1
|
Laatri S, El Khayari S, Qriouet Z. Exploring the molecular aspect and updating evolutionary approaches to the DNA polymerase enzymes for biotechnological needs: A comprehensive review. Int J Biol Macromol 2024; 276:133924. [PMID: 39033894 DOI: 10.1016/j.ijbiomac.2024.133924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
DNA polymerases are essential enzymes that play a key role in living organisms, as they participate in the synthesis and maintenance of the DNA molecule. The intrinsic properties of these enzymes have been widely observed and studied to understand their functions, activities, and behavior, which has allowed their natural power in DNA synthesis to be exploited in modern biotechnology, to the point of making them true pillars of the field. In this context, the laboratory evolution of these enzymes, either by directed evolution or rational design, has led to the generation of a wide range of new DNA polymerases with novel properties, suitable for a variety of biotechnological needs. In this review, we examine DNA polymerases at the molecular level, their biotechnological use, and their evolutionary methods in relation to the novel properties sought, providing a chronological selection of evolved DNA polymerases cited in the literature that we consider to be of great interest. To our knowledge, this work is the first to bring together the molecular, functional and evolutionary aspects of the DNA polymerase enzyme. We believe it will be of great interest to researchers whose aim is to produce new lines of evolved DNA polymerases.
Collapse
Affiliation(s)
- Said Laatri
- Microbiology and Molecular Biology Laboratory, Faculty of Sciences, Mohammed V-Souissi University, Rabat 10100, Morocco.
| | | | - Zidane Qriouet
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V-Souissi University, Rabat 10100, Morocco
| |
Collapse
|
2
|
Lawler JL, Terrell S, Coen DM. The conserved RNP motif of the herpes simplex virus 1 family B DNA polymerase is crucial for viral DNA synthesis but not polymerase activity. Virology 2024; 594:110035. [PMID: 38554655 DOI: 10.1016/j.virol.2024.110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024]
Abstract
The herpes simplex virus 1 DNA polymerase contains a highly conserved structural motif found in most family B polymerases and certain RNA-binding proteins. To investigate its importance within cells, we constructed a mutant virus with substitutions in two residues of the motif and a rescued derivative. The substitutions resulted in severe impairment of plaque formation, yields of infectious virus, and viral DNA synthesis while not meaningfully affecting expression of the mutant enzyme, its co-localization with the viral single-stranded DNA binding protein at intranuclear punctate sites in non-complementing cells or in replication compartments in complementing cells, or viral DNA polymerase activity. Taken together, our results indicate that the RNA binding motif plays a crucial role in herpes simplex virus 1 DNA synthesis through a mechanism separate from effects on polymerase activity, thus identifying a distinct essential function of this motif with implications for hypotheses regarding its biochemical functions.
Collapse
Affiliation(s)
- Jessica L Lawler
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Committee on Virology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Shariya Terrell
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Committee on Virology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Del Prado A, Rodríguez I, Lázaro JM, Moreno-Morcillo M, de Vega M, Salas M. New insights into the coordination between the polymerization and 3'-5' exonuclease activities in ϕ29 DNA polymerase. Sci Rep 2019; 9:923. [PMID: 30696917 PMCID: PMC6351526 DOI: 10.1038/s41598-018-37513-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/06/2018] [Indexed: 11/09/2022] Open
Abstract
Bacteriophage ϕ29 DNA polymerase has two activities: DNA polymerization and 3′-5′ exonucleolysis governed by catalytic sites present in two structurally distant domains. These domains must work together to allow the correct replication of the template and to prevent the accumulation of errors in the newly synthesized DNA strand. ϕ29 DNA polymerase is endowed with a high processivity and strand displacement capacity together with a high fidelity. Previous studies of its crystallographic structure suggested possible interactions of residues of the exonuclease domain like the Gln180 with the fingers subdomain, or water mediated and direct hydrogen bond by the polar groups of residues Tyr101 and Thr189 that could stabilize DNA binding. To analyse their functional importance for the exonuclease activity of ϕ29 DNA polymerase we engineered mutations to encode amino acid substitutions. Our results confirm that both residues, Tyr101 and Thr189 are involved in the 3′-5′ exonuclease activity and in binding the dsDNA. In addition, Tyr101 is playing a role in processivity and Thr189 is an important determinant in the fidelity of the DNA polymerase. On the other hand, the biochemical characterization of the mutant derivatives of residue Gln180 showed how the mutations introduced enhanced the 3′-5′ exonuclease activity of the enzyme. A potential structural conformation prone to degrade the substrate is discussed.
Collapse
Affiliation(s)
- Alicia Del Prado
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | - Irene Rodríguez
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | - José María Lázaro
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | - María Moreno-Morcillo
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | - Miguel de Vega
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
4
|
Noncatalytic aspartate at the exonuclease domain of proofreading DNA polymerases regulates both degradative and synthetic activities. Proc Natl Acad Sci U S A 2018. [PMID: 29531047 DOI: 10.1073/pnas.1718787115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most replicative DNA polymerases (DNAPs) are endowed with a 3'-5' exonuclease activity to proofread the polymerization errors, governed by four universally conserved aspartate residues belonging to the Exo I, Exo II, and Exo III motifs. These residues coordinate the two metal ions responsible for the hydrolysis of the last phosphodiester bond of the primer strand. Structural alignment of the conserved exonuclease domain of DNAPs from families A, B, and C has allowed us to identify an additional and invariant aspartate, located between motifs Exo II and Exo III. The importance of this aspartate has been assessed by site-directed mutagenesis at the corresponding Asp121 of the family B ϕ29 DNAP. Substitution of this residue by either glutamate or alanine severely impaired the catalytic efficiency of the 3'-5' exonuclease activity, both on ssDNA and dsDNA. The polymerization activity of these mutants was also affected due to a defective translocation following nucleotide incorporation. Alanine substitution for the homologous Asp90 in family A T7 DNAP showed essentially the same phenotype as ϕ29 DNAP mutant D121A. This functional conservation, together with a close inspection of ϕ29 DNAP/DNA complexes, led us to conclude a pivotal role for this aspartate in orchestrating the network of interactions required during internal proofreading of misinserted nucleotides.
Collapse
|
5
|
Zarrouk K, Piret J, Boivin G. Herpesvirus DNA polymerases: Structures, functions and inhibitors. Virus Res 2017; 234:177-192. [PMID: 28153606 DOI: 10.1016/j.virusres.2017.01.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/10/2017] [Accepted: 01/22/2017] [Indexed: 11/25/2022]
Abstract
Human herpesviruses are large double-stranded DNA viruses belonging to the Herpesviridae family. These viruses have the ability to establish lifelong latency into the host and to periodically reactivate. Primary infections and reactivations of herpesviruses cause a large spectrum of diseases and may lead to severe complications in immunocompromised patients. The viral DNA polymerase is a key enzyme in the lytic phase of the infection by herpesviruses. This review focuses on the structures and functions of viral DNA polymerases of herpes simplex virus (HSV) and human cytomegalovirus (HCMV). DNA polymerases of HSV (UL30) and HCMV (UL54) belong to B family DNA polymerases with which they share seven regions of homology numbered I to VII as well as a δ-region C which is homologous to DNA polymerases δ. These DNA polymerases are multi-functional enzymes exhibiting polymerase, 3'-5' exonuclease proofreading and ribonuclease H activities. Furthermore, UL30 and UL54 DNA polymerases form a complex with UL42 and UL44 processivity factors, respectively. The mechanisms involved in their polymerisation activity have been elucidated based on structural analyses of the DNA polymerase of bacteriophage RB69 crystallized under different conformations, i.e. the enzyme alone or in complex with DNA and with both DNA and incoming nucleotide. All antiviral agents currently used for the prevention or treatment of HSV and HCMV infections target the viral DNA polymerases. However, long-term administration of these antivirals may lead to the emergence of drug-resistant isolates harboring mutations in genes encoding viral enzymes that phosphorylate drugs (i.e., nucleoside analogues) and/or DNA polymerases.
Collapse
Affiliation(s)
- Karima Zarrouk
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| | - Jocelyne Piret
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada.
| |
Collapse
|
6
|
Enhancement of Polymerase Activity of the Large Fragment in DNA Polymerase I from Geobacillus stearothermophilus by Site-Directed Mutagenesis at the Active Site. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2906484. [PMID: 27981047 PMCID: PMC5131239 DOI: 10.1155/2016/2906484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 11/18/2022]
Abstract
The large fragment of DNA polymerase I from Geobacillus stearothermophilus GIM1.543 (Bst DNA polymerase) with 5'-3' DNA polymerase activity while in absence of 5'-3' exonuclease activity possesses high thermal stability and polymerase activity. Bst DNA polymerase was employed in isothermal multiple self-matching initiated amplification (IMSA) which amplified the interest sequence with high selectivity and was widely applied in the rapid detection of human epidemic diseases. However, the detailed information of commercial Bst DNA polymerase is unpublished and well protected by patents, which makes the high price of commercial kits. In this study, wild-type Bst DNA polymerase (WT) and substitution mutations for improving the efficiency of DNA polymerization were expressed and purified in E. coli. Site-directed substitutions of four conserved residues (Gly310, Arg412, Lys416, and Asp540) in the activity site of Bst DNA polymerase influenced efficiency of polymerizing dNTPs. The substitution of residue Gly310 by alanine or leucine and residue Asp540 by glutamic acid increased the efficiency of polymerase activity. All mutants with higher polymerizing efficiency were employed to complete the rapid detection of EV71-associated hand, foot, and mouth disease (HFMD) by IMSA approach with relatively shorter period which is suitable for the primary diagnostics setting in rural and underdeveloped areas.
