1
|
Stratigi K, Siametis A, Garinis GA. Looping forward: exploring R-loop processing and therapeutic potential. FEBS Lett 2025; 599:244-266. [PMID: 38844597 PMCID: PMC11771710 DOI: 10.1002/1873-3468.14947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 01/28/2025]
Abstract
Recently, there has been increasing interest in the complex relationship between transcription and genome stability, with specific attention directed toward the physiological significance of molecular structures known as R-loops. These structures arise when an RNA strand invades into the DNA duplex, and their formation is involved in a wide range of regulatory functions affecting gene expression, DNA repair processes or cell homeostasis. The persistent presence of R-loops, if not effectively removed, contributes to genome instability, underscoring the significance of the factors responsible for their resolution and modification. In this review, we provide a comprehensive overview of how R-loop processing can drive either a beneficial or a harmful outcome. Additionally, we explore the potential for manipulating such structures to devise rationalized therapeutic strategies targeting the aberrant accumulation of R-loops.
Collapse
Affiliation(s)
- Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
| | - Athanasios Siametis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
- Department of BiologyUniversity of CreteHeraklionCreteGreece
| | - George A. Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
- Department of BiologyUniversity of CreteHeraklionCreteGreece
| |
Collapse
|
2
|
Yadav C, Yadav R, Nanda S, Ranga S, Ahuja P. The hidden architects of the genome: a comprehensive review of R-loops. Mol Biol Rep 2024; 51:1095. [PMID: 39460836 DOI: 10.1007/s11033-024-10025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Three-stranded DNA: RNA hybrids known as R-loops form when the non-template DNA strand is displaced and the mRNA transcript anneals to its template strand. Although R-loop formation controls DNA damage response, mitochondrial and genomic transcription, and physiological R-loop formation, imbalanced formation of R-loop can jeopardize a cell's genomic integrity. Transcription regulation and immunoglobulin class switch recombination are two further specialized functions of genomic R-loops. R-loop formation has a dual role in the development of cancer and disturbed R-loop homeostasis as observed in several malignancies. R-loops transcribe at the telomeric and pericentromeric regions, develop in the space between long non-coding RNAs and telomeric repeats, and shield telomeres. In bacteria and archaea, R-loop development is a natural defence mechanism against viruses which also causes DNA degradation. Their emergence in the mammalian genome is controlled, suggesting that they were formed as an inevitable byproduct of RNA transcription but also co-opted for regulatory functions. R-loops may be engaged in cell physiology by regulating gene expression. R-loop biology is probably going to remain a fascinating field of study for a very long time as it offers many avenues for R-loop research.
Collapse
Affiliation(s)
- Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Smiti Nanda
- Department of Gynaecology and Obstetrics, Pt. B.D. Sharma, University of Health Sciences, Rohtak, Haryana, 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
3
|
Alonso M, Barcia E, González JF, Montejo C, García-García L, Villa-Hermosilla MC, Negro S, Fraguas-Sánchez AI, Fernández-Carballido A. Functionalization of Morin-Loaded PLGA Nanoparticles with Phenylalanine Dipeptide Targeting the Brain. Pharmaceutics 2022; 14:pharmaceutics14112348. [PMID: 36365169 PMCID: PMC9696360 DOI: 10.3390/pharmaceutics14112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, with its incidence constantly increasing. To date, there is no cure for the disease, with a need for new and effective treatments. Morin hydrate (MH) is a naturally occurring flavonoid of the Moraceae family with antioxidant and anti-inflammatory properties; however, the blood–brain barrier (BBB) prevents this flavonoid from reaching the CNS when aiming to potentially treat AD. Seeking to use the LAT-1 transporter present in the BBB, a nanoparticle (NPs) formulation loaded with MH and functionalized with phenylalanine-phenylalanine dipeptide was developed (NPphe-MH) and compared to non-functionalized NPs (NP-MH). In addition, two formulations were prepared using rhodamine B (Rh-B) as a fluorescent dye (NPphe-Rh and NP-Rh) to study their biodistribution and ability to cross the BBB. Functionalization of PLGA NPs resulted in high encapsulation efficiencies for both MH and Rh-B. Studies conducted in Wistar rats showed that the presence of phenylalanine dipeptide in the NPs modified their biodistribution profiles, making them more attractive for both liver and lungs, whereas non-functionalized NPs were predominantly distributed to the spleen. Formulation NPphe-Rh remained in the brain for at least 2 h after administration.
