1
|
Xu Y, Sui ZH, Ye YP, Wu L, Qi KJ, He M, Guo L, Gu C, Zhang SL. An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction. PLANT CELL REPORTS 2025; 44:37. [PMID: 39864019 DOI: 10.1007/s00299-024-03418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025]
Abstract
KEY MESSAGE This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content. Presently, only a limited number of genes have been implicated in the gametophytic SI. In this study, the CCHC-type zinc finger proteins (ZFP), PbrZFP719, was found to be more highly expressed in pollen grains and pollen tubes than other ZFPs. Experimental over-expression of PbrZFP719 via pollen magnetofection and its knockdown using antisense oligonucleotides demonstrated that PbrZFP719 positively mediates pollen tube growth in pear. Further analyses revealed that variations in PbrZFP719 expression correlate with the changes in ROS levels and cellulose content at the tips of pollen tubes. Notably, PbrZFP719 expression was reduced in pollen tubes treated with self S-RNase. These results suggest that self S-RNase can inhibit pollen tube growth by decreasing ROS levels and cellulose content through the downregulation of PbrZFP719 expression. The information provide insights into a novel mechanism by which self S-RNase inhibits pollen tube growth during SI reaction and offers a refined approach for gene over-expression in pollen tube.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Zhi-Heng Sui
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Yi-Peng Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Lei Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Kai-Jie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Min He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Lin Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Chao Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
| | - Shao-Ling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
| |
Collapse
|
2
|
Murthy S, Nongthomba U. Role of the BCL11A/B Homologue Chronophage (Cph) in Locomotor Behaviour of Drosophila melanogaster. Neuroscience 2024; 551:1-16. [PMID: 38763224 DOI: 10.1016/j.neuroscience.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Functioning of the nervous system requires proper formation and specification of neurons as well as accurate connectivity and signalling between them. Locomotor behaviour depends upon these events that occur during neural development, and any aberration in them could result in motor disorders. Transcription factors are believed to be master regulators that control these processes, but very few linked to behaviour have been identified so far. The Drosophila homologue of BCL11A (CTIP1) and BCL11B (CTIP2), Chronophage (Cph), was recently shown to be involved in temporal patterning of neural stem cells but its role in post-mitotic neurons is not known. We show that knockdown of Cph in neurons during development results in animals with locomotor defects at both larval and adult stages. The defects are more severe in adults, with inability to stand, uncoordinated behaviour and complete loss of ability to walk, climb, or fly. These defects are similar to the motor difficulties observed in some patients with mutations in BCL11A and BCL11B. Electrophysiological recordings showed reduced evoked activity and irregular neuronal firing. All Cph-expressing neurons in the ventral nerve cord are glutamatergic. Our results imply that Cph modulates primary locomotor activity through configuration of glutamatergic neurons. Thus, this study ascribes a hitherto unknown role to Cph in locomotor behaviour of Drosophila melanogaster.
Collapse
Affiliation(s)
- Smrithi Murthy
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560 012, India.
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560 012, India.
| |
Collapse
|
3
|
Khassanova G, Oshergina I, Ten E, Jatayev S, Zhanbyrshina N, Gabdola A, Gupta NK, Schramm C, Pupulin A, Philp-Dutton L, Anderson P, Sweetman C, Jenkins CL, Soole KL, Shavrukov Y. Zinc finger knuckle genes are associated with tolerance to drought and dehydration in chickpea ( Cicer arietinum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1354413. [PMID: 38766473 PMCID: PMC11099236 DOI: 10.3389/fpls.2024.1354413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Chickpea (Cicer arietinum L.) is a very important food legume and needs improved drought tolerance for higher seed production in dry environments. The aim of this study was to determine diversity and genetic polymorphism in zinc finger knuckle genes with CCHC domains and their functional analysis for practical improvement of chickpea breeding. Two CaZF-CCHC genes, Ca04468 and Ca07571, were identified as potentially important candidates associated with plant responses to drought and dehydration. To study these genes, various methods were used including Sanger sequencing, DArT (Diversity array technology) and molecular markers for plant genotyping, gene expression analysis using RT-qPCR, and associations with seed-related traits in chickpea plants grown in field trials. These genes were studied for genetic polymorphism among a set of chickpea accessions, and one SNP was selected for further study from four identified SNPs between the promoter regions of each of the two genes. Molecular markers were developed for the SNP and verified using the ASQ and CAPS methods. Genotyping of parents and selected breeding lines from two hybrid populations, and SNP positions on chromosomes with haplotype identification, were confirmed using DArT microarray analysis. Differential expression profiles were identified in the parents and the hybrid populations under gradual drought and rapid dehydration. The SNP-based genotypes were differentially associated with seed weight per plant but not with 100 seed weight. The two developed and verified SNP molecular markers for both genes, Ca04468 and Ca07571, respectively, could be used for marker-assisted selection in novel chickpea cultivars with improved tolerance to drought and dehydration.
Collapse
Affiliation(s)
- Gulmira Khassanova
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
- Department of Crop Breeding, A.I.Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Irina Oshergina
- Department of Crop Breeding, A.I.Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Evgeniy Ten
- Department of Crop Breeding, A.I.Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
| | - Nursaule Zhanbyrshina
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
| | - Ademi Gabdola
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
| | - Narendra K. Gupta
- Department of Plant Physiology, Sri Karan Narendra (SNK) Agricultural University, Jobster, Rajastan, India
| | - Carly Schramm
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Antonio Pupulin
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Lauren Philp-Dutton
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Peter Anderson
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Crystal Sweetman
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Colin L.D. Jenkins
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Kathleen L. Soole
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| |
Collapse
|
4
|
Neuhaus D. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:62-105. [PMID: 36113918 PMCID: PMC7614390 DOI: 10.1016/j.pnmrs.2022.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Zinc fingers can be loosely defined as protein domains containing one or more tetrahedrally-co-ordinated zinc ions whose role is to stabilise the structure rather than to be involved in enzymatic chemistry; such zinc ions are often referred to as "structural zincs". Although structural zincs can occur in proteins of any size, they assume particular significance for very small protein domains, where they are often essential for maintaining a folded state. Such small structures, that sometimes have only marginal stability, can present particular difficulties in terms of sample preparation, handling and structure determination, and early on they gained a reputation for being resistant to crystallisation. As a result, NMR has played a more prominent role in structural studies of zinc finger proteins than it has for many other types of proteins. This review will present an overview of the particular issues that arise for structure determination of zinc fingers by NMR, and ways in which these may be addressed.
