifferentiation upon BMP-2 stimulation. This switch occurs no matter the presentation mode, for BMP-2 presented in solution or via the biomimetic film. While C2C12 muscle cells express M-cadherin and Laminin-specific integrins, the BMP-2-induced transdifferentiation into bone cells is associated with an increase in the expression of cadherin-11 and collagen-specific integrins. Biomimetic films presenting matrix-bound BMP-2 enable the revelation of specific roles of the adhesive receptors depending on the transcription factor. Discussion: While β3 integrin and cadherin-11 work in concert to control early pSMAD1,5,9 signaling, β1 integrin and Cadherin-11 control RunX2, ALP activity and fibronectin organization around the cells. In contrast, while β1 integrin is also important for osterix transcriptional activity, Cadherin-11 and β5 integrin act as negative osterix regulators. In addition, β5 integrin negatively regulates RunX2. Our results show that biomimetic films can be used to delinate the specific events associated with BMP-2-mediated muscle to bone transdifferentiation. Our study reveals how integrins and cadherins work together, while exerting distinct functions to drive osteogenic programming. Different sets of integrins and cadherins have complementary mechanical roles during the time window of this transdifferentiation.
Collapse
Affiliation(s)
- Anne Valat
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Laure Fourel
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Adria Sales
- U1292 Biosanté, INSERM, CEA, CNRS EMR 5000 Biomimetism and Regenerative Medicine, University Grenoble Alpes, Grenoble, France
| | - Paul Machillot
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
- U1292 Biosanté, INSERM, CEA, CNRS EMR 5000 Biomimetism and Regenerative Medicine, University Grenoble Alpes, Grenoble, France
| | - Anne-Pascale Bouin
- U1209 Institut for Advanced Biosciences, CNRS 5309, University Grenoble Alpes, La Tronche, France
| | - Carole Fournier
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Lauriane Bosc
- U1292 Biosanté, INSERM, CEA, CNRS EMR 5000 Biomimetism and Regenerative Medicine, University Grenoble Alpes, Grenoble, France
| | - Mélanie Arboléas
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Ingrid Bourrin-Reynard
- U1209 Institut for Advanced Biosciences, CNRS 5309, University Grenoble Alpes, La Tronche, France
| | - Amy J. Wagoner Johnson
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Carle Illinois College of Medicine, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States
| | - Franz Bruckert
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Corinne Albigès-Rizo
- U1209 Institut for Advanced Biosciences, CNRS 5309, University Grenoble Alpes, La Tronche, France
| | - Catherine Picart
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
- U1292 Biosanté, INSERM, CEA, CNRS EMR 5000 Biomimetism and Regenerative Medicine, University Grenoble Alpes, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
5
|
Chen X, Wang J, Lin Y, Liu Y, Zhou T. Signaling Pathways of Podocyte Injury in Diabetic Kidney Disease and the Effect of Sodium-Glucose Cotransporter 2 Inhibitors. Cells 2022; 11:3913. [PMID: 36497173 PMCID: PMC9736207 DOI: 10.3390/cells11233913] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most important comorbidities for patients with diabetes, and its incidence has exceeded one tenth, with an increasing trend. Studies have shown that diabetes is associated with a decrease in the number of podocytes. Diabetes can induce apoptosis of podocytes through several apoptotic pathways or induce autophagy of podocytes through related pathways. At the same time, hyperglycemia can also directly lead to apoptosis of podocytes, and the related inflammatory reactions are all harmful to podocytes. Podocyte damage is often accompanied by the production of proteinuria and the progression of DKD. As a new therapeutic agent for diabetes, sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been demonstrated to be effective in the treatment of diabetes and the improvement of terminal outcomes in many rodent experiments and clinical studies. At the same time, SGLT2i can also play a protective role in diabetes-induced podocyte injury by improving the expression of nephrotic protein defects and inhibiting podocyte cytoskeletal remodeling. Some studies have also shown that SGLT2i can play a role in inhibiting the apoptosis and autophagy of cells. However, there is no relevant study that clearly indicates whether SGLT2i can also play a role in the above pathways in podocytes. This review mainly summarizes the damage to podocyte structure and function in DKD patients and related signaling pathways, as well as the possible protective mechanism of SGLT2i on podocyte function.
Collapse
Affiliation(s)
- Xiutian Chen
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Jiali Wang
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yongda Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yiping Liu
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
6
|
Aglan HA, Fouad-Elhady EA, Hassan RE, Sabry GM, Ahmed HH. Nanoplatforms for Promoting Osteogenesis in Ovariectomy-Induced
Osteoporosis in the Experimental Model. CURRENT NANOMEDICINE 2022; 12:44-62. [DOI: 10.2174/2468187312666220217104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/19/2021] [Accepted: 01/12/2022] [Indexed: 01/05/2025]
Abstract
Background:
Osteoporosis is a debilitating bone ailment characterized by the obvious loss of bone mass and bone microarchitecture impairment.
Objective:
This study aimed to illuminate the in vivo usefulness of nanotechnology as a treatment for osteoporosis via analyzing the effectiveness of nano-hydroxyapatite (nHa), nano-hydroxy- apatite/chitosan (nHa/C), and nano-hydroxyapatite/silver (nHa/S) in mitigation of osteoporosis in ovariectomized rats.
Method:
The characterization of the nHa, nHa/C, and nHa/S was carried out using TEM, SEM, FTIR, and Zeta potential measurements. This in vivo study included 48 adult female rats that were randomized into six groups (8 rats/group): (1) Sham-operated control, (2) osteoporotic, (3) nHa, (4) nHa/C, (5) nHa/S, and (6) Fosamax®. Serum osterix level was quantified using ELISA. Femur bone morphogenetic protein 2 and SMAD1 mRNA levels were evaluated by qPCR. The femur bones were scanned by DEXA for measurement of bone mineral density and bone mineral content. In ad-dition, a histopathological examination of femur bones was performed.
Results:
The present approach denoted that the treatment with nHa, nHa/C, or nHa/S yields a signif-icant rise in serum level of osterix and mRNA levels of bone morphogenetic protein 2 and SMAD1 as well as significant enhancements of bone tissue minerals.
Conclusion:
The findings affirmed the potency of nHa, nHa/C, and nHa/S as auspicious nanoplat-forms for repairing bone defects in the osteoporotic rat model. The positive effect of the inspected nanoformulations arose from bone formation indicators in serum and tissue, and additionally, the reinforcement of bone density and content, which were verified by the histopathological description of bone tissue sections.
Collapse
Affiliation(s)
- Hadeer A. Aglan
- Hormones Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | | | - Rasha E. Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Gilane M. Sabry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hanaa H. Ahmed
- Hormones Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| |
Collapse
|
7
|
Tang C, Liang D, Qiu Y, Zhu J, Tang G. Omentin‑1 induces osteoblast viability and differentiation via the TGF‑β/Smad signaling pathway in osteoporosis. Mol Med Rep 2022; 25:132. [PMID: 35179221 PMCID: PMC8867465 DOI: 10.3892/mmr.2022.12648] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
Osteoporosis is a bone-related disease that results from impaired bone formation and excessive bone resorption. The potential value of adipokines has been investigated previously, due to their influence on osteogenesis. However, the osteogenic effects induced by omentin-1 remain unclear. The aim of the present study was to determine the regulatory effects of omentin-1 on osteoblast viability and differentiation, as well as to explore the underlying molecular mechanism. The present study investigated the effects of omentin-1 on the viability and differentiation of mouse pre-osteoblast cells (MC3T3-E1) using quantitative and qualitative measures. A Cell Counting Kit-8 assay was used to assess the viability of MC3T3-E1 cells following treatment with different doses of omentin-1. Omentin-1 and bone morphogenetic protein (BMP) inhibitor were added to osteogenic induction mediums in different ways to assess their effect. The alkaline phosphatase (ALP) activity and Alizarin Red S (ARS) staining of MC3T3-E1 cells treated with omentin-1 and/or BMP inhibitor were used to examine the effects of omentin-1 on differentiation and mineralization. Western blotting was used to further explore its potential mechanism, and to study the role of omentin-1 on the viability and differentiation of osteoblasts. The results showed that omentin-1 altered the viability of MC3T3-E1 cells in a dose-dependent manner. Omentin-1 treatment significantly increased the expression of members of the TGF-β/Smad signaling pathway. In the omentin-1 group, the ALP activity of the MC3T3-E1 cells was increased, and the ARS staining area was also increased. The mRNA and protein expression levels of BMP2, Runt-related transcription factor 2, collagen1, osteopontin, osteocalcin and osterix in the omentin-1 group were also significantly upregulated. All these effects were reversed following treatment with SIS3 HCl. These results demonstrated that omentin-1 can significantly promote osteoblast viability and differentiation via the TGF-β/Smad signaling pathway, thereby promoting bone formation and preventing osteoporosis.
Collapse
Affiliation(s)
- Cuisong Tang
- Department of Radiology, Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University, Shanghai 200072, P.R. China
| | - Dengpan Liang
- Department of Cardiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yuyou Qiu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jingqi Zhu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Guangyu Tang
- Department of Radiology, Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University, Shanghai 200072, P.R. China
| |
Collapse
|
8
|
Systematic Analysis of Cytostatic TGF-Beta Response in Mesenchymal-Like Hepatocellular Carcinoma Cell Lines. J Gastrointest Cancer 2021; 52:1320-1335. [PMID: 34463913 DOI: 10.1007/s12029-021-00704-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most challenging malignancies, with high morbidity and mortality rates. The transforming growth factor-β (TGF-β) pathway plays a dual role in HCC, acting as both tumor suppressor and promoter. A thorough understanding of the mechanisms underlying its opposing functions is important. The growth suppressive effects of TGF-β remain largely unknown for mesenchymal HCC cells. Using a systematic approach, here we assess the cytostatic TGF-β responses and intracellular transduction of the canonical TGF-β/Smad signaling cascade in mesenchymal-like HCC cell lines. METHODS Nine mesenchymal-like HCC cell lines, including SNU182, SNU387, SNU398, SNU423, SNU449, SNU475, Mahlavu, Focus, and Sk-Hep1, were used in this study. The cytostatic effects of TGF-β were evaluated by cell cycle analysis, BrdU labeling, and SA-β-Gal assay. RT-PCR and western blot analysis were utilized to determine the mRNA and protein expression levels of TGF-β signaling components and cytostatic genes. Immunoperoxidase staining and luciferase reporter assays were performed to comprehend the transduction of the canonical TGF-β pathway. RESULTS We report that mesenchymal-like HCC cell lines are resistant to TGF-β-induced growth suppression. The vast majority of cell lines have an active canonical signaling from the cell membrane to the nucleus. Three cell lines had lost the expression of cytostatic effector genes. CONCLUSION Our findings reveal that cytostatic TGF-β responses have been selectively lost in mesenchymal-like HCC cell lines. Notably, their lack of responsiveness was not associated with a widespread impairment of TGF-β signaling cascade. These cell lines may serve as valuable models for studying the molecular mechanisms underlying the loss of TGF-β-mediated cytostasis during hepatocarcinogenesis.