Collapse
Affiliation(s)
- Mario Alonso
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Emilia Barcia
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913-94-17-41
| | - Juan-Francisco González
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Consuelo Montejo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, 28668 Boadilla del Monte, Spain
| | - Luis García-García
- Department of Pharmacology, Pharmacognosy and Botany, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Brain Mapping Lab, Pluridisciplinary Research Institute, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Mónica-Carolina Villa-Hermosilla
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Sofía Negro
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ana-Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
4
|
Minetti CA, Remeta DP. Forces Driving a Magic Bullet to Its Target: Revisiting the Role of Thermodynamics in Drug Design, Development, and Optimization. Life (Basel) 2022; 12:1438. [PMID: 36143474 PMCID: PMC9504344 DOI: 10.3390/life12091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022] Open
Abstract
Drug discovery strategies have advanced significantly towards prioritizing target selectivity to achieve the longstanding goal of identifying "magic bullets" amongst thousands of chemical molecules screened for therapeutic efficacy. A myriad of emerging and existing health threats, including the SARS-CoV-2 pandemic, alarming increase in bacterial resistance, and potentially fatal chronic ailments, such as cancer, cardiovascular disease, and neurodegeneration, have incentivized the discovery of novel therapeutics in treatment regimens. The design, development, and optimization of lead compounds represent an arduous and time-consuming process that necessitates the assessment of specific criteria and metrics derived via multidisciplinary approaches incorporating functional, structural, and energetic properties. The present review focuses on specific methodologies and technologies aimed at advancing drug development with particular emphasis on the role of thermodynamics in elucidating the underlying forces governing ligand-target interaction selectivity and specificity. In the pursuit of novel therapeutics, isothermal titration calorimetry (ITC) has been utilized extensively over the past two decades to bolster drug discovery efforts, yielding information-rich thermodynamic binding signatures. A wealth of studies recognizes the need for mining thermodynamic databases to critically examine and evaluate prospective drug candidates on the basis of available metrics. The ultimate power and utility of thermodynamics within drug discovery strategies reside in the characterization and comparison of intrinsic binding signatures that facilitate the elucidation of structural-energetic correlations which assist in lead compound identification and optimization to improve overall therapeutic efficacy.
Collapse
Affiliation(s)
- Conceição A. Minetti
- Department of Chemistry and Chemical Biology, Rutgers—The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David P. Remeta
- Department of Chemistry and Chemical Biology, Rutgers—The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
5
|
Parameswaran P, Arora Y, Patidar R, Ranjan N. Bacterial rRNA A-site recognition by DAPI: Signatures of intercalative binding. Biophys Chem 2021; 274:106589. [PMID: 33901777 DOI: 10.1016/j.bpc.2021.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
The bacterial A-site RNA is one of the key targets towards the development of new antibacterials including new treatment options for tuberculosis. Using DAPI as a prototype, we have explored the potential of bisamidines as a potential chemical motif for bacterial A-site recognition. We have demonstrated that the binding of DAPI shows a concentration-dependent thermal stabilization of the bacterial A-site RNA (ΔTm = 9.9 °C). The binding, however, does not show pH-dependent changes upon lowering of pH. Both UV-vis and CD experiments show that the DAPI binding involves base stacking with the RNA bases in a manner that is analogous to intercalation. Scatchard analysis of the UV-vis titration data revealed a micromolar affinity of the DAPI to the bacterial rRNA A-Site (Ka = 1.14 × 106 M-1) which was corroborated by the FID-based relative binding affinity comparison with aminoglycosides. The molecular docking studies showed binding poses consistent with polar and stacking interactions with the RNA. These studies highlight the role of amidines in bacterial A-site recognition and the need for the development of their structural analogs towards the making of aminoglycoside mimics.
Collapse
Affiliation(s)
- Preethi Parameswaran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Yashaswina Arora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Rajesh Patidar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India.
| |
Collapse
|
6
|
Del Mundo IMA, Vasquez KM, Wang G. Modulation of DNA structure formation using small molecules. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:118539. [PMID: 31491448 PMCID: PMC6851491 DOI: 10.1016/j.bbamcr.2019.118539] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Genome integrity is essential for proper cell function such that genetic instability can result in cellular dysfunction and disease. Mutations in the human genome are not random, and occur more frequently at "hotspot" regions that often co-localize with sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures. Non-B DNA-forming sequences are mutagenic, can stimulate the formation of DNA double-strand breaks, and are highly enriched at mutation hotspots in human cancer genomes. Thus, small molecules that can modulate the conformations of these structure-forming sequences may prove beneficial in the prevention and/or treatment of genetic diseases. Further, the development of molecular probes to interrogate the roles of non-B DNA structures in modulating DNA function, such as genetic instability in cancer etiology are warranted. Here, we discuss reported non-B DNA stabilizers, destabilizers, and probes, recent assays to identify ligands, and the potential biological applications of these DNA structure-modulating molecules.
Collapse
Affiliation(s)
- Imee M A Del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| |
Collapse
|
7
|
Tosi G, Vilella A, Veratti P, Belletti D, Pederzoli F, Ruozi B, Vandelli MA, Zoli M, Forni F. Exploiting Bacterial Pathways for BBB Crossing with PLGA Nanoparticles Modified with a Mutated Form of Diphtheria Toxin (CRM197): In Vivo Experiments. Mol Pharm 2015; 12:3672-84. [PMID: 26312414 DOI: 10.1021/acs.molpharmaceut.5b00446] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drugs can be targeted to the brain using polymeric nanoparticles (NPs) engineered on their surface with ligands able to allow crossing of the blood-brain barrier (BBB). This article aims to investigate the BBB crossing efficiency of polymeric poly lactide-co-glycolide (PLGA) NPs modified with a mutated form of diphtheria toxin (CRM197) in comparison with the results previously obtained using PLGA NPs modified with a glycopeptide (g7-NPs). Different kinds of NPs, covalently coupled PLGA with different fluorescent probes (DY405, rhodamine-B base and DY675) and different ligands (g7 and CRM197) were tested in vivo to assess their behavior and trafficking. The results highlighted the possibility to distinguish the different kinds of simultaneously administered NPs and to emphasize that CRM-197 modified NPs and g7-NPs can cross the BBB at a similar extent. The analysis of BBB crossing and of the neuronal tropism of CRM197 modified NPs, along with their BBB crossing pathways were also developed. In vivo pharmacological studies performed on CRM197 engineered NPs, loaded with loperamide, underlined their ability as drug carriers to the CNS.