Collapse
|
7
|
Ren Z. Molecular events during translocation and proofreading extracted from 200 static structures of DNA polymerase. Nucleic Acids Res 2016; 44:7457-74. [PMID: 27325739 PMCID: PMC5009745 DOI: 10.1093/nar/gkw555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/07/2016] [Indexed: 01/26/2023] Open
Abstract
DNA polymerases in family B are workhorses of DNA replication that carry out the bulk of the job at a high speed with high accuracy. A polymerase in this family relies on a built-in exonuclease for proofreading. It has not been observed at the atomic resolution how the polymerase advances one nucleotide space on the DNA template strand after a correct nucleotide is incorporated, that is, a process known as translocation. It is even more puzzling how translocation is avoided after the primer strand is excised by the exonuclease and returned back to the polymerase active site once an error occurs. The structural events along the bifurcate pathways of translocation and proofreading have been unwittingly captured by hundreds of structures in Protein Data Bank. This study analyzes all available structures of a representative member in family B and reveals the orchestrated event sequence during translocation and proofreading.
Collapse
Affiliation(s)
- Zhong Ren
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA Renz Research, Inc., Westmont, IL 60559, USA
| |
Collapse
|
8
|
Xu X, Yan C, Kossmann BR, Ivanov I. Secondary Interaction Interfaces with PCNA Control Conformational Switching of DNA Polymerase PolB from Polymerization to Editing. J Phys Chem B 2016; 120:8379-88. [PMID: 27109703 DOI: 10.1021/acs.jpcb.6b02082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replicative DNA polymerases (Pols) frequently possess two distinct DNA processing activities: DNA synthesis (polymerization) and proofreading (3'-5' exonuclease activity). The polymerase and exonuclease reactions are performed alternately and are spatially separated in different protein domains. Thus, the growing DNA primer terminus has to undergo dynamic conformational switching between two distinct functional sites on the polymerase. Furthermore, the transition from polymerization (pol) mode to exonuclease (exo) mode must occur in the context of a DNA Pol holoenzyme, wherein the polymerase is physically associated with processivity factor proliferating cell nuclear antigen (PCNA) and primer-template DNA. The mechanism of this conformational switching and the role that PCNA plays in it have remained obscure, largely due to the dynamic nature of ternary Pol/PCNA/DNA assemblies. Here, we present computational models of ternary assemblies for archaeal polymerase PolB. We have combined all available structural information for the binary complexes with electron microscopy data and have refined atomistic models for ternary PolB/PCNA/DNA assemblies in pol and exo modes using molecular dynamics simulations. In addition to the canonical PIP-box/interdomain connector loop (IDCL) interface of PolB with PCNA, contact analysis of the simulation trajectories revealed new secondary binding interfaces, distinct between the pol and exo states. Using targeted molecular dynamics, we explored the conformational transition from pol to exo mode. We identified a hinge region between the thumb and palm domains of PolB that is critical for conformational switching. With the thumb domain anchored onto the PCNA surface, the neighboring palm domain executed rotational motion around the hinge, bringing the core of PolB down toward PCNA to form a new interface with the clamp. A helix from PolB containing a patch of arginine residues was involved in the binding, locking the complex in the exo mode conformation. Together, these results provide a structural view of how the transition between the pol and exo states of PolB is coordinated through PCNA to achieve efficient proofreading.
Collapse
Affiliation(s)
- Xiaojun Xu
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Chunli Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Bradley R Kossmann
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Ivaylo Ivanov
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| |
Collapse
|
9
|
Hottin A, Marx A. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases. Acc Chem Res 2016; 49:418-27. [PMID: 26947566 DOI: 10.1021/acs.accounts.5b00544] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The DNA polymerase-catalyzed incorporation of modified nucleotides is employed in many biological technologies of prime importance, such as next-generation sequencing, nucleic acid-based diagnostics, transcription analysis, and aptamer selection by systematic enrichment of ligands by exponential amplification (SELEX). Recent studies have shown that 2'-deoxynucleoside triphosphates (dNTPs) that are functionalized with modifications at the nucleobase such as dyes, affinity tags, spin and redox labels, or even oligonucleotides are substrates for DNA polymerases, even if modifications of high steric demand are used. The position at which the modification is introduced in the nucleotide has been identified as crucial for retaining substrate activity for DNA polymerases. Modifications are usually attached at the C5 position of pyrimidines and the C7 position of 7-deazapurines. Furthermore, it has been shown that the nature of the modification may impact the efficiency of incorporation of a modified nucleotide into the nascent DNA strand by a DNA polymerase. This Account places functional data obtained in studies of the incorporation of modified nucleotides by DNA polymerases in the context of recently obtained structural data. Crystal structure analysis of a Thermus aquaticus (Taq) DNA polymerase variant (namely, KlenTaq DNA polymerase) in ternary complex with primer-template DNA and several modified nucleotides provided the first structural insights into how nucleobase-modified triphosphates are tolerated. We found that bulky modifications are processed by KlenTaq DNA polymerase as a result of cavities in the protein that enable the modification to extend outside the active site. In addition, we found that the enzyme is able to adapt to different modifications in a flexible manner and adopts different amino acid side-chain conformations at the active site depending on the nature of the nucleotide modification. Different "strategies" (i.e., hydrogen bonding, cation-π interactions) enable the protein to stabilize the respective protein-substrate complex without significantly changing the overall structure of the complex. Interestingly, it was also discovered that a modified nucleotide may be more efficiently processed by KlenTaq DNA polymerase when the 3'-primer terminus is also a modified nucleotide instead of a nonmodified natural one. Indeed, the modifications of two modified nucleotides at adjacent positions can interact with each other (i.e., by π-π interactions) and thereby stabilize the enzyme-substrate complex, resulting in more efficient transformation. Several studies have indicated that archeal DNA polymerases belonging to sequence family B are better suited for the incorporation of nucleobase-modified nucleotides than enzymes from family A. However, significantly less structural data are available for family B DNA polymerases. In order to gain insights into the preference for modified substrates by members of family B, we succeeded in obtaining binary structures of 9°N and KOD DNA polymerases bound to primer-template DNA. We found that the major groove of the archeal family B DNA polymerases is better accessible than in family A DNA polymerases. This might explain the observed superiority of family B DNA polymerases in polymerizing nucleotides that bear bulky modifications located in the major groove, such as modification at C5 of pyrimidines and C7 of 7-deazapurines. Overall, this Account summarizes our recent findings providing structural insight into the mechanism by which modified nucleotides are processed by DNA polymerases. It provides guidelines for the design of modified nucleotides, thus supporting future efforts based on the acceptance of modified nucleotides by DNA polymerases.
Collapse
Affiliation(s)
- Audrey Hottin
- Department
of Chemistry and
Konstanz Research School Chemical Biology University of Konstanz Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Department
of Chemistry and
Konstanz Research School Chemical Biology University of Konstanz Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
10
|
Molecular Genetic Methods to Study DNA Replication Protein Function in Haloferax volcanii, A Model Archaeal Organism. Methods Mol Biol 2015; 1300:187-218. [PMID: 25916714 DOI: 10.1007/978-1-4939-2596-4_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Successful high-fidelity chromosomal DNA replication is fundamental to all forms of cellular life and requires the complex interplay of a variety of essential and nonessential protein factors in a spatially and temporally coordinated manner. Much of what is known about the enzymes and mechanisms of chromosome replication has come from analysis of simple microbial model systems, such as yeast and archaea. Archaea possess a highly simplified eukaryotic-like replication apparatus, making them an excellent model for gaining novel insights into conserved aspects of protein function at the heart of the replisome. Amongst the thermophilic archaea, a number of species have proved useful for biochemical analysis of protein function, but few of these organisms are suited to genetic analysis. One archaeal organism that is genetically tractable is the mesophilic euryarchaeon Haloferax volcanii, a halophile that grows aerobically in high salt medium at an optimum temperature of 40-45 °C and with a doubling time of 2-3 h. The Hfx. volcanii genome has been sequenced and a range of methods have been developed to allow reverse genetic analysis of protein function in vivo, including techniques for gene replacement and gene deletion, transcriptional regulation, point mutation and gene tagging. Here we briefly summarize current knowledge of the chromosomal DNA replication machinery in the haloarchaea before describing in detail the molecular methods available to probe protein structure and function within the Hfx. volcanii replication apparatus.
Collapse
|
11
|
del Prado A, Lázaro JM, Villar L, Salas M, de Vega M. Dual role of φ29 DNA polymerase Lys529 in stabilisation of the DNA priming-terminus and the terminal protein-priming residue at the polymerisation site. PLoS One 2013; 8:e72765. [PMID: 24023769 PMCID: PMC3762793 DOI: 10.1371/journal.pone.0072765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/12/2013] [Indexed: 11/18/2022] Open
Abstract
Resolution of the crystallographic structure of φ29 DNA polymerase binary and ternary complexes showed that residue Lys529, located at the C-terminus of the palm subdomain, establishes contacts with the 3' terminal phosphodiester bond. In this paper, site-directed mutants at this Lys residue were used to analyse its functional importance for the synthetic activities of φ29 DNA polymerase, an enzyme that starts linear φ29 DNA replication using a terminal protein (TP) as primer. Our results show that single replacement of φ29 DNA polymerase residue Lys529 by Ala or Glu decreases the stabilisation of the primer-terminus at the polymerisation active site, impairing both the insertion of the incoming nucleotide when DNA and TP are used as primers and the translocation step required for the next incoming nucleotide incorporation. In addition, combination of the DNA polymerase mutants with a TP derivative at residue Glu233, neighbour to the priming residue Ser232, leads us to infer a direct contact between Lys529 and Glu233 for initiation of TP-DNA replication. Altogether, the results are compatible with a sequential binding of φ29 DNA polymerase residue Lys529 with TP and DNA during replication of TP-DNA.