Collapse
|
9
|
Ibáñez CF. Regulation of metabolic homeostasis by the TGF-β superfamily receptor ALK7. FEBS J 2021; 289:5776-5797. [PMID: 34173336 DOI: 10.1111/febs.16090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
ALK7 (Activin receptor-like kinase 7) is a member of the TGF-β receptor superfamily predominantly expressed by cells and tissues involved in endocrine functions, such as neurons of the hypothalamus and pituitary, pancreatic β-cells and adipocytes. Recent studies have begun to delineate the processes regulated by ALK7 in these tissues and how these become integrated with the homeostatic regulation of mammalian metabolism. The picture emerging indicates that ALK7's primary function in metabolic regulation is to limit catabolic activities and preserve energy. Aside of the hypothalamic arcuate nucleus, the function of ALK7 elsewhere in the brain, particularly in the cerebellum, where it is abundantly expressed, remains to be elucidated. Although our understanding of the basic molecular events underlying ALK7 signaling has benefited from the vast knowledge available on TGF-β receptor mechanisms, how these connect to the physiological functions regulated by ALK7 in different cell types is still incompletely understood. Findings of missense and nonsense variants in the Acvr1c gene, encoding ALK7, of some mouse strains and human subjects indicate a tolerance to ALK7 loss of function. Recent discoveries suggest that specific inhibitors of ALK7 may have therapeutic applications in obesity and metabolic syndrome without overt adverse effects.
Collapse
Affiliation(s)
- Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University School of Life Sciences and Chinese Institute for Brain Research, Beijing, China.,Department of Physiology and Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
10
|
Wan R, Feng J, Tang L. Consequences of Mutations and Abnormal Expression of SMAD4 in Tumors and T Cells. Onco Targets Ther 2021; 14:2531-2540. [PMID: 33888990 PMCID: PMC8054659 DOI: 10.2147/ott.s297855] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
SMAD4 is a typical tumor suppressor in the TGF-β signaling pathway. In human cancers, SMAD4 is frequently mutated and inactivated. In recent years, the consequences of mutations and inactivation of SMAD4 are gradually becoming clearer. Most of the mutations have negative consequences and reduce the chances of survival of their carriers. Loss of SMAD4 functions due to mutations or abnormal expression can suppress the inhibition of tumor growth and support the tumor progression. Functions of SMAD4 and its variants in T cells are being studied extensively, to better understand the SMAD4 functions in T cells. In this review, we mainly discuss the recently reported consequences of mutations and abnormal expression of SMAD4 in tumors, and the effects of loss, deficiency or mutation of SMAD4 and its T cells, to show the use of SMAD4 mutations in cancer diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Rongxue Wan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Human Anatomy, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Jianguo Feng
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| |
Collapse
|
11
|
Konuma M, Nagasawa K, Mokrina M, Kobayashi M, Osada M. Gonadal somatic cell-specific transforming growth factor-β superfamily member in the Yesso scallop reveals gonadal somatic cell distribution during the reproductive phase. Gene 2021; 787:145627. [PMID: 33831497 DOI: 10.1016/j.gene.2021.145627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 11/19/2022]
Abstract
The objective of this study was to identify the gonadal somatic cells in the Yesso scallop using a novel molecular marker. This study is the first to identify the bone morphogenetic protein 2a (Bmp2a) gene as a gonadal somatic cell-specific gene in this bivalve. We performed a transcriptomic survey to identify the transforming growth factor-β (TGFβ) superfamily members that act in Yesso scallop gonad development. BLAST survey, phylogenetic tree, and RT-PCR analyses screened BMP molecules (i.e., bmp2a and bmp10a), which are members of the TGFβ superfamily that show gonad-specific expression. Among the BMPs from the Yesso scallop, in situ hybridization accompanied by RNAscope assay identified that bmp2a mRNA was specifically expressed in the gonadal somatic cells localized in the interspace between germ cells. Real-time quantitative PCR (qPCR) analysis revealed that bmp2a mRNA expression increased during the reproductive phase. The relative expression of bmp2a mRNA was lowest at the beginning of the growing stage and peaked at the mature stage in both sexes. These observations indicate that bmp2a-positive gonadal somatic cells support germ cell growth and differentiation during the reproductive phase for both sexes. This study provides new insights into gonadal somatic cell biology in marine invertebrates and we propose that TGFβ signaling is necessary for gonad development in bivalves.
Collapse
Affiliation(s)
- Mizuki Konuma
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan.
| | - Mariia Mokrina
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Mutsuko Kobayashi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
12
|
Choi W, Lee HW, Pak B, Han O, Kim M, Jin SW. Transcriptomic analysis identifies novel targets for individual bone morphogenetic protein type 1 receptors in endothelial cells. FASEB J 2021; 35:e21386. [PMID: 33565137 DOI: 10.1096/fj.202002071r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 11/11/2022]
Abstract
Bone Morphogenetic Protein (BMP) signaling regulates diverse biological processes. Upon ligand binding, BMP receptors (BMPRs) phosphorylate SMAD1/5 and other noncanonical downstream effectors to induce transcription of downstream targets. However, the precise role of individual BMP receptors in this process remains largely unknown due to the complexity of downstream signaling and the innate promiscuity of ligand-receptor interaction. To delineate unique downstream effectors of individual BMPR1s, we analyzed the transcriptome of human umbilical endothelial cells (HUVECs) expressing three distinct constitutively active BMPR1s of which expression was detected in endothelial cells (ECs). From our analyses, we identified a number of novel downstream targets of BMPR1s in ECs. More importantly, we found that each BMPR1 possesses a distinctive set of downstream effectors, suggesting that each BMPR1 is likely to retain unique function in ECs. Taken together, our analyses suggest that each BMPR1 regulates downstream targets non-redundantly in ECs to create context-dependent outcomes of the BMP signaling.
Collapse
Affiliation(s)
- Woosoung Choi
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Heon-Woo Lee
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Boryeong Pak
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Orjin Han
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Minjung Kim
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Suk-Won Jin
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.,Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Pyo MC, Chae SA, Yoo HJ, Lee KW. Ochratoxin A induces epithelial-to-mesenchymal transition and renal fibrosis through TGF-β/Smad2/3 and Wnt1/β-catenin signaling pathways in vitro and in vivo. Arch Toxicol 2020; 94:3329-3342. [PMID: 32617660 DOI: 10.1007/s00204-020-02829-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/24/2020] [Indexed: 12/30/2022]
Abstract
Ochratoxin A (OTA) is a toxin produced by fungi such as Aspergillus spp. and Penicillium spp. The key target organ of OTA toxicity is the kidney, and it is known that epithelial-to-mesenchymal transition (EMT) leading to fibrosis is enhanced after long-term exposure of the kidney to OTA. However, the mechanisms responsible for this onset are not precisely known. Therefore, the purpose of this study was to investigate the mechanism of OTA-induced EMT and fibrosis in human proximal tubule HK-2 cells and mouse kidneys. Cells were treated for 48 h with various concentrations of OTA (50, 100, and 200 nM) and mice underwent oral administration of various doses of OTA (200 and 1000 μg/kg body weight) for 12 weeks. Blood urea nitrogen and creatinine levels were increased in the serum of OTA-treated mice, and fibrosis was observed in kidney tissues. Furthermore, alpha-smooth muscle actin (α-SMA) and fibronectin levels were increased, and E-cadherin level was decreased by OTA in both HK-2 cells and kidney tissues. In addition, the expression levels of TGF-β, smad2/3, and β-catenin were increased after OTA treatment. α-SMA, E-cadherin, and fibronectin were shown to be regulated by the activation of transcription factors, smad2/3 and β-catenin. These results demonstrated that OTA induces EMT and renal fibrosis through Smad2/3 and β-catenin signaling pathways in vitro and in vivo.
Collapse
Affiliation(s)
- Min Cheol Pyo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung A Chae
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hee Joon Yoo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
14
|
Yu H, Wang Y, Jin C, Liu Y, He Y, Zhang Q. The functional differentiation of four smad4 paralogs in TGF-β signaling pathway of Japanese flounder (Paralichthys olivaceus). Cell Signal 2020; 71:109601. [PMID: 32184196 DOI: 10.1016/j.cellsig.2020.109601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
As a classical signaling pathway, transforming growth factor β (TGF-β) has been studied in various animals for more than decade years. However, the members of TGF-β were markedly expanded in teleost specific third and fourth rounds of whole genome duplication (WGD). Here, four smad4s named Posmad4a, Posmad4b, Posmad4c and Posmad4d were identified in Japanese flounder. Our study showed that four flounder smad4s had distinct properties in terms of their protein structure, expression pattern, protein interaction and subcellular localization. PoSMAD4a/b were mainly located in the cytoplasm, and could co-localize in the nucleus with PoSMAD3a after TGF-β activator stimulation. PoSMAD4c was mainly located in nucleus, whereas PoSMAD4d distributed in the whole cell. Both PoSMAD4c and PoSMAD4d could co-localize in the nucleus with PoSMAD3b after TGF-β activator stimulation. Furthermore, Posmad4c responded most strongly to TGF-β signal stimulation. Dual-luciferase reporter assay also showed that Posmad4c could specifically up-regulate the TGF-β signal luciferase reporter gene, Posmad4b could enhance Wnt signal luciferase reporter gene, while both Posmad4b and Posmad4d could markedly up-regulate Notch signal reporter gene. All results indicated that Posmad4a/b/c/d had significantly functional differences among TGF-β, Notch and Wnt signaling pathways. Our study provided important understanding to the biology of smad4s and its pathway crosstalk in teleost.
Collapse
Affiliation(s)
- Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Chaofan Jin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, Shandong, China.
| |
Collapse
|
15
|
Ahir BK, Engelhard HH, Lakka SS. Tumor Development and Angiogenesis in Adult Brain Tumor: Glioblastoma. Mol Neurobiol 2020; 57:2461-2478. [PMID: 32152825 PMCID: PMC7170819 DOI: 10.1007/s12035-020-01892-8] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is the growth of new capillaries from the preexisting blood vessels. Glioblastoma (GBM) tumors are highly vascularized tumors, and glioma growth depends on the formation of new blood vessels. Angiogenesis is a complex process involving proliferation, migration, and differentiation of vascular endothelial cells (ECs) under the stimulation of specific signals. It is controlled by the balance between its promoting and inhibiting factors. Various angiogenic factors and genes have been identified that stimulate glioma angiogenesis. Therefore, attention has been directed to anti-angiogenesis therapy in which glioma proliferation is inhibited by inhibiting the formation of new tumor vessels using angiogenesis inhibitory factors and drugs. Here, in this review, we highlight and summarize the various molecular mediators that regulate GBM angiogenesis with focus on recent clinical research on the potential of exploiting angiogenic pathways as a strategy in the treatment of GBM patients.
Collapse
Affiliation(s)
- Bhavesh K Ahir
- Section of Hematology and Oncology, University of Illinois College of Medicine at Chicago, Chicago, IL, 60612, USA
| | - Herbert H Engelhard
- Department of Neurosurgery, University of Illinois College of Medicine at Chicago, Chicago, IL, 60612, USA
| | - Sajani S Lakka
- Section of Hematology and Oncology, University of Illinois College of Medicine at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
16
|
Sepehri S, Arab SS, Behmanesh M, H. Sajedi R. Directed Blocking of TGF-β Receptor I Binding Site Using Tailored Peptide Segments to Inhibit its Signaling Pathway. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 18:e2561. [PMID: 32884960 PMCID: PMC7461711 DOI: 10.30498/ijb.2020.197161.2561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND TGF-β isoforms play crucial roles in diverse cellular processes. Therefore, targeting and inhibiting TGF-β signaling pathway provides a potential therapeutic opportunity. TGF-β isoforms bind and bring the receptors (TβRII and TβRI) together to form a signaling complex in an ordered manner. OBJECTIVES Herein, an antagonistic variant of TGF-β (AnTβ) has been designed and prepared to inhibit the formation of signaling complex and consequently its signaling pathway. This TGF-β homodimeric variant contains intact TβRII binding sites and blocked TβRI binding sites by substituting three peptide segments. So, AnTβ could only bind to TβRII, but prevent binding and recruitment of TβRI to form a signaling complex. MATERIALS AND METHODS A reliable model of AnTβ was built and refined using molecular dynamics (MD) simulation, followed by investigating the interactions of AnTβ with the receptors using in silico docking studies. After expression of disulfide-linked AnTβ in a SHuffle strain and purification of the protein using affinity chromatography, its biological activity was evaluated using Mink lung epithelial cells (Mvl Lu). RESULTS No meaningful significant changes in AnTβ structure were observed when compared with the native protein. Based on the docking analysis, AnTβ binds to TβRII similar to TGF-β and its binding to TβRI was diminished considerably which was consistent with our design purpose. Cell-based bioassay indicated that AnTβ could modulate TGF-β-induced cell growth inhibition. CONCLUSIONS Our analysis suggests that the antagonistic potency of AnTβ can be used as an anti-TGFβ signaling factor in the future perspectives.