Collapse
Affiliation(s)
- G Tosi
- Nanomedicine Group, Te.Far.T.I. center, Department of Life Sciences, University of Modena and Reggio Emilia , 41124 Modena, Italy.,NEST, Istituto Nanoscienze-CNR , Piazza San Silvestro 12, 56127 Pisa, Italy
| | - A Vilella
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia , 41124 Modena, Italy
| | - P Veratti
- Nanomedicine Group, Te.Far.T.I. center, Department of Life Sciences, University of Modena and Reggio Emilia , 41124 Modena, Italy
| | - D Belletti
- Nanomedicine Group, Te.Far.T.I. center, Department of Life Sciences, University of Modena and Reggio Emilia , 41124 Modena, Italy
| | - F Pederzoli
- Nanomedicine Group, Te.Far.T.I. center, Department of Life Sciences, University of Modena and Reggio Emilia , 41124 Modena, Italy.,NEST, Istituto Nanoscienze-CNR , Piazza San Silvestro 12, 56127 Pisa, Italy
| | - B Ruozi
- Nanomedicine Group, Te.Far.T.I. center, Department of Life Sciences, University of Modena and Reggio Emilia , 41124 Modena, Italy
| | - M A Vandelli
- Nanomedicine Group, Te.Far.T.I. center, Department of Life Sciences, University of Modena and Reggio Emilia , 41124 Modena, Italy
| | - M Zoli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia , 41124 Modena, Italy
| | - F Forni
- Nanomedicine Group, Te.Far.T.I. center, Department of Life Sciences, University of Modena and Reggio Emilia , 41124 Modena, Italy
| |
Collapse
|
8
|
Vera M, Barcia E, Negro S, Marcianes P, García-García L, Slowing K, Fernández-Carballido A. New celecoxib multiparticulate systems to improve glioblastoma treatment. Int J Pharm 2014; 473:518-27. [DOI: 10.1016/j.ijpharm.2014.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
|
9
|
Arghiani N, Matin MM, Bahrami AR, Iranshahi M, Sazgarnia A, Rassouli FB. Investigating anticancer properties of the sesquiterpene ferutinin on colon carcinoma cells, in vitro and in vivo. Life Sci 2014; 109:87-94. [DOI: 10.1016/j.lfs.2014.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/15/2014] [Accepted: 06/07/2014] [Indexed: 10/25/2022]
|
10
|
Tosi G, Ruozi B, Belletti D, Vilella A, Zoli M, Vandelli MA, Forni F. Brain-targeted polymeric nanoparticles: in vivo evidence of different routes of administration in rodents. Nanomedicine (Lond) 2013; 8:1373-83. [PMID: 23565661 DOI: 10.2217/nnm.12.172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED AIMS, MATERIALS & METHODS: The capacity of polymeric nanoparticles (NPs) to reach the target regardless of the administration route is a neglected field of investigation in pharmaceutical nanotechnology. Therefore, after having demonstrated in previous studies that glycopeptide-engineered NPs (g7-NPs) were able to reach the brain after intravenous administrations in rodents, this article aims to evaluate whether they can reach the CNS when administered by different routes. RESULTS & CONCLUSIONS The confocal microphotographs on murine brain sections showed the capability of g7-NPs to reach the target also after intraperitoneal, intranasal and oral administrations. This could open new vistas for the future application of g7-NPs in the therapeutic treatment of CNS diseases.
Collapse
Affiliation(s)
- Giovanni Tosi
- Department of Life Sciences, University of Modena & Reggio Emilia, Via Campi 183, 41125, Modena, Italy.