Collapse
Affiliation(s)
- Alicia del Prado
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - José M. Lázaro
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Laurentino Villar
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
- * E-mail:
| | - Miguel de Vega
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| |
Collapse
|
12
|
Bergen K, Betz K, Welte W, Diederichs K, Marx A. Structures of KOD and 9°N DNA polymerases complexed with primer template duplex. Chembiochem 2013; 14:1058-62. [PMID: 23733496 DOI: 10.1002/cbic.201300175] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 12/29/2022]
Abstract
Replicate it: Structures of KOD and 9°N DNA polymerases, two enzymes that are widely used to replicate DNA with highly modified nucleotides, were solved at high resolution in complex with primer/template duplex. The data elucidate substrate interaction of the two enzymes and pave the way for further optimisation of the enzymes and substrates.
Collapse
Affiliation(s)
- Konrad Bergen
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
13
|
Abstract
In 1959, Arthur Kornberg was awarded the Nobel Prize for his work on the principles by which DNA is duplicated by DNA polymerases. Since then, it has been confirmed in all branches of life that replicative DNA polymerases require a single-stranded template to build a complementary strand, but they cannot start a new DNA strand de novo. Thus, they also depend on a primase, which generally assembles a short RNA primer to provide a 3'-OH that can be extended by the replicative DNA polymerase. The general principles that (1) a helicase unwinds the double-stranded DNA, (2) single-stranded DNA-binding proteins stabilize the single-stranded DNA, (3) a primase builds a short RNA primer, and (4) a clamp loader loads a clamp to (5) facilitate the loading and processivity of the replicative polymerase, are well conserved among all species. Replication of the genome is remarkably robust and is performed with high fidelity even in extreme environments. Work over the last decade or so has confirmed (6) that a common two-metal ion-promoted mechanism exists for the nucleotidyltransferase reaction that builds DNA strands, and (7) that the replicative DNA polymerases always act as a key component of larger multiprotein assemblies, termed replisomes. Furthermore (8), the integrity of replisomes is maintained by multiple protein-protein and protein-DNA interactions, many of which are inherently weak. This enables large conformational changes to occur without dissociation of replisome components, and also means that in general replisomes cannot be isolated intact.
Collapse
Affiliation(s)
- Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden.
| | | |
Collapse
|
14
|
Maxwell BA, Suo Z. Single-molecule investigation of substrate binding kinetics and protein conformational dynamics of a B-family replicative DNA polymerase. J Biol Chem 2013; 288:11590-600. [PMID: 23463511 DOI: 10.1074/jbc.m113.459982] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replicative DNA polymerases use a complex, multistep mechanism for efficient and accurate DNA replication as uncovered by intense kinetic and structural studies. Recently, single-molecule fluorescence spectroscopy has provided new insights into real time conformational dynamics utilized by DNA polymerases during substrate binding and nucleotide incorporation. We have used single-molecule Förster resonance energy transfer techniques to investigate the kinetics and conformational dynamics of Sulfolobus solfataricus DNA polymerase B1 (PolB1) during DNA and nucleotide binding. Our experiments demonstrate that this replicative polymerase can bind to DNA in at least three conformations, corresponding to an open and closed conformation of the finger domain as well as a conformation with the DNA substrate bound to the exonuclease active site of PolB1. Additionally, our results show that PolB1 can transition between these conformations without dissociating from a primer-template DNA substrate. Furthermore, we show that the closed conformation is promoted by a matched incoming dNTP but not by a mismatched dNTP and that mismatches at the primer-template terminus lead to an increase in the binding of the DNA to the exonuclease site. Our analysis has also revealed new details of the biphasic dissociation kinetics of the polymerase-DNA binary complex. Notably, comparison of the results obtained in this study with PolB1 with those from similar single-molecule studies with an A-family DNA polymerase suggests mechanistic differences between these polymerases. In summary, our findings provide novel mechanistic insights into protein conformational dynamics and substrate binding kinetics of a high fidelity B-family DNA polymerase.
Collapse
Affiliation(s)
- Brian A Maxwell
- Biophysics Program and the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
15
|
Jagtap PKA, Verma SK, Vithani N, Bais VS, Prakash B. Crystal structures identify an atypical two-metal-ion mechanism for uridyltransfer in GlmU: its significance to sugar nucleotidyl transferases. J Mol Biol 2013; 425:1745-59. [PMID: 23485416 DOI: 10.1016/j.jmb.2013.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/08/2013] [Accepted: 02/14/2013] [Indexed: 11/17/2022]
Abstract
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU), exclusive to prokaryotes, is a bifunctional enzyme that synthesizes UDP-GlcNAc-an important component of the cell wall of many microorganisms. Uridyltransfer, one of the reactions it catalyzes, involves binding GlcNAc-1-P, UTP and Mg(2+) ions; however, whether one or two ions catalyze this reaction remains ambiguous. Here, we resolve this using biochemical and crystallographic studies on GlmU from Mycobacterium tuberculosis (GlmU(Mtb)) and identify a two-metal-ion mechanism (mechanism-B). In contrast to well-established two-metal mechanism (mechanism-A) for enzymes acting on nucleic acids, mechanism-B is distinct in the way the two Mg(2+) ions (Mg(2+)A and Mg(2+)B) are positioned and stabilized. Further, attempts to delineate the roles of the metal ions in substrate stabilization, nucleophile activation and transition-state stabilization are presented. Interestingly, a detailed analysis of the available structures of sugar nucleotidyl transferases (SNTs) suggests that they too would utilize mechanism-B rather than mechanism-A. Based on this, SNTs could be classified into Group-I, which employs the two-metal mechanism-B as in GlmU, and Group-II that employs a variant one-metal mechanism-B, wherein the role of Mg(2+)A is substituted by a conserved lysine. Strikingly, eukaryotic SNTs appear confined to Group-II. Recognizing these differences may be important in the design of selective inhibitors against microbial nucleotidyl transferases.
Collapse
Affiliation(s)
- Pravin Kumar Ankush Jagtap
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | | | | | | | | |
Collapse
|
16
|
Gouge J, Ralec C, Henneke G, Delarue M. Molecular recognition of canonical and deaminated bases by P. abyssi family B DNA polymerase. J Mol Biol 2012; 423:315-36. [PMID: 22902479 DOI: 10.1016/j.jmb.2012.07.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Euryarchaeal polymerase B can recognize deaminated bases on the template strand, effectively stalling the replication fork 4nt downstream the modified base. Using Pyrococcus abyssi DNA B family polymerase (PabPolB), we investigated the discrimination between deaminated and natural nucleotide(s) by primer extension assays, electrophoretic mobility shift assays, and X-ray crystallography. Structures of complexes between the protein and DNA duplexes with either a dU or a dH in position +4 were solved at 2.3Å and 2.9Å resolution, respectively. The PabPolB is found in the editing mode. A new metal binding site has been uncovered below the base-checking cavity where the +4 base is flipped out; it is fully hydrated in an octahedral fashion and helps guide the strongly kinked template strand. Four other crystal structures with each of the canonical bases were also solved in the editing mode, and the presence of three nucleotides in the exonuclease site caused a shift in the coordination state of its metal A from octahedral to tetrahedral. Surprisingly, we find that all canonical bases also enter the base-checking pocket with very small differences in the binding geometry and in the calculated binding free energy compared to deaminated ones. To explain how this can lead to stalling of the replication fork, the full catalytic pathway and its branches must be taken into account, during which the base is checked several times. Our results strongly suggest a switch from elongation to editing modes right after nucleotide insertion when the modified base is at position +5.
Collapse
Affiliation(s)
- Jérôme Gouge
- Unité de Dynamique Structurale des Macromolécules, UMR 3528 du CNRS, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | | | | | | |
Collapse
|
17
|
Gardner AF, Wang J, Wu W, Karouby J, Li H, Stupi BP, Jack WE, Hersh MN, Metzker ML. Rapid incorporation kinetics and improved fidelity of a novel class of 3'-OH unblocked reversible terminators. Nucleic Acids Res 2012; 40:7404-15. [PMID: 22570423 PMCID: PMC3424534 DOI: 10.1093/nar/gks330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent developments of unique nucleotide probes have expanded our understanding of DNA polymerase function, providing many benefits to techniques involving next-generation sequencing (NGS) technologies. The cyclic reversible termination (CRT) method depends on efficient base-selective incorporation of reversible terminators by DNA polymerases. Most terminators are designed with 3′-O-blocking groups but are incorporated with low efficiency and fidelity. We have developed a novel class of 3′-OH unblocked nucleotides, called Lightning Terminators™, which have a terminating 2-nitrobenzyl moiety attached to hydroxymethylated nucleobases. A key structural feature of this photocleavable group displays a ‘molecular tuning’ effect with respect to single-base termination and improved nucleotide fidelity. Using Therminator™ DNA polymerase, we demonstrate that these 3′-OH unblocked terminators exhibit superior enzymatic performance compared to two other reversible terminators, 3′-O-amino-TTP and 3′-O-azidomethyl-TTP. Lightning Terminators™ show maximum incorporation rates (kpol) that range from 35 to 45 nt/s, comparable to the fastest NGS chemistries, yet with catalytic efficiencies (kpol/KD) comparable to natural nucleotides. Pre-steady-state kinetic studies of thymidine analogs revealed that the major determinant for improved nucleotide selectivity is a significant reduction in kpol by >1000-fold over TTP misincorporation. These studies highlight the importance of structure–function relationships of modified nucleotides in dictating polymerase performance.