Collapse
Affiliation(s)
- Sepideh Sepehri
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - S. Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza H. Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
17
|
Ai K, Zhu X, Kang Y, Li H, Zhang L. miR-130a-3p inhibition protects against renal fibrosis in vitro via the TGF-β1/Smad pathway by targeting SnoN. Exp Mol Pathol 2019; 112:104358. [PMID: 31836508 DOI: 10.1016/j.yexmp.2019.104358] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/16/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Renal fibrosis, a common pathological outcome of chronic kidney disease (CKD), is characterized by extracellular matrix (ECM) accumulation, damage to the tubular epithelium, and the proliferation and activation of fibroblasts. SnoN, a TGF-β1/Smad transcriptional co-suppressor, is downregulated in obstructive nephropathy. However, the relationship between miR-130a-3p and SnoN expression in the regulation of renal fibrosis is still unknown. METHODS We used human renal proximal tubular epithelial cells (HRPTEpiCs, HK-2 and primary HRPTEpiCs) treated with TGF-β1 to establish an in vitro renal fibrosis model. The expression of miR-130a-3p, SnoN and other proteins related to epithelial mesenchymal transition (EMT) and TGF-β1/Smad signalling was investigated by western blotting or qRT-PCR. A luciferase reporter assay was conducted to confirm the interaction of SnoN mRNA and miR-130a-3p. The translocation of p-Smad 2/3 and Smad 7 was determined using immunofluorescence staining. RESULTS After TGF-β1 treatment, miR-130a-3p was highly expressed in renal tubular epithelial cells, while SnoN was poorly expressed. The cell morphology changed to fibroblast-like, indicating evidence of EMT. The levels of EMT and fibrosis-related proteins were decreased through miR-130a-3p inhibition. Additionally, miR-130a-3p acted upon the 3'-UTR of SnoN directly to suppress SnoN expression. Furthermore, miR-130a-3p/SnoN promoted the activation of TGF-β1/Smad signalling, as revealed by p-Smad 2/3 and Smad 7 expression levels and distribution patterns. CONCLUSION Our study verified that miR-130a-3p facilitates the TGF-β1/Smad pathway in renal tubular epithelial cells and may participate in renal fibrosis by targeting SnoN, which could be a possible strategy for renal fibrosis treatment.
Collapse
Affiliation(s)
- Kai Ai
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Xuan Zhu
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Ye Kang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Hu Li
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Lei Zhang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China.
| |
Collapse
|
18
|
Penke LR, Peters-Golden M. Molecular determinants of mesenchymal cell activation in fibroproliferative diseases. Cell Mol Life Sci 2019; 76:4179-4201. [PMID: 31563998 PMCID: PMC6858579 DOI: 10.1007/s00018-019-03212-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/01/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Uncontrolled scarring, or fibrosis, can interfere with the normal function of virtually all tissues of the body, ultimately leading to organ failure and death. Fibrotic diseases represent a major cause of death in industrialized countries. Unfortunately, no curative treatments for these conditions are yet available, highlighting the critical need for a better fundamental understanding of molecular mechanisms that may be therapeutically tractable. The ultimate indispensable effector cells responsible for deposition of extracellular matrix proteins that comprise scars are mesenchymal cells, namely fibroblasts and myofibroblasts. In this review, we focus on the biology of these cells and the molecular mechanisms that regulate their pertinent functions. We discuss key pro-fibrotic mediators, signaling pathways, and transcription factors that dictate their activation and persistence. Because of their possible clinical and therapeutic relevance, we also consider potential brakes on mesenchymal cell activation and cellular processes that may facilitate myofibroblast clearance from fibrotic tissue-topics that have in general been understudied.
Collapse
Affiliation(s)
- Loka R Penke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA.
| |
Collapse
|
19
|
Epidermal Growth Factor Stimulates Transforming Growth Factor-Beta Receptor Type II Expression In Corneal Epithelial Cells. Sci Rep 2019; 9:8079. [PMID: 31147562 PMCID: PMC6542834 DOI: 10.1038/s41598-019-42969-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/11/2019] [Indexed: 11/08/2022] Open
Abstract
We previously demonstrated that inhibition of epidermal growth factor receptor (EGFR) slowed corneal epithelial migration. Here we examine the effect of EGF on transforming growth factor-beta receptor II (TGF-βRII) in a corneal wound-healing model and primary human corneal epithelial cells (pHCE). Corneal debridement wounds were made and allowed to heal ± Tyrphostin AG1478 (EGFR inhibitor), and assayed for EGFR activation and EGFR and TGF-βRII localization. Primary HCE were treated with EGF ± U0126 (MEK inhibitor) and assayed for TGF-βRII expression. EGFR activation was maximal 15 minutes after wounding and localized in the migrating epithelial cells. TGF-βRII localization was also observed in the migrating epithelium and was reduced when EGFR was blocked. When pHCE were treated with EGF for 6 hours, the cells produced enhanced levels of TGF-βRII, which was blocked by U0126. Downstream signaling pathways of MEK (p38MAPK and ERK1/2MAPK) were then examined, and TGF-β1 and EGF were found to have differential effects on the phosphorylation of p38 and ERK1/2, with TGF-β1 upregulating p-p38 but not pERK1/2 and EGF upregulating pERK1/2 but not p-p38. Taken together, these data indicate that EGF stimulates TGF-βRII through ERK1/2 and EGFR signaling, suggesting interplay between EGF- and TGF-β-signaling pathways during corneal wound repair.
Collapse
|
20
|
Van Hul W, Boudin E, Vanhoenacker FM, Mortier G. Camurati-Engelmann Disease. Calcif Tissue Int 2019; 104:554-560. [PMID: 30721323 DOI: 10.1007/s00223-019-00532-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Camurati-Engelmann disease or progressive diaphyseal dysplasia is a rare autosomal dominant sclerosing bone dysplasia. Mainly the skull and the diaphyses of the long tubular bones are affected. Clinically, the patients suffer from bone pain, easy fatigability, and decreased muscle mass and weakness in the proximal parts of the lower limbs resulting in gait disturbances. The disease-causing mutations are located within the TGFβ-1 gene and expected to or thought to disrupt the binding between TGFβ1 and its latency-associated peptide resulting in an increased signaling of the pathway and subsequently accelerated bone turnover. In preclinical studies, it was shown that targeting the type I receptor ameliorates the high bone turnover. In patients, treatment options are currently mostly limited to corticosteroids that may relieve the pain, and improve the muscle weakness and fatigue. In this review, the clinical and radiological characteristics as well as the molecular genetics of this condition are discussed.
Collapse
Affiliation(s)
- Wim Van Hul
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, 2650, Edegem, Belgium.
| | - Eveline Boudin
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Filip M Vanhoenacker
- AZ Sint-Maarten, Antwerp University Hospital and Ghent University, Mechelen, Belgium
| | - Geert Mortier
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
21
|
Breton JD, Heydet D, Starrs LM, Veldre T, Ghildyal R. Molecular changes during TGFβ-mediated lung fibroblast-myofibroblast differentiation: implication for glucocorticoid resistance. Physiol Rep 2019; 6:e13669. [PMID: 29654633 PMCID: PMC5899214 DOI: 10.14814/phy2.13669] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 12/26/2022] Open
Abstract
Airway remodeling is an important process in response to repetitive inflammatory-mediated airway wall injuries. This is characterized by profound changes and reorganizations at the cellular and molecular levels of the lung tissue. It is of particular importance to understand the mechanisms involved in airway remodeling, as this is strongly associated with severe asthma leading to devastating airway dysfunction. In this study, we have investigated the transforming growth factor-β (TGFβ, a proinflammatory mediator)-activated fibroblast to myofibroblast transdifferentiation pathway, which plays a key role in asthma-related airway remodeling. We show that TGFβ induces fibroblast to myofibroblast transdifferentiation by the expression of αSMA, a specific myofibroblast marker. Furthermore, Smad2/Smad3 gene and protein expression patterns are different between fibroblasts and myofibroblasts. Such a change in expression patterns reveals an important role of these proteins in the cellular phenotype as well as their regulation by TGFβ during cellular transdifferentiation. Interestingly, our data show a myofibroblastic TGFβ-mediated increase in glucocorticoid receptor (GR) expression and a preferential localization of GR in the nucleus, compared to in fibroblasts. Furthermore, the GRβ (nonfunctional GR isoform) is increased relative to GRα (functional isoform) in myofibroblasts. These results are interesting as they support the idea of a GRβ-mediated glucocorticoid resistance observed in the severe asthmatic population. All together, we provide evidence that key players are involved in the TGFβ-mediated fibroblast to myofibroblast transdifferentiation pathway in a human lung fibroblast cell line. These players could be the targets of new treatments to limit airway remodeling and reverse glucocorticoid resistance in severe asthma.
Collapse
Affiliation(s)
- Jean-Didier Breton
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia.,ANU Medical School, The Australian National University, Canberra, Australia
| | - Déborah Heydet
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Lora M Starrs
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Tim Veldre
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Reena Ghildyal
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| |
Collapse
|
22
|
Hu L, Pu Q, Zhang Y, Ma Q, Li G, Li X. Expansion and maintenance of primary corneal epithelial stem/progenitor cells by inhibition of TGFβ receptor I-mediated signaling. Exp Eye Res 2019; 182:44-56. [PMID: 30914160 DOI: 10.1016/j.exer.2019.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023]
Abstract
Transforming growth factor β (TGFβ) signaling is one of the most important signaling pathways regulating cell behavior in ocular tissues. Its functions are mainly linked to tissue fibrosis and inflammatory responses in ophthalmology. In epithelial cells, however, the growth inhibitory activity of TGFβ was reported in both non-ocular and ocular tissues. Since TGFβ is a bifunctional regulator that either inhibits or stimulates cell proliferation according to the specific context, we examined the effect of inhibition of TGFβ receptor (TβR) I-mediated signaling on primary corneal epithelial cells (CECs) in serum- and feeder-free conditions. The mouse CECs were isolated from the eyeballs of 6-8 weeks old female C57BL/6 mice using dispase and trypsin separately, cultivated in defined Keratinocyte serum-free medium (KSFM) with supplements (the complete medium) without feeder layer. Cells were divided into three groups, those cultured in complete medium additionally supplemented with 10 μM SB-431542, a specific inhibitor of TβR-I, were SB-CECs; those cultured in complete medium additionally supplemented with 10 ng/ml SRI-011381, a TGF-beta signaling agonist, were SRI-CECs; those cultured in complete medium without SB-431542 or SRI-011381 were control CECs. The growth rate and morphology were analyzed by light microscopy. The identity and stemness of cells was investigated through marker staining of p63, inhibitor of differentiation 1 (ID1), cytokeratin 12 (K12), cytokeratin 14 (K14), PAX6, pSmad3, alpha smooth muscle Actin (αSMA) and E-cadherin (E-cad); Real-time quantitative (RT-PCR) analysis of p63; Western blot analysis of ID1; as well as colony forming assay, sphere forming assay, healing wound in vitro assay and air-lifting interface assay. The results showed SB-CECs subcultured steadily, achieved sustained expansion, and expanded almost thrice faster than control CECs. Expanded SB-CECs exhibited smaller and more compact morphology, up-regulated p63 and ID1, as well as better performed colony-forming capacity, sphere-forming capacity, in vitro wound healing capacity, and the capacity to stratify and differentiate on air-lifting interface. Preliminary tests on human limbal epithelial cells (HLECs) showed the same results as mouse CECs. Interestingly, the ID1 expression pattern was almost identical to p63, the typical marker for corneal epithelial stem/progenitor cell (CESC/CEPC), in cultured CECs and normal corneal sections. Since ID1 has been proven to be regulated negatively by TGFβ signaling in epithelial cells and plays a role in blocking cell differentiation, its derepression by TβR-I inhibitor could be, at least in part, the underlying cause of CESC/CEPC expansion and the synchronously up-regulated expression of p63 in SB-CECs. In conclusion, inhibition of TβR-I-mediated signaling, CESCs/CEPCs achieved efficient long-term expansion in a feeder- and serum-free condition in vitro. And derepression of ID1 could be the underlying cause. Meanwhile, ID1 could serve as a marker for CESC/CEPC. These results may advance the basic and clinical CESC/CEPC research.