| | | | | | | | | | | | | |
Collapse
|
11
|
Beccia MR, Biver T, Pardini A, Spinelli J, Secco F, Venturini M, Busto Vázquez N, Lopez Cornejo MP, Martin Herrera VI, Prado Gotor R. The Fluorophore 4′,6‐Diamidino‐2‐phenylindole (DAPI) Induces DNA Folding in Long Double‐Stranded DNA. Chem Asian J 2012; 7:1803-10. [DOI: 10.1002/asia.201200177] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Maria Rosa Beccia
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56126 Pisa (Italy), Fax: (+39) 050‐2219260
| | - Tarita Biver
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56126 Pisa (Italy), Fax: (+39) 050‐2219260
| | - Alberto Pardini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56126 Pisa (Italy), Fax: (+39) 050‐2219260
| | - Jacopo Spinelli
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56126 Pisa (Italy), Fax: (+39) 050‐2219260
| | - Fernando Secco
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56126 Pisa (Italy), Fax: (+39) 050‐2219260
| | - Marcella Venturini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56126 Pisa (Italy), Fax: (+39) 050‐2219260
| | - Natalia Busto Vázquez
- Departamento de Química, Universidad de Burgos, Plaza Misael Bañuelos s.n., 09001 Burgos (Spain)
| | - Maria Pilar Lopez Cornejo
- Departamento de Química Física, University of Seville, C/Profesor García González s/n, 41012, Seville (Spain)
| | | | - Rafael Prado Gotor
- Departamento de Química Física, University of Seville, C/Profesor García González s/n, 41012, Seville (Spain)
| |
Collapse
|
12
|
Tosi G, Badiali L, Ruozi B, Vergoni AV, Bondioli L, Ferrari A, Rivasi F, Forni F, Vandelli MA. Can leptin-derived sequence-modified nanoparticles be suitable tools for brain delivery? Nanomedicine (Lond) 2012; 7:365-82. [DOI: 10.2217/nnm.11.98] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: In order to increase the knowledge on the use of nanoparticles (NPs) in brain targeting, this article describes the conjugation of the sequence 12–32 (g21) of leptin to poly-lactide-co-glycolide NPs. The capability of these modified NPs to reach the brain was evaluated in rats after intravenous administration. Materials & Methods: The g21 was linked on the surface of NPs labeled with tetramethylrhodamine by means of the Avidin-Biotin technology. The g21-labeled NPs were injected into the tail vein of rats and, after animal sacrifice, the brain localization was evaluated by confocal microscopy, fluorescence microscopy and electron microscopy. Studies to evaluate the biodistribution of the g21-modified NPs in comparison to the unmodified NPs were also carried out. Moreover, to confirm the absence of any anorectic effect of g21 linked on the surface of NPs, appropriate studies were used to assess the rats. Results: After intravenous administration, the g21-modified NPs were able to cross the blood–brain barrier and to enter the brain parenchyma. The biodistribution studies of both unmodified and modified NPs pointed out an uptake at liver and spleen level, whereas only the g21-modified NPs showed brain localization. The food-intake experiments pointed out that the intravenous administration of g21 conjugated to the NP surface did not produce any anorectic effect in the rats. Conclusion: g21-modified NPs were able to cross the blood–brain barrier. These new modified NPs could be effectively considered as useful carrier systems for brain drug delivery. Original submitted: 27/11/2010; Revised submitted: 09/03/2011
Collapse
Affiliation(s)
- Giovanni Tosi
- Department of Pharmaceutical Sciences, University of Modena & Reggio Emilia, Via Campi, 41100 Modena, Italy
| | - Luca Badiali
- Department of Biomedical Sciences, University of Modena & Reggio Emilia, Via Campi, 41100 Modena, Italy
| | - Barbara Ruozi
- Department of Pharmaceutical Sciences, University of Modena & Reggio Emilia, Via Campi, 41100 Modena, Italy
| | - Anna Valeria Vergoni
- Department of Biomedical Sciences, University of Modena & Reggio Emilia, Via Campi, 41100 Modena, Italy
| | - Lucia Bondioli
- Department of Pharmaceutical Sciences, University of Modena & Reggio Emilia, Via Campi, 41100 Modena, Italy
| | - Anna Ferrari
- Department of Diagnostic Services, Division of Clinical Pharmacology, University of Modena & Reggio Emilia, Via del Pozzo, 41100 Modena, Italy
| | - Francesco Rivasi
- Department of Morphological Sciences & Forensic Medicine, Section of Pathological Anatomy, University of Modena & Reggio Emilia, 41000 Modena, Italy
| | - Flavio Forni
- Department of Pharmaceutical Sciences, University of Modena & Reggio Emilia, Via Campi, 41100 Modena, Italy
| | - Maria Angela Vandelli
- Department of Pharmaceutical Sciences, University of Modena & Reggio Emilia, Via Campi, 41100 Modena, Italy
| |
Collapse
|
13
|
Structural investigation and intracellular trafficking of a novel multicomposite cationic solid lipid nanoparticle platform as a pDNA carrier. Ther Deliv 2011; 2:1419-35. [DOI: 10.4155/tde.11.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The ability to efficiently cross cellular barriers and accomplish high-level transgene expression is a critical challenge to broad application of nonviral vectors, such as cationic solid lipid nanoparticles (SLN). Aims: This study aims to design and characterize in vitro multicomposite SLN as a novel platform for pDNA delivery. Results/Discussion: The distribution of each component (stearic acid, stearylamine, phosphatidylcholine, cholesterol, protamine and Pluronic F68) in the SLN matrix was studied by electron spectroscopy for chemical analysis and NMR in order to establish its influence on SLN cytotoxicity and transfection efficiency. Multicomposite SLN mediated the expression of enhanced green fluorescent protein in a way comparable with the positive control, but inducing a lower cytotoxicity. Moreover, the carrier exhibited the ability to enter the nucleoli, probably as a result of the synergic action of the nuclear localization signal of protamine and the flexibility of the lipid matrix owing to the phosphatidylcholine. Conclusion: The multicomposite SLN showed good transfection efficiency and negligible cytotoxicity, both crucial factors for an efficient gene-delivery system. Considering the fact that nucleoli have emerged in recent years as important targets in many fields, this novel carrier could have significant future therapy involvements whenever there is a requirement to overcome subcellular barriers. However, further work needs to be carried out in order to fully characterize the formulation, to elucidate where alternative colloidal structures might exist and play a role in obtaining the results presented.
