1
|
Ahmed I, Akram Z, Sahar MSU, Iqbal HMN, Landsberg MJ, Munn AL. WITHDRAWN: Structural studies of vitrified biological proteins and macromolecules - A review on the microimaging aspects of cryo-electron microscopy. Int J Biol Macromol 2020:S0141-8130(20)33915-5. [PMID: 32710963 DOI: 10.1016/j.ijbiomac.2020.07.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/03/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia.
| | - Zain Akram
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| | - M Sana Ullah Sahar
- School of Engineering, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alan L Munn
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| |
Collapse
|
2
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
3
|
Sharon N, Kileel J, Khoo Y, Landa B, Singer A. Method of moments for 3D single particle ab initio modeling with non-uniform distribution of viewing angles. INVERSE PROBLEMS 2020; 36:044003. [PMID: 40290116 PMCID: PMC12030009 DOI: 10.1088/1361-6420/ab6139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Single-particle reconstruction in cryo-electron microscopy (cryo-EM) is an increasingly popular technique for determining the 3D structure of a molecule from several noisy 2D projections images taken at unknown viewing angles. Most reconstruction algorithms require a low-resolution initialization for the 3D structure, which is the goal of ab initio modeling. Suggested by Zvi Kam in 1980, the method of moments (MoM) offers one approach, wherein low-order statistics of the 2D images are computed and a 3D structure is estimated by solving a system of polynomial equations. Unfortunately, Kam's method suffers from restrictive assumptions, most notably that viewing angles should be distributed uniformly. Often unrealistic, uniformity entails the computation of higher-order correlations, as in this case first and second moments fail to determine the 3D structure. In the present paper, we remove this hypothesis, by permitting an unknown, non-uniform distribution of viewing angles in MoM. Perhaps surprisingly, we show that this case is statistically easier than the uniform case, as now first and second moments generically suffice to determine low-resolution expansions of the molecule. In the idealized setting of a known, non-uniform distribution, we find an efficient provable algorithm inverting first and second moments. For unknown, non-uniform distributions, we use non-convex optimization methods to solve for both the molecule and distribution.
Collapse
Affiliation(s)
- Nir Sharon
- School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Joe Kileel
- Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, United States of America
| | - Yuehaw Khoo
- Department of Statistics and the College, The University of Chicago, Chicago, IL, United States of America
| | - Boris Landa
- Applied Mathematics Program, Yale University, New Haven, CT, United States of America
| | - Amit Singer
- Program in Applied and Computational Mathematics and Department of Mathematics, Princeton University, Princeton, NJ, United States of America
| |
Collapse
|
4
|
Benjin X, Ling L. Developments, applications, and prospects of cryo-electron microscopy. Protein Sci 2019; 29:872-882. [PMID: 31854478 PMCID: PMC7096719 DOI: 10.1002/pro.3805] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022]
Abstract
Cryo‐electron microscopy (cryo‐EM) is a structural biological method that is used to determine the 3D structures of biomacromolecules. After years of development, cryo‐EM has made great achievements, which has led to a revolution in structural biology. In this article, the principle, characteristics, history, current situation, workflow, and common problems of cryo‐EM are systematically reviewed. In addition, the new development direction of cryo‐EM—cryo‐electron tomography (cryo‐ET), is discussed in detail. Also, cryo‐EM is prospected from the following aspects: the structural analysis of small proteins, the improvement of resolution and efficiency, and the relationship between cryo‐EM and drug development. This review is dedicated to giving readers a comprehensive understanding of the development and application of cryo‐EM, and to bringing them new insights.