Collapse
Affiliation(s)
- Lihua Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qi Pu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yaoli Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qian Ma
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinyu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
23
|
Hwang CH, Keller J, Renner C, Ohta S, Wu DK. Genetic interactions support an inhibitory relationship between bone morphogenetic protein 2 and netrin 1 during semicircular canal formation. Development 2019; 146:dev.174748. [PMID: 30770380 PMCID: PMC6398446 DOI: 10.1242/dev.174748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/18/2019] [Indexed: 12/16/2022]
Abstract
The semicircular canals of the mammalian inner ear are derived from epithelial pouches in which epithelial cells in the central region of each pouch undergo resorption, leaving behind the region at the rim to form a tube-shaped canal. Lack of proliferation at the rim and/or over-clearing of epithelial cells in the center of the pouch can obliterate canal formation. Otic-specific knockout of bone morphogenetic protein 2 (Bmp2) results in absence of all three semicircular canals; however, the common crus and ampullae housing the sensory tissue (crista) are intact. The lack of Bmp2 causes Ntn1 (which encodes netrin 1), which is required for canal resorption, to be ectopically expressed at the canal rim. Ectopic Ntn1 results in reduction of Dlx5 and Lmo4, which are required for rim formation. These phenotypes can be partially rescued by removing one allele of Ntn1 in the Bmp2 mutants, indicating that Bmp2 normally negatively regulates Ntn1 for canal formation. Additionally, non-resorption of the canal pouch in Ntn1−/− mutants is partially rescued by removing one allele of Bmp2. Thus, reciprocal inhibition between Bmp2 and netrin 1 is involved in canal formation of the vestibule. Summary:Bmp2-conditional mutant analyses support the hypothesis that presumptive crista induces canal genesis zone in the canal pouch to express Bmp2, which promotes canal formation by restricting Ntn1 expression to the resorption domain.
Collapse
Affiliation(s)
- Chan Ho Hwang
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| | - James Keller
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| | - Charles Renner
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| | - Sho Ohta
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| | - Doris K Wu
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Xin L, Jiang M, Su G, Xie M, Chen H, Liu X, Xu M, Zhang G, Gong J. The association between transforming growth factor beta1 polymorphism and susceptibility to pulmonary fibrosis: A meta-analysis (MOOSE compliant). Medicine (Baltimore) 2018; 97:e11876. [PMID: 30212926 PMCID: PMC6155963 DOI: 10.1097/md.0000000000011876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Although many studies have investigated the association of single nucleotide polymorphisms (SNPs) in transforming growth factor beta1 (TGF-β1) gene with pulmonary fibrosis (PF), but their association is still controversial. To clarify this, we performed a meta-analysis.Studies related to TGF-β1 and PF were retrieved from PubMed, Medline, Embase, Scopus, and Wanfang (up to November 30, 2017). We targeted TGF-β1 SNPs that have been reported by ≥3 studies to be included in the current meta-analysis, resulting in only 1 final SNP (rs1800470). The odds ratios (ORs) and 95% confidence intervals (CIs) were estimated in the models of allele comparison (T vs C), homozygote comparison (TT vs CC), dominant (TT vs TC + CC), recessive (TT + TC vs CC) to evaluate the strength of the associations.A total of 7 case-control studies were included in this meta-analysis. Overall, no significant association between TGF-β1 rs1800470 and PF was found (T vs C: OR [95% CI] = 0.96 [0.80, 1.15]; TT vs CC: 0.87 [0.61, 1.22]; TT vs TC + CC: 0.80 [0.62, 1.04]; TT + TC vs CC: 1.13 [0.83, 1.54]). In subgroup analyses by ethnicity or original disease, no statistically significant association between TGF-β1 rs1800470 polymorphisms and PF was demonstrated.This meta-analysis revealed that TGF-β1 rs1800470 polymorphism was not associated with susceptibility to PF development.
Collapse
|
25
|
Aguilera A, Aroeira LS, Ramirez-Huesca M, Perez-Lozano ML, Cirugeda A, Bajo MA, Del Peso G, Valenzuela-Fernandez A, Sanchez-Tomero JA, Lopez-Cabrera M, Selgas R. Effects of Rapamycin on the Epithelial-to-mesenchymal Transition of Human Peritoneal Mesothelial Cells. Int J Artif Organs 2018; 28:164-9. [PMID: 15770593 DOI: 10.1177/039139880502800213] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The preservation of the peritoneal membrane is crucial for long-term survival in peritoneal dialysis. Epithelial-to-mesenchymal transition (EMT) is a process demonstrated in mesothelial cells (MC), responsible for negative peritoneal changes and directly related to PD. EMT enables neovascularization and fibrogenic capabilities in MC. Vascular endothelial growth factor (VEGF) is the mediator for neo-vascularization. Rapamycin is a potent immunosuppressor with antifibrotic action in renal allografts and has a demonstrated anti-VEGF effect. We performed this study with the hypothesis that rapamycin may regulate the EMT of MC. MC from human omentum were cultured. When mesothelial cells reached confluence, some of them were stimulated with r-TGF-ß (1 ng/mL) to induce EMT, co-administered with rapamycin (0.2, 2, 4, 20 and 40 nM). Other groups of cells received similar doses of rapamycin or r-TGF-ß, separately. Cells were analyzed at 6, 24, 48 hours and 7 days. As markers of EMT we included α-SMA, E-cadherin and snail nuclear factor by quantitative RT-PCR. EMT markers and regulators demonstrated the following changes with rapamycin: E-cadherin (a protective gene for EMT) increased 2.5-fold relative to controls under 40 nM, at 24h. Importantly, rapamycin inhibited snail expression induced by TGF-ß at 6h, whereas TGF-ß increased snail 10fold. At day 7, rapamycin showed no anti-EMT properties. An important decrease in α-SMA expression by MC after rapamycin addition was observed. In conclusion, rapamycin shows a mild protective effect on EMT, as it increases E-cadherin and decreases α-SMA expression. Consequently, rapamycin might partially regulate the epithelial-to-mesenchymal transition of mesothelial cells.
Collapse
Affiliation(s)
- A Aguilera
- Department of Nephrology, University Hospital La Princesa, 28006 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu H, Dong F, Li G, Niu M, Zhang C, Han Y, He L, Yin P, Wang B, Sang X, Li R, Wang J, Bai Z, Xiao X. Liuweiwuling tablets attenuate BDL-induced hepatic fibrosis via modulation of TGF-β/Smad and NF-κB signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:232-241. [PMID: 28864168 DOI: 10.1016/j.jep.2017.08.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liuweiwuling (LWWL) tablets contain a six-herb Chinese formula and are commonly prescribed to facilitate nourishment of the liver and kidneys, clear away toxic materials and activate blood circulation. Administration of LWWL is well known for its protective effects on the liver and its capacity to confer long-term stability in patients exhibiting reduced transaminase levels. Clinical studies have reported that LWWL can also be used for the treatment of liver fibrosis with associated treatment regimens resulting in a concomitant reduction in transforming growth factor β1 (TGF-β1) levels in the serum of patients with hepatic fibrosis. TGF-β1 plays a prominent role in stimulating liver fibrogenesis and this effect is mediated by myofibroblasts (MFB) derived from hepatic stellate cells (HSCs). It is likely that this phenomenon underpins the antifibrotic effects associated with LWWL. AIM The purpose of this study was to investigate the antifibrotic effects and mechanisms pertaining to LWWL. METHODS Hepatic fibrosis was induced in rats following bile duct ligation (BDL). Rats that underwent BDL received daily gavage administration of colchicine (0.2mg/kg per day), LWWL (0.4, 1.6, 6.4g/kg per day) or PBS (for the control group). Pathological changes in hepatic tissue were examined using hematoxylin and eosin (HE) and sirius red staining. Immunohistochemical analysis was performed to monitor α-SMA and type I collagen (Collagen I) protein expression. Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot analyses were used to monitor the expression of genes and proteins in the TGF-β/Smad signaling pathway, including TGF-β1, bone morphogenic protein and activin membrane-bound inhibitor (Bambi), Smad3, phosphorylated Smad3 (p-Smad3) and Smad7. We also monitored the expression of genes and proteins in the nuclear factor-κB (NF-κB) signaling pathway, including NF-κB p65, IκBα and phosphorylation of IκBα (p-IκBα), tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1β (IL-1β). RESULTS LWWL dose-dependently inhibited BDL-induced liver injury and hepatic fibrosis in rats. Furthermore, LWWL reduced liver tissue collagen deposition, hydroxyproline content, liver dysfunction and α-SMA expression in BDL-induced hepatic fibrosis rats. Moreover, LWWL markedly prevented activation of the TGF-β/Smad signaling pathway by inhibiting expression of Smad2/3 and phosphorylation of Smad3, and upregulating the expression of Bambi and Smad7. In addition, LWWL regulated the expression of the inflammatory cytokines IL-1β, TNF-α and IL-6 by inhibiting the activation of NF-κB p65 and the phosphorylation of IκBα, and increasing the expression of IκBα. CONCLUSIONS LWWL can attenuate BDL-induced hepatic fibrosis in rats, and this effect may be due to modulation of the NF-κB-dependent inflammatory response and activation of HSC and TGF-β/Smad-mediated synthesis and degradation of Collagen I.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China; Chengde Medical University Chengde, Hebei, People's Republic of China.