Collapse
|
14
|
Tosi G, Fano RA, Bondioli L, Badiali L, Benassi R, Rivasi F, Ruozi B, Forni F, Vandelli MA. Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood-brain barrier. Nanomedicine (Lond) 2011; 6:423-36. [PMID: 21542682 DOI: 10.2217/nnm.11.11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM Nanoneuroscience, based on the use polymeric nanoparticles (NPs), represents an emerging field of research for achieving an effective therapy for neurodegenerative diseases. In particular, poly-lactide-co-glycolide (PLGA) glyco-heptapetide-conjugated NPs (g7-NPs) were shown to be able to cross the blood-brain barrier (BBB). However, the in vivo mechanisms of the BBB crossing of this kind of NP has not been investigated until now. This article aimed to develop a deep understanding of the mechanism of BBB crossing of the modified NPs. MATERIALS & METHODS Loperamide and rhodamine-123 (model drugs unable to cross the BBB) were loaded into NPs, composed of a mixture of PLGA, differently modified with g7 or with a random sequence of the same aminoamids (random-g7). To study brain targeting of these model drugs, loaded NPs were administered via the tail vein in rats in order to perform both pharmacological studies and biodistribution analysis along with fluorescent, confocal and electron microscopy analysis, in order to achieve the NP BBB crossing mechanism. Computational analysis on the conformation of the g7- and random-g7-NPs of the NP surface was also developed. RESULTS Only loperamide delivered to the brain with g7-NPs created a high central analgesia, corresponding to the 14% of the injected dose, and data were confirmed by biodistribution studies. Electron photomicrographs showed the ability of g7-NPs in crossing the BBB as evidenced by several endocytotic vesicles and macropinocytotic processes. The computational analysis on g7 and random-g7 showed a different conformation (linear vs globular), thus suggesting a different interaction with the BBB. CONCLUSION Taken together, this evidence suggested that g7-NP BBB crossing is enabled by multiple pathways, mainly membrane-membrane interaction and macropinocytosis-like mechanisms. The results of the computational analysis showed the Biousian structure of the g7 peptide, in contrast to random-g7 peptide (globular conformation), suggesting that this difference is pivotal in explaining the BBB crossing and allowing us to hypothesize regarding the mechanism of BBB crossing by g7-NPs.
Collapse
Affiliation(s)
- Giovanni Tosi
- Department of Pharmaceutical Sciences, University of Modena & Reggio Emilia, Via Campi, 41100 Modena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The loading of labelled antibody-engineered nanoparticles with Indinavir increases its in vitro efficacy against Cryptosporidium parvum. Parasitology 2011; 138:1384-91. [PMID: 21819637 DOI: 10.1017/s0031182011001119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is much evidence to indicate the ability of Indinavir (IND) to reduce Cryptosporidium parvum infection in both in vitro and in vivo models. However, there are limitations to the administration of IND as such, due to its renal toxicity and the high rate of metabolism and degradation. We aimed to encapsulate IND in biodegradable poly (D,L-lactide-co-glycolide) nanoparticles (Np) and to engineer their surface by conjugation with an anti-Cryptosporidium IgG polyclonal antibody (Ab). Tetramethylrhodamine-labelled Np were loaded with IND and modified by conjugation with an Ab. The IND-loaded modified Np (Ab-TMR-IND-Np) did not show any change, as demonstrated by chemical analysis studies. Simultaneous addition of 50μM Ab-TMR-IND-Np and excysted oocysts to the cell culture resulted in complete inhibition of the infection. In C. parvum-infected cells, the extent to which the infection decreased depended on the duration of treatment with the Ab-TMR-IND-Np. The antibody-engineered Np loaded with IND were able to target C. parvum in infected cells and therefore might represent a novel therapeutic strategy against Cryptosporidium sp. infection. Moreover, the use of Np as an IND delivery device, allows the development of a more appropriate dose formulation thereby reducing the IND side effects.
Collapse
|
16
|
Nuclear localization of cationic solid lipid nanoparticles containing Protamine as transfection promoter. Eur J Pharm Biopharm 2010; 76:384-93. [DOI: 10.1016/j.ejpb.2010.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/24/2010] [Accepted: 07/27/2010] [Indexed: 11/17/2022]
|
17
|
NIR-labeled nanoparticles engineered for brain targeting: in vivo optical imaging application and fluorescent microscopy evidences. J Neural Transm (Vienna) 2010; 118:145-53. [PMID: 20931242 DOI: 10.1007/s00702-010-0497-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/24/2010] [Indexed: 01/31/2023]
Abstract
The presence of the blood-brain barrier (BBB) makes extremely difficult to develop efficacious strategies for targeting contrast agents and delivering drugs inside the Central Nervous System (CNS). To overcome this drawback, several kinds of CNS-targeted nanoparticles (NPs) have been developed. In particular, we proposed poly-lactide-co-glycolide (PLGA) NPs engineered with a simil-opioid glycopeptide (g7), which have already proved to be a promising tool for achieving a successful brain targeting after i.v. administration in rats. In order to obtain CNS-targeted NPs to use for in vivo imaging, we synthesized and administrated in mice PLGA NPs with double coverage: near-infrared (NIR) probe (DY-675) and g7. The optical imaging clearly showed a brain localization of these novel NPs. Thus, a novel kind of NIR-labeled NPs were obtained, providing a new, in vivo detectable nanotechnology tool. Besides, the confocal and fluorescence microscopy evidences allowed to further confirm the ability of g7 to promote not only the rat, but also the mouse BBB crossing.