Collapse
|
18
|
Wang M, Xia S, Blaha G, Steitz TA, Konigsberg WH, Wang J. Insights into base selectivity from the 1.8 Å resolution structure of an RB69 DNA polymerase ternary complex. Biochemistry 2011; 50:581-90. [PMID: 21158418 PMCID: PMC3036992 DOI: 10.1021/bi101192f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacteriophage RB69 DNA polymerase (RB69 pol) has served as a model for investigating how B family polymerases achieve a high level of fidelity during DNA replication. We report here the structure of an RB69 pol ternary complex at 1.8 Å resolution, extending the resolution from our previously reported structure at 2.6 Å [Franklin, M. C., et al. (2001) Cell 105, 657-667]. In the structure presented here, a network of five highly ordered, buried water molecules can be seen to interact with the N3 and O2 atoms in the minor groove of the DNA duplex. This structure reveals how the formation of the closed ternary complex eliminates two ordered water molecules, which are responsible for a kink in helix P in the apo structure. In addition, three pairs of polar-nonpolar interactions have been observed between (i) the Cα hydrogen of G568 and the N3 atom of the dG templating base, (ii) the O5' and C5 atoms of the incoming dCTP, and (iii) the OH group of S565 and the aromatic face of the dG templating base. These interactions are optimized in the dehydrated environment that envelops Watson-Crick nascent base pairs and serve to enhance base selectivity in wild-type RB69 pol.
Collapse
Affiliation(s)
- Mina Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 96520-8114, United States
| | - Shuangluo Xia
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 96520-8114, United States
| | - Gregor Blaha
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 96520-8114, United States
| | - Thomas A. Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 96520-8114, United States,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, United States,Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - William H. Konigsberg
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 96520-8114, United States
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 96520-8114, United States,To whom correspondence should be addressed. Phone: (203) 432-5737. Fax: (203) 432-3282. E-mail:
| |
Collapse
|
19
|
Architecture of the DNA polymerase B-proliferating cell nuclear antigen (PCNA)-DNA ternary complex. Proc Natl Acad Sci U S A 2011; 108:1845-9. [PMID: 21245343 DOI: 10.1073/pnas.1010933108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA replication in archaea and eukaryotes is executed by family B DNA polymerases, which exhibit full activity when complexed with the DNA clamp, proliferating cell nuclear antigen (PCNA). This replication enzyme consists of the polymerase and exonuclease moieties responsible for DNA synthesis and editing (proofreading), respectively. Because of the editing activity, this enzyme ensures the high fidelity of DNA replication. However, it remains unclear how the PCNA-complexed enzyme temporally switches between the polymerizing and editing modes. Here, we present the three-dimensional structure of the Pyrococcus furiosus DNA polymerase B-PCNA-DNA ternary complex, which is the core component of the replisome, determined by single particle electron microscopy of negatively stained samples. This structural view, representing the complex in the editing mode, revealed the whole domain configuration of the trimeric PCNA ring and the DNA polymerase, including protein-protein and protein-DNA contacts. Notably, besides the authentic DNA polymerase-PCNA interaction through a PCNA-interacting protein (PIP) box, a novel contact was found between DNA polymerase and the PCNA subunit adjacent to that with the PIP contact. This contact appears to be responsible for the configuration of the complex specific for the editing mode. The DNA was located almost at the center of PCNA and exhibited a substantial and particular tilt angle against the PCNA ring plane. The obtained molecular architecture of the complex, including the new contact found in this work, provides clearer insights into the switching mechanism between the two distinct modes, thus highlighting the functional significance of PCNA in the replication process.
Collapse
|
20
|
Hansen CJ, Wu L, Fox JD, Arezi B, Hogrefe HH. Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide gamma-phosphate derivative. Nucleic Acids Res 2010; 39:1801-10. [PMID: 21062827 PMCID: PMC3061061 DOI: 10.1093/nar/gkq1053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using compartmentalized self-replication (CSR), we evolved a version of Pyrococcus furiosus (Pfu) DNA polymerase that tolerates modification of the γ-phosphate of an incoming nucleotide. A Q484R mutation in α-helix P of the fingers domain, coupled with an unintended translational termination-reinitiation (split) near the finger tip, dramatically improve incorporation of a bulky γ-phosphate-O-linker-dabcyl substituent. Whether synthesized by coupled translation from a bicistronic (−1 frameshift) clone, or reconstituted from separately expressed and purified fragments, split Pfu mutant behaves identically to wild-type DNA polymerase with respect to chromatographic behavior, steady-state kinetic parameters (for dCTP), and PCR performance. Although naturally-occurring splits have been identified previously in the finger tip region of T4 gp43 variants, this is the first time a split (in combination with a point mutation) has been shown to broaden substrate utilization. Moreover, this latest example of a split hyperthermophilic archaeal DNA polymerase further illustrates the modular nature of the Family B DNA polymerase structure.
Collapse
Affiliation(s)
- Connie J Hansen
- Agilent Technologies Inc., Stratagene Products Division, 11011 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
21
|
Reha-Krantz LJ. DNA polymerase proofreading: Multiple roles maintain genome stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1049-63. [DOI: 10.1016/j.bbapap.2009.06.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 11/16/2022]
|
22
|
Johansson E, Macneill SA. The eukaryotic replicative DNA polymerases take shape. Trends Biochem Sci 2010; 35:339-47. [PMID: 20163964 DOI: 10.1016/j.tibs.2010.01.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/14/2010] [Accepted: 01/19/2010] [Indexed: 11/17/2022]
Abstract
Three multi-subunit DNA polymerase enzymes lie at the heart of the chromosome replication machinery in the eukaryotic cell nucleus. Through a combination of genetic, molecular biological and biochemical analysis, significant advances have been made in understanding the essential roles played by each of these enzymes at the replication fork. Until very recently, however, little information was available on their three-dimensional structures. Lately, a series of crystallographic and electron microscopic studies has been published, allowing the structures of the complexes and their constituent subunits to be visualised in detail for the first time. Taken together, these studies provide significant insights into the molecular makeup of the replication machinery in eukaryotic cells and highlight a number of key areas for future investigation.
Collapse
Affiliation(s)
- Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
23
|
Petrov VM, Ratnayaka S, Karam JD. Genetic insertions and diversification of the PolB-type DNA polymerase (gp43) of T4-related phages. J Mol Biol 2009; 395:457-74. [PMID: 19896487 DOI: 10.1016/j.jmb.2009.10.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/21/2009] [Accepted: 10/27/2009] [Indexed: 11/24/2022]
Abstract
In Escherichia coli phage T4 and many of its phylogenetic relatives, gene 43 consists of a single cistron that encodes a PolB family (PolB-type) DNA polymerase. We describe the divergence of this phage gene and its protein product (gp43) (gene product 43) among 26 phylogenetic relatives of T4 and discuss our observations in the context of diversity among the widely distributed PolB enzymes in nature. In two T4 relatives that grow in Aeromonas salmonicida phages 44RR and 25, gene 43 is fragmented by different combinations of three distinct types of DNA insertion elements: (a) a short intercistronic untranslated sequence (IC-UTS) that splits the polymerase gene into two cistrons, 43A and 43B, corresponding to N-terminal (gp43A) and C-terminal (gp43B) protein products; (b) a freestanding homing endonuclease gene (HEG) inserted between the IC-UTS and the 43B cistron; and (c) a group I intron in the 43B cistron. Phage 25 has all three elements, whereas phage 44RR has only the IC-UTS. We present evidence that (a) the split gene of phage 44RR encodes a split DNA polymerase consisting of a complex between gp43A and gp43B subunits; (b) the putative HEG encodes a double-stranded DNA endonuclease that specifically cleaves intron-free homologues of the intron-bearing 43B site; and (c) the group I intron is a self-splicing RNA. Our results suggest that some freestanding HEGs can mediate the homing of introns that do not encode their own homing enzymes. The results also suggest that different insertion elements can converge on a polB gene and evolve into a single integrated system for lateral transfer of polB genetic material. We discuss the possible pathways for the importation of such insertion elements into the genomes of T4-related phages.
Collapse
Affiliation(s)
- Vasiliy M Petrov
- Department of Biochemistry SL43, School of Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
24
|
Affiliation(s)
- Anthony J Berdis
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| |
Collapse
|
25
|
Pérez-Arnaiz P, Lázaro JM, Salas M, de Vega M. Functional importance of bacteriophage phi29 DNA polymerase residue Tyr148 in primer-terminus stabilisation at the 3'-5' exonuclease active site. J Mol Biol 2009; 391:797-807. [PMID: 19576228 DOI: 10.1016/j.jmb.2009.06.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 11/17/2022]
Abstract
Recent crystallographic resolution of varphi29 DNA polymerase complexes with ssDNA at its 3'-5' exonuclease active site has allowed the identification of residues Pro129 and Tyr148 as putative ssDNA ligands, the latter being conserved in the Kx(2)h motif of proofreading family B DNA polymerases. Single substitution of varphi29 DNA polymerase residue Tyr148 to Ala rendered an enzyme with a reduced capacity to stabilize the binding of the primer terminus at the 3'-5' exonuclease active site, not having a direct role in the catalysis of the reaction. Analysis of the 3'-5' exonuclease on primer/template structures showed a critical role for residue Tyr148 in the proofreading of DNA polymerisation errors. In addition, Tyr148 is not involved in coupling polymerisation to strand displacement in contrast to the catalytic residues responsible for the exonuclease reaction, its role being restricted to stabilisation of the frayed 3' terminus at the exonuclease active site. Altogether, the results lead us to extend the consensus sequence of the above motif of proofreading family B DNA polymerases into Kx(2)hxA. The different solutions adopted by proofreading DNA polymerases to stack the 3' terminus at the exonuclease site are discussed. In addition, the results obtained with mutants at varphi29 DNA polymerase residue Pro129 allow us to rule out a functional role as ssDNA ligand for this residue.
