1
|
Ali HA, Ismail MA, Fouda AEAS, Ghaith EA. A fruitful century for the scalable synthesis and reactions of biphenyl derivatives: applications and biological aspects. RSC Adv 2023; 13:18262-18305. [PMID: 37333795 PMCID: PMC10274569 DOI: 10.1039/d3ra03531j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023] Open
Abstract
This review provides recent developments in the current status and latest synthetic methodologies of biphenyl derivatives. Furthermore, this review investigates detailed discussions of several metalated chemical reactions related to biphenyl scaffolds such as Wurtz-Fittig, Ullmann, Bennett-Turner, Negishi, Kumada, Stille, Suzuki-Miyaura, Friedel-Crafts, cyanation, amination, and various electrophilic substitution reactions supported by their mechanistic pathways. Furthermore, the preconditions required for the existence of axial chirality in biaryl compounds are discussed. Furthermore, atropisomerism as a type of axial chirality in biphenyl molecules is discussed. Additionally, this review covers a wide range of biological and medicinal applications of the synthesized compounds involving patented approaches in the last decade corresponding to investigating the crucial role of the biphenyl structures in APIs.
Collapse
Affiliation(s)
- Hajar A Ali
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Mohamed A Ismail
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Abd El-Aziz S Fouda
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Eslam A Ghaith
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| |
Collapse
|
2
|
Abdelsamie AS, Salah M, Siebenbürger L, Hamed MM, Börger C, van Koppen CJ, Frotscher M, Hartmann RW. Development of potential preclinical candidates with promising in vitro ADME profile for the inhibition of type 1 and type 2 17β-Hydroxysteroid dehydrogenases: Design, synthesis, and biological evaluation. Eur J Med Chem 2019; 178:93-107. [PMID: 31176098 DOI: 10.1016/j.ejmech.2019.05.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/13/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022]
Abstract
Estrogens are the major female sex steroid hormones, estradiol (E2) being the most potent form in humans. Disturbing the balance between E2 and its weakly active oxidized form estrone (E1) leads to diverse types of estrogen-dependent diseases such as endometriosis or osteoporosis. 17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the biosynthesis of E2 by reduction of E1 while the type 2 enzyme catalyzes the reverse reaction. Thus, 17β-HSD1 and 17β-HSD2 are attractive targets for treatment of estrogen-dependent diseases. Recently, we reported the first proof-of-principle study of a 17β-HSD2 inhibitor in a bone fracture mouse model, using subcutaneous administration. In the present study, our aim was to improve the in vitro ADME profile of the most potent 17β-HSD1 and 17β-HSD2 inhibitors described so far. The optimized compounds show strong and selective inhibition of both the human enzymes and their murine orthologs. In addition, they display good metabolic stability in human liver microsomes (S9 fraction), low in vitro cytotoxicity as well as better aqueous solubility and physicochemical properties compared to the lead compounds. These achievements make the compounds eligible for testing in preclinical in vivo animal model studies on the effects of inhibition of 17β-HSD1 and 17β-HSD2.
Collapse
Affiliation(s)
- Ahmed S Abdelsamie
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization, Campus Building E8.1, 66123, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Saarbrücken, Germany; Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, 12622, Cairo, Egypt.
| | - Mohamed Salah
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | | | - Mostafa M Hamed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization, Campus Building E8.1, 66123, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Saarbrücken, Germany
| | - Carsten Börger
- PharmBioTec GmbH, Science Park 1, 66123, Saarbrücken, Germany
| | - Chris J van Koppen
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, 66123, Saarbrücken, Germany; ElexoPharm GmbH, Im Stadtwald, Building A1.2, 66123, Saarbrücken, Germany
| | - Martin Frotscher
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Rolf W Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization, Campus Building E8.1, 66123, Saarbrücken, Germany; Department of Pharmaceutical and Medicinal Chemistry, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
3
|
Quest for steroidomimetics: Amino acids derived steroidal and nonsteroidal architectures. Eur J Med Chem 2017; 133:139-151. [DOI: 10.1016/j.ejmech.2017.03.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 11/18/2022]
|
4
|
Kang JI, Kim MK, Lee JH, Jeon YJ, Hwang EK, Koh YS, Hyun JW, Kwon SY, Yoo ES, Kang HK. Undariopsis peterseniana Promotes Hair Growth by the Activation of Wnt/β-Catenin and ERK Pathways. Mar Drugs 2017; 15:E130. [PMID: 28475144 PMCID: PMC5450536 DOI: 10.3390/md15050130] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
In this study, we investigated the effect and mechanism of Undariopsis peterseniana, an edible brown alga, on hair growth. The treatment of vibrissa follicles with U. peterseniana extract ex vivo for 21 days significantly increased the hair-fiber lengths. The U. peterseniana extract also significantly accelerated anagen initiation in vivo. Moreover, we found that U. peterseniana extract was able to open the KATP channel, which may contribute to increased hair growth. The U. peterseniana extract decreased 5α-reductase activity and markedly increased the proliferation of dermal papilla cells, a central regulator of the hair cycle. The U. peterseniana extract increased the levels of cell cycle proteins, such as Cyclin D1, phospho(ser780)-pRB, Cyclin E, phospho-CDK2, and CDK2. The U. peterseniana extract also increased the phosphorylation of ERK and the levels of Wnt/β-catenin signaling proteins such as glycogen synthase kinase-3β (GSK-3β) and β-catenin. These results suggested that the U. peterseniana extract had the potential to influence hair growth by dermal papilla cells proliferation through the activation of the Wnt/β-catenin and ERK pathways. We isolated a principal of the U. peterseniana extract, which was subsequently identified as apo-9'-fucoxanthinone, a trichogenic compound. The results suggested that U. peterseniana extract may have a pivotal role in the treatment of alopecia.