| | - Fang Dong
- Department of Health Statistics, Taishan Medical University, Taian, Shandong, People's Republic of China
| | - Guangquan Li
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Ming Niu
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Congen Zhang
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Yanzhong Han
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Lanzhi He
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Ping Yin
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Bin Wang
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Xiuxiu Sang
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China; Chengde Medical University Chengde, Hebei, People's Republic of China
| | - Ruishen Li
- Animal Laboratory Center, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Jiabo Wang
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Zhaofang Bai
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Xiaohe Xiao
- China Military Institute of Chinese Medicine, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| |
Collapse
|
27
|
Yang TL, Lee PL, Lee DY, Wang WL, Wei SY, Lee CI, Chiu JJ. Differential regulations of fibronectin and laminin in Smad2 activation in vascular endothelial cells in response to disturbed flow. J Biomed Sci 2018; 25:1. [PMID: 29295709 PMCID: PMC5749020 DOI: 10.1186/s12929-017-0402-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Atherosclerosis occurs in arterial curvatures and branches, where the flow is disturbed with low and oscillatory shear stress (OSS). The remodeling and alterations of extracellular matrices (ECMs) and their composition is the critical step in atherogenesis. In this study, we investigated the effects of different ECM proteins on the regulation of mechanotransduction in vascular endothelial cells (ECs) in response to OSS. METHODS Through the experiments ranging from in vitro cell culture studies on effects of OSS on molecular signaling to in vivo examinations on clinical specimens from patients with coronary artery disease (CAD), we elucidated the roles of integrins and different ECMs, i.e., fibronectin (FN) and laminin (LM), in transforming growth factor (TGF)-β receptor (TβR)-mediated Smad2 activation and nuclear factor-κB (NF-κB) signaling in ECs in response to OSS and hence atherogenesis. RESULTS OSS at 0.5±12 dynes/cm2 induces sustained increases in the association of types I and II TβRs with β1 and β3 integrins in ECs grown on FN, but it only transient increases in ECs grown on LM. OSS induces a sustained activation of Smad2 in ECs on FN, but only a transient activation of Smad2 in ECs on LM. OSS-activation of Smad2 in ECs on FN regulates downstream NF-κB signaling and pro-inflammatory gene expression through the activation of β1 integrin and its association with TβRs. In contrast, OSS induces transient activations of β1 and β3 integrins in ECs on LM, which associate with type I TβR to regulate Smad2 phosphorylation, resulting in transient induction of NF-κB and pro-inflammatory gene expression. In vivo investigations on diseased human coronary arteries from CAD patients revealed that Smad2 is highly activated in ECs of atherosclerotic lesions, which is accompanied by the concomitant increase of FN rather than LM in the EC layer and neointimal region of atherosclerotic lesions. CONCLUSIONS Our findings provide new insights into the mechanisms of how OSS regulates Smad2 signaling and pro-inflammatory genes through the complex signaling networks of integrins, TβRs, and ECMs, thus illustrating the molecular basis of regional pro-inflammatory activation within disturbed flow regions in the arterial tree.
Collapse
Affiliation(s)
- Tung-Lin Yang
- Department of Life Sciences, National Central University, Jung-Li, Taoyuan, Taiwan.,Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Ling Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ding-Yu Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan.,Departments of Food Science and Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan
| | - Wei-Li Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Yi Wei
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-I Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan. .,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan. .,Institute of Biomedical Engineering, National Cheng-Kung University, Tainan, Taiwan. .,College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
28
|
Hsu WL, Ma YL, Liu YC, Lee EHY. Smad4 SUMOylation is essential for memory formation through upregulation of the skeletal myopathy gene TPM2. BMC Biol 2017; 15:112. [PMID: 29183317 PMCID: PMC5706330 DOI: 10.1186/s12915-017-0452-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 11/07/2017] [Indexed: 11/22/2022] Open
Abstract
Background Smad4 is a critical effector of TGF-β signaling that regulates a variety of cellular functions. However, its role in the brain has rarely been studied. Here, we examined the molecular mechanisms underlying the post-translational regulation of Smad4 function by SUMOylation, and its role in spatial memory formation. Results In the hippocampus, Smad4 is SUMOylated by the E3 ligase PIAS1 at Lys-113 and Lys-159. Both spatial training and NMDA injection enhanced Smad4 SUMOylation. Inhibition of Smad4 SUMOylation impaired spatial learning and memory in rats by downregulating TPM2, a gene associated with skeletal myopathies. Similarly, knockdown of TPM2 expression impaired spatial learning and memory, while TPM2 mRNA and protein expression increased after spatial training. Among the TPM2 mutations associated with skeletal myopathies, the TPM2E122K mutation was found to reduce TPM2 expression and impair spatial learning and memory in rats. Conclusions We have identified a novel role of Smad4 SUMOylation and TPM2 in learning and memory formation. These results suggest that patients with skeletal myopathies who carry the TPM2E122K mutation may also have deficits in learning and memory functions. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0452-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei L Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yun L Ma
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yen C Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Eminy H Y Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan. .,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
29
|
Yu H, Jiang N, Yu X, Zhao Z, Zhang X, Xu H. The role of TGFβ receptor 1-smad3 signaling in regulating the osteoclastic mode affected by fluoride. Toxicology 2017; 393:73-82. [PMID: 29127033 DOI: 10.1016/j.tox.2017.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022]
Abstract
Studies that have focused on the role TGFβ signaling plays in osteoclast activity are gradually increasing; however, literature is rare in terms of fluorosis. The aim of this study is to observe the role the TβR1/Smad3 pathway plays in fluoride regulating cellsosteoclast-like cells that are under the treatment of TGFβ receptor 1 kinase. The RANKL-mediated osteoclast-like cells from RAW264.7 cells were used as osteoclast precursor model. The profile of miRNA expression in fluoride-treated osteoclast-like cells exhibited 303 upregulated miRNAs, 61 downregulated miRNAs, and further drew 37 signaling pathway maps by KEGG and Biocarta pathway enrichment analysis. TGFβ and its downstream effectors were included among them. Osteoclast viability, formation and function were detected via MTT method, bone resorption pit and tartrate-resistant acid phosphatase (TRACP) staining, respectively. Results demonstrated that different doses of fluoride exhibited a biphasic effect on osteoclast cell viability, differentiation, formation and function. It indicated that a low dose of fluoride treatment stimulated them, but high dose inhibited them. SB431542 acted as TβR1 kinase inhibitor and blocked viability, formation and function of osteoclast-like cells regulated by fluoride. The expression of the osteoclast marker, RANK, and TβR1/Smad3 at gene and protein level was analyzed under fluoride with and without SB431542 treatment. Fluoride treatment indicated little effect on the RANK protein expression; however it significantly influenced TRACP expression in osteoclast-like cells. The stimulation of fluoride on the expression of Smad3 gene and phosphorylated Smad3 protein exhibited dose-dependent manner. SB431542 significantly impeded phosphorylation of Smad3 protein and TRACP expression in osteoclast-like cells that were exposed to fluoride. Our work demonstrated that TGFβ signaling played a key role in fluoride regulating osteoclast differentiation, formation and function. It elucidated that TβR1/Smad3 pathway participated in the mechanism of biphasic modulation of osteoclast mode regulated by fluoride.
Collapse
Affiliation(s)
- Haolan Yu
- Department of Regenerative Medical Science, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Ningning Jiang
- Department of Regenerative Medical Science, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - XiuHua Yu
- First Clinical Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Zhitao Zhao
- Department of Regenerative Medical Science, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Xiuyun Zhang
- Department of Regenerative Medical Science, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Hui Xu
- Department of Regenerative Medical Science, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
30
|
Abstract
Correct organization of the vascular tree requires the balanced activities of several signaling pathways that regulate tubulogenesis and vascular branching, elongation, and pruning. When this balance is lost, the vessels can be malformed and fragile, and they can lose arteriovenous differentiation. In this review, we concentrate on the transforming growth factor (TGF)-β/bone morphogenetic protein (BMP) pathway, which is one of the most important and complex signaling systems in vascular development. Inactivation of these pathways can lead to altered vascular organization in the embryo. In addition, many vascular malformations are related to deregulation of TGF-β/BMP signaling. Here, we focus on two of the most studied vascular malformations that are induced by deregulation of TGF-β/BMP signaling: hereditary hemorrhagic telangiectasia (HHT) and cerebral cavernous malformation (CCM). The first of these is related to loss-of-function mutation of the TGF-β/BMP receptor complex and the second to increased signaling sensitivity to TGF-β/BMP. In this review, we discuss the potential therapeutic targets against these vascular malformations identified so far, as well as their basis in general mechanisms of vascular development and stability.
Collapse
Affiliation(s)
- Sara I Cunha
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| | - Peetra U Magnusson
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| | - Elisabetta Dejana
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.).
| | - Maria Grazia Lampugnani
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| |
Collapse
|
31
|
Li F, Li Q, Huang X, Wang Y, Ge C, Qi Y, Guo W, Sun H. Psoralen stimulates osteoblast proliferation through the activation of nuclear factor-κB-mitogen-activated protein kinase signaling. Exp Ther Med 2017; 14:2385-2391. [PMID: 28962172 PMCID: PMC5609190 DOI: 10.3892/etm.2017.4771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/23/2017] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is a systemic skeletal disease that leads to increased bone fragility and susceptibility to fracture. Approximately 50% of postmenopausal women develop osteoporosis as a result of postmenopausal estrogen deficiency. To reduce fractures related to osteoporosis in women, previous studies have focused on therapeutic strategies that aim to increase bone formation or decrease bone resorption. However, pharmacological agents that aim to improve bone fracture susceptibility exhibit side effects. Current studies are investigating natural alternatives that possess the benefits of selective estrogen receptor modulators (SERMs) without the adverse effects. Recent studies have indicated that phytoestrogen may be an ideal natural SERM for the treatment of osteoporosis. In Chinese herbal medicine, psoralen, as the predominant substance of Psoralea corylifolia, is considered to be a phytoestrogen and is used as a remedy for osteoporosis. A number of studies have demonstrated the efficacy of psoralen in bone formation. However, the pathways and underlying molecular mechanisms that participate in psoralen-induced osteoblast formation are not well understood. In the present study, hFOB1.19 cells were treated with psoralen at different concentrations (0, 5, 10, 15 and 20 µM) for 0, 24, 36, 48 and 72 h, respectively. Reverse transcription-quantitative polymerase chain reaction and western blot assays were performed to detect glucose transporter 3 (GLUT3) expression. A cell counting kit-8 assay was used to analyze cell proliferation. In addition the effects of mitogen activated protein kinase inhibitors on extracellular signal-regulated kinase (ERK), phosphorylated (p)-ERK, p38, p-p38, c-Jun N-terminal kinase (JNK) and p-JNK expressions and cell proliferation were measured, as was the effect of nuclear factor (NF)-κB inhibitor on P65 and GLUT3 expressions and cell proliferation. The results indicated that psoralen stimulates hFOB1.19 cell proliferation in a dose-dependent manner (P<0.05). Phospho-ERK, p38 and JNK were markedly increased by psoralen compared with the control group (P<0.05), and the specific inhibitors of ERK (SCH772984), p38 (SB203580) and JNK (SP600125) reversed the stimulatory effects of psoralen on signal marker phosphorylation (P<0.05). The rate of psoralen-induced cell proliferation was significantly suppressed by inhibitors of ERK, JNK and p38 compared with psoralen treatment alone (P<0.05). In addition, psoralen stimulated osteoblast proliferation via the NF-κB signaling pathway. Therefore, the present findings suggest that psoralen may be a potential natural alternative to SERMs in the treatment of osteoporosis and fractures.