Collapse
Affiliation(s)
- David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
5
|
Unveiling the N-Terminal Homodimerization of BCL11B by Hybrid Solvent Replica-Exchange Simulations. Int J Mol Sci 2021; 22:ijms22073650. [PMID: 33807484 PMCID: PMC8036541 DOI: 10.3390/ijms22073650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 01/28/2023] Open
Abstract
Transcription factors play a crucial role in regulating biological processes such as cell growth, differentiation, organ development and cellular signaling. Within this group, proteins equipped with zinc finger motifs (ZFs) represent the largest family of sequence-specific DNA-binding transcription regulators. Numerous studies have proven the fundamental role of BCL11B for a variety of tissues and organs such as central nervous system, T cells, skin, teeth, and mammary glands. In a previous work we identified a novel atypical zinc finger domain (CCHC-ZF) which serves as a dimerization interface of BCL11B. This domain and formation of the dimer were shown to be critically important for efficient regulation of the BCL11B target genes and could therefore represent a promising target for novel drug therapies. Here, we report the structural basis for BCL11B-BCL11B interaction mediated by the N-terminal ZF domain. By combining structure prediction algorithms, enhanced sampling molecular dynamics and fluorescence resonance energy transfer (FRET) approaches, we identified amino acid residues indispensable for the formation of the single ZF domain and directly involved in forming the dimer interface. These findings not only provide deep insight into how BCL11B acquires its active structure but also represent an important step towards rational design or selection of potential inhibitors.
Collapse
|
6
|
Abbehausen C. Zinc finger domains as therapeutic targets for metal-based compounds - an update. Metallomics 2020; 11:15-28. [PMID: 30303505 DOI: 10.1039/c8mt00262b] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Zinc finger proteins are one of the most abundant families of proteins and present a wide range of structures and functions. The structural zinc ion provides the correct conformation to specifically recognize DNA, RNA and protein sequences. Zinc fingers have essential functions in transcription, protein degradation, DNA repair, cell migration, and others. Recently, reports on the extensive participation of zinc fingers in disease have been published. On the other hand, much information remains to be unravelled as many genomes and proteomes are being reported. A variety of zinc fingers have been identified; however, their functions are still under investigation. Because zinc fingers have identified functions in several diseases, they are being increasingly recognized as drug targets. The replacement of Zn(ii) by another metal ion in zinc fingers is one of the most prominent methods of inhibition. From one side, zinc fingers play roles in the toxicity mechanisms of Ni(ii), Hg(ii), Cd(ii) and others. From the other side, gold, platinum, cobalt, and selenium complexes are amongst the compounds being developed as zinc finger inhibitors for therapy. The main challenge in the design of therapeutic zinc finger inhibitors is to achieve selectivity. Recently, the design of novel compounds and elucidation of the mechanisms of zinc substitution have renewed the possibilities of selective zinc finger inhibition by metal complexes. This review aims to update the status of novel strategies to selectively target zinc finger domains by metal complexes.
Collapse
Affiliation(s)
- C Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
7
|
Padjasek M, Kocyła A, Kluska K, Kerber O, Tran JB, Krężel A. Structural zinc binding sites shaped for greater works: Structure-function relations in classical zinc finger, hook and clasp domains. J Inorg Biochem 2020; 204:110955. [DOI: 10.1016/j.jinorgbio.2019.110955] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022]
|
8
|
Kluska K, Adamczyk J, Krężel A. Metal binding properties, stability and reactivity of zinc fingers. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Proc Natl Acad Sci U S A 2012; 109:E804-11. [PMID: 22308366 DOI: 10.1073/pnas.1114052109] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hydrophobin EAS from the fungus Neurospora crassa forms functional amyloid fibrils called rodlets that facilitate spore formation and dispersal. Self-assembly of EAS into fibrillar rodlets occurs spontaneously at hydrophobic:hydrophilic interfaces and the rodlets further associate laterally to form amphipathic monolayers. We have used site-directed mutagenesis and peptide experiments to identify the region of EAS that drives intermolecular association and formation of the cross-β rodlet structure. Transplanting this region into a nonamyloidogenic hydrophobin enables it to form rodlets. We have also determined the structure and dynamics of an EAS variant with reduced rodlet-forming ability. Taken together, these data allow us to pinpoint the conformational changes that take place when hydrophobins self-assemble at an interface and to propose a model for the amphipathic EAS rodlet structure.
Collapse
|
10
|
Nunez N, Clifton MMK, Funnell APW, Artuz C, Hallal S, Quinlan KGR, Font J, Vandevenne M, Setiyaputra S, Pearson RCM, Mackay JP, Crossley M. The multi-zinc finger protein ZNF217 contacts DNA through a two-finger domain. J Biol Chem 2011; 286:38190-38201. [PMID: 21908891 DOI: 10.1074/jbc.m111.301234] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif.
Collapse
Affiliation(s)
- Noelia Nunez
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Molly M K Clifton
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Alister P W Funnell
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales 2052, Australia
| | - Crisbel Artuz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales 2052, Australia
| | - Samantha Hallal
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Kate G R Quinlan
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Josep Font
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Marylène Vandevenne
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Surya Setiyaputra
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Richard C M Pearson
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales 2052, Australia
| | - Joel P Mackay
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Merlin Crossley
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales 2052, Australia.
| |
Collapse
|
11
|
Structural basis of simultaneous recruitment of the transcriptional regulators LMO2 and FOG1/ZFPM1 by the transcription factor GATA1. Proc Natl Acad Sci U S A 2011; 108:14443-8. [PMID: 21844373 DOI: 10.1073/pnas.1105898108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The control of red blood cell and megakaryocyte development by the regulatory protein GATA1 is a paradigm for transcriptional regulation of gene expression in cell lineage differentiation and maturation. Most GATA1-regulated events require GATA1 to bind FOG1, and essentially all GATA1-activated genes are cooccupied by a TAL1/E2A/LMO2/LDB1 complex; however, it is not known whether FOG1 and TAL1/E2A/LMO2/LDB1 are simultaneously recruited by GATA1. Our structural data reveal that the FOG1-binding domain of GATA1, the N finger, can also directly contact LMO2 and show that, despite the small size (< 50 residues) of the GATA1 N finger, both FOG1 and LMO2 can simultaneously bind this domain. LMO2 in turn can simultaneously contact both GATA1 and the DNA-binding protein TAL1/E2A at bipartite E-box/WGATAR sites. Taken together, our data provide the first structural snapshot of multiprotein complex formation at GATA1-dependent genes and support a model in which FOG1 and TAL1/E2A/LMO2/LDB1 can cooccupy E-box/WGATAR sites to facilitate GATA1-mediated activation of gene activation.