Collapse
Affiliation(s)
- Jung-Il Kang
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| | - Min-Kyoung Kim
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| | - Ji-Hyeok Lee
- Department of Marine Life Science, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
- Aqua Green Technology Co. Ltd., 209 Jeju Bio-Industry Center, 102 Jejudaehakno, Jeju 63243, Korea.
| | - Eun-Kyoung Hwang
- Seaweed Research Center, National Institute of Fisheries Science, 130 Tongilro, Mokpo 58746, Korea.
| | - Young-Sang Koh
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| | - Jin-Won Hyun
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| | - Soon-Young Kwon
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| | - Eun-Sook Yoo
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| | - Hee-Kyoung Kang
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| |
Collapse
|
5
|
Biphenyls and their derivatives as synthetically and pharmacologically important aromatic structural moieties. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.07.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Traficante CI, Delpiccolo CML, Mata EG. Palladium-catalyzed cross-coupling reactions of arylsiloxanes with aryl halides: application to solid-supported organic synthesis. ACS COMBINATORIAL SCIENCE 2014; 16:211-4. [PMID: 24689507 DOI: 10.1021/co5000322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The solid-phase version of the Pd-catalyzed Hiyama reaction between a variety of aryltriethoxysilanes and immobilized aryl halides was developed. Smooth cross-coupling was achieved to afford the corresponding biaryl products in moderate to excellent yields. The described protocol would be particularly useful for the construction of 4'-substituted 1,1'-biphenyl derivatives.
Collapse
Affiliation(s)
- Carla I. Traficante
- Instituto
de Química
Rosario (CONICET—UNR), Facultad de Ciencias Bioquímicas
y Farmacéuticas, Universidad Nacional de Rosario, Suipacha
531, 2000 Rosario, Argentina
| | - Carina M. L. Delpiccolo
- Instituto
de Química
Rosario (CONICET—UNR), Facultad de Ciencias Bioquímicas
y Farmacéuticas, Universidad Nacional de Rosario, Suipacha
531, 2000 Rosario, Argentina
| | - Ernesto G. Mata
- Instituto
de Química
Rosario (CONICET—UNR), Facultad de Ciencias Bioquímicas
y Farmacéuticas, Universidad Nacional de Rosario, Suipacha
531, 2000 Rosario, Argentina
| |
Collapse
|
7
|
Nordmann J, Breuer N, Müller TJJ. Efficient Consecutive Four-Component Synthesis of 5-Acylpyrid-2-ones Initiated by Copper-Free Alkynylation. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Kumar R, Malla P, Kumar M. Advances in the design and discovery of drugs for the treatment of prostatic hyperplasia. Expert Opin Drug Discov 2013; 8:1013-27. [PMID: 23662859 DOI: 10.1517/17460441.2013.797960] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Benign prostatic hyperplasia (BPH) is a common medical problem in nearly 80% of geriatric male population severely affecting the quality of life. Several strategies has been suggested in the past for the management of BPH, but only α-blockers and 5α-reductase inhibitors are in clinical use. This review aims to give deep insight into advances in the design and discovery of newer chemical entities as 'druggable' molecule for the management of BPH. AREAS COVERED In this review, the authors cover various classes of drugs that have shown their potential for management of BPH. These drugs include α-adrenergic antagonists, 5α-reductase inhibitors, phytochemical agents, phosphodiesterase inhibitor, luteinizing hormone releasing hormone antagonists and muscarinic receptor antagonists. Literature searches were carried out using Google Scholar, SciFinder and PubMed. EXPERT OPINION The exact etiology of BPH is unknown; however, several mechanisms may be involved in the progression of the disease. Beside surgery and watchful waiting, medical therapies to treat BPH include α-adrenergic antagonist and 5α-reductase inhibitors. Phytotherapeutic agents are also used in some countries. Various other chemical classes of drugs are proposed for the treatment of the disease, but none of them have reached the clinic. Many classes of drugs are currently undergoing clinical trials such as phosphodiesterase inhibitors, luteinizing hormone releasing hormone antagonists and muscarinic receptor antagonists. The current need is to develop a potent, efficacious and highly selective drug for the treatment of BPH.