Collapse
Affiliation(s)
- Patricia Pérez-Arnaiz
- Instituto de Biología Molecular "Eladio Viñuela", Centro de Biología Molecular "Severo Ochoa", Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
26
|
Scouten Ponticelli SK, Duzen JM, Sutton MD. Contributions of the individual hydrophobic clefts of the Escherichia coli beta sliding clamp to clamp loading, DNA replication and clamp recycling. Nucleic Acids Res 2009; 37:2796-809. [PMID: 19279187 PMCID: PMC2685083 DOI: 10.1093/nar/gkp128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The homodimeric Escherichia coli β sliding clamp contains two hydrophobic clefts with which proteins involved in DNA replication, repair and damage tolerance interact. Deletion of the C-terminal five residues of β (βC) disrupted both clefts, severely impairing interactions of the clamp with the DnaX clamp loader, as well as the replicative DNA polymerase, Pol III. In order to determine whether both clefts were required for loading clamp onto DNA, stimulation of Pol III replication and removal of clamp from DNA after replication was complete, we developed a method for purification of heterodimeric clamp proteins comprised of one wild-type subunit (β+), and one βC subunit (β+/βC). The β+/βC heterodimer interacted normally with the DnaX clamp loader, and was loaded onto DNA slightly more efficiently than was β+. Moreover, β+/βC interacted normally with Pol III, and stimulated replication to the same extent as did β+. Finally, β+/βC was severely impaired for unloading from DNA using either DnaX or the δ subunit of DnaX. Taken together, these findings indicate that a single cleft in the β clamp is sufficient for both loading and stimulation of Pol III replication, but both clefts are required for unloading clamp from DNA after replication is completed.
Collapse
Affiliation(s)
- Sarah K Scouten Ponticelli
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
27
|
Rogozin IB, Makarova KS, Pavlov YI, Koonin EV. A highly conserved family of inactivated archaeal B family DNA polymerases. Biol Direct 2008; 3:32. [PMID: 18684330 PMCID: PMC2527604 DOI: 10.1186/1745-6150-3-32] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 08/06/2008] [Indexed: 10/30/2022] Open
Abstract
A widespread and highly conserved family of apparently inactivated derivatives of archaeal B-family DNA polymerases is described. Phylogenetic analysis shows that the inactivated forms comprise a distinct clade among archaeal B-family polymerases and that, within this clade, Euryarchaea and Crenarchaea are clearly separated from each other and from a small group of bacterial homologs. These findings are compatible with an ancient duplication of the DNA polymerase gene followed by inactivation and parallel loss in some of the lineages although contribution of horizontal gene transfer cannot be ruled out. The inactivated derivative of the archaeal DNA polymerase could form a complex with the active paralog and play a structural role in DNA replication.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information NLM, National Institutes of Health, Bethesda, MD, 20894, USA.
| | | | | | | |
Collapse
|
28
|
Firbank SJ, Wardle J, Heslop P, Lewis RJ, Connolly BA. Uracil recognition in archaeal DNA polymerases captured by X-ray crystallography. J Mol Biol 2008; 381:529-39. [PMID: 18614176 DOI: 10.1016/j.jmb.2008.06.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 05/29/2008] [Accepted: 06/02/2008] [Indexed: 11/26/2022]
Abstract
Archaeal family B DNA polymerases bind tightly to template-strand uracil and stall replication on encountering the pro-mutagenic base. This article describes an X-ray crystal structure, at 2.8 A resolution, of Thermococcus gorgonarius polymerase in complex with a DNA primer-template containing uracil in the single-stranded region. The DNA backbone is distorted to position the uracil deeply within a pocket, located in the amino-terminal domain of the polymerase. Specificity arises from a combination of hydrogen bonds between the protein backbone and uracil, with the pocket shaped to prevent the stable binding of the four standard DNA bases. Strong interactions are seen with the two phosphates that flank the uracil and the structure gives clues concerning the coupling of uracil binding to the halting of replication. The importance of key amino acids, identified by the analysis of the structure and their conservation between archaeal polymerases, was confirmed by site-directed mutagenesis. The crystal structure of V93Q, a polymerase variant that no longer recognises uracil, is also reported, explaining the V93Q phenotype by the steric exclusion of uracil from the pocket.
Collapse
Affiliation(s)
- Susan J Firbank
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
29
|
Bryant KF, Coen DM. Inhibition of translation by a short element in the 5' leader of the herpes simplex virus 1 DNA polymerase transcript. J Virol 2008; 82:77-85. [PMID: 17959669 PMCID: PMC2224361 DOI: 10.1128/jvi.01484-07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 10/17/2007] [Indexed: 12/29/2022] Open
Abstract
Many viruses regulate gene expression, both globally and specifically, to achieve maximal rates of replication. During herpes simplex virus 1 infection, translation of the DNA polymerase (Pol) catalytic subunit is inefficient relative to other proteins of the same temporal class (D. R. Yager, A. I. Marcy, and D. M. Coen., J. Virol. 64:2217-2225, 1990). To investigate the mechanisms involved in the inefficient translation of Pol and to determine whether this inefficient translation could affect viral replication, we performed a mutagenic analysis of the 5' end of the pol transcript. We found that a short sequence ( approximately 55 bases) in the 5' leader of the transcript is both necessary and sufficient to inhibit translation in rabbit reticulocyte lysates and sufficient to inhibit reporter gene translation in transfected cells. RNase structure mapping experiments indicated that the inhibitory element adopts a structure that contains regions of a double-stranded nature, which may interfere with ribosomal loading and/or scanning. Pol accumulated to approximately 2- to 3-fold-higher levels per mRNA in cells infected with a mutant virus containing a deletion of the approximately 55-base inhibitory element than in cells infected with a control virus containing this element. Additionally, the mutant virus replicated less efficiently than the control virus. These results suggest that the inhibitory element regulates Pol translation during infection and that its inhibition of Pol translation is beneficial for viral replication.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- 5' Untranslated Regions/physiology
- Animals
- Chlorocebus aethiops
- DNA-Directed DNA Polymerase/genetics
- Exodeoxyribonucleases/genetics
- Gene Expression Regulation, Viral/genetics
- Gene Expression Regulation, Viral/physiology
- Genes, Reporter
- Herpesvirus 1, Human/physiology
- Luciferases, Firefly/biosynthesis
- Luciferases, Firefly/genetics
- Mutagenesis
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Double-Stranded
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Deletion
- Vero Cells
- Viral Proteins/genetics
- Virus Replication/genetics
- Virus Replication/physiology
Collapse
Affiliation(s)
- Kevin F Bryant
- Dept. of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave., Boston, MA 02115, USA
| | | |
Collapse
|
30
|
Silverman AP, Jiang Q, Goodman MF, Kool ET. Steric and electrostatic effects in DNA synthesis by the SOS-induced DNA polymerases II and IV of Escherichia coli. Biochemistry 2007; 46:13874-81. [PMID: 17988102 DOI: 10.1021/bi700851z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The SOS-induced DNA polymerases II and IV (pol II and pol IV, respectively) of Escherichia coli play important roles in processing lesions that occur in genomic DNA. Here we study how electrostatic and steric effects play different roles in influencing the efficiency and fidelity of DNA synthesis by these two enzymes. These effects were probed by the use of nonpolar shape analogues of thymidine, in which substituted toluenes replace the polar thymine base. We compared thymine with nonpolar analogues to evaluate the importance of hydrogen bonding in the polymerase active sites, while we used comparisons among a set of variably sized thymine analogues to measure the role of steric effects in the two enzymes. Steady-state kinetics measurements were carried out to evaluate activities for nucleotide insertion and extension. The results showed that both enzymes inserted nucleotides opposite nonpolar template bases with moderate to low efficiency, suggesting that both polymerases benefit from hydrogen bonding or other electrostatic effects involving the template base. Surprisingly, however, pol II inserted nonpolar nucleotide (dNTP) analogues into a primer strand with high (wild-type) efficiency, while pol IV handled them with an extremely low efficiency. Base pair extension studies showed that both enzymes bypass non-hydrogen-bonding template bases with moderately low efficiency, suggesting a possible beneficial role of minor groove hydrogen bonding interactions at the N-1 position. Measurement of the two polymerases' sensitivity to steric size changes showed that both enzymes were relatively flexible, yielding only small kinetic differences with increases or decreases in nucleotide size. Comparisons are made to recent data for DNA pol I (Klenow fragment), the archaeal polymerase Dpo4, and human pol kappa.