Collapse
|
18
|
Jain AK, Bhattacharya S. Groove Binding Ligands for the Interaction with Parallel-Stranded ps-Duplex DNA and Triplex DNA. Bioconjug Chem 2010; 21:1389-403. [PMID: 20509695 DOI: 10.1021/bc900247s] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Akash K. Jain
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India, Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India, Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| |
Collapse
|
19
|
Ruozi B, Montanari M, Vighi E, Tosi G, Tombesi A, Battini R, Restani C, Leo E, Forni F, Vandelli MA. Flow cytometry and live confocal analysis for the evaluation of the uptake and intracellular distribution of FITC-ODN into HaCaT cells. J Liposome Res 2009; 19:241-51. [PMID: 19694606 DOI: 10.1080/08982100902788416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this study, the mechanism of the internalization and the cellular distribution of 59 fluorescein conjugated PS-ODN (FITC-ODN) after transfection with different mixed lipidic vesicles/oligo complexes (lipoplexes) have been investigated. Mixed lipidic vesicles were prepared with one of the most used cationic lipid (DOTAP) and different amounts of a cholic acid (UDCA) to release the oligo into HaCaT cells. Using flow cytometry, the cellular uptake of the oligo was studied with and without different inhibitors able to block selectively the different pathways involved in the internalization mechanism. The intracellular distribution of the oligo was analyzed by confocal laser scanning microscopy (CLSM), treating the cells with the lipoplexes and directly observing without any fixing procedure. To better carry out the colocalization studies, fluorescent-labeled markers, specific for the different cellular compartments, were coincubated with 59 fluorescein-conjugated 29-mer phosphorotioate oligonucleotide (FITC-ODN). The different lipidic vesicles affect the internalization mechanism of FITC-ODN. After using the inhibitors, the uptake of complexes involved a different internalization mechanism. The live CLSM analysis demonstrated that, after 1 hour from the complex incubation, the oligo was transferred into cells and localized into the endosomes; after 24 hours, the oligo was intracellularly localized close to the nuclear structure in a punctuate pattern. However, the results from fusion experiments showed also a binding of a quite low amount of oligo with the cell membranes.
Collapse
Affiliation(s)
- Barbara Ruozi
- Department of Pharmaceutical Sciences, University of Modena and Reggio Emilia, Modena Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Labuda LP, Pushechnikov A, Disney MD. Small molecule microarrays of RNA-focused peptoids help identify inhibitors of a pathogenic group I intron. ACS Chem Biol 2009; 4:299-307. [PMID: 19278238 DOI: 10.1021/cb800313m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peptoids that inhibit the group I intron RNA from Candida albicans, an opportunistic pathogen that kills immunocompromised hosts, have been identified using microarrays. The arrayed peptoid library was constructed using submonomers with moieties similar to ones found in small molecules known to bind RNA. Library members that passed quality control analysis were spotted onto a microarray and screened for binding to the C. albicans group I intron ribozyme. Each ligand binder identified from microarray-based screening inhibited self-splicing in the presence of 1 mM nucleotide concentration of bulk yeast tRNA with IC(50)'s between 150 and 2200 microM. The binding signals and the corresponding IC(50)'s were used to identify features in the peptoids that predispose them for RNA binding. After statistical analysis of the peptoids' structures that bind, a second generation of inhibitors was constructed using these important features; all second generation inhibitors have improved potencies with IC(50)'s of <100 microM. The most potent inhibitor is composed of one phenylguanidine and three tryptamine submonomers and has an IC(50) of 31 microM. This compound is 6-fold more potent than pentamidine, a clinically used drug that inhibits self-splicing. These results show that (i) modulators of RNA function can be identified by designing RNA-focused chemical libraries and screening them via microarray; (ii) statistical analysis of ligand binders can identify features in leads that predispose them for binding to their targets; and (iii) features can then be programmed into second generation inhibitors to design ligands with improved potencies.
Collapse
Affiliation(s)
- Lucas P. Labuda
- Department of Chemistry and The Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, 657 Natural Sciences Complex, Buffalo, New York 14260
| | - Alexei Pushechnikov
- Department of Chemistry and The Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, 657 Natural Sciences Complex, Buffalo, New York 14260
| | - Matthew D. Disney
- Department of Chemistry and The Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, 657 Natural Sciences Complex, Buffalo, New York 14260
| |
Collapse
|
21
|
Recognition of the unique structure of DNA:RNA hybrids. Biochimie 2008; 90:1026-39. [DOI: 10.1016/j.biochi.2008.04.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 04/18/2008] [Indexed: 11/23/2022]
|
22
|
Tosi G, Costantino L, Rivasi F, Ruozi B, Leo E, Vergoni AV, Tacchi R, Bertolini A, Vandelli MA, Forni F. Targeting the central nervous system: In vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J Control Release 2007; 122:1-9. [PMID: 17651855 DOI: 10.1016/j.jconrel.2007.05.022] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 05/16/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
Polymeric nanoparticles (Np) represent one of the most innovative non-invasive approaches for the drug delivery to the central nervous system (CNS). It is known that the ability of the Np to cross the Blood Brain Barrier (BBB), thus allowing the drugs to exert their pharmacological activity in the central nervous district, is linked to their surface characteristics. Recently it was shown that the biocompatible polyester poly(d,l-lactide-co-glycolide) (PLGA) derivatized with the peptide H(2)N-Gly-l-Phe-d-Thr-Gly-l-Phe-l-Leu-l-Ser(O-beta-d-Glucose)-CONH(2) [g7] was a useful starting material for the preparation of Np (g7-Np); moreover, fluorescent studies showed that these Np were able to cross the BBB. In this research, g-7 Np were loaded with Loperamide in order to assess their ability as drug carriers for CNS, and with Rhodamine-123, in order to qualitatively determine their biodistribution in different brain macro-areas. A pharmacological evidence is given that g7-Np are able to cross the BBB, ensuring, for the first time, a sustained release of the embedded drug, and that these Np are able to reach all the brain areas here examined. The ability to enter the CNS appears to be linked to the sequence of the peptidic moiety present on their surface.