Collapse
Affiliation(s)
- Rajnish Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| | | | | |
Collapse
|
9
|
Gonell S, Poyatos M, Mata JA, Peris E. Y-Shaped Tris-N-Heterocyclic-Carbene Ligand for the Preparation of Multifunctional Catalysts of Iridium, Rhodium, and Palladium. Organometallics 2012. [DOI: 10.1021/om300569w] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergio Gonell
- Departamento de Química Inorgánica
y Orgánica, Universitat Jaume I,
Avenida Vicente Sos Baynat s/n. 12071 Castellón, Spain
| | - Macarena Poyatos
- Departamento de Química Inorgánica
y Orgánica, Universitat Jaume I,
Avenida Vicente Sos Baynat s/n. 12071 Castellón, Spain
| | - José A. Mata
- Departamento de Química Inorgánica
y Orgánica, Universitat Jaume I,
Avenida Vicente Sos Baynat s/n. 12071 Castellón, Spain
| | - Eduardo Peris
- Departamento de Química Inorgánica
y Orgánica, Universitat Jaume I,
Avenida Vicente Sos Baynat s/n. 12071 Castellón, Spain
| |
Collapse
|
10
|
Al-Soud YA, Marchais-Oberwinkler S, Frotscher M, Hartmann RW. Synthesis and Biological Evaluation of Phenyl Substituted 1H-1,2,4-Triazoles as Non-Steroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 2. Arch Pharm (Weinheim) 2012; 345:610-21. [DOI: 10.1002/ardp.201200025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 11/12/2022]
|
11
|
Spadaro A, Negri M, Marchais-Oberwinkler S, Bey E, Frotscher M. Hydroxybenzothiazoles as new nonsteroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1). PLoS One 2012; 7:e29252. [PMID: 22242164 PMCID: PMC3252304 DOI: 10.1371/journal.pone.0029252] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/23/2011] [Indexed: 01/25/2023] Open
Abstract
17β-estradiol (E2), the most potent estrogen in humans, known to be involved in the development and progession of estrogen-dependent diseases (EDD) like breast cancer and endometriosis. 17β-HSD1, which catalyses the reduction of the weak estrogen estrone (E1) to E2, is often overexpressed in breast cancer and endometriotic tissues. An inhibition of 17β-HSD1 could selectively reduce the local E2-level thus allowing for a novel, targeted approach in the treatment of EDD. Continuing our search for new nonsteroidal 17β-HSD1 inhibitors, a novel pharmacophore model was derived from crystallographic data and used for the virtual screening of a small library of compounds. Subsequent experimental verification of the virtual hits led to the identification of the moderately active compound 5. Rigidification and further structure modifications resulted in the discovery of a novel class of 17β-HSD1 inhibitors bearing a benzothiazole-scaffold linked to a phenyl ring via keto- or amide-bridge. Their putative binding modes were investigated by correlating their biological data with features of the pharmacophore model. The most active keto-derivative 6 shows IC₅₀-values in the nanomolar range for the transformation of E1 to E2 by 17β-HSD1, reasonable selectivity against 17β-HSD2 but pronounced affinity to the estrogen receptors (ERs). On the other hand, the best amide-derivative 21 shows only medium 17β-HSD1 inhibitory activity at the target enzyme as well as fair selectivity against 17β-HSD2 and ERs. The compounds 6 and 21 can be regarded as first benzothiazole-type 17β-HSD1 inhibitors for the development of potential therapeutics.