Collapse
Affiliation(s)
- Xu Benjin
- Laboratory Medicine Department in Fenyang College of Shanxi Medical University, Shanxi, Fenyang, China
| | - Liu Ling
- Laboratory Medicine Department in Fenyang College of Shanxi Medical University, Shanxi, Fenyang, China
| |
Collapse
|
5
|
Adámková L, Kvíčalová Z, Rozbeský D, Kukačka Z, Adámek D, Cebecauer M, Novák P. Oligomeric Architecture of Mouse Activating Nkrp1 Receptors on Living Cells. Int J Mol Sci 2019; 20:ijms20081884. [PMID: 30995786 PMCID: PMC6515139 DOI: 10.3390/ijms20081884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/03/2022] Open
Abstract
Mouse activating Nkrp1 proteins are commonly described as type II transmembrane receptors with disulfide-linked homodimeric structure. Their function and the manner in which Nkrp1 proteins of mouse strain (C57BL/6) oligomerize are still poorly understood. To assess the oligomerization state of Nkrp1 proteins, mouse activating EGFP-Nkrp1s were expressed in mammalian lymphoid cells and their oligomerization evaluated by Förster resonance energy transfer (FRET). Alternatively, Nkrp1s oligomers were detected by Western blotting to specify the ratio between monomeric and dimeric forms. We also performed structural characterization of recombinant ectodomains of activating Nkrp1 receptors. Nkrp1 isoforms c1, c2 and f were expressed prevalently as homodimers, whereas the Nkrp1a displays larger proportion of monomers on the cell surface. Cysteine-to-serine mutants revealed the importance of all stalk cysteines for protein dimerization in living cells with a major influence of cysteine at position 74 in two Nkrp1 protein isoforms. Our results represent a new insight into the oligomerization of Nkrp1 receptors on lymphoid cells, which will help to determine their function.
Collapse
Affiliation(s)
- Ljubina Adámková
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic.
| | - Zuzana Kvíčalová
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
| | - Daniel Rozbeský
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic.
| | - Zdeněk Kukačka
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic.
| | - David Adámek
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic.
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
| | - Petr Novák
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic.
- Department of Biochemistry, Charles University, Hlavova 8, 12843 Prague 2, Czech Republic.
| |
Collapse
|
6
|
|
7
|
Javed A, Christodoulou J, Cabrita LD, Orlova EV. The ribosome and its role in protein folding: looking through a magnifying glass. Acta Crystallogr D Struct Biol 2017; 73:509-521. [PMID: 28580913 PMCID: PMC5458493 DOI: 10.1107/s2059798317007446] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/19/2017] [Indexed: 11/21/2022] Open
Abstract
Protein folding, a process that underpins cellular activity, begins co-translationally on the ribosome. During translation, a newly synthesized polypeptide chain enters the ribosomal exit tunnel and actively interacts with the ribosome elements - the r-proteins and rRNA that line the tunnel - prior to emerging into the cellular milieu. While understanding of the structure and function of the ribosome has advanced significantly, little is known about the process of folding of the emerging nascent chain (NC). Advances in cryo-electron microscopy are enabling visualization of NCs within the exit tunnel, allowing early glimpses of the interplay between the NC and the ribosome. Once it has emerged from the exit tunnel into the cytosol, the NC (still attached to its parent ribosome) can acquire a range of conformations, which can be characterized by NMR spectroscopy. Using experimental restraints within molecular-dynamics simulations, the ensemble of NC structures can be described. In order to delineate the process of co-translational protein folding, a hybrid structural biology approach is foreseeable, potentially offering a complete atomic description of protein folding as it occurs on the ribosome.
Collapse
Affiliation(s)
- Abid Javed
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
- Institute of Structural and Molecular Biology, University College London (UCL), Gower Street, London WC1E 6BT, England
| | - John Christodoulou
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
- Institute of Structural and Molecular Biology, University College London (UCL), Gower Street, London WC1E 6BT, England
| | - Lisa D. Cabrita
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
- Institute of Structural and Molecular Biology, University College London (UCL), Gower Street, London WC1E 6BT, England
| | - Elena V. Orlova
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
| |
Collapse
|
8
|
Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JLS, Subramaniam S. Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery. Cell 2016; 165:1698-1707. [PMID: 27238019 DOI: 10.1016/j.cell.2016.05.040] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 11/17/2022]
Abstract
Recent advances in single-particle cryoelecton microscopy (cryo-EM) are enabling generation of numerous near-atomic resolution structures for well-ordered protein complexes with sizes ≥ ∼200 kDa. Whether cryo-EM methods are equally useful for high-resolution structural analysis of smaller, dynamic protein complexes such as those involved in cellular metabolism remains an important question. Here, we present 3.8 Å resolution cryo-EM structures of the cancer target isocitrate dehydrogenase (93 kDa) and identify the nature of conformational changes induced by binding of the allosteric small-molecule inhibitor ML309. We also report 2.8-Å- and 1.8-Å-resolution structures of lactate dehydrogenase (145 kDa) and glutamate dehydrogenase (334 kDa), respectively. With these results, two perceived barriers in single-particle cryo-EM are overcome: (1) crossing 2 Å resolution and (2) obtaining structures of proteins with sizes < 100 kDa, demonstrating that cryo-EM can be used to investigate a broad spectrum of drug-target interactions and dynamic conformational states.