Collapse
Affiliation(s)
- Feimeng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Qihuo Li
- Fourth Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaoqing Huang
- Department of Chinese Medicine, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Yunting Wang
- Fourth Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Chana Ge
- Fourth Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yong Qi
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Wei Guo
- Fourth Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hongtao Sun
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
32
|
Dubon MJ, Yu J, Choi S, Park KS. Transforming growth factor β induces bone marrow mesenchymal stem cell migration via noncanonical signals and N-cadherin. J Cell Physiol 2017; 233:201-213. [PMID: 28213973 DOI: 10.1002/jcp.25863] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-beta (TGF-β) induces the migration and mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) to maintain bone homeostasis during bone remodeling and facilitate the repair of peripheral tissues. Although many studies have reported the mechanisms through which TGF-β mediates the migration of various types of cells, including cancer cells, the intrinsic cellular mechanisms underlying cellular migration, and mobilization of BM-MSCs mediated by TGF-β are unclear. In this study, we showed that TGF-β activated noncanonical signaling molecules, such as Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and p38, via TGF-β type I receptor in human BM-MSCs and murine BM-MSC-like ST2 cells. Inhibition of Rac1 by NSC23766 and Src by PP2 resulted in impaired TGF-β-mediated migration. These results suggested that the Smad-independent, noncanonical signals activated by TGF-β were necessary for migration. We also showed that N-cadherin-dependent intercellular interactions were required for TGF-β-mediated migration using functional inhibition of N-cadherin with EDTA treatment and a neutralizing antibody (GC-4 antibody) or siRNA-mediated knockdown of N-cadherin. However, N-cadherin knockdown did not affect the global activation of noncanonical signals in response to TGF-β. Therefore, these results suggested that the migration of BM-MSCs in response to TGF-β was mediated through N-cadherin and noncanonical TGF-β signals.
Collapse
Affiliation(s)
- Maria Jose Dubon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Jinyeong Yu
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Sanghyuk Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Ki-Sook Park
- East-West Medical Research Institute, Kyung Hee University, Seoul, Korea
- College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
33
|
Khatibi S, Zhu HJ, Wagner J, Tan CW, Manton JH, Burgess AW. Mathematical model of TGF-βsignalling: feedback coupling is consistent with signal switching. BMC SYSTEMS BIOLOGY 2017; 11:48. [PMID: 28407804 PMCID: PMC5390422 DOI: 10.1186/s12918-017-0421-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/24/2017] [Indexed: 02/08/2023]
Abstract
Background Transforming growth factor β (TGF-β) signalling regulates the development of embryos and tissue homeostasis in adults. In conjunction with other oncogenic changes, long-term perturbation of TGF-β signalling is associated with cancer metastasis. Although TGF-β signalling can be complex, many of the signalling components are well defined, so it is possible to develop mathematical models of TGF-β signalling using reduction and scaling methods. The parameterization of our TGF-β signalling model is consistent with experimental data. Results We developed our mathematical model for the TGF-β signalling pathway, i.e. the RF- model of TGF-β signalling, using the “rapid equilibrium assumption” to reduce the network of TGF-β signalling reactions based on the time scales of the individual reactions. By adding time-delayed positive feedback to the inherent time-delayed negative feedback for TGF-β signalling. We were able to simulate the sigmoidal, switch-like behaviour observed for the concentration dependence of long-term (> 3 hours) TGF-β stimulation. Computer simulations revealed the vital role of the coupling of the positive and negative feedback loops on the regulation of the TGF-β signalling system. The incorporation of time-delays for the negative feedback loop improved the accuracy, stability and robustness of the model. This model reproduces both the short-term and long-term switching responses for the intracellular signalling pathways at different TGF-β concentrations. We have tested the model against experimental data from MEF (mouse embryonic fibroblasts) WT, SV40-immortalized MEFs and Gp130 F/F MEFs. The predictions from the RF- model are consistent with the experimental data. Conclusions Signalling feedback loops are required to model TGF-β signal transduction and its effects on normal and cancer cells. We focus on the effects of time-delayed feedback loops and their coupling to ligand stimulation in this system. The model was simplified and reduced to its key components using standard methods and the rapid equilibrium assumption. We detected differences in short-term and long-term signal switching. The results from the RF- model compare well with experimental data and predict the dynamics of TGF-β signalling in cancer cells with different mutations. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0421-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shabnam Khatibi
- Electrical and Electronic Engineering Department, The University of Melbourne, Parkville, Victoria, 3010, Australia.,The Walter and Eliza Hall Institute of Medical Research (WEHI), 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Hong-Jian Zhu
- Department of Surgery (RMH), The University of Melbourne, Parkville, Victoria, 3050, Australia
| | - John Wagner
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, 87 Grattan Street, Victoria, 3010, Australia.,IBM Research-Australia, 204 Lygon Street Level 5, Carlton, Victoria, 3053, Australia
| | - Chin Wee Tan
- The Walter and Eliza Hall Institute of Medical Research (WEHI), 1G Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Jonathan H Manton
- Electrical and Electronic Engineering Department, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Antony W Burgess
- Department of Surgery (RMH), The University of Melbourne, Parkville, Victoria, 3050, Australia. .,The Walter and Eliza Hall Institute of Medical Research (WEHI), 1G Royal Parade, Parkville, Victoria, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
34
|
Wang Y, He T, Liu J, Liu H, Zhou L, Hao W, Sun Y, Wang X. Synergistic effects of overexpression of BMP‑2 and TGF‑β3 on osteogenic differentiation of bone marrow mesenchymal stem cells. Mol Med Rep 2016; 14:5514-5520. [PMID: 27878265 PMCID: PMC5355709 DOI: 10.3892/mmr.2016.5961] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 08/22/2016] [Indexed: 02/07/2023] Open
Abstract
Bone morphogenetic protein 2 (BMP-2) and transforming growth factor β (TGF-β) isoforms are important in advancing bone regeneration. The aim of the present study was to investigate the positive and reciprocal effect of TGF-β3, one of the three TGF-β isoforms, on BMP-2 in promoting osteogenic differentiation. Exogenous BMP-2 and TGF-β3 genes were separately, and in combination, overexpressed in rabbit bone marrow-derived mesenchymal stem cells (rBMSCs). Expression levels of BMP-2 and TGF-β3 were evaluated using reverse-transcription-polymerase chain reaction (RT-PCR) and Western blotting assays. Furthermore, the osteogenic differentiation capacities of BMSCs were assessed by measuring Alizarin Red S staining, an alkaline phosphatase activity assay, and quantification of the osteogenic-specific genes, Runt-related transcription factor 2 (Runx2) and Osterix (Osx). Using lentiviral-mediated transfection, robust co-transfection efficiency of >90% was achieved. RT-PCR and immunoblotting results indicated a marked elevated expression of BMP-2 and TGF-β3 in rBMSCs undergoing co-transfection, compared with transfection with BMP-2 or TGF-β3 alone, indicating that BMP-2 and TGF-β3 are synergistically expressed in rBMSCs. Furthermore, enhanced osteogenic differentiation was observed in rBMSCs co-transfected with BMP-2/TGF-β3. The present study successfully delivered BMP-2 together with TGF-β3 into rBMSCs with high efficiency for the first time. Furthermore, TGF-β3 overexpression was demonstrated to enhance the osteogenic efficacy of BMP-2 in rBMSCs, and vice versa. This provides a potential clinical therapeutic approach for regenerating the function of osseous tissue, and may present a promising strategy for bone defect healing.
Collapse
Affiliation(s)
- Yilin Wang
- Department of Biochip Laboratory, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Tian He
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Jie Liu
- Department of Biochip Laboratory, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Hongzhi Liu
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Lugang Zhou
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Wei Hao
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Yujie Sun
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Xin Wang
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| |
Collapse
|
35
|
Target genes of Dpp/BMP signaling pathway revealed by transcriptome profiling in the early D. melanogaster embryo. Gene 2016; 591:191-200. [DOI: 10.1016/j.gene.2016.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 01/23/2023]
|
36
|
The Discovery and Early Days of TGF-β: A Historical Perspective. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021865. [PMID: 27328871 DOI: 10.1101/cshperspect.a021865] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transforming growth factors (TGFs) were discovered as activities that were secreted by cancer cells, and later by normal cells, and had the ability to phenotypically and reversibly transform immortalized fibroblasts. TGF-β distinguished itself from TGF-α because it did not bind to the same epidermal growth factor (EGF) receptor as TGF-α and, therefore, acted through different cell-surface receptors and signaling mediators. This review summarizes the discovery of TGF-β, the early developments in its molecular and biological characterization with its many biological activities in different cell and tissue contexts and its roles in disease, the realization that there is a family of secreted TGF-β-related proteins with many differentiation functions in development and activities in normal cell and tissue physiology, and the subsequent identification and characterization of the receptors and effectors that mediate TGF-β family signaling responses.
Collapse
|
37
|
Experimental evidences for hsa-miR-497-5p as a negative regulator of SMAD3 gene expression. Gene 2016; 586:216-21. [PMID: 27063509 DOI: 10.1016/j.gene.2016.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/16/2016] [Accepted: 04/01/2016] [Indexed: 11/22/2022]
Abstract
The SMAD family comprises of transcription factors that function as signal transducers of transforming growth factor (TGFβ) superfamily members. MiRNAs are a class of small noncoding RNAs that may play a major role in post transcriptional regulation of SMAD genes. Here, we intended to investigate if hsa-miR-497-5p is capable of regulating SMAD3 gene expression. Hsa-miR-497-5p was bioinformatically predicted as a candidate regulator of SMAD3 gene expression and then, hsa-miR-497-5p expression status was analyzed in different cell lines using RT-qPCR. Overexpression of hsa-miR-497-5p in HEK293t cells resulted in downregulation of SMAD3 which was detected by RT-qPCR and western analysis. Further, dual luciferase assay results supported direct interaction of hsa-miR-497-5p with 3'-UTR sequences of SMAD3 transcript. Overexpression of hsa-miR-497-5p in HEK293t cells resulted in cell cycle arrest in G0/G1 phase, detected by flow cytometry. Overall, accumulative results indicated that hsa-miR-497-5p by targeting SMAD3 is potentially one of the regulators of the TGFβ signaling pathway.
Collapse
|
38
|
Flamini V, Jiang WG, Lane J, Cui YX. Significance and therapeutic implications of endothelial progenitor cells in angiogenic-mediated tumour metastasis. Crit Rev Oncol Hematol 2016; 100:177-89. [PMID: 26917455 DOI: 10.1016/j.critrevonc.2016.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/30/2015] [Accepted: 02/15/2016] [Indexed: 01/16/2023] Open
Abstract
Cancer conveys profound social and economic consequences throughout the world. Metastasis is responsible for approximately 90% of cancer-associated mortality and, when it occurs, cancer becomes almost incurable. During metastatic dissemination, cancer cells pass through a series of complex steps including the establishment of tumour-associated angiogenesis. The human endothelial progenitor cells (hEPCs) are a cell population derived from the bone marrow which are required for endothelial tubulogenesis and neovascularization. They also express abundant inflammatory cytokines and paracrine angiogenic factors. Clinically hEPCs are highly correlated with relapse, disease progression, metastasis and treatment response in malignancies such as breast cancer, ovarian cancer and non-small-cell lung carcinoma. It has become evident that the hEPCs are involved in the angiogenesis-required progression and metastasis of tumours. However, it is not clear in what way the signalling pathways, controlling the normal cellular function of human BM-derived EPCs, are hijacked by aggressive tumour cells to facilitate tumour metastasis. In addition, the actual roles of hEPCs in tumour angiogenesis-mediated metastasis are not well characterised. In this paper we reviewed the clinical relevance of the hEPCs with cancer diagnosis, progression and prognosis. We further summarised the effects of tumour microenvironment on the hEPCs and underlying mechanisms. We also hypothesized the roles of altered hEPCs in tumour angiogenesis and metastasis. We hope this review may enhance our understanding of the interaction between hEPCs and tumour cells thus aiding the development of cellular-targeted anti-tumour therapies.