Collapse
|
12
|
Gamsjaeger R, Webb SR, Lamonica JM, Billin A, Blobel GA, Mackay JP. Structural basis and specificity of acetylated transcription factor GATA1 recognition by BET family bromodomain protein Brd3. Mol Cell Biol 2011; 31:2632-40. [PMID: 21555453 PMCID: PMC3133386 DOI: 10.1128/mcb.05413-11] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent data demonstrate that small synthetic compounds specifically targeting bromodomain proteins can modulate the expression of cancer-related or inflammatory genes. Although these studies have focused on the ability of bromodomains to recognize acetylated histones, it is increasingly becoming clear that histone-like modifications exist on other important proteins, such as transcription factors. However, our understanding of the molecular mechanisms through which these modifications modulate protein function is far from complete. The transcription factor GATA1 can be acetylated at lysine residues adjacent to the zinc finger domains, and this acetylation is essential for the normal chromatin occupancy of GATA1. We have recently identified the bromodomain-containing protein Brd3 as a cofactor that interacts with acetylated GATA1 and shown that this interaction is essential for the targeting of GATA1 to chromatin. Here we describe the structural basis for this interaction. Our data reveal for the first time the molecular details of an interaction between a transcription factor bearing multiple acetylation modifications and its cognate recognition module. We also show that this interaction can be inhibited by an acetyllysine mimic, highlighting the importance of further increasing the specificity of compounds that target bromodomain and extraterminal (BET) bromodomains in order to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Roland Gamsjaeger
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | - Sarah R. Webb
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | - Janine M. Lamonica
- Division of Hematology, The Children's Hospital of Philadelphia, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; and
| | - Andrew Billin
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Gerd A. Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; and
| | - Joel P. Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
- Corresponding author. Mailing address: School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia. Phone: 61-2-9351-3906. Fax: 61-2-9351-4726. E-mail:
| |
Collapse
|
13
|
Sénèque O, Latour JM. Coordination Properties of Zinc Finger Peptides Revisited: Ligand Competition Studies Reveal Higher Affinities for Zinc and Cobalt. J Am Chem Soc 2010; 132:17760-74. [DOI: 10.1021/ja104992h] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Olivier Sénèque
- Laboratoire de Chimie et Biologie des Métaux, CEA/iRTSV/LCBM, UMR 5249 CNRS/Université Joseph Fourier/CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble, France
| | - Jean-Marc Latour
- Laboratoire de Chimie et Biologie des Métaux, CEA/iRTSV/LCBM, UMR 5249 CNRS/Université Joseph Fourier/CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble, France
| |
Collapse
|
14
|
Lowry JA, Gamsjaeger R, Thong SY, Hung W, Kwan AH, Broitman-Maduro G, Matthews JM, Maduro M, Mackay JP. Structural analysis of MED-1 reveals unexpected diversity in the mechanism of DNA recognition by GATA-type zinc finger domains. J Biol Chem 2008; 284:5827-35. [PMID: 19095651 DOI: 10.1074/jbc.m808712200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MED-1 is a member of a group of divergent GATA-type zinc finger proteins recently identified in several species of Caenorhabditis. The med genes are transcriptional regulators that are involved in the specification of the mesoderm and endoderm precursor cells in nematodes. Unlike other GATA-type zinc fingers that recognize the consensus sequence (A/C/T)GATA(A/G), the MED-1 zinc finger (MED1zf) binds the larger and atypical site GTATACT(T/C)(3). We have examined the basis for this unusual DNA specificity using a range of biochemical and biophysical approaches. Most strikingly, we show that although the core of the MED1zf structure is similar to that of GATA-1, the basic tail C-terminal to the zinc finger unexpectedly adopts an alpha-helical structure upon binding DNA. This additional helix appears to contact the major groove of the DNA, making contacts that explain the extended DNA consensus sequence observed for MED1zf. Our data expand the versatility of DNA recognition by GATA-type zinc fingers and perhaps shed new light on the DNA-binding properties of mammalian GATA factors.
Collapse
Affiliation(s)
- Jason A Lowry
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhou A, Zhou J, Yang L, Liu M, Li H, Xu S, Han M, Zhang J. A nuclear localized protein ZCCHC9 is expressed in cerebral cortex and suppresses the MAPK signal pathway. J Genet Genomics 2008; 35:467-72. [DOI: 10.1016/s1673-8527(08)60064-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 06/12/2008] [Accepted: 06/25/2008] [Indexed: 11/25/2022]
|
16
|
Brayer KJ, Segal DJ. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys 2008; 50:111-31. [PMID: 18253864 DOI: 10.1007/s12013-008-9008-5] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 12/28/2007] [Indexed: 11/28/2022]
Abstract
Cys2-His2 (C2H2) zinc finger domains (ZFs) were originally identified as DNA-binding domains, and uncharacterized domains are typically assumed to function in DNA binding. However, a growing body of evidence suggests an important and widespread role for these domains in protein binding. There are even examples of zinc fingers that support both DNA and protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, Zif268, and Ying Yang 1 (YY1). C2H2 protein-protein interactions (PPIs) are proving to be more abundant than previously appreciated, more plastic than their DNA-binding counterparts, and more variable and complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 zinc finger-mediated PPIs, focusing on what is known about the binding surface, contributions of individual fingers to the interaction, and function. An accurate understanding of zinc finger biology will likely require greater insights into the potential protein interaction capabilities of C2H2 ZFs.