Collapse
Affiliation(s)
- G Tosi
- Department of Pharmaceutical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ruozi B, Battini R, Montanari M, Mucci A, Tosi G, Forni F, Vandelli MA. DOTAP/UDCA vesicles: novel approach in oligonucleotide delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2007; 3:1-13. [PMID: 17379164 DOI: 10.1016/j.nano.2007.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 12/21/2006] [Accepted: 01/03/2007] [Indexed: 10/23/2022]
Abstract
The relatively hydrophilic bile acid, ursodeoxycholic acid (UDCA), was used as an additive to DOTAP cationic liposomes to evaluate the effect on the cellular uptake of an oligonucleotide. Nuclear magnetic resonance studies were applied to estimate the relative amount of incorporated UDCA into the lipidic bilayers. DOTAP or DOTAP-UDCA vesicles (MixVes; DOTAP/UDCA molar ratios 1:0.25, 1:0.5, 1:1, and 1:2) formed complexes with 5'-fluorescein conjugated 29-mer phosphorothioate oligonucleotides (PS-ODNs) and studied using gel electrophoresis. In addition, the complexes were tested after transfection to assess the cellular uptake and the localization of the oligo in a HaCaT cell line by the use of cytofluorimetric and confocal microscopic analysis. DOTAP lipid formulated in the presence of a defined amount of UDCA forms more stable, flexible, and active MixVes. In particular, the MixVes at 1:0.25 and 1:0.5 molar ratios increase and modify the cellular uptake of PS-ODNs if compared with DOTAP liposomes 3 hours after the transfection studies. Moreover, the in vitro data suggest that these new formulations are not toxic.
Collapse
Affiliation(s)
- Barbara Ruozi
- Department of Pharmaceutical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Metal ion-directed cooperative DNA binding of small molecules. J Inorg Biochem 2006; 100:1744-54. [DOI: 10.1016/j.jinorgbio.2006.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 05/23/2006] [Accepted: 06/25/2006] [Indexed: 11/19/2022]
|
25
|
Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F. Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J Control Release 2005; 108:84-96. [PMID: 16154222 DOI: 10.1016/j.jconrel.2005.07.013] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/14/2005] [Accepted: 07/18/2005] [Indexed: 11/27/2022]
Abstract
Injectable nanoparticulate drug carriers (Np) able to cross the blood-brain barrier (BBB) have important potential applications for the treatment of diseases that affect the central nervous system (CNS). With the aim to create a system able to address Np to the CNS, we synthesized conjugates between a biodegradable copolymer, poly(D,L-lactide-co-glycolide) (PLGA), and five short peptides, by means of an amidic linkage. These peptides, that are similar to synthetic opioid peptides, were synthesized in turn by means of Fmoc solid-phase peptide synthesis. The new five modified copolymers thus obtained turned out to be valuable starting material for the preparation of Np; these were made fluorescent, in order to allow their localization after their administration, by inclusion of a fluorescent probe. The Np thus prepared were characterized (morphology, size and z-potential) and were shown to possess the peptidic moieties on their surface, as evidenced by ESCA spectroscopy. Then, their ability to cross the BBB was assessed by the in vivo Rat Brain Perfusion Technique and, in one case, by means of a systemic administration (rat femoral vein injection). Fluorescent and confocal microscopy studies showed that while PLGA Np are unable to cross the BBB, for the first time these solid Np surface-modified with peptides were shown to be able to cross the BBB.
Collapse
Affiliation(s)
- Luca Costantino
- Dipartimento di Scienze Farmaceutiche, University of Modena and Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Tosi G, Rivasi F, Gandolfi F, Costantino L, Vandelli MA, Forni F. Conjugated poly(D,L-lactide-co-glycolide) for the preparation of in vivo detectable nanoparticles. Biomaterials 2005; 26:4189-95. [PMID: 15664646 DOI: 10.1016/j.biomaterials.2004.10.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 10/19/2004] [Indexed: 11/16/2022]
Abstract
Cellular localization of nanoparticles (Np) represents an important target in the understanding of their distribution after endovenous injection. The need of suitable devices and methodologies capable to detect Np in tissues or in cellular districts can be satisfied by Np which have to be easily recognizable by simple methods. Conjugations of poly(D,L-lactide-co-glycolide) with fluorescein and biotin allow fluorescent and immuno-histochemically active Np to be obtained. The fluorescein Np are detectable using fluorescent microscopy whereas biotin Np can be detected by optical microscopy after streptavidin-biotin-peroxidase complexation. In vivo experiments confirm the ability of these particles to be easily detected in the brain parenchyma or in the liver cell population according to the infusion pathway.