Collapse
Affiliation(s)
- Alessandro Spadaro
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- ElexoPharm GmbH, Saarbrücken, Germany
| | - Matthias Negri
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | | | | | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
12
|
Wetzel M, Marchais-Oberwinkler S, Perspicace E, Möller G, Adamski J, Hartmann RW. Introduction of an Electron Withdrawing Group on the Hydroxyphenylnaphthol Scaffold Improves the Potency of 17β-Hydroxysteroid Dehydrogenase Type 2 (17β-HSD2) Inhibitors. J Med Chem 2011; 54:7547-57. [PMID: 21972996 DOI: 10.1021/jm2008453] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | | | - Gabriele Möller
- Genome Analysis Center, Institute
of Experimental Genetic, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Genome Analysis Center, Institute
of Experimental Genetic, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Lehrstuhl für Experimentelle
Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | | |
Collapse
|
13
|
Xu K, Al-Soud YA, Wetzel M, Hartmann RW, Marchais-Oberwinkler S. Triazole ring-opening leads to the discovery of potent nonsteroidal 17β-hydroxysteroid dehydrogenase type 2 inhibitors. Eur J Med Chem 2011; 46:5978-90. [PMID: 22037253 DOI: 10.1016/j.ejmech.2011.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 10/16/2022]
Abstract
17β-Hydroxysteroid dehydrogenase type 2 (17β-HSD2) catalyzes the oxidation of the highly potent steroids: the estrogen estradiol (E2) and the androgen testosterone (T) to the less active estrone and androstenedione, respectively. Inhibition of this enzyme may help maintain the local E2 level in bone tissue when the circulating E2 level drops and is therefore a novel and promising approach for the treatment of osteoporosis. In this work, a series of new nonsteroidal and achiral 17β-HSD2 inhibitors, namely N-benzyl-diphenyl-3(or 4)-carboxamide and N-benzyl-5-phenyl-thiophene-2-carboxamide was designed and the compounds were synthesized in a two to three steps reaction. A small library was built applying parallel synthesis. Highly potent 17β-HSD2 inhibitors could be identified in the thiophene-2-carboxamide class with IC(50) in the low nanomolar range. These compounds also showed a good selectivity profile toward 17β-HSD1 and toward the estrogen receptors α and β. The most interesting 17β-HSD2 inhibitor identified in this study is the 5-(2-fluoro-3-methoxyphenyl)-N-(3-hydroxybenzyl)-N-methylthiophene-2-carboxamide 6w displaying an IC(50) of 61 nM and a selectivity factor of 73 toward 17β-HSD1.
Collapse
Affiliation(s)
- Kuiying Xu
- Pharmaceutical and Medicinal Chemistry, Saarland University, Germany
| | | | | | | | | |
Collapse
|
14
|
Klein T, Henn C, Negri M, Frotscher M. Structural basis for species specific inhibition of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1): computational study and biological validation. PLoS One 2011; 6:e22990. [PMID: 21857977 PMCID: PMC3153478 DOI: 10.1371/journal.pone.0022990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/07/2011] [Indexed: 11/19/2022] Open
Abstract
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the reduction of estrone to estradiol, which is the most potent estrogen in humans. Inhibition of 17β-HSD1 and thereby reducing the intracellular estradiol concentration is thus a promising approach for the treatment of estrogen dependent diseases. In the past, several steroidal and non-steroidal inhibitors of 17β-HSD1 have been described but so far there is no cocrystal structure of the latter in complex with 17β-HSD1. However, a distinct knowledge of active site topologies and protein-ligand interactions is a prerequisite for structure-based drug design and optimization. An elegant strategy to enhance this knowledge is to compare inhibition values obtained for one compound toward ortholog proteins from various species, which are highly conserved in sequence and differ only in few residues. In this study the inhibitory potencies of selected members of different non-steroidal inhibitor classes toward marmoset 17β-HSD1 were determined and the data were compared with the values obtained for the human enzyme. A species specific inhibition profile was observed in the class of the (hydroxyphenyl)naphthols. Using a combination of computational methods, including homology modelling, molecular docking, MD simulation, and binding energy calculation, a reasonable model of the three-dimensional structure of marmoset 17β-HSD1 was developed and inhibition data were rationalized on the structural basis. In marmoset 17β-HSD1, residues 190 to 196 form a small α-helix, which induces conformational changes compared to the human enzyme. The docking poses suggest these conformational changes as determinants for species specificity and energy decomposition analysis highlighted the outstanding role of Asn152 as interaction partner for inhibitor binding. In summary, this strategy of comparing the biological activities of inhibitors toward highly conserved ortholog proteins might be an alternative to laborious x-ray or site-directed mutagenesis experiments in certain cases. Additionally, it facilitates inhibitor design and optimization by offering new information on protein-ligand interactions.