Collapse
Affiliation(s)
- Alan Merk
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Alberto Bartesaghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Soojay Banerjee
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Veronica Falconieri
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Prashant Rao
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mindy I Davis
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Rajan Pragani
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Matthew B Boxer
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Lesley A Earl
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jacqueline L S Milne
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Belnap DM. Electron Microscopy and Image Processing: Essential Tools for Structural Analysis of Macromolecules. ACTA ACUST UNITED AC 2015; 82:17.2.1-17.2.61. [PMID: 26521712 DOI: 10.1002/0471140864.ps1702s82] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macromolecular electron microscopy typically depicts the structures of macromolecular complexes ranging from ∼200 kDa to hundreds of MDa. The amount of specimen required, a few micrograms, is typically 100 to 1000 times less than needed for X-ray crystallography or nuclear magnetic resonance spectroscopy. Micrographs of frozen-hydrated (cryogenic) specimens portray native structures, but the original images are noisy. Computational averaging reduces noise, and three-dimensional reconstructions are calculated by combining different views of free-standing particles ("single-particle analysis"). Electron crystallography is used to characterize two-dimensional arrays of membrane proteins and very small three-dimensional crystals. Under favorable circumstances, near-atomic resolutions are achieved. For structures at somewhat lower resolution, pseudo-atomic models are obtained by fitting high-resolution components into the density. Time-resolved experiments describe dynamic processes. Electron tomography allows reconstruction of pleiomorphic complexes and subcellular structures and modeling of macromolecules in their cellular context. Significant information is also obtained from metal-coated and dehydrated specimens.
Collapse
Affiliation(s)
- David M Belnap
- Departments of Biology and Biochemistry, University of Utah, Salt Lake City, Utah
| |
Collapse
|
10
|
Anthony KC, You C, Piehler J, Pomeranz Krummel DA. High-affinity gold nanoparticle pin to label and localize histidine-tagged protein in macromolecular assemblies. Structure 2014; 22:628-35. [PMID: 24560806 DOI: 10.1016/j.str.2014.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 01/08/2014] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
Abstract
There is significant demand for experimental approaches to aid protein localization in electron microscopy micrographs and ultimately in three-dimensional reconstructions of macromolecular assemblies. We report preparation and use of a reagent consisting of tris-nitrilotriacetic acid (tris-NTA) conjugated with a monofunctional gold nanoparticle ((AuNP)tris-NTA) for site-specific, non-covalent labeling of protein termini fused to a histidine-tag (His-tag). Multivalent binding of tris-NTA to a His-tag via complexed Ni(II) ions results in subnanomolar affinity and a defined 1:1 stoichiometry. Precise localization of (AuNP)tris-NTA labeled proteins by electron microscopy is further ensured by the reagent's short conformationally restricted linker. We used (AuNP)tris-NTA to localize His-tagged proteins in an oligomeric ATPase and in the bacterial 50S ribosomal subunit. (AuNP)tris-NTA can specifically bind to the target proteins in these assemblies and is clearly discernible. Our labeling reagent should find broad application in noncovalent, site-specific labeling of protein termini to pinpoint their location in macromolecular assemblies.