Collapse
Affiliation(s)
- Valentina Flamini
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| | - Jane Lane
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| | - Yu-Xin Cui
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK.
| |
Collapse
|
39
|
Lee Y, Kwak HB, Hord J, Kim JH, Lawler JM. Exercise training attenuates age-dependent elevation of angiotensin II type 1 receptor and Nox2 signaling in the rat heart. Exp Gerontol 2015; 70:163-73. [DOI: 10.1016/j.exger.2015.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/26/2015] [Accepted: 07/30/2015] [Indexed: 11/25/2022]
|
40
|
Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res 2015; 3:15005. [PMID: 26273537 PMCID: PMC4472151 DOI: 10.1038/boneres.2015.5] [Citation(s) in RCA: 437] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 02/27/2015] [Indexed: 02/08/2023] Open
Abstract
Transforming growth factor-beta (TGF-β)/bone morphogenetic protein (BMP) plays a fundamental role in the regulation of bone organogenesis through the activation of receptor serine/threonine kinases. Perturbations of TGF-β/BMP activity are almost invariably linked to a wide variety of clinical outcomes, i.e., skeletal, extra skeletal anomalies, autoimmune, cancer, and cardiovascular diseases. Phosphorylation of TGF-β (I/II) or BMP receptors activates intracellular downstream Smads, the transducer of TGF-β/BMP signals. This signaling is modulated by various factors and pathways, including transcription factor Runx2. The signaling network in skeletal development and bone formation is overwhelmingly complex and highly time and space specific. Additive, positive, negative, or synergistic effects are observed when TGF-β/BMP interacts with the pathways of MAPK, Wnt, Hedgehog (Hh), Notch, Akt/mTOR, and miRNA to regulate the effects of BMP-induced signaling in bone dynamics. Accumulating evidence indicates that Runx2 is the key integrator, whereas Hh is a possible modulator, miRNAs are regulators, and β-catenin is a mediator/regulator within the extensive intracellular network. This review focuses on the activation of BMP signaling and interaction with other regulatory components and pathways highlighting the molecular mechanisms regarding TGF-β/BMP function and regulation that could allow understanding the complexity of bone tissue dynamics.
Collapse
Affiliation(s)
- Md Shaifur Rahman
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Naznin Akhtar
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Hossen Mohammad Jamil
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Rajat Suvra Banik
- Lab of Network Biology, Biotechnology and Genetic Engineering Discipline, Khulna University , Khulna 9208, Bangladesh
| | - Sikder M Asaduzzaman
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| |
Collapse
|
41
|
Fibulin-3 is a novel TGF-β pathway inhibitor in the breast cancer microenvironment. Oncogene 2015; 34:5635-47. [PMID: 25823021 PMCID: PMC4589427 DOI: 10.1038/onc.2015.13] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/17/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022]
Abstract
TGF-β is an important regulator of breast cancer progression. However, how the breast cancer microenvironment regulates TGF-β signaling during breast cancer progression remains largely unknown. Here, we identified fibulin-3 as a secreted protein in the breast cancer microenvironment, which efficiently inhibits TGF-β signaling in both breast cancer cells and endothelial cells. Mechanistically, fibulin-3 interacts with the type I TGF-β receptor (TβRI) to block TGF-β induced complex formation of TβRI with the type II TGF-β receptor (TβRII) and subsequent downstream TGF-β signaling. Fibulin-3 expression decreases during breast cancer progression, with low fibulin-3 levels correlating with a poorer prognosis. Functionally, high fibulin-3 levels inhibited TGF-β-induced EMT, migration, invasion and endothelial permeability, while loss of fibulin-3 expression/function promoted these TGF-β-mediated effects. Further, restoring fibulin-3 expression in breast cancer cells inhibited TGF-β signaling, breast cancer cell EMT, invasion and metastasis in vivo. These studies provide a novel mechanism for how TGF-β signaling is regulated by the tumor microenvironment, and provide insight into targeting the TGF-β signaling pathway in human breast cancer patients.
Collapse
|
42
|
Kanazawa I, Canaff L, Abi Rafeh J, Angrula A, Li J, Riddle RC, Boraschi-Diaz I, Komarova SV, Clemens TL, Murshed M, Hendy GN. Osteoblast menin regulates bone mass in vivo. J Biol Chem 2015; 290:3910-24. [PMID: 25538250 PMCID: PMC4326801 DOI: 10.1074/jbc.m114.629899] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
Menin, the product of the multiple endocrine neoplasia type 1 (Men1) tumor suppressor gene, mediates the cell proliferation and differentiation actions of transforming growth factor-β (TGF-β) ligand family members. In vitro, menin modulates osteoblastogenesis and osteoblast differentiation promoted and sustained by bone morphogenetic protein-2 (BMP-2) and TGF-β, respectively. To examine the in vivo function of menin in bone, we conditionally inactivated Men1 in mature osteoblasts by crossing osteocalcin (OC)-Cre mice with floxed Men1 (Men1(f/f)) mice to generate mice lacking menin in differentiating osteoblasts (OC-Cre;Men1(f/f) mice). These mice displayed significant reduction in bone mineral density, trabecular bone volume, and cortical bone thickness compared with control littermates. Osteoblast and osteoclast number as well as mineral apposition rate were significantly reduced, whereas osteocyte number was increased. Primary calvarial osteoblasts proliferated more quickly but had deficient mineral apposition and alkaline phosphatase activity. Although the mRNA expression of osteoblast marker and cyclin-dependent kinase inhibitor genes were all reduced, that of cyclin-dependent kinase, osteocyte marker, and pro-apoptotic genes were increased in isolated Men1 knock-out osteoblasts compared with controls. In contrast to the knock-out mice, transgenic mice overexpressing a human menin cDNA in osteoblasts driven by the 2.3-kb Col1a1 promoter, showed a gain of bone mass relative to control littermates. Osteoblast number and mineral apposition rate were significantly increased in the Col1a1-Menin-Tg mice. Therefore, osteoblast menin plays a key role in bone development, remodeling, and maintenance.
Collapse
Affiliation(s)
| | | | | | | | | | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and the Veterans Administration Medical Center, Baltimore, Maryland 21201
| | | | | | - Thomas L Clemens
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and the Veterans Administration Medical Center, Baltimore, Maryland 21201
| | | | - Geoffrey N Hendy
- From the Departments of Medicine, Physiology, Human Genetics, and Calcium Research Laboratory, and Hormones and Cancer Research Unit, Royal Victoria Hospital, McGill University, Montreal, Quebec H3A 1A1, Canada,
| |
Collapse
|
43
|
Wang Y, Wang B, Du F, Su X, Sun G, Zhou G, Bian X, Liu N. Epigallocatechin-3-gallate attenuates unilateral ureteral obstruction-induced renal interstitial fibrosis in mice. J Histochem Cytochem 2014; 63:270-9. [PMID: 25549657 DOI: 10.1369/0022155414568019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The severity of tubulointerstitial fibrosis is regarded as an important determinant of renal prognosis. Therapeutic strategies targeting tubulointerstitial fibrosis have been considered to have potential in the treatment of chronic kidney disease. This study aims to evaluate the protective effects of (-)-epigallocatechin-3-gallate (EGCG), a green tea polyphenol, against renal interstitial fibrosis in mice. EGCG was administrated intraperitoneally for 14 days in a mouse model of unilateral ureteral obstruction (UUO). The results of our histological examination showed that EGCG alleviated glomerular and tubular injury and attenuated renal interstitial fibrosis in UUO mice. Furthermore, the inflammatory responses induced by UUO were inhibited, as represented by decreased macrophage infiltration and inflammatory cytokine production. Additionally, the expression of type I and III collagen in the kidney were reduced by EGCG, which indicated an inhibition of extracellular matrix accumulation. EGCG also caused an up-regulation in α-smooth muscle actin expression and a down-regulation in E-cadherin expression, indicating the inhibition of epithelial-to-mesenchymal transition. These changes were found to be in parallel with the decreased level of TGF-β1 and phosphorylated Smad. In conclusion, the present study demonstrates that EGCG could attenuate renal interstitial fibrosis in UUO mice, and this renoprotective effect might be associated with its effects of inflammatory responses alleviation and TGF-β/Smad signaling pathway inhibition.
Collapse
Affiliation(s)
- Yanqiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, People's Republic of China (YW, FD, XS, GS, GZ, XB)
| | - Bowen Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, People's Republic of China(BW)
| | - Feng Du
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, People's Republic of China(BW)
| | - Xuesong Su
- Department of Nephrology, Shengjing Hospital of China Medical University, People's Republic of China (YW, FD, XS, GS, GZ, XB)
| | - Guangping Sun
- Department of Nephrology, Shengjing Hospital of China Medical University, People's Republic of China (YW, FD, XS, GS, GZ, XB)
| | - Guangyu Zhou
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, People's Republic of China(BW)
| | - Xiaohui Bian
- Department of Nephrology, Shengjing Hospital of China Medical University, People's Republic of China (YW, FD, XS, GS, GZ, XB)
| | - Na Liu
- Department of Nephrology, Ordos Central Hospital, People's Republic of China (NL)
| |
Collapse
|
44
|
BMP signaling modulation attenuates cerebral arteriovenous malformation formation in a vertebrate model. J Cereb Blood Flow Metab 2014; 34:1688-94. [PMID: 25052553 PMCID: PMC4269730 DOI: 10.1038/jcbfm.2014.134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/02/2014] [Accepted: 06/30/2014] [Indexed: 12/22/2022]
Abstract
Cerebral arteriovenous malformations (AVMs) are vascular anomalies that carry a high risk of stroke and death. To test potential AVM therapies, a reverse genetics approach was used to model AVMs in zebrafish. Antisense morpholino oligonucleotides were used to knockdown activin receptor-like kinase I (alk1), which encodes a transforming growth factor (TGF)-beta family type I receptor implicated in a subset of human AVMs. Knockdown of alk1 caused a spectrum of morphologic, functional, and molecular defects that resemble those seen in humans with AVMs. It was found that losartan, an angiotensin II receptor antagonist, attenuated abnormal blood vessel morphology and systemic manifestations of high-output arteriovenous shunting in vivo. SMAD1 phosphorylation was significantly decreased in alk1 morphants compared with uninjected organisms (0.189±0.0201, 0.429±0.0164, P=0.0002). After treatment, morphant SMAD1 levels approached uninjected levels (0.326±0.0360, P=0.0355) and were significantly higher than those seen in the morphant-control group (P=0.0294). These data suggest that modulating the BMP signaling pathway with losartan, a drug in widespread clinical use in humans as an antihypertensive, may have the potential to be further evaluated as a therapeutic strategy for patients with AVMs.
Collapse
|
45
|
Moulin A, Mathieu M, Lawrence C, Bigelow R, Levine M, Hamel C, Marquette JP, Le Parc J, Loux C, Ferrari P, Capdevila C, Dumas J, Dumas B, Rak A, Bird J, Qiu H, Pan CQ, Edmunds T, Wei RR. Structures of a pan-specific antagonist antibody complexed to different isoforms of TGFβ reveal structural plasticity of antibody-antigen interactions. Protein Sci 2014; 23:1698-707. [PMID: 25209176 DOI: 10.1002/pro.2548] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/04/2014] [Indexed: 11/08/2022]
Abstract
Various important biological pathways are modulated by TGFβ isoforms; as such they are potential targets for therapeutic intervention. Fresolimumab, also known as GC1008, is a pan-TGFβ neutralizing antibody that has been tested clinically for several indications including an ongoing trial for focal segmental glomerulosclerosis. The structure of the antigen-binding fragment of fresolimumab (GC1008 Fab) in complex with TGFβ3 has been reported previously, but the structural capacity of fresolimumab to accommodate tight interactions with TGFβ1 and TGFβ2 was insufficiently understood. We report the crystal structure of the single-chain variable fragment of fresolimumab (GC1008 scFv) in complex with target TGFβ1 to a resolution of 3.00 Å and the crystal structure of GC1008 Fab in complex with TGFβ2 to 2.83 Å. The structures provide further insight into the details of TGFβ recognition by fresolimumab, give a clear indication of the determinants of fresolimumab pan-specificity and provide potential starting points for the development of isoform-specific antibodies using a fresolimumab scaffold.