Collapse
Affiliation(s)
- G Tosi
- Dipartimento di Scienze Farmaceutiche, University of Modena and Reggio Emilia, Via Campi.183, 41100 Modena, Italy
| | | | | | | | | | | |
Collapse
|
27
|
DNA Binding Mode of the Isoquinoline Alkaloid Berberine with the Deoxyoligonucleotide d(GCCGTCGTTTTACA)2. B KOREAN CHEM SOC 2004. [DOI: 10.5012/bkcs.2004.25.4.539] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Li G, Tolstonog GV, Sabasch M, Traub P. Interaction in vitro of type III intermediate filament proteins with supercoiled plasmid DNA and modulation of eukaryotic DNA topoisomerase I and II activities. DNA Cell Biol 2002; 21:743-69. [PMID: 12443544 DOI: 10.1089/104454902760599726] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To further characterize the interaction of cytoplasmic intermediate filament (cIF) proteins with supercoiled (sc)DNA, and to support their potential function as complementary nuclear matrix proteins, the type III IF proteins vimentin, glial fibrillary acidic protein, and desmin were analyzed for their capacities to interact with supercoiled plasmids containing a bent mouse gamma-satellite insert or inserts capable of non-B-DNA transitions into triplex, Z, and cruciform DNA, that is, DNA conformations typically bound by nuclear matrices. While agarose gel electrophoresis revealed a rough correlation between the superhelical density of the plasmids and their affinity for cIF proteins as well as cIF protein-mediated protection of the plasmid inserts from S1 nucleolytic cleavage, electron microscopy disclosed binding of the cIF proteins to DNA strand crossovers in the plasmids, in accordance with their potential to interact with both negatively and positively supercoiled DNA. In addition, the three cIF proteins were analyzed for their effects on eukaryotic DNA topoisomerases I and II. Possibly because cIF proteins interact with the same plectonemic and paranemic scDNA conformations also recognized by topoisomerases, but select the major groove of DNA for binding in contrast to topoisomerases that insert into the minor groove, the cIF proteins were able to stimulate the enzymes in their supercoil-relaxing activity on both negatively and positively supercoiled plasmids. The stimulatory effect was considerably stronger on topoisomerase I than on topoisomerase II. Moreover, cIF proteins assisted topoisomerases I and II in overwinding plasmid DNA with the formation of positive supercoils. Results obtained with the N-terminal head domain of vimentin harboring the DNA binding region and terminally truncated vimentin proteins indicated the involvement of both protein-DNA and protein-protein interactions in these activities. Based on these observations, it seems conceivable that cIF proteins participate in the control of the steady-state level of DNA superhelicity in the interphase nucleus in conjunction with such topoisomerase-controlled processes as DNA replication, transcription, recombination, maintenance of genome stability, and chromosome condensation and segregation.
Collapse
Affiliation(s)
- Guohong Li
- Max-Planck-Institut für Zellbiologie, Ladenburg, Germany
| | | | | | | |
Collapse
|
29
|
Pasternack LB, Lin SB, Chin TM, Lin WC, Huang DH, Kan LS. Proton NMR studies of 5'-d-(TC)(3) (CT)(3) (AG)(3)-3'--a paperclip triplex: the structural relevance of turns. Biophys J 2002; 82:3170-80. [PMID: 12023241 PMCID: PMC1302106 DOI: 10.1016/s0006-3495(02)75659-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In this study, we present the results of structural analysis of an 18-mer DNA 5'-T(1)C(2)T(3)C(4)T(5)C(6)C(7)T(8)C(9)T(10)C(11)T(12)A(13)G(14)A(15)G(16)A(17)G(18)-3' by proton nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The NMR data are consistent with characteristics for triple helical structures of DNA: downfield shifting of resonance signals, typical for the H3(+) resonances of Hoogsteen-paired cytosines; pH dependence of these H3(+) resonance; and observed nuclear Overhauser effects consistent with Hoogsteen and Watson-Crick basepairing. A three-dimensional model for the triplex is developed based on data obtained from two-dimensional NMR studies and molecular modeling. We find that this DNA forms an intramolecular "paperclip" pyrimidine-purine-pyrimidine triple helix. The central triads resemble typical Hoogsteen and Watson-Crick basepairing. The triads at each end region can be viewed as hairpin turns stabilized by a third base. One of these turns is comprised of a hairpin turn in the Watson-Crick basepairing portion of the 18-mer with the third base coming from the Hoogsteen pairing strand. The other turn is comprised of two bases from the continuous pyrimidine portion of the 18-mer, stabilized by a hydrogen-bond from a purine. This "triad" has well defined structure as indicated by the number of nuclear Overhauser effects and is shown to play a critical role in stabilizing triplex formation of the internal triads.
Collapse
Affiliation(s)
- Laura B Pasternack
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- D P Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA.
| | | | | |
Collapse
|
31
|
Affiliation(s)
- C Escudé
- Laboratoire de Biophysique, INSERM U201, CNRS UMR 8646, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | | | | |
Collapse
|
32
|
Davis TM, Wilson WD. Surface plasmon resonance biosensor analysis of RNA-small molecule interactions. Methods Enzymol 2001; 340:22-51. [PMID: 11494851 DOI: 10.1016/s0076-6879(01)40416-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- T M Davis
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | |
Collapse
|
33
|
|