Collapse
Affiliation(s)
- Kelsey C Anthony
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Changjiang You
- Department of Biology, University of Osnabrück, Barbarastraße 11, Osnabrück 49076, Germany
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, Barbarastraße 11, Osnabrück 49076, Germany.
| | | |
Collapse
|
11
|
Cryo-EM structure of the archaeal 50S ribosomal subunit in complex with initiation factor 6 and implications for ribosome evolution. J Mol Biol 2012; 418:145-60. [PMID: 22306461 DOI: 10.1016/j.jmb.2012.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/05/2012] [Accepted: 01/13/2012] [Indexed: 11/20/2022]
Abstract
Translation of mRNA into proteins by the ribosome is universally conserved in all cellular life. The composition and complexity of the translation machinery differ markedly between the three domains of life. Organisms from the domain Archaea show an intermediate level of complexity, sharing several additional components of the translation machinery with eukaryotes that are absent in bacteria. One of these translation factors is initiation factor 6 (IF6), which associates with the large ribosomal subunit. We have reconstructed the 50S ribosomal subunit from the archaeon Methanothermobacter thermautotrophicus in complex with archaeal IF6 at 6.6 Å resolution using cryo-electron microscopy (EM). The structure provides detailed architectural insights into the 50S ribosomal subunit from a methanogenic archaeon through identification of the rRNA expansion segments and ribosomal proteins that are shared between this archaeal ribosome and eukaryotic ribosomes but are mostly absent in bacteria and in some archaeal lineages. Furthermore, the structure reveals that, in spite of highly divergent evolutionary trajectories of the ribosomal particle and the acquisition of novel functions of IF6 in eukaryotes, the molecular binding of IF6 on the ribosome is conserved between eukaryotes and archaea. The structure also provides a snapshot of the reductive evolution of the archaeal ribosome and offers new insights into the evolution of the translation system in archaea.
Collapse
|
12
|
LU YONGGANG, HE JING, STRAUSS CHARLIEEM. DERIVING TOPOLOGY AND SEQUENCE ALIGNMENT FOR THE HELIX SKELETON IN LOW-RESOLUTION PROTEIN DENSITY MAPS. J Bioinform Comput Biol 2011; 6:183-201. [DOI: 10.1142/s0219720008003357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/07/2007] [Accepted: 10/13/2007] [Indexed: 11/18/2022]
Abstract
Cryoelectron microscopy (cryoEM) is an experimental technique to determine the three-dimensional (3D) structure of large protein complexes. Currently, this technique is able to generate protein density maps at 6–9 Å resolution, at which the skeleton of the structure (which is composed of α-helices and β-sheets) can be visualized. As a step towards predicting the entire backbone of the protein from the protein density map, we developed a method to predict the topology and sequence alignment for the skeleton helices. Our method combines the geometrical information of the skeleton helices with the Rosetta ab initio structure prediction method to derive a consensus topology and sequence alignment for the skeleton helices. We tested the method with 60 proteins. For 45 proteins, the majority of the skeleton helices were assigned a correct topology from one of our top ten predictions. The offsets of the alignment for most of the assigned helices were within ±2 amino acids in the sequence. We also analyzed the use of the skeleton helices as a clustering tool for the decoy structures generated by Rosetta. Our comparison suggests that the topology clustering is a better method than a general overlap clustering method to enrich the ranking of decoys, particularly when the decoy pool is small.
Collapse
Affiliation(s)
- YONGGANG LU
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA
| | - JING HE
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA
| | - CHARLIE E. M. STRAUSS
- Bioscience Division, M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
13
|
Zhou ZH. Atomic resolution cryo electron microscopy of macromolecular complexes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 82:1-35. [PMID: 21501817 PMCID: PMC3698602 DOI: 10.1016/b978-0-12-386507-6.00001-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Single-particle cryo electron microscopy (cryoEM) is a technique for determining three-dimensional (3D) structures from projection images of molecular complexes preserved in their "native," noncrystalline state. Recently, atomic or near-atomic resolution structures of several viruses and protein assemblies have been determined by single-particle cryoEM, allowing ab initio atomic model building by following the amino acid side chains or nucleic acid bases identifiable in their cryoEM density maps. In particular, these cryoEM structures have revealed extended arms contributing to molecular interactions that are otherwise not resolved by the conventional structural method of X-ray crystallography at similar resolutions. High-resolution cryoEM requires careful consideration of a number of factors, including proper sample preparation to ensure structural homogeneity, optimal configuration of electron imaging conditions to record high-resolution cryoEM images, accurate determination of image parameters to correct image distortions, efficient refinement and computation to reconstruct a 3D density map, and finally appropriate choice of modeling tools to construct atomic models for functional interpretation. This progress illustrates the power of cryoEM and ushers it into the arsenal of structural biology, alongside conventional techniques of X-ray crystallography and NMR, as a major tool (and sometimes the preferred one) for the studies of molecular interactions in supramolecular assemblies or machines.