Collapse
Affiliation(s)
- Tobias Klein
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Claudia Henn
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Matthias Negri
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
15
|
Marchais-Oberwinkler S, Henn C, Möller G, Klein T, Negri M, Oster A, Spadaro A, Werth R, Wetzel M, Xu K, Frotscher M, Hartmann RW, Adamski J. 17β-Hydroxysteroid dehydrogenases (17β-HSDs) as therapeutic targets: protein structures, functions, and recent progress in inhibitor development. J Steroid Biochem Mol Biol 2011; 125:66-82. [PMID: 21193039 DOI: 10.1016/j.jsbmb.2010.12.013] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/03/2010] [Accepted: 12/20/2010] [Indexed: 01/18/2023]
Abstract
17β-Hydroxysteroid dehydrogenases (17β-HSDs) are oxidoreductases, which play a key role in estrogen and androgen steroid metabolism by catalyzing final steps of the steroid biosynthesis. Up to now, 14 different subtypes have been identified in mammals, which catalyze NAD(P)H or NAD(P)(+) dependent reductions/oxidations at the 17-position of the steroid. Depending on their reductive or oxidative activities, they modulate the intracellular concentration of inactive and active steroids. As the genomic mechanism of steroid action involves binding to a steroid nuclear receptor, 17β-HSDs act like pre-receptor molecular switches. 17β-HSDs are thus key enzymes implicated in the different functions of the reproductive tissues in both males and females. The crucial role of estrogens and androgens in the genesis and development of hormone dependent diseases is well recognized. Considering the pivotal role of 17β-HSDs in steroid hormone modulation and their substrate specificity, these proteins are promising therapeutic targets for diseases like breast cancer, endometriosis, osteoporosis, and prostate cancer. The selective inhibition of the concerned enzymes might provide an effective treatment and a good alternative to the existing endocrine therapies. Herein, we give an overview of functional and structural aspects for the different 17β-HSDs. We focus on steroidal and non-steroidal inhibitors recently published for each subtype and report on existing animal models for the different 17β-HSDs and the respective diseases. Article from the Special issue on Targeted Inhibitors.
Collapse
|
16
|
Oster A, Klein T, Henn C, Werth R, Marchais‐Oberwinkler S, Frotscher M, Hartmann RW. Bicyclic Substituted Hydroxyphenylmethanone Type Inhibitors of 17 β‐Hydroxysteroid Dehydrogenase Type 1 (17 β‐HSD1): The Role of the Bicyclic Moiety. ChemMedChem 2011; 6:476-87. [DOI: 10.1002/cmdc.201000457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/01/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander Oster
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Tobias Klein
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Claudia Henn
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Ruth Werth
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Sandrine Marchais‐Oberwinkler
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| |
Collapse
|
17
|
Hille UE, Zimmer C, Vock CA, Hartmann RW. First Selective CYP11B1 Inhibitors for the Treatment of Cortisol-Dependent Diseases. ACS Med Chem Lett 2011; 2:2-6. [PMID: 24900247 DOI: 10.1021/ml100071j] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 06/09/2010] [Indexed: 11/28/2022] Open
Abstract
Outgoing from an etomidate-based design concept, we succeeded in the development of a series of highly active and selective inhibitors of CYP11B1, the key enzyme of cortisol biosynthesis, as potential drugs for the treatment of Cushing's syndrome and related diseases. Thus, compound 33 (IC50 = 152 nM) is the first CYP11B1 inhibitor showing a rather good selectivity toward the most important steroidogenic CYP enzymes aldosterone synthase (CYP11B2), the androgen-forming CYP17, and aromatase (estrogen synthase, CYP19).