Collapse
Affiliation(s)
- Aaron Moulin
- Sanofi Biotherapeutics, Framingham, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Luo L, Li N, Lv N, Huang D. SMAD7: a timer of tumor progression targeting TGF-β signaling. Tumour Biol 2014; 35:8379-85. [PMID: 24935472 DOI: 10.1007/s13277-014-2203-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/06/2014] [Indexed: 01/02/2023] Open
Abstract
In the context of cancer, transforming growth factor β (TGF-β) is a cell growth suppressor; however, it is also a critical inducer of invasion and metastasis. SMAD is the important mediator of TGF-β signaling pathway, which includes receptor-regulated SMADs (R-SMADs), common-mediator SMADs (co-SMADs), and inhibitory SMADs (I-SMADs). I-SMADs block the activation of R-SMADs and co-SMADs and thus play important roles especially in the SMAD-dependent signaling. SMAD7 belongs to the I-SMADs. As an inhibitor of TGF-β signaling, SMAD7 is overexpressed in numerous cancer types and its abundance is positively correlated to the malignancy. Emerging evidence has revealed the switch-in-role of SMAD7 in cancer, from a TGF-β inhibiting protein at the early stages that facilitates proliferation to an enhancer of invasion at the late stages. This role change may be accompanied or elicited by the tumor microenvironment and/or somatic mutation. Hence, current knowledge suggests a tumor-favorable timer nature of SMAD7 in cancer progression. In this review, we summarized the advances and recent findings of SMAD7 and TGF-β signaling in cancer, followed by specific discussion on the possible factors that account for the functional changes of SMAD7.
Collapse
Affiliation(s)
- Lingyu Luo
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, 17th Yongwaizen St., Nanchang, Jiangxi, 330006, People's Republic of China
| | | | | | | |
Collapse
|
47
|
Hasegawa Y, Mukai H, Asashima M, Hojo Y, Ikeda M, Komatsuzaki Y, Ooishi Y, Kawato S. Acute modulation of synaptic plasticity of pyramidal neurons by activin in adult hippocampus. Front Neural Circuits 2014; 8:56. [PMID: 24917791 PMCID: PMC4040441 DOI: 10.3389/fncir.2014.00056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/11/2014] [Indexed: 11/25/2022] Open
Abstract
Activin A is known as a neuroprotective factor produced upon acute excitotoxic injury of the hippocampus (in pathological states). We attempt to reveal the role of activin as a neuromodulator in the adult male hippocampus under physiological conditions (in healthy states), which remains largely unknown. We showed endogenous/basal expression of activin in the hippocampal neurons. Localization of activin receptors in dendritic spines (=postsynapses) was demonstrated by immunoelectron microscopy. The incubation of hippocampal acute slices with activin A (10 ng/mL, 0.4 nM) for 2 h altered the density and morphology of spines in CA1 pyramidal neurons. The total spine density increased by 1.2-fold upon activin treatments. Activin selectively increased the density of large-head spines, without affecting middle-head and small-head spines. Blocking Erk/MAPK, PKA, or PKC prevented the activin-induced spinogenesis by reducing the density of large-head spines, independent of Smad-induced gene transcription which usually takes more than several hours. Incubation of acute slices with activin for 2 h induced the moderate early long-term potentiation (moderate LTP) upon weak theta burst stimuli. This moderate LTP induction was blocked by follistatin, MAPK inhibitor (PD98059) and inhibitor of NR2B subunit of NMDA receptors (Ro25-6981). It should be noted that the weak theta burst stimuli alone cannot induce moderate LTP. These results suggest that MAPK-induced phosphorylation of NMDA receptors (including NR2B) may play an important role for activin-induced moderate LTP. Taken together, the current results reveal interesting physiological roles of endogenous activin as a rapid synaptic modulator in the adult hippocampus.
Collapse
Affiliation(s)
- Yoshitaka Hasegawa
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Meguro, Japan
| | - Hideo Mukai
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Meguro, Japan ; Bioinformatics Project (BIRD), Japan Science and Technology Agency, The University of Tokyo Meguro, Japan ; Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of Tokyo Meguro, Japan ; Department of Computer Science, School of Science and Technology, Meiji University Kawasaki, Japan
| | - Makoto Asashima
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Meguro, Japan
| | - Yasushi Hojo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Meguro, Japan ; Bioinformatics Project (BIRD), Japan Science and Technology Agency, The University of Tokyo Meguro, Japan ; Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of Tokyo Meguro, Japan
| | - Muneki Ikeda
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Meguro, Japan
| | - Yoshimasa Komatsuzaki
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Meguro, Japan
| | - Yuuki Ooishi
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Meguro, Japan
| | - Suguru Kawato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Meguro, Japan ; Bioinformatics Project (BIRD), Japan Science and Technology Agency, The University of Tokyo Meguro, Japan ; Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of Tokyo Meguro, Japan ; National MEXT Project in Special Coordinate Funds for Promoting Science and Technology, The University of Tokyo Meguro, Japan
| |
Collapse
|
48
|
Su D, Jing S, Guan L, Li Q, Zhang H, Gao X, Ma X. Role of Nodal-PITX2C signaling pathway in glucose-induced cardiomyocyte hypertrophy. Biochem Cell Biol 2014; 92:183-90. [PMID: 24773581 DOI: 10.1139/bcb-2013-0124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pathological cardiac hypertrophy is a major cause of morbidity and mortality in cardiovascular disease. Recent studies have shown that cardiomyocytes, in response to high glucose (HG) stimuli, undergo hypertrophic growth. While much work still needs to be done to elucidate this important mechanism of hypertrophy, previous works have showed that some pathways or genes play important roles in hypertrophy. In this study, we showed that sublethal concentrations of glucose (25 mmol/L) could induce cardiomyocyte hypertrophy with an increase in the cellular surface area and the upregulation of the atrial natriuretic peptide (ANP) gene, a hypertrophic marker. High glucose (HG) treatments resulted in the upregulation of the Nodal gene, which is under-expressed in cardiomyocytes. We also determined that the knockdown of the Nodal gene resisted HG-induced cardiomyocyte hypertrophy. The overexpression of Nodal was able to induce hypertrophy in cardiomyocytes, which was associated with the upregulation of the PITX2C gene. We also showed that increases in the PITX2C expression, in response to Nodal, were mediated by the Smad4 signaling pathway. This study is highly relevant to the understanding of the effects of the Nodal-PITX2C pathway on HG-induced cardiomyocyte hypertrophy, as well as the related molecular mechanisms.
Collapse
Affiliation(s)
- Dongmei Su
- Department of Genetics, National Research Institute for Family Planning, 12, Dahuisi Road, Haidian, Beijing 100081, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Ning L, Kurihara H, de Vega S, Ichikawa-Tomikawa N, Xu Z, Nonaka R, Kazuno S, Yamada Y, Miner JH, Arikawa-Hirasawa E. Laminin α1 regulates age-related mesangial cell proliferation and mesangial matrix accumulation through the TGF-β pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1683-94. [PMID: 24720953 DOI: 10.1016/j.ajpath.2014.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 01/22/2014] [Accepted: 02/18/2014] [Indexed: 12/30/2022]
Abstract
Laminin α1 (LAMA1), a subunit of the laminin-111 basement membrane component, has been implicated in various biological functions in vivo and in vitro. Although LAMA1 is present in kidney, its roles in the kidney are unknown because of early embryonic lethality. Herein, we used a viable conditional knockout mouse model with a deletion of Lama1 in the epiblast lineage (Lama1(CKO)) to study the role of LAMA1 in kidney development and function. Adult Lama1(CKO) mice developed focal glomerulosclerosis and proteinuria with age. In addition, mesangial cell proliferation was increased, and the mesangial matrix, which normally contains laminin-111, was greatly expanded. In vitro, mesangial cells from Lama1(CKO) mice exhibited significantly increased proliferation compared with those from controls. This increased proliferation was inhibited by the addition of exogenous LAMA1-containing laminin-111, but not by laminin-211 or laminin-511, suggesting a specific role for LAMA1 in regulating mesangial cell behavior. Moreover, the absence of LAMA1 increased transforming growth factor (TGF)-β1-induced Smad2 phosphorylation, and inhibitors of TGF-β1 receptor I kinase blocked Smad2 phosphorylation in both control and Lama1(CKO) mesangial cells, indicating that the increased Smad2 phosphorylation occurred in the absence of LAMA1 via the TGF-β1 receptor. These findings suggest that LAMA1 plays a critical role in kidney function and kidney aging by regulating the mesangial cell population and mesangial matrix deposition through TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Liang Ning
- Research Institute for Diseases of Old Age, BioMedical Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hidetake Kurihara
- Department of Anatomy and Life Structure, BioMedical Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Susana de Vega
- Research Institute for Diseases of Old Age, BioMedical Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naoki Ichikawa-Tomikawa
- Research Institute for Diseases of Old Age, BioMedical Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Zhuo Xu
- Research Institute for Diseases of Old Age, BioMedical Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Risa Nonaka
- Research Institute for Diseases of Old Age, BioMedical Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshihiko Yamada
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey H Miner
- Renal Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, BioMedical Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Neurology, BioMedical Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
50
|
Tanaka KI, Kaji H, Yamaguchi T, Kanazawa I, Canaff L, Hendy GN, Sugimoto T. Involvement of the osteoinductive factors, Tmem119 and BMP-2, and the ER stress response PERK-eIF2α-ATF4 pathway in the commitment of myoblastic into osteoblastic cells. Calcif Tissue Int 2014; 94:454-64. [PMID: 24362451 DOI: 10.1007/s00223-013-9828-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/07/2013] [Indexed: 10/25/2022]
Abstract
The osteoinductive factors BMP-2 and Tmem119 that promote the differentiation of myoblasts into osteoblasts, each increase the levels of the other. However, the relative contributions of BMP-2 and Tmem119 to the osteogenic differentiation and the mechanisms involved are incompletely understood. In the present study, we examined the relationship among BMP-2, Tmem119, and the PERK-eIF2α-ATF4 endoplasmic reticulum (ER) stress response pathway in the differentiation of C2C12 myoblasts into osteoblastic cells. Both BMP-2 and Tmem119 induced levels of the osteoblast markers Runx2, Osterix, Col1a1, ALP, and osteocalcin, as well as mineralization. BMP-2 activation of the ER stress sensor PERK stimulated phosphorylation of eIF2α and led to increased biosynthesis of the osteoblast differentiation factor ATF4. When dephosphorylation of eIF2α was blocked by the selective inhibitor salubrinal, the osteogenic effects of BMP-2 and Tmem119 were enhanced further. Although BMP-2 stimulated both P-eIF2α and ATF4 levels, Tmem119 had no effect on P-eIF2α but stimulated ATF4 only. Reduction in endogenous Tmem119 levels by siRNA reduced both basal and BMP-2-stimulated levels of the ATF4 protein. In conclusion, BMP-2 stimulates differentiation of myoblasts into osteoblasts via the PERK-eIF2α-ATF4 pathway but in addition stimulates Tmem119, which itself increases ATF4. Hence, BMP-2 stimulates ATF4 both dependently and independently of the PERK-eIF2α ER stress response pathway.
Collapse
Affiliation(s)
- Ken-ichiro Tanaka
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | | | | | | | | | | | | |
Collapse
|