Collapse
Affiliation(s)
- Kathryn J Brayer
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
17
|
Kohinata T, Nishino H, Fukuzawa H. Significance of zinc in a regulatory protein, CCM1, which regulates the carbon-concentrating mechanism in Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2008; 49:273-283. [PMID: 18202004 DOI: 10.1093/pcp/pcn003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In conditions with the poor availability of inorganic carbon (CO(2) and HCO(3) (-): Ci) for photosynthesis, aquatic photosynthetic organisms induce active Ci uptake systems that allow accumulation of Ci within the cell, the so-called carbon-concentrating mechanism (CCM). In a unicellular green alga, Chlamydomonas reinhardtii, a regulatory factor CCM1 is indispensable for the regulation of the CCM by sensing CO(2) availability. CCM1 has two putative zinc-binding domains with several conserved cysteine and histidine residues in its N-terminal region. To determine whether the domains actually bind zinc atoms, the N-terminal parts of CCM1 were expressed as glutathione S-transferase fusion proteins and subjected to atomic absorption spectrometry. It was found that 1 mol of zinc is bound to 1 mol of amino acid regions 1-71 and 72-101 of CCM1, respectively. In the case of the site-directed mutant proteins, H54Y, C77V and C80V, the zinc-binding ability was lost. Physiological analyses of the transgenic Chlamydomonas cells harboring a mutated Ccm1 gene revealed that amino acid residues such as C36, C41, H54, C77, C80, H90 and C93 were indispensable for induction of the CCM in response to Ci-limiting stress conditions. Size exclusion chromatography followed by immunoblot analyses indicated that CCM1 is present as a protein complex of approximately 290-580 kDa independent of Ci availability.
Collapse
Affiliation(s)
- Tsutomu Kohinata
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
18
|
Cordier F, Vinolo E, Véron M, Delepierre M, Agou F. Solution structure of NEMO zinc finger and impact of an anhidrotic ectodermal dysplasia with immunodeficiency-related point mutation. J Mol Biol 2008; 377:1419-32. [PMID: 18313693 DOI: 10.1016/j.jmb.2008.01.048] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 01/14/2008] [Accepted: 01/18/2008] [Indexed: 11/26/2022]
Abstract
The regulatory NEMO (NF-kappaB essential modulator) protein has a crucial role in the canonical NF-kappaB signaling pathway notably involved in immune and inflammatory responses, apoptosis and oncogenesis. The regulatory domain is located in the C-terminal half of NEMO and contains a classical CCHC-type zinc finger (ZF). We have investigated the structural and functional effects of a cysteine to phenylalanine point mutation (C417F) in the ZF motif, identified in patients with anhidrotic ectodermal dysplasia with immunodeficiency. The solution structures of the wild type and mutant ZF were determined by NMR. Remarkably, the mutant adopts a global betabetaalpha fold similar to that of the wild type and retains thermodynamic stability, i.e., the ability to bind zinc with a native-like affinity, although the last zinc-chelating residue is missing. However, the mutation induces enhanced dynamics in the motif and leads to an important loss of stability. A detailed analysis of the wild type solution structure and experimental evidences led to the identification of two possible protein-binding surfaces that are largely destabilized in the mutant. This is sufficient to alter NEMO function, since functional complementation assays using NEMO-deficient pre-B and T lymphocytes show that full-length C417F pathogenic NEMO leads to a partial to strong defect in LPS, IL-1beta and TNF-alpha-induced NF-kappaB activation, respectively, as compared to wild type NEMO. Altogether, these results shed light onto the role of NEMO ZF as a protein-binding motif and show that a precise structural integrity of the ZF should be preserved to lead to a functional protein-recognition motif triggering full NF-kappaB activation.
Collapse
Affiliation(s)
- Florence Cordier
- Institut Pasteur, Unité de RMN des Biomolécules; CNRS, URA 2185, F-75015 Paris, France.
| | | | | | | | | |
Collapse
|
19
|
Vinolo E, Sebban H, Chaffotte A, Israël A, Courtois G, Véron M, Agou F. A Point Mutation in NEMO Associated with Anhidrotic Ectodermal Dysplasia with Immunodeficiency Pathology Results in Destabilization of the Oligomer and Reduces Lipopolysaccharide- and Tumor Necrosis Factor-mediated NF-κB Activation. J Biol Chem 2006; 281:6334-48. [PMID: 16379012 DOI: 10.1074/jbc.m510118200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NEMO (NF-kappaB essential modulator) protein plays a crucial role in the canonical NF-kappaB pathway as the regulatory component of the IKK (IkappaB kinase) complex. The human disease anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) has been recently linked to mutations in NEMO. We investigated the effect of an alanine to glycine substitution found in the NEMO polypeptide of an EDA-ID patient. This pathogenic mutation is located within the minimal oligomerization domain of the protein, which is required for the IKK activation in response to diverse stimuli. The mutation does not dramatically change the native-like state of the trimer, but temperature-induced unfolding studied by circular dichroism showed that it leads to an important loss in the oligomer stability. Furthermore, fluorescence studies showed that the tyrosine located in the adjacent zinc finger domain, which is possibly required for NEMO ubiquitination, exhibits an alteration in its spectral properties. This is probably due to a conformational change of this domain, providing evidence for a close interaction between the oligomerization domain and the zinc finger. In addition, functional complementation assays using NEMO-deficient pre-B and T lymphocytes showed that the pathogenic mutation reduced TNF-alpha and LPS-induced NF-kappaB activation by altering the assembly of the IKK complex. Altogether, our findings provide understanding as to how a single point mutation in NEMO leads to the observed EDA-ID phenotype in relation to the NEMO-dependent mechanism of IKK activation.