Collapse
Affiliation(s)
- Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
14
|
Application of symmetry adapted function method for three-dimensional reconstruction of octahedral biological macromolecules. Int J Biomed Imaging 2010; 2010:195274. [PMID: 20150955 PMCID: PMC2817395 DOI: 10.1155/2010/195274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/06/2009] [Indexed: 11/18/2022] Open
Abstract
A method for three-dimensional (3D) reconstruction of macromolecule assembles, that is, octahedral symmetrical adapted functions (OSAFs) method, was introduced in this paper and a series of formulations for reconstruction by OSAF method were derived. To verify the feasibility and advantages of the method, two octahedral symmetrical macromolecules, that is, heat shock protein Degp24 and the Red-cell L Ferritin, were utilized as examples to implement reconstruction by the OSAF method. The schedule for simulation was designed as follows: 2000 random orientated projections of single particles with predefined Euler angles and centers of origins were generated, then different levels of noises that is signal-to-noise ratio (S/N) = 0.1, 0.5, and 0.8 were added. The structures reconstructed by the OSAF method were in good agreement with the standard models and the relative errors of the structures reconstructed by the OSAF method to standard structures were very little even for high level noise. The facts mentioned above account for that the OSAF method is feasible and efficient approach to reconstruct structures of macromolecules and have ability to suppress the influence of noise.
Collapse
|
15
|
Pulk A, Liiv A, Peil L, Maiväli Ü, Nierhaus K, Remme J. Ribosome reactivation by replacement of damaged proteins. Mol Microbiol 2010; 75:801-14. [DOI: 10.1111/j.1365-2958.2009.07002.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Voss NR, Lyumkis D, Cheng A, Lau PW, Mulder A, Lander GC, Brignole EJ, Fellmann D, Irving C, Jacovetty EL, Leung A, Pulokas J, Quispe JD, Winkler H, Yoshioka C, Carragher B, Potter CS. A toolbox for ab initio 3-D reconstructions in single-particle electron microscopy. J Struct Biol 2009; 169:389-98. [PMID: 20018246 DOI: 10.1016/j.jsb.2009.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 11/28/2022]
Abstract
Structure determination of a novel macromolecular complex via single-particle electron microscopy depends upon overcoming the challenge of establishing a reliable 3-D reconstruction using only 2-D images. There are a variety of strategies that deal with this issue, but not all of them are readily accessible and straightforward to use. We have developed a "toolbox" of ab initio reconstruction techniques that provide several options for calculating 3-D volumes in an easily managed and tightly controlled work-flow that adheres to standard conventions and formats. This toolbox is designed to streamline the reconstruction process by removing the necessity for bookkeeping, while facilitating transparent data transfer between different software packages. It currently includes procedures for calculating ab initio reconstructions via random or orthogonal tilt geometry, tomograms, and common lines, all of which have been tested using the 50S ribosomal subunit. Our goal is that the accessibility of multiple independent reconstruction algorithms via this toolbox will improve the ease with which models can be generated, and provide a means of evaluating the confidence and reliability of the final reconstructed map.