Collapse
Affiliation(s)
- Ulrike E. Hille
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, D-66123 Saarbrücken, Germany
| | - Christina Zimmer
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, D-66123 Saarbrücken, Germany
| | - Carsten A. Vock
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, D-66123 Saarbrücken, Germany
| |
Collapse
|
18
|
Li M, Zeng H, Meng Y, Sun H, Liu S, Lu Z, Huang Y, Pu X. Fine tuning of emission color of iridium(iii) complexes from yellow to red via substituent effect on 2-phenylbenzothiazole ligands: synthesis, photophysical, electrochemical and DFT study. Dalton Trans 2011; 40:7153-64. [DOI: 10.1039/c1dt10305a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Zimmer C, Hafner M, Zender M, Ammann D, Hartmann RW, Vock CA. N-(Pyridin-3-yl)benzamides as selective inhibitors of human aldosterone synthase (CYP11B2). Bioorg Med Chem Lett 2011; 21:186-90. [DOI: 10.1016/j.bmcl.2010.11.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
|
20
|
Wetzel M, Marchais-Oberwinkler S, Hartmann RW. 17β-HSD2 inhibitors for the treatment of osteoporosis: Identification of a promising scaffold. Bioorg Med Chem 2011; 19:807-15. [DOI: 10.1016/j.bmc.2010.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/29/2010] [Accepted: 12/03/2010] [Indexed: 11/26/2022]
|
21
|
Marchais-Oberwinkler S, Wetzel M, Ziegler E, Kruchten P, Werth R, Henn C, Hartmann RW, Frotscher M. New Drug-Like Hydroxyphenylnaphthol Steroidomimetics As Potent and Selective 17β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors for the Treatment of Estrogen-Dependent Diseases. J Med Chem 2010; 54:534-47. [DOI: 10.1021/jm1009082] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Marie Wetzel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Erika Ziegler
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Patricia Kruchten
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Ruth Werth
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Claudia Henn
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus C2 3, D-66123 Saarbrücken, Germany
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| |
Collapse
|
22
|
Starčević Š, Brožič P, Turk S, Cesar J, Lanišnik Rižner T, Gobec S. Synthesis and Biological Evaluation of (6- and 7-Phenyl) Coumarin Derivatives as Selective Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1. J Med Chem 2010; 54:248-61. [PMID: 21138273 DOI: 10.1021/jm101104z] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Štefan Starčević
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Petra Brožič
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Samo Turk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Jožko Cesar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Oster A, Hinsberger S, Werth R, Marchais-Oberwinkler S, Frotscher M, Hartmann RW. Bicyclic substituted hydroxyphenylmethanones as novel inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) for the treatment of estrogen-dependent diseases. J Med Chem 2010; 53:8176-86. [PMID: 20977238 DOI: 10.1021/jm101073q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Estradiol (E2), the most important estrogen in humans, is involved in the initiation and progression of estrogen-dependent diseases such as breast cancer and endometriosis. Its local production in the target cell is regulated by 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1), which catalyzes E2-formation by reduction of the weak estrogen estrone (E1). Because the enzyme is expressed in the diseased tissues, inhibition of 17β-HSD1 is considered as a promising therapy for the treatment of estrogen-dependent diseases. For the development of novel inhibitors, a structure- and ligand-based design strategy was applied, resulting in bicyclic substituted hydroxyphenylmethanones. In vitro testing revealed high inhibitory potencies toward human placental 17β-HSD1. Compounds were further evaluated with regard to selectivity (17β-HSD2, estrogen receptors ERα and ERβ), intracellular activity (T47D cells), and metabolic stability. The most promising compounds, 14 and 15, showed IC(50) values in the low nanomolar range in the cell-free and cellular assays (8-27 nM), more than 30-fold selectivity toward 17β-HSD2 and no affinity toward the ERs. The data obtained make these inhibitors interesting candidates for further preclinical evaluation.
Collapse
Affiliation(s)
- Alexander Oster
- Pharmaceutical and Medicinal Chemistry, Saarland University, and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C23, D-66123 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Hu Q, Jagusch C, Hille UE, Haupenthal J, Hartmann RW. Replacement of Imidazolyl by Pyridyl in Biphenylmethylenes Results in Selective CYP17 and Dual CYP17/CYP11B1 Inhibitors for the Treatment of Prostate Cancer. J Med Chem 2010; 53:5749-58. [DOI: 10.1021/jm100317b] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus C23, D-66123 Saarbrücken, Germany
| | - Carsten Jagusch
- Pharmaceutical and Medicinal Chemistry and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus C23, D-66123 Saarbrücken, Germany
| | - Ulrike E. Hille
- Pharmaceutical and Medicinal Chemistry and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus C23, D-66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Pharmaceutical and Medicinal Chemistry and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus C23, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus C23, D-66123 Saarbrücken, Germany