Collapse
Affiliation(s)
- Emilie Vinolo
- Unité de Regulation Enzymatique des Activités Cellulaires, CNRS URA 2185, Paris, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Möller HM, Martinez-Yamout MA, Dyson HJ, Wright PE. Solution Structure of the N-terminal Zinc Fingers of the Xenopus laevis double-stranded RNA-binding Protein ZFa. J Mol Biol 2005; 351:718-30. [PMID: 16051273 DOI: 10.1016/j.jmb.2005.06.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/03/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
Several zinc finger proteins have been discovered recently that bind specifically to double-stranded RNA. These include the mammalian JAZ and wig proteins, and the seven-zinc finger protein ZFa from Xenopus laevis. We have determined the solution structure of a 127 residue fragment of ZFa, which consists of two zinc finger domains connected by a linker that remains unstructured in the free protein in solution. The first zinc finger consists of a three-stranded beta-sheet and three helices, while the second finger contains only a two-stranded sheet and two helices. The common structures of the core regions of the two fingers are superimposable. Each finger has a highly electropositive surface that maps to a helix-kink-helix motif. There is no evidence for interactions between the two fingers, consistent with the length (24 residues) and unstructured nature of the intervening linker. Comparison with a number of other proteins shows similarities in the topology and arrangement of secondary structure elements with canonical DNA-binding zinc fingers, with protein interaction motifs such as FOG zinc fingers, and with other DNA-binding and RNA-binding proteins that do not contain zinc. However, in none of these cases does the alignment of these structures with the ZFa zinc fingers produce a consistent picture of a plausible RNA-binding interface. We conclude that the ZFa zinc fingers represent a new motif for the binding of double-stranded RNA.
Collapse
Affiliation(s)
- Heiko M Möller
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
21
|
Sharpe BK, Liew CK, Kwan AH, Wilce JA, Crossley M, Matthews JM, Mackay JP. Assessment of the robustness of a serendipitous zinc binding fold: mutagenesis and protein grafting. Structure 2005; 13:257-66. [PMID: 15698569 DOI: 10.1016/j.str.2004.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 11/29/2004] [Accepted: 12/14/2004] [Indexed: 11/21/2022]
Abstract
Zinc binding motifs have received much attention in the area of protein design. Here, we have tested the suitability of a recently discovered nonnative zinc binding structure as a protein design scaffold. A series of multiple alanine mutants was created to investigate the minimal requirements for folding, and solution structures of these mutants showed that the original fold was maintained, despite changes in approximately 50% of the sequence. We next attempted to transplant binding faces from chosen bimolecular interactions onto one of these mutants, and many of the resulting "chimeras" were shown to adopt a native-like fold. These results both highlight the robust nature of small zinc binding domains and underscore the complexity of designing functional proteins, even using such small, highly ordered scaffolds as templates.
Collapse
Affiliation(s)
- Belinda K Sharpe
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
Liew CK, Simpson RJY, Kwan AHY, Crofts LA, Loughlin FE, Matthews JM, Crossley M, Mackay JP. Zinc fingers as protein recognition motifs: structural basis for the GATA-1/friend of GATA interaction. Proc Natl Acad Sci U S A 2005; 102:583-8. [PMID: 15644435 PMCID: PMC545545 DOI: 10.1073/pnas.0407511102] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
GATA-1 and friend of GATA (FOG) are zinc-finger transcription factors that physically interact to play essential roles in erythroid and megakaryocytic development. Several naturally occurring mutations in the GATA-1 gene that alter the FOG-binding domain have been reported. The mutations are associated with familial anemias and thrombocytopenias of differing severity. To elucidate the molecular basis for the GATA-1/FOG interaction, we have determined the three-dimensional structure of a complex comprising the interaction domains of these proteins. The structure reveals how zinc fingers can act as protein recognition motifs. Details of the architecture of the contact domains and their physical properties provide a molecular explanation for how the GATA-1 mutations contribute to distinct but related genetic diseases.
Collapse
Affiliation(s)
- Chu Kong Liew
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cantor AB, Orkin SH. Coregulation of GATA factors by the Friend of GATA (FOG) family of multitype zinc finger proteins. Semin Cell Dev Biol 2004; 16:117-28. [PMID: 15659346 DOI: 10.1016/j.semcdb.2004.10.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Friend of GATA (FOG) family of proteins is an evolutionarily conserved class of large multitype zinc finger cofactors that bind to the amino zinc finger of GATA transcription factors and modulate their activity. Two FOG genes have been identified in mammals, both of which interact with each of the six known vertebrate GATA factors in vitro. Physical interaction between FOG and GATA proteins in vivo is essential for the development of a broad array of tissues, reflecting the overlapping expression patterns of these factors. In this review, we will discuss the identification and characterization of FOG proteins, their role in human disease, and recent studies that shed new light on their function and regulation.
Collapse
Affiliation(s)
- Alan B Cantor
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
24
|
Simpson RJY, Yi Lee SH, Bartle N, Sum EY, Visvader JE, Matthews JM, Mackay JP, Crossley M. A Classic Zinc Finger from Friend of GATA Mediates an Interaction with the Coiled-coil of Transforming Acidic Coiled-coil 3. J Biol Chem 2004; 279:39789-97. [PMID: 15234987 DOI: 10.1074/jbc.m404130200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Classic zinc finger domains (cZFs) consist of a beta-hairpin followed by an alpha-helix. They are among the most abundant of all protein domains and are often found in tandem arrays in DNA-binding proteins, with each finger contributing an alpha-helix to effect sequence-specific DNA recognition. Lone cZFs, not found in tandem arrays, have been postulated to function in protein interactions. We have studied the transcriptional co-regulator Friend of GATA (FOG), which contains nine zinc fingers. We have discovered that the third cZF of FOG contacts a coiled-coil domain in the centrosomal protein transforming acidic coiled-coil 3 (TACC3). Although FOG-ZF3 exhibited low solubility, we have used a combination of mutational mapping and protein engineering to generate a derivative that was suitable for in vitro and structural analysis. We report that the alpha-helix of FOG-ZF3 recognizes a C-terminal portion of the TACC3 coiled-coil. Remarkably, the alpha-helical surface utilized by FOG-ZF3 is the same surface responsible for the well established sequence-specific DNA-binding properties of many other cZFs. Our data demonstrate the versatility of cZFs and have implications for the analysis of many as yet uncharacterized cZF proteins.