Collapse
Affiliation(s)
- Neil R Voss
- National Resource for Automated Molecular Microscopy and Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shatsky M, Hall RJ, Brenner SE, Glaeser RM. A method for the alignment of heterogeneous macromolecules from electron microscopy. J Struct Biol 2009; 166:67-78. [PMID: 19166941 PMCID: PMC2740748 DOI: 10.1016/j.jsb.2008.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 12/13/2008] [Accepted: 12/18/2008] [Indexed: 11/24/2022]
Abstract
We propose a feature-based image alignment method for single-particle electron microscopy that is able to accommodate various similarity scoring functions while efficiently sampling the two-dimensional transformational space. We use this image alignment method to evaluate the performance of a scoring function that is based on the Mutual Information (MI) of two images rather than one that is based on the cross-correlation function. We show that alignment using MI for the scoring function has far less model-dependent bias than is found with cross-correlation based alignment. We also demonstrate that MI improves the alignment of some types of heterogeneous data, provided that the signal-to-noise ratio is relatively high. These results indicate, therefore, that use of MI as the scoring function is well suited for the alignment of class-averages computed from single-particle images. Our method is tested on data from three model structures and one real dataset.
Collapse
Affiliation(s)
- Maxim Shatsky
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| | | | | | | |
Collapse
|
18
|
Lander GC, Stagg SM, Voss NR, Cheng A, Fellmann D, Pulokas J, Yoshioka C, Irving C, Mulder A, Lau PW, Lyumkis D, Potter CS, Carragher B. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J Struct Biol 2009; 166:95-102. [PMID: 19263523 PMCID: PMC2775544 DOI: 10.1016/j.jsb.2009.01.002] [Citation(s) in RCA: 713] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The use of cryoEM and three-dimensional image reconstruction is becoming increasingly common. Our vision for this technique is to provide a straightforward manner in which users can proceed from raw data to a reliable 3D reconstruction through a pipeline that both facilitates management of the processing steps and makes the results at each step more transparent. Tightly integrated with a relational SQL database, Appion is a modular and transparent pipeline that extends existing software applications and procedures. The user manages and controls the software modules via web-based forms, and all results are similarly available using web-based viewers directly linked to the underlying database, enabling even naive users to quickly deduce the quality of their results. The Appion API was designed with the principle that applications should be compatible with a broad range of specimens and that libraries and routines are modular and extensible. Presented here is a description of the design and architecture of the working Appion pipeline prototype and some results of its use.
Collapse
Affiliation(s)
- Gabriel C Lander
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, CB 129, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 2009; 33:717-26. [PMID: 19217333 PMCID: PMC2696186 DOI: 10.1016/j.molcel.2009.01.026] [Citation(s) in RCA: 1137] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 10/22/2008] [Accepted: 01/29/2009] [Indexed: 01/16/2023]
Abstract
NEAT1 RNA, a highly abundant 4 kb ncRNA, is retained in nuclei in approximately 10 to 20 large foci that we show are completely coincident with paraspeckles, nuclear domains implicated in mRNA nuclear retention. Depletion of NEAT1 RNA via RNAi eradicates paraspeckles, suggesting that it controls sequestration of the paraspeckle proteins PSP1 and p54, factors linked to A-I editing. Unlike overexpression of PSP1, NEAT1 overexpression increases paraspeckle number, and paraspeckles emanate exclusively from the NEAT1 transcription site. The PSP-1 RNA binding domain is required for its colocalization with NEAT1 RNA in paraspeckles, and biochemical analyses support that NEAT1 RNA binds with paraspeckle proteins. Unlike other nuclear-retained RNAs, NEAT1 RNA is not A-I edited, consistent with a structural role in paraspeckles. Collectively, results demonstrate that NEAT1 functions as an essential structural determinant of paraspeckles, providing a precedent for a ncRNA as the foundation of a nuclear domain.