| |
Collapse
|
25
|
Hu Q, Yin L, Jagusch C, Hille UE, Hartmann RW. Isopropylidene Substitution Increases Activity and Selectivity of Biphenylmethylene 4-Pyridine Type CYP17 Inhibitors. J Med Chem 2010; 53:5049-53. [DOI: 10.1021/jm100400a] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Lina Yin
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- ElexoPharm GmbH, Campus A1, D-66123 Saarbrücken, Germany
| | - Carsten Jagusch
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Ulrike E. Hille
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| |
Collapse
|
26
|
Oster A, Klein T, Werth R, Kruchten P, Bey E, Negri M, Marchais-Oberwinkler S, Frotscher M, Hartmann RW. Novel estrone mimetics with high 17β-HSD1 inhibitory activity. Bioorg Med Chem 2010; 18:3494-505. [DOI: 10.1016/j.bmc.2010.03.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
27
|
Hu Q, Negri M, Olgen S, Hartmann R. The Role of Fluorine Substitution in Biphenyl Methylene Imidazole-Type CYP17 Inhibitors for the Treatment of Prostate Carcinoma. ChemMedChem 2010; 5:899-910. [DOI: 10.1002/cmdc.201000065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
28
|
Zanardi A, Mata JA, Peris E. Well-Defined Ir/Pd Complexes with a Triazolyl-diylidene Bridge as Catalysts for Multiple Tandem Reactions. J Am Chem Soc 2009; 131:14531-7. [DOI: 10.1021/ja906028g] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessandro Zanardi
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Vicente Sos Baynat s/n, Castellón, E-12071 Spain
| | - José A. Mata
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Vicente Sos Baynat s/n, Castellón, E-12071 Spain
| | - Eduardo Peris
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Vicente Sos Baynat s/n, Castellón, E-12071 Spain
| |
Collapse
|
29
|
Hosoda S, Hashimoto Y. 3,3-Diphenylpentane skeleton as a steroid skeleton substitute: Novel inhibitors of human 5α-reductase 1. Bioorg Med Chem Lett 2007; 17:5414-8. [PMID: 17686629 DOI: 10.1016/j.bmcl.2007.07.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/04/2007] [Accepted: 07/11/2007] [Indexed: 11/29/2022]
Abstract
We designed and synthesized novel type 1 5alpha-reductase inhibitors by using 3,3-diphenylpentane skeleton as a substitute for the usual steroid skeleton. 4-(3-(4-(N-Methylacetamido)phenyl)pentan-3-yl)phenyl dibenzylcarbamate (11k) is a competitive 5alpha-reductase inhibitor with the IC(50) value of 0.84 microM.
Collapse
Affiliation(s)
- Shinnosuke Hosoda
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | |
Collapse
|
30
|
Evaluation of 4′-substituted bicyclic pyridones as non-steroidal inhibitors of steroid 5α-reductase. Bioorg Med Chem Lett 2007; 17:3603-7. [DOI: 10.1016/j.bmcl.2007.04.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/17/2007] [Accepted: 04/18/2007] [Indexed: 11/17/2022]
|
31
|
Salem OIA, Frotscher M, Scherer C, Neugebauer A, Biemel K, Streiber M, Maas R, Hartmann RW. Novel 5α-Reductase Inhibitors: Synthesis, Structure−Activity Studies, and Pharmacokinetic Profile of Phenoxybenzoylphenyl Acetic Acids. J Med Chem 2005; 49:748-59. [PMID: 16420060 DOI: 10.1021/jm050728w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel substituted benzoyl benzoic acids and phenylacetic acids 1-14 have been synthesized and evaluated for inhibition of rat and human steroid 5alpha-reductase isozymes 1 and 2. The compounds turned out to be potent and selective human type 2 enzyme inhibitors, exhibiting IC(50) values in the nanomolar range. The phenylacetic acid derivatives were more potent than the analogous benzoic acids. Bromination in the 4-position of the phenoxy moiety led to the strongest inhibitor in this class (12; IC(50) = 5 nM), which was equipotent to finasteride. Since oral absorption is essential for a potential drug, 12 was further examined. In the parallel artificial membrane permeation assay (PAMPA) it turned out to be a good permeator, whereas it was a medium permeator in Caco2 cells. After oral administration (40 mg/kg) to rats a high bioavailability and a biological half-life of 5.5 h were observed, making it a promising candidate for clinical evaluation.
Collapse
Affiliation(s)
- Ola I A Salem
- Pharmaceutical and Medicinal Chemistry, Saarland University, D-66041 Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Simoni D, Giannini G, Roberti M, Rondanin R, Baruchello R, Rossi M, Grisolia G, Invidiata FP, Aiello S, Marino S, Cavallini S, Siniscalchi A, Gebbia N, Crosta L, Grimaudo S, Abbadessa V, Di Cristina A, Tolomeo M. Studies on the Apoptotic Activity of Natural and Synthetic Retinoids: Discovery of a New Class of Synthetic Terphenyls That Potently Support Cell Growth and Inhibit Apoptosis in Neuronal and HL-60 Cells. J Med Chem 2005; 48:4293-9. [PMID: 15974583 DOI: 10.1021/jm049080y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
New terphenyl derivatives have been synthesized and tested for their effect on cell survival in serum-free cultures. These compounds protected HL60 cells from death and supported their growth with an activity higher than that of the natural 14-hydroxy-retro-retinol. Terphenyls 26 and 28 also possess antiapoptotic activity on neuronal cells, proving them as possible candidates for the treatment of neurodegenerative and ischemic diseases.