Collapse
Affiliation(s)
- Raina J Y Simpson
- School of Molecular and Microbial Biosciences, G08, University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Nunokawa E, Ishizuka Y, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S. A Novel Zinc-binding Motif Revealed by Solution Structures of DNA-binding Domains of Arabidopsis SBP-family Transcription Factors. J Mol Biol 2004; 337:49-63. [PMID: 15001351 DOI: 10.1016/j.jmb.2004.01.015] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 01/09/2004] [Accepted: 01/14/2004] [Indexed: 11/30/2022]
Abstract
SQUAMOSA promoter binding proteins (SBPs) form a major family of plant-specific transcription factors related to flower development. Although SBPs are heterogeneous in primary structure, they share a highly conserved DNA-binding domain (DBD) that has been suggested to be zinc binding. Here we report the NMR solution structures of DBDs of two SBPs of Arabidopsis thaliana, SPL4 and SPL7. The two share essentially the same structural features. Each structure contains two zinc-binding sites consisting of eight Cys or His residues in a Cys3HisCys2HisCys or Cys6HisCys sequence motif in which the first four residues coordinate to one zinc and the last four coordinate to the other. These structures are dissimilar to other known zinc-binding structures, and thus represent a novel type of zinc-binding motif. The electrostatic profile on the surface suggested that a continuous region, including all the conserved basic residues, is involved in the DNA binding, the mode of which is likely to be novel as well.
Collapse
Affiliation(s)
- Kazuhiko Yamasaki
- Age Dimension Research Center, National Insitute of Advanced Industrial Science and Technology, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Goeke S, Greene EA, Grant PK, Gates MA, Crowner D, Aigaki T, Giniger E. Alternative splicing of lola generates 19 transcription factors controlling axon guidance in Drosophila. Nat Neurosci 2003; 6:917-24. [PMID: 12897787 DOI: 10.1038/nn1105] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Accepted: 05/16/2003] [Indexed: 11/08/2022]
Abstract
The Drosophila melanogaster transcription factor Lola (longitudinals lacking) is a pivotal regulator of neural wiring that sets the precise expression levels of proteins that execute specific axon guidance decisions. Lola has a zinc finger DNA binding domain and a BTB (for Broad-complex, Tramtrack and Bric a brac) dimerization motif. We now show that alternative splicing of the lola gene creates a family of 19 transcription factors. All lola isoforms share a common dimerization domain, but 17 have their own unique DNA-binding domains. Seven of these 17 isoforms are present in the distantly-related Dipteran Anopheles gambiae, suggesting that the properties of specific isoforms are likely to be critical to lola function. Analysis of the expression patterns of individual splice variants and of the phenotypes of mutants lacking single isoforms supports this idea and establishes that the alternative forms of lola are responsible for different functions of this gene. Thus, in this system, the alternative splicing of a key transcription factor helps to explain how a small genome encodes all the information that is necessary to specify the enormous diversity of axonal trajectories.
Collapse
Affiliation(s)
- Scott Goeke
- Division of Basic Sciences and Program in Developmental Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109-1024, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Simpson RJY, Cram ED, Czolij R, Matthews JM, Crossley M, Mackay JP. CCHX zinc finger derivatives retain the ability to bind Zn(II) and mediate protein-DNA interactions. J Biol Chem 2003; 278:28011-8. [PMID: 12736264 DOI: 10.1074/jbc.m211146200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Classical (CCHH) zinc fingers are among the most common protein domains found in eukaryotes. They function as molecular recognition elements that mediate specific contact with DNA, RNA, or other proteins and are composed of a betabetaalpha fold surrounding a single zinc ion that is ligated by two cysteine and two histidine residues. In a number of variant zinc fingers, the final histidine is not conserved, and in other unrelated zinc binding domains, residues such as aspartate can function as zinc ligands. To test whether the final histidine is required for normal folding and the DNA-binding function of classical zinc fingers, we focused on finger 3 of basic Krüppel-like factor. The structure of this domain was determined using NMR spectroscopy and found to constitute a typical classical zinc finger. We generated a panel of substitution mutants at the final histidine in this finger and found that several of the mutants retained some ability to fold in the presence of zinc. Consistent with this result, we showed that mutation of the final histidine had only a modest effect on DNA binding in the context of the full three-finger DNA-binding domain of basic Krüppel-like factor. Further, the zinc binding ability of one of the point mutants was tested and found to be indistinguishable from the wild-type domain. These results suggest that the final zinc chelating histidine is not an essential feature of classical zinc fingers and have implications for zinc finger evolution, regulation, and the design of experiments testing the functional roles of these domains.
Collapse
Affiliation(s)
- Raina J Y Simpson
- School of Molecular and Microbial Biosciences, G08, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Kwan AHY, Gell DA, Verger A, Crossley M, Matthews JM, Mackay JP. Engineering a protein scaffold from a PHD finger. Structure 2003; 11:803-13. [PMID: 12842043 DOI: 10.1016/s0969-2126(03)00122-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The design of proteins with tailored functions remains a relatively elusive goal. Small size, a well-defined structure, and the ability to maintain structural integrity despite multiple mutations are all desirable properties for such designer proteins. Many zinc binding domains fit this description. We determined the structure of a PHD finger from the transcriptional cofactor Mi2beta and investigated the suitability of this domain as a scaffold for presenting selected binding functions. The two flexible loops in the structure were mutated extensively by either substitution or expansion, without affecting the overall fold of the domain. A binding site for the corepressor CtBP2 was also grafted onto the domain, creating a new PHD domain that can specifically bind CtBP2 both in vitro and in the context of a eukaryotic cell nucleus. These results represent a step toward designing new regulatory proteins for modulating aberrant gene expression in vivo.
Collapse
Affiliation(s)
- Ann H Y Kwan
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006 Australia
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The C2H2 zinc finger is the most prevalent protein motif in the mammalian proteome. Two C2H2 fingers in Ikaros are dedicated to homotypic interactions between family members. We show here that these fingers comprise a bona fide dimerization domain. Dimerization is highly selective, however, as homologous domains from the TRPS-1 and Drosophila Hunchback proteins support homodimerization, but not heterodimerization with Ikaros. Ikaros-Hunchback selectivity is determined by 11 residues concentrated within the alpha-helical regions typically involved in base recognition. Preferential homodimerization of one chimeric protein predicts a parallel dimer interface and establishes the feasibility of creating novel dimer specificities. These results demonstrate that the C2H2 motif provides a versatile platform for both sequence-specific protein-nucleic acid interactions and highly specific dimerization.