Collapse
Affiliation(s)
- Adam P Silverman
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | | | |
Collapse
|
31
|
Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G. The catalytic mechanisms of binuclear metallohydrolases. Chem Rev 2007; 106:3338-63. [PMID: 16895331 DOI: 10.1021/cr050318f] [Citation(s) in RCA: 358] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natasa Mitić
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Hogg M, Aller P, Konigsberg W, Wallace SS, Doublié S. Structural and biochemical investigation of the role in proofreading of a beta hairpin loop found in the exonuclease domain of a replicative DNA polymerase of the B family. J Biol Chem 2006; 282:1432-44. [PMID: 17098747 DOI: 10.1074/jbc.m605675200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replicative DNA polymerases, as exemplified by the B family polymerases from bacteriophages T4 and RB69, not only replicate DNA but also have the ability to proofread misincorporated nucleotides. Because the two activities reside in separate protein domains, polymerases must employ a mechanism that allows for efficient switching of the primer strand between the two active sites to achieve fast and accurate replication. Prior mutational and structural studies suggested that a beta hairpin structure located in the exonuclease domain of family B polymerases might play an important role in active site switching in the event of a nucleotide misincorporation. We show that deleting the beta hairpin loop in RB69 gp43 affects neither polymerase nor exonuclease activities. Single binding event studies with mismatched primer termini, however, show that the beta hairpin plays a role in maintaining the stability of the polymerase/DNA interactions during the binding of the primer DNA in the exonuclease active site but not on the return of the corrected primer to the polymerase active site. In addition, the deletion variant showed a more stable incorporation of a nucleotide opposite an abasic site. Moreover, in the 2.4 A crystal structure of the beta hairpin deletion variant incorporating an A opposite a templating furan, all four molecules in the crystal asymmetric unit have DNA in the polymerase active site, despite the presence of DNA distortions because of the misincorporation, confirming that the primer strand is not stably bound within the exonuclease active site in the absence of the beta hairpin loop.
Collapse
Affiliation(s)
- Matthew Hogg
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
33
|
Lamers MH, Georgescu RE, Lee SG, O'Donnell M, Kuriyan J. Crystal Structure of the Catalytic α Subunit of E. coli Replicative DNA Polymerase III. Cell 2006; 126:881-92. [PMID: 16959568 DOI: 10.1016/j.cell.2006.07.028] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/29/2006] [Accepted: 07/29/2006] [Indexed: 10/24/2022]
Abstract
Bacterial replicative DNA polymerases such as Polymerase III (Pol III) share no sequence similarity with other polymerases. The crystal structure, determined at 2.3 A resolution, of a large fragment of Pol III (residues 1-917), reveals a unique chain fold with localized similarity in the catalytic domain to DNA polymerase beta and related nucleotidyltransferases. The structure of Pol III is strikingly different from those of members of the canonical DNA polymerase families, which include eukaryotic replicative polymerases, suggesting that the DNA replication machinery in bacteria arose independently. A structural element near the active site in Pol III that is not present in nucleotidyltransferases but which resembles an element at the active sites of some canonical DNA polymerases suggests that, at a more distant level, all DNA polymerases may share a common ancestor. The structure also suggests a model for interaction of Pol III with the sliding clamp and DNA.
Collapse
Affiliation(s)
- Meindert H Lamers
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology and Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
34
|
Shi R, Azzi A, Gilbert C, Boivin G, Lin SX. Three-dimensional modeling of cytomegalovirus DNA polymerase and preliminary analysis of drug resistance. Proteins 2006; 64:301-7. [PMID: 16705640 DOI: 10.1002/prot.21005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytomegalovirus (CMV) is the leading cause of congenital infection and a frequent opportunistic agent in immunocompromised hosts such as transplant recipients and AIDS patients. CMV DNA polymerase, a member of the polymerase B family, is the primary target of all available antivirals (ganciclovir, cidofovir, and foscarnet) and certain variations of this enzyme could lead to drug resistance. However, understanding the drug resistance mechanisms at the atomic level is hampered by the lack of its three-dimensional (3D) structure. In the present work, 3D models of two different conformations (closed and open) for CMV DNA polymerase have been built based on the crystal structures of bacteriophage RB69 DNA polymerase (a member of the polymerase B family) by using the 3D-Jury Meta server and the program MODELLER. Most of the variations on CMV DNA polymerase pertinent to ganciclovir/cidofovir and foscarnet resistance can be explained well based on the open and closed conformation models, respectively. These results constitute a first step towards facilitating our understanding of drug resistance mechanisms for CMV and the interpretation of novel viral mutations.
Collapse
Affiliation(s)
- Rong Shi
- Research Center in Molecular Endocrinology, Centre Hospitalier Universitaire de Québec (CHUL hospital) and Laval University, Québec City, Canada
| | | | | | | | | |
Collapse
|
35
|
Petrov VM, Nolan JM, Bertrand C, Levy D, Desplats C, Krisch HM, Karam JD. Plasticity of the gene functions for DNA replication in the T4-like phages. J Mol Biol 2006; 361:46-68. [PMID: 16828113 DOI: 10.1016/j.jmb.2006.05.071] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/24/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
We have completely sequenced and annotated the genomes of several relatives of the bacteriophage T4, including three coliphages (RB43, RB49 and RB69), three Aeromonas salmonicida phages (44RR2.8t, 25 and 31) and one Aeromonas hydrophila phage (Aeh1). In addition, we have partially sequenced and annotated the T4-like genomes of coliphage RB16 (a close relative of RB43), A. salmonicida phage 65, Acinetobacter johnsonii phage 133 and Vibrio natriegens phage nt-1. Each of these phage genomes exhibited a unique sequence that distinguished it from its relatives, although there were examples of genomes that are very similar to each other. As a group the phages compared here diverge from one another by several criteria, including (a) host range, (b) genome size in the range between approximately 160 kb and approximately 250 kb, (c) content and genetic organization of their T4-like genes for DNA metabolism, (d) mutational drift of the predicted T4-like gene products and their regulatory sites and (e) content of open-reading frames that have no counterparts in T4 or other known organisms (novel ORFs). We have observed a number of DNA rearrangements of the T4 genome type, some exhibiting proximity to putative homing endonuclease genes. Also, we cite and discuss examples of sequence divergence in the predicted sites for protein-protein and protein-nucleic acid interactions of homologues of the T4 DNA replication proteins, with emphasis on the diversity in sequence, molecular form and regulation of the phage-encoded DNA polymerase, gp43. Five of the sequenced phage genomes are predicted to encode split forms of this polymerase. Our studies suggest that the modular construction and plasticity of the T4 genome type and several of its replication proteins may offer resilience to mutation, including DNA rearrangements, and facilitate the adaptation of T4-like phages to different bacterial hosts in nature.
Collapse
Affiliation(s)
- Vasiliy M Petrov
- Department of Biochemistry SL43, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Pérez-Arnaiz P, Lázaro JM, Salas M, de Vega M. Involvement of phi29 DNA polymerase thumb subdomain in the proper coordination of synthesis and degradation during DNA replication. Nucleic Acids Res 2006; 34:3107-15. [PMID: 16757576 PMCID: PMC1475753 DOI: 10.1093/nar/gkl402] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
φ29 DNA polymerase achieves a functional coupling between its 3′–5′ exonuclease and polymerization activities by means of important contacts with the DNA at both active sites. The placement and orientation of residues Lys538, Lys555, Lys557, Gln560, Thr571, Thr573 and Lys575 in a modelled φ29 DNA polymerase–DNA complex suggest a DNA-binding role. In addition, crystal structure of φ29 DNA polymerase–oligo (dT)5 complex showed Leu567, placed at the tip of the thumb subdomain, lying between the two 3′-terminal bases at the exonuclease site. Single replacement of these φ29 DNA polymerase residues by alanine was made, and mutant derivatives were overproduced and purified to homogeneity. The results obtained in the assay of their synthetic and degradative activities, as well as their coordination, allow us to propose: (1) a primer-terminus stabilization role at the polymerase active site for residues Lys538, Thr573 and Lys575, (2) a primer-terminus stabilization role at the exonuclease active site for residues Leu567 and Lys555 and (3) a primer-terminus binding role in both editing and polymerization modes for residue Gln560. The results presented here lead us to propose φ29 DNA polymerase thumb as the main subdomain responsible for the coordination of polymerization and exonuclease activities.
Collapse
Affiliation(s)
| | | | - Margarita Salas
- To whom correspondence should be addressed. Tel: +34 91 4978435; Fax: +34 91 4978490;
| | | |
Collapse
|
37
|
Moussard H, Henneke G, Moreira D, Jouffe V, López-García P, Jeanthon C. Thermophilic lifestyle for an uncultured archaeon from hydrothermal vents: evidence from environmental genomics. Appl Environ Microbiol 2006; 72:2268-71. [PMID: 16517686 PMCID: PMC1393191 DOI: 10.1128/aem.72.3.2268-2271.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a comparative analysis of two genome fragments isolated from a diverse and widely distributed group of uncultured euryarchaea from deep-sea hydrothermal vents. The optimal activity and thermostability of a DNA polymerase predicted in one fragment were close to that of the thermophilic archaeon Thermoplasma acidophilum, providing evidence for a thermophilic way of life of this group of uncultured archaea.