Collapse
Affiliation(s)
- Daniele Simoni
- Dipartimento di Scienze Farmaceutiche, Università di Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Aboul-Enein HY, Kladna A, Kruk I, Lichszteld K, Marchlewicz M, Michalska T, Salem OIA, Hartmann RW. Prooxidant and antioxidant action of 4-(4-phenoxybenzoyl)benzoic acid derivatives. Biopolymers 2004; 73:631-9. [PMID: 15048787 DOI: 10.1002/bip.10559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
4-(4-Phenoxybenzoyl)benzoic acid derivatives (PBADs) were found to inhibit rat and human alpha-reductase isozymes 1 and 2 in vitro. Chemiluminescence (CL), electron spin resonance, spin trapping techniques, and spectrophotometry were used to examine the effect of PBADs on reactive oxygen species (superoxide radical, O(2)(.-); hydroxyl radical, HO(*); singlet oxygen, (1)O(2)) generating systems. All test compounds at a concentration of 0.5 mM enhanced the CL from O(2)(.-) up to fivefold, which was recorded as the light sums during 1 min. At 0.38 mM PBAD enhanced production of HO(*) from H(2)O(2) in the presence of Co(II) up to 90%, as measured by a deoxyribose assay. Using the spin trap agent 5,5-dimethyl-1-pyrroline-N-oxide, it was found that the amplitude of the signal arising from the Fenton-like reaction [Co(II)/H(2)O(2)] was significantly diminished by the test compounds. The compounds also inhibited the (1)O(2) dependent 2,2,6,6-tetramethylpiperidine-N-oxide radical, which is generated in the acetonitrile/H(2)O(2) system. The measured rate constants of (1)O(2)-dimol quenching by PBAD were in the range of (0.8-2.6) x 10(8) M(-1) s(-1). The interaction between PBAD and (1)O(2) was also checked using a spectrophotometry method based on bleaching of p-nitrosodimethylaniline. These results indicate that PBAD may directly scavenge HO(*) and (1)O(2), but not O(2)(.-). However, the compounds that were examined had prooxidant ability under some reaction conditions.
Collapse
Affiliation(s)
- Hassan Y Aboul-Enein
- Biological and Medical Research Department, MBC-03-65, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh 11211, Saudi Arabia.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Faragalla J, Bremner J, Brown D, Griffith R, Heaton A. Comparative pharmacophore development for inhibitors of human and rat 5-alpha-reductase. J Mol Graph Model 2003; 22:83-92. [PMID: 12798393 DOI: 10.1016/s1093-3263(03)00138-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are a number of diseases where the 5-alpha-reductase (5AR) enzyme is of therapeutic interest as a drug target. Currently the crystal structure for 5-alpha-reductase is unavailable, thus ligand-based pharmacophore techniques are beneficial in the drug development process. We have developed pharmacophores to aid inhibitor design for both human types I (preliminary) and II 5-alpha-reductase isozymes and also the rat type II isozyme. To our knowledge, these are the first published pharmacophores for inhibitors of the human type I and rat type II enzymes. A comparison between isozymes and the previously published human type II isozyme pharmacophore is also presented.
Collapse
Affiliation(s)
- Jane Faragalla
- Department of Chemistry and Institute for Biomolecular Science, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | | | |
Collapse
|
35
|
Picard F, Barassin S, Mokhtarian A, Hartmann RW. Synthesis and evaluation of 2'-substituted 4-(4'-carboxy- or 4'-carboxymethylbenzylidene)-N-acylpiperidines: highly potent and in vivo active steroid 5alpha-reductase type 2 inhibitors. J Med Chem 2002; 45:3406-17. [PMID: 12139451 DOI: 10.1021/jm0208471] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sixteen compounds derived from N-acyl-4-benzylidenepiperidine-4'-carboxylic acids were synthesized and evaluated for inhibition of rat and human steroid 5alpha-reductase isozymes types 1 and 2. In the dicyclohexylacetyl series, fluorination in the 2-position of the benzene nucleus (15), exchange of the carboxy group by a carboxymethyl moiety (20), and combination of both structural modifications (25) led to highly active inhibitors of the human type 2 isozyme (IC(50) values: 15, 11 nM; 20, 6 nM; 25, 7 nM; finasteride, 5 nM). In vivo all compounds tested markedly reduced the prostate weights in castrated testosterone-treated rats. Oral activity was shown for compound 7. From the finding that compound 15 is active in the rat, although it is a rather poor inhibitor of the rat enzyme and is a strong inhibitor of the human enzyme, it is concluded that it should be highly potent in men.
Collapse
Affiliation(s)
- Franck Picard
- Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany
| | | | | | | |
Collapse
|