Collapse
Affiliation(s)
- Aaron S McCarty
- Howard Hughes Medical Institute, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
30
|
Krishna SS, Majumdar I, Grishin NV. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 2003; 31:532-50. [PMID: 12527760 PMCID: PMC140525 DOI: 10.1093/nar/gkg161] [Citation(s) in RCA: 651] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2002] [Revised: 09/13/2002] [Accepted: 11/18/2002] [Indexed: 11/13/2022] Open
Abstract
Zinc fingers are small protein domains in which zinc plays a structural role contributing to the stability of the domain. Zinc fingers are structurally diverse and are present among proteins that perform a broad range of functions in various cellular processes, such as replication and repair, transcription and translation, metabolism and signaling, cell proliferation and apoptosis. Zinc fingers typically function as interaction modules and bind to a wide variety of compounds, such as nucleic acids, proteins and small molecules. Here we present a comprehensive classification of zinc finger spatial structures. We find that each available zinc finger structure can be placed into one of eight fold groups that we define based on the structural properties in the vicinity of the zinc-binding site. Three of these fold groups comprise the majority of zinc fingers, namely, C2H2-like finger, treble clef finger and the zinc ribbon. Evolutionary relatedness of proteins within fold groups is not implied, but each group is divided into families of potential homologs. We compare our classification to existing groupings of zinc fingers and find that we define more encompassing fold groups, which bring together proteins whose similarities have previously remained unappreciated. We analyze functional properties of different zinc fingers and overlay them onto our classification. The classification helps in understanding the relationship between the structure, function and evolutionary history of these domains. The results are available as an online database of zinc finger structures.
Collapse
Affiliation(s)
- S Sri Krishna
- Department of Biochemistry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9050, USA.
| | | | | |
Collapse
|
31
|
Kowalski K, Liew CK, Matthews JM, Gell DA, Crossley M, Mackay JP. Characterization of the conserved interaction between GATA and FOG family proteins. J Biol Chem 2002; 277:35720-9. [PMID: 12110675 DOI: 10.1074/jbc.m204663200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal zinc finger (ZnF) from GATA transcription factors mediates interactions with FOG family proteins. In FOG proteins, the interacting domains are also ZnFs; these domains are related to classical CCHH fingers but have an His --> Cys substitution at the final zinc-ligating position. Here we demonstrate that different CCHC fingers in the FOG family protein U-shaped contact the N-terminal ZnF of GATA-1 in the same fashion although with different affinities. We also show that these interactions are of moderate affinity, which is interesting given the presumed low concentrations of these proteins in the nucleus. Furthermore, we demonstrate that the variant CCHC topology enhances binding affinity, although the His --> Cys change is not essential for the formation of a stably folded domain. To ascertain the structural basis for the contribution of the CCHC arrangement, we have determined the structure of a CCHH mutant of finger nine from U-shaped. The structure is very similar overall to the wild-type domain, with subtle differences at the C terminus that result in loss of the interaction in vivo. Taken together, these results suggest that the CCHC zinc binding topology is required for the integrity of GATA-FOG interactions and that weak interactions can play important roles in vivo.
Collapse
Affiliation(s)
- Kasper Kowalski
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney New South Wales 2006, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Green RB, Hatini V, Johansen KA, Liu XJ, Lengyel JA. Drumstick is a zinc finger protein that antagonizes Lines to control patterning and morphogenesis of theDrosophilahindgut. Development 2002; 129:3645-56. [PMID: 12117814 DOI: 10.1242/dev.129.15.3645] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Elongation of the Drosophila embryonic hindgut epithelium occurs by a process of oriented cell rearrangement requiring the genes drumstick (drm) and lines (lin). The elongating hindgut becomes subdivided into domains – small intestine, large intestine and rectum – each characterized by a specific pattern of gene expression dependent upon normal drm and lin function. We show that drm encodes an 81 amino acid (10 kDa) zinc finger protein that is a member of the Odd-skipped family. drm expression is localized to the developing midgut-hindgut junction and is required to establish the small intestine, while lin is broadly expressed throughout the gut primordium and represses small intestine fate. lin is epistatic to drm, suggesting a model in which localized expression of drm blocks lin activity, thereby allowing small intestine fate to be established. Further supporting this model, ectopic expression of Drm throughout the hindgut produces a lin phenotype. Biochemical and genetic data indicate that the first conserved zinc finger of Drm is essential for its function. We have thus defined a pathway in which a spatially localized zinc finger protein antagonizes a globally expressed protein, thereby leading to specification of a domain (the small intestine) necessary for oriented cell rearrangement.
Collapse
Affiliation(s)
- Ryan B Green
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095-1606, USA
| | | | | | | | | |
Collapse
|
33
|
Sepulveda JL, Vlahopoulos S, Iyer D, Belaguli N, Schwartz RJ. Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity. J Biol Chem 2002; 277:25775-82. [PMID: 11983708 DOI: 10.1074/jbc.m203122200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herein, the restricted expression of serum response factors (SRF) closely overlapped with Nkx2-5 and GATA4 transcripts in early chick embryos coinciding with the earliest appearance of cardiac alpha-actin (alphaCA) transcripts and nascent myocardial cells. The combinatorial expression of SRF, a MADS box factor Nkx2-5 (a NK4 homeodomain), and/or GATA4, a dual C4 zinc finger protein, in heterologous CV1 fibroblasts and Schneider 2 insect cells demonstrated synergistic induction of alphaCA promoter activity. These three factors induced endogenous alphaCA mRNA over a 100-fold in murine embryonic stem cells. In addition, the DNA-binding defective mutant Nkx2-5pm efficiently coactivated the alphaCA promoter in the presence of SRF and GATA4 in the presence of all four SREs and was substantially weakened when individual SREs were mutated and or serially deleted. In contrast, the introduction of SRFpm, a SRF DNA-binding mutant, blocked the activation with all of the alphaCA promoter constructions. These assays indicated a dependence upon cooperative SRF binding for facilitating the recruitment of Nkx2-5 and GATA4 to the alphaCA promoter. Furthermore, the recruitment of Nkx2-5 and GATA4 by SRF was observed to strongly enhance SRF DNA binding affinity. This mechanism allowed for the formation of higher ordered alphaCA promoter DNA binding complexes, led to a model of SRF physical association with Nkx2-5 and GATA4.