Collapse
Affiliation(s)
- Hélène Moussard
- Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Centre National de la Recherche Scientifique, Ifremer & Université de Bretagne Occidentale, Orsay, France
| | | | | | | | | | | |
Collapse
|
38
|
Liu S, Knafels JD, Chang JS, Waszak GA, Baldwin ET, Deibel MR, Thomsen DR, Homa FL, Wells PA, Tory MC, Poorman RA, Gao H, Qiu X, Seddon AP. Crystal structure of the herpes simplex virus 1 DNA polymerase. J Biol Chem 2006; 281:18193-200. [PMID: 16638752 DOI: 10.1074/jbc.m602414200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpesviruses are the second leading cause of human viral diseases. Herpes Simplex Virus types 1 and 2 and Varicella-zoster virus produce neurotropic infections such as cutaneous and genital herpes, chickenpox, and shingles. Infections of a lymphotropic nature are caused by cytomegalovirus, HSV-6, HSV-7, and Epstein-Barr virus producing lymphoma, carcinoma, and congenital abnormalities. Yet another series of serious health problems are posed by infections in immunocompromised individuals. Common therapies for herpes viral infections employ nucleoside analogs, such as Acyclovir, and target the viral DNA polymerase, essential for viral DNA replication. Although clinically useful, this class of drugs exhibits a narrow antiviral spectrum, and resistance to these agents is an emerging problem for disease management. A better understanding of herpes virus replication will help the development of new safe and effective broad spectrum anti-herpetic drugs that fill an unmet need. Here, we present the first crystal structure of a herpesvirus polymerase, the Herpes Simplex Virus type 1 DNA polymerase, at 2.7 A resolution. The structural similarity of this polymerase to other alpha polymerases has allowed us to construct high confidence models of a replication complex of the polymerase and of Acyclovir as a DNA chain terminator. We propose a novel inhibition mechanism in which a representative of a series of non-nucleosidic viral polymerase inhibitors, the 4-oxo-dihydroquinolines, binds at the polymerase active site interacting non-covalently with both the polymerase and the DNA duplex.
Collapse
Affiliation(s)
- Shenping Liu
- Exploratory Medicinal Sciences, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dalmolin CC, da Silva FR, Mello LV, Rigden DJ, Castro MEB. Nucleotide sequence and phylogenetic analyses of the DNA polymerase gene of Anticarsia gemmatalis nucleopolyhedrovirus. Virus Res 2005; 110:99-109. [PMID: 15845260 DOI: 10.1016/j.virusres.2005.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 01/25/2005] [Accepted: 01/26/2005] [Indexed: 11/24/2022]
Abstract
The DNA polymerase from Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) was identified and sequenced, and its amino acid sequence was compared with other viral DNA polymerases to identify conserved regions and to reconstruct a phylogenetic tree. The sequence analysis of the AgMNPV DNA polymerase gene revealed the presence of a 2976 nucleotides open reading frame (ORF) encoding a polypeptide of 991 amino acid residues with a predicted molecular mass of 114.7 kDa. Among the baculovirus DNA polymerase genes identified to date, the AgMNPV DNA polymerase gene shared maximum amino acid sequence identity with the DNA polymerase gene of Choristoneura fumiferana nucleopolyhedrovirus defective strain (CfDEFNPV) (94%). The alignment of 140 virus sequences, 23 of them from baculovirus, showed that, of the 10 conserved regions identified, 5 are exclusive to baculoviruses (R1, R5, R9, R6 and R10), only 2 of them (R6 and R10) previously described as such in the literature. Our analysis, based on their positions in the AgMNPV DNA polymerase model, suggests that R9 and R10 could interact with DNA. Phylogenetic analysis of DNA polymerase sequences places the enzyme from AgMNPV within the cluster containing the polymerases of Group I Nucleopolyhedrovirus and suggests that the AgMNPV DNA polymerase is more closely related to that of CfDEFNPV than to those of other baculoviruses.
Collapse
Affiliation(s)
- Caren Cristina Dalmolin
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica (PqEB), W5 Norte Final, CEP 70770-900 Brasília DF, Brazil
| | | | | | | | | |
Collapse
|
40
|
Abstract
Three DNA polymerases are thought to function at the eukaryotic DNA replication fork. Currently, a coherent model has been derived for the composition and activities of the lagging strand machinery. RNA-DNA primers are initiated by DNA polymerase ot-primase. Loading of the proliferating cell nuclear antigen, PCNA, dissociates DNA polymerase ca and recruits DNA polymerase S and the flap endonuclease FEN1 for elongation and in preparation for its requirement during maturation, respectively. Nick translation by the strand displacement action of DNA polymerase 8, coupled with the nuclease action of FEN1, results in processive RNA degradation until a proper DNA nick is reached for closure by DNA ligase I. In the event of excessive strand displacement synthesis, other factors, such as the Dna2 nuclease/helicase, are required to trim excess flaps. Paradoxically, the composition and activity of the much simpler leading strand machinery has not been clearly established. The burden of evidence suggests that DNA polymerase E normally replicates this strand,but under conditions of dysfunction, DNA polymerase 8 may substitute.
Collapse
Affiliation(s)
- Parie Garg
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
41
|
Kuroita T, Matsumura H, Yokota N, Kitabayashi M, Hashimoto H, Inoue T, Imanaka T, Kai Y. Structural Mechanism for Coordination of Proofreading and Polymerase Activities in Archaeal DNA Polymerases. J Mol Biol 2005; 351:291-8. [PMID: 16019029 DOI: 10.1016/j.jmb.2005.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2004] [Revised: 03/06/2005] [Accepted: 06/07/2005] [Indexed: 11/28/2022]
Abstract
A novel mechanism for controlling the proofreading and polymerase activities of archaeal DNA polymerases was studied. The 3'-5'exonuclease (proofreading) activity and PCR performance of the family B DNA polymerase from Thermococcus kodakaraensis KOD1 (previously Pyrococcus kodakaraensis KOD1) were altered efficiently by mutation of a "unique loop" in the exonuclease domain. Interestingly, eight different H147 mutants showed considerable variations in respect to their 3'-5'exonuclease activity, from 9% to 276%, as against that of the wild-type (WT) enzyme. We determined the 2.75A crystal structure of the H147E mutant of KOD DNA polymerase that shows 30% of the 3'-5'exonuclease activity, excellent PCR performance and WT-like fidelity. The structural data indicate that the properties of the H147E mutant were altered by a conformational change of the Editing-cleft caused by an interaction between the unique loop and the Thumb domain. Our data suggest that electrostatic and hydrophobic interactions between the unique loop of the exonuclease domain and the tip of the Thumb domain are essential for determining the properties of these DNA polymerases.
Collapse
Affiliation(s)
- Toshihiro Kuroita
- Tsuruga Institute of Biotechnology, Toyobo Co., Ltd., 10-24 Toyo-cho, Tsuruga, Fukui 914-0047, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Henneke G, Flament D, Hübscher U, Querellou J, Raffin JP. The hyperthermophilic euryarchaeota Pyrococcus abyssi likely requires the two DNA polymerases D and B for DNA replication. J Mol Biol 2005; 350:53-64. [PMID: 15922358 DOI: 10.1016/j.jmb.2005.04.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/11/2005] [Accepted: 04/19/2005] [Indexed: 11/25/2022]
Abstract
DNA polymerases carry out DNA synthesis during DNA replication, DNA recombination and DNA repair. During the past five years, the number of DNA polymerases in both eukarya and bacteria has increased to at least 19 and multiple biological roles have been assigned to many DNA polymerases. Archaea, the third domain of life, on the other hand, have only a subset of the eukaryotic-like DNA polymerases. The diversity among the archaeal DNA polymerases poses the intriguing question of their functional tasks. Here, we focus on the two identified DNA polymerases, the family B DNA polymerase B (PabpolB) and the family D DNA polymerase D (PabpolD) from the hyperthermophilic euryarchaeota Pyrococcus abyssi. Our data can be summarized as follows: (i) both Pabpols are DNA polymerizing enzymes exclusively; (ii) their DNA binding properties as tested in gel shift competition assays indicated that PabpolD has a preference for a primed template; (iii) PabPolD is a primer-directed DNA polymerase independently of the primer composition whereas PabpolB behaves as an exclusively DNA primer-directed DNA polymerase; (iv) PabPCNA is required for PabpolD to perform efficient DNA synthesis but not PabpolB; (v) PabpolD, but not PabpolB, contains strand displacement activity; (vii) in the presence of PabPCNA, however, both Pabpols D and B show strand displacement activity; and (viii) we show that the direct interaction between PabpolD and PabPCNA is DNA-dependent. Our data imply that PabPolD might play an important role in DNA replication likely together with PabpolB, suggesting that archaea require two DNA polymerases at the replication fork.
Collapse
Affiliation(s)
- Ghislaine Henneke
- IFREMER, UMR 6197, Laboratoire de Microbiologie et Environnements Extrêmes, DRV/VP/LM2E, BP 70, F-29280 Plouzané, France.
| | | | | | | | | |
Collapse
|
43
|
Nagasaki K, Shirai Y, Tomaru Y, Nishida K, Pietrokovski S. Algal viruses with distinct intraspecies host specificities include identical intein elements. Appl Environ Microbiol 2005; 71:3599-607. [PMID: 16000767 PMCID: PMC1169056 DOI: 10.1128/aem.71.7.3599-3607.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 01/20/2005] [Indexed: 11/20/2022] Open
Abstract
Heterosigma akashiwo virus (HaV) is a large double-stranded DNA virus infecting the single-cell bloom-forming raphidophyte (golden brown alga) H. akashiwo. A molecular phylogenetic sequence analysis of HaV DNA polymerase showed that it forms a sister group with Phycodnaviridae algal viruses. All 10 examined HaV strains, which had distinct intraspecies host specificities, included an intein (protein intron) in their DNA polymerase genes. The 232-amino-acid inteins differed from each other by no more than a single nucleotide change. All inteins were present at the same conserved position, coding for an active-site motif, which also includes inteins in mimivirus (a very large double-stranded DNA virus of amoebae) and in several archaeal DNA polymerase genes. The HaV intein is closely related to the mimivirus intein, and both are apparently monophyletic to the archaeal inteins. These observations suggest the occurrence of horizontal transfers of inteins between viruses of different families and between archaea and viruses and reveal that viruses might be reservoirs and intermediates in horizontal transmissions of inteins. The homing endonuclease domain of the HaV intein alleles is mostly deleted. The mechanism keeping their sequences basically identical in HaV strains specific for different hosts is yet unknown. One possibility is that rapid and local changes in the HaV genome change its host specificity. This is the first report of inteins found in viruses infecting eukaryotic algae.
Collapse
Affiliation(s)
- Keizo Nagasaki
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
44
|
Rodríguez I, Lázaro JM, Blanco L, Kamtekar S, Berman AJ, Wang J, Steitz TA, Salas M, de Vega M. A specific subdomain in phi29 DNA polymerase confers both processivity and strand-displacement capacity. Proc Natl Acad Sci U S A 2005; 102:6407-12. [PMID: 15845765 PMCID: PMC1088371 DOI: 10.1073/pnas.0500597102] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Indexed: 11/18/2022] Open
Abstract
Recent crystallographic studies of phi29 DNA polymerase have provided structural insights into its strand displacement and processivity. A specific insertion named terminal protein region 2 (TPR2), present only in protein-primed DNA polymerases, together with the exonuclease, thumb, and palm subdomains, forms two tori capable of interacting with DNA. To analyze the functional role of this insertion, we constructed a phi29 DNA polymerase deletion mutant lacking TPR2 amino acid residues Asp-398 to Glu-420. Biochemical analysis of the mutant DNA polymerase indicates that its DNA-binding capacity is diminished, drastically decreasing its processivity. In addition, removal of the TPR2 insertion abolishes the intrinsic capacity of phi29 DNA polymerase to perform strand displacement coupled to DNA synthesis. Therefore, the biochemical results described here directly demonstrate that TPR2 plays a critical role in strand displacement and processivity.
Collapse
Affiliation(s)
- Irene Rodríguez
- Instituto de Biología Molecular Eladio Viñuela, Consejo Superior de Investigaciones Científicas, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pavlov AR, Pavlova NV, Kozyavkin SA, Slesarev AI. Recent developments in the optimization of thermostable DNA polymerases for efficient applications. Trends Biotechnol 2005; 22:253-60. [PMID: 15109812 DOI: 10.1016/j.tibtech.2004.02.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Andrey R Pavlov
- Fidelity Systems Inc., 7961 Cessna Avenue, Gaithersburg, Maryland 20879, USA
| | | | | | | |
Collapse
|
46
|
Savino C, Federici L, Johnson KA, Vallone B, Nastopoulos V, Rossi M, Pisani FM, Tsernoglou D. Insights into DNA replication: the crystal structure of DNA polymerase B1 from the archaeon Sulfolobus solfataricus. Structure 2005; 12:2001-8. [PMID: 15530364 DOI: 10.1016/j.str.2004.09.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 09/03/2004] [Accepted: 09/03/2004] [Indexed: 11/25/2022]
Abstract
To minimize the large number of mispairs during genome duplication owing to the large amount of DNA to be synthesized, many replicative polymerases have accessory domains with complementary functions. We describe the crystal structure of replicative DNA polymerase B1 from the archaeon Sulfolobus solfataricus. Comparison between other known structures indicates that although the protein is folded into the typical N-terminal, editing 3'-5'exonuclease, and C-terminal right-handed polymerase domains, it is characterized by the unusual presence of two extra alpha helices in the N-terminal domain interacting with the fingers helices to form an extended fingers subdomain, a structural feature that can account for some functional features of the protein. We explore the structural basis of specific lesion recognition, the initial step in DNA repair, describing how the N-terminal subdomain pocket of archaeal DNA polymerases could allow specific recognition of deaminated bases such as uracil and hypoxanthine in addition to the typical DNA bases.
Collapse
Affiliation(s)
- Carmelinda Savino
- Department of Biochemical Sciences and Consiglio Nazionale delle Ricerche, Institute of Molecular Biology and Pathology, University of Rome La Sapienza, P.le A. Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Petrov VM, Karam JD. Diversity of structure and function of DNA polymerase (gp43) of T4-related bacteriophages. BIOCHEMISTRY (MOSCOW) 2005; 69:1213-8. [PMID: 15627374 DOI: 10.1007/s10541-005-0066-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The replication DNA polymerase (gp43) of the bacteriophage T4 is a member of the pol B family of DNA polymerases, which are found in all divisions of life in the biosphere. The enzyme is a modularly organized protein that has several activities in one polypeptide chain (approximately 900 amino acid residues). These include two catalytic functions, POL (polymerase) and EXO (3 -exonuclease), and specific binding activities to DNA, the mRNA for gp43, deoxyribonucleotides (dNTPs), and other T4 replication proteins. The gene for this multifunctional enzyme (gene 43) has been preserved in evolution of the diverse group of T4-like phages in nature, but has diverged in sequence, organization, and specificity of the binding functions of the gene product. We describe here examples of T4-like phages where DNA rearrangements have created split forms of gene 43 consisting of two cistrons instead of one. These gene 43 variants specify separate gp43A (N-terminal) and gp43B (C-terminal) subunits of a split form of gp43. Compared to the monocistronic form, the interruption in contiguity of the gene 43 reading frame maps in a highly diverged sequence separating the code for essential components of two major modules of this pol B enzyme, the FINGERS and PALM domains, which contain the dNTP binding pocket and POL catalytic residues of the enzyme. We discuss the biological implications of these gp43 splits and compare them to other types of pol B splits in nature. Our studies suggest that DNA mobile elements may allow genetic information for pol B modules to be exchanged between organisms.
Collapse
Affiliation(s)
- V M Petrov
- Tulane University Health Sciences Center, Department of Biochemistry SL43, New Orleans, LA 70112-2699, USA
| | | |
Collapse
|
48
|
Das D, Georgiadis MM. The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus. Structure 2005; 12:819-29. [PMID: 15130474 DOI: 10.1016/j.str.2004.02.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 12/17/2003] [Accepted: 02/11/2004] [Indexed: 10/26/2022]
Abstract
Reverse transcriptases (RTs) are multidomain enzymes of variable architecture that couple both RNA- and DNA-directed DNA polymerase activities with an RNase H activity specific for an RNA:DNA hybrid in order to replicate the single-stranded RNA genome of the retrovirus. Previous structural work has been reported for the heterodimeric HIV-1 and HIV-2 RTs. We now report the first crystal structure of the full-length Moloney murine leukemia virus (MMLV) RT at 3.0 A resolution. The structure reveals a clamp-shaped molecule resulting from the relative positions of the thumb, connection, and RNase H domains that is strikingly different from the HIV-1 RT and provides the first example of a monomeric reverse transcriptase. A comparative analysis with related DNA polymerases suggests a unique trajectory for the template-primer exiting the polymerase active site and provides insights regarding processive DNA synthesis by MMLV RT.
Collapse
Affiliation(s)
- Debanu Das
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | | |
Collapse
|
49
|
Abstract
DNA polymerases are molecular motors directing the synthesis of DNA from nucleotides. All polymerases have a common architectural framework consisting of three canonical subdomains termed the fingers, palm, and thumb subdomains. Kinetically, they cycle through various states corresponding to conformational transitions, which may or may not generate force. In this review, we present and discuss the kinetic, structural, and single-molecule works that have contributed to our understanding of DNA polymerase function.
Collapse
Affiliation(s)
- Paul J Rothwell
- Institute of Structural Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | | |
Collapse
|
50
|
Biles BD, Connolly BA. Low-fidelity Pyrococcus furiosus DNA polymerase mutants useful in error-prone PCR. Nucleic Acids Res 2004; 32:e176. [PMID: 15601989 PMCID: PMC545472 DOI: 10.1093/nar/gnh174] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Random mutagenesis constitutes an important approach for identifying critical regions of proteins, studying structure-function relations and developing novel proteins with desired properties. Perhaps, the most popular method is the error-prone PCR, in which mistakes are introduced into a gene, and hence a protein, during DNA polymerase-catalysed amplification cycles. Unfortunately, the relatively high fidelities of the thermostable DNA polymerases commonly used for PCR result in too few mistakes in the amplified DNA for efficient mutagenesis. In this paper, we describe mutants of the family B DNA polymerase from Pyrococcus furiosus (Pfu-Pol), with superb performance in error-prone PCR. The key amino acid changes occur in a short loop linking two long alpha-helices that comprise the 'fingers' sub-domain of the protein. This region is responsible for binding the incoming dNTPs and ensuring that only correct bases are inserted opposite the complementary base in the template strand. Mutations in the short loop, when combined with an additional mutation that abolishes the 3'-5' proof-reading exonuclease activity, convert the extremely accurate wild-type polymerase into a variant with low fidelity. The mutant Pfu-Pols can be applied in error-prone PCR, under exactly the same conditions used for standard, high-fidelity PCR with the wild-type enzyme. Large quantities of amplified product, with a high frequency of nearly indiscriminate mutations, are produced. It is anticipated that the Pfu-Pol variants will be extremely useful for the randomization of gene, and hence protein, sequences.
Collapse
Affiliation(s)
- Benjamin D Biles
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|