Collapse
Affiliation(s)
- Jorge L Sepulveda
- Department of Pathology, University of Pittsburgh Medical Center, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
34
|
Newton A, Mackay J, Crossley M. The N-terminal zinc finger of the erythroid transcription factor GATA-1 binds GATC motifs in DNA. J Biol Chem 2001; 276:35794-801. [PMID: 11445591 DOI: 10.1074/jbc.m106256200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian transcription factor GATA-1 is required for normal erythroid and megakaryocytic development. GATA-1 contains two zinc fingers, the C-terminal finger, which is known to bind (A/T)GATA(A/G) motifs in DNA and the N-finger, which is important for interacting with co-regulatory proteins such as Friend of GATA (FOG). We now show that, like the C-finger, the N-finger of GATA-1 is also capable of binding DNA but recognizes distinct sequences with the core GATC. We demonstrate that the GATA-1 N-finger can bind these sequences in vitro and that in cellular assays, GATA-1 can activate promoters containing GATC motifs. Experiments with mutant GATA-1 proteins confirm the importance of the N-finger, as the C-finger is not required for transactivation from GATC sites. Recently four naturally occurring mutations in GATA-1 have been shown to be associated with familial blood disorders. These mutations all map to the N-finger domain. We have investigated the effect of these mutations on the recognition of GATC sites by the N-finger and show that one mutation R216Q abolishes DNA binding, whereas the others have only minor effects.
Collapse
Affiliation(s)
- A Newton
- Department of Biochemistry, G08, University of Sydney, New South Wales, Australia 2006
| | | | | |
Collapse
|
35
|
Fossett N, Schulz RA. Conserved cardiogenic functions of the multitype zinc-finger proteins: U-shaped and FOG-2. Trends Cardiovasc Med 2001; 11:185-90. [PMID: 11597829 DOI: 10.1016/s1050-1738(01)00092-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multitype zinc-finger proteins murine Friend of GATA-2 (FOG-2) and Drosophila U-shaped (Ush) are required for heart development. Both FOG proteins participate in signal transduction pathways that are essential for cardiogenesis. FOG-2 regulates signaling from the myocardium, which is required for the production of the coronary vasculature. Ush functions in a common pathway with the Heartless (Htl) fibroblast growth factor (FGF) receptor to control mesodermal cell migration, which is required for cardiogenic cell fate commitment. In vitro studies have demonstrated that both FOG proteins repress GATA factor transcriptional activation of cardiac promoters. These similarities provide further evidence for the conservation of gene functions during cardiogenesis in Drosophila and higher eukaryotes.
Collapse
Affiliation(s)
- N Fossett
- Department of Biochemistry and Molecular Biology, Graduate Program in Genes & Development, The University of Texas M.D. Anderson Cancer Center, Houston, 77030, USA.
| | | |
Collapse
|
36
|
Fossett N, Tevosian SG, Gajewski K, Zhang Q, Orkin SH, Schulz RA. The Friend of GATA proteins U-shaped, FOG-1, and FOG-2 function as negative regulators of blood, heart, and eye development in Drosophila. Proc Natl Acad Sci U S A 2001; 98:7342-7. [PMID: 11404479 PMCID: PMC34670 DOI: 10.1073/pnas.131215798] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Friend of GATA (FOG) proteins regulate GATA factor-activated gene transcription. During vertebrate hematopoiesis, FOG and GATA proteins cooperate to promote erythrocyte and megakaryocyte differentiation. The Drosophila FOG homologue U-shaped (Ush) is expressed similarly in the blood cell anlage during embryogenesis. During hematopoiesis, the acute myeloid leukemia 1 homologue Lozenge and Glial cells missing are required for the production of crystal cells and plasmatocytes, respectively. However, additional factors have been predicted to control crystal cell proliferation. In this report, we show that Ush is expressed in hemocyte precursors and plasmatocytes throughout embryogenesis and larval development, and the GATA factor Serpent is essential for Ush embryonic expression. Furthermore, loss of ush function results in an overproduction of crystal cells, whereas forced expression of Ush reduces this cell population. Murine FOG-1 and FOG-2 also can repress crystal cell production, but a mutant version of FOG-2 lacking a conserved motif that binds the corepressor C-terminal binding protein fails to affect the cell lineage. The GATA factor Pannier (Pnr) is required for eye and heart development in Drosophila. When Ush, FOG-1, FOG-2, or mutant FOG-2 is coexpressed with Pnr during these developmental processes, severe eye and heart phenotypes result, consistent with a conserved negative regulation of Pnr function. These results indicate that the fly and mouse FOG proteins function similarly in three distinct cellular contexts in Drosophila, but may use different mechanisms to regulate genetic events in blood vs. cardial or eye cell lineages.
Collapse
Affiliation(s)
- N Fossett
- Department of Biochemistry and Molecular Biology, Graduate Program in Genes and Development, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
37
|
Laity JH, Lee BM, Wright PE. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 2001; 11:39-46. [PMID: 11179890 DOI: 10.1016/s0959-440x(00)00167-6] [Citation(s) in RCA: 1072] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zinc finger proteins are among the most abundant proteins in eukaryotic genomes. Their functions are extraordinarily diverse and include DNA recognition, RNA packaging, transcriptional activation, regulation of apoptosis, protein folding and assembly, and lipid binding. Zinc finger structures are as diverse as their functions. Structures have recently been reported for many new zinc finger domains with novel topologies, providing important insights into structure/function relationships. In addition, new structural studies of proteins containing the classical Cys(2)His(2) zinc finger motif have led to novel insights into mechanisms of DNA binding and to a better understanding of their broader functions in transcriptional regulation.
Collapse
Affiliation(s)
- J H Laity
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|