Collapse
Affiliation(s)
- Christine M. Clemson
- University of Massachusetts Medical Center, 55 Lake Ave. N. Worcester, Ma. 01655
| | | | - Sergio A. Sara
- Western Australian Institute for Medical Research, Centre For Medical Research, University of Western Australia, Crawley WA Australia
| | - Alexander W. Ensminger
- Harvard Medical School, 185 Cambridge St., Boston, MA-02114
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139
| | - Archa H. Fox
- Western Australian Institute for Medical Research, Centre For Medical Research, University of Western Australia, Crawley WA Australia
| | - Andrew Chess
- Harvard Medical School, 185 Cambridge St., Boston, MA-02114
| | - Jeanne B. Lawrence
- University of Massachusetts Medical Center, 55 Lake Ave. N. Worcester, Ma. 01655
| |
Collapse
|
20
|
Li H, Wolfe MS, Selkoe DJ. Toward structural elucidation of the gamma-secretase complex. Structure 2009; 17:326-34. [PMID: 19278647 PMCID: PMC2661031 DOI: 10.1016/j.str.2009.01.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 01/12/2009] [Accepted: 01/16/2009] [Indexed: 12/18/2022]
Abstract
Gamma-Secretase is an intramembrane protease complex that mediates the Notch signaling pathway and the production of amyloid beta-proteins. As such, this enzyme has emerged as an important target for development of novel therapeutics for Alzheimer disease and cancer. Great progress has been made in the identification and characterization of the membrane complex and its biological functions. One major challenge now is to illuminate the structure of this fascinating and important protease at atomic resolution. Here, we review recent progress on biochemical and biophysical probing of the structure of the four-component complex and discuss obstacles and potential pathways toward elucidating its detailed structure.
Collapse
Affiliation(s)
- Huilin Li
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Michael S. Wolfe
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Dennis J. Selkoe
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| |
Collapse
|
21
|
Karmali AM, Blundell TL, Furnham N. Model-building strategies for low-resolution X-ray crystallographic data. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:121-7. [PMID: 19171966 PMCID: PMC2631632 DOI: 10.1107/s0907444908040006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/27/2008] [Indexed: 11/24/2022]
Abstract
Interpretation of low-resolution X-ray crystallographic data can prove to be a difficult task. The challenges faced in electron-density interpretation, the strategies that have been employed to overcome them and developments to automate the process are reviewed. The interpretation of low-resolution X-ray crystallographic data proves to be challenging even for the most experienced crystallographer. Ambiguity in the electron-density map makes main-chain tracing and side-chain assignment difficult. However, the number of structures solved at resolutions poorer than 3.5 Å is growing rapidly and the structures are often of high biological interest and importance. Here, the challenges faced in electron-density interpretation, the strategies that have been employed to overcome them and developments to automate the process are reviewed. The methods employed in model generation from electron microscopy, which share many of the same challenges in providing high-confidence models of macromolecular structures and assemblies, are also considered.
Collapse
Affiliation(s)
- Anjum M Karmali
- Department of Biochemistry, University of Cambridge, Cambridge, England
| | | | | |
Collapse
|
22
|
Kurkcuoglu O, Doruker P, Sen TZ, Kloczkowski A, Jernigan RL. The ribosome structure controls and directs mRNA entry, translocation and exit dynamics. Phys Biol 2008; 5:046005. [PMID: 19029596 PMCID: PMC2907240 DOI: 10.1088/1478-3975/5/4/046005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The protein-synthesizing ribosome undergoes large motions to effect the translocation of tRNAs and mRNA; here, the domain motions of this system are explored with a coarse-grained elastic network model using normal mode analysis. Crystal structures are used to construct various model systems of the 70S complex with/without tRNA, elongation factor Tu and the ribosomal proteins. Computed motions reveal the well-known ratchet-like rotational motion of the large subunits, as well as the head rotation of the small subunit and the high flexibility of the L1 and L7/L12 stalks, even in the absence of ribosomal proteins. This result indicates that these experimentally observed motions during translocation are inherently controlled by the ribosomal shape and only partially dependent upon GTP hydrolysis. Normal mode analysis further reveals the mobility of A- and P-tRNAs to increase in the absence of the E-tRNA. In addition, the dynamics of the E-tRNA is affected by the absence of the ribosomal protein L1. The mRNA in the entrance tunnel interacts directly with helicase proteins S3 and S4, which constrain the mRNA in a clamp-like fashion, as well as with protein S5, which likely orients the mRNA to ensure correct translation. The ribosomal proteins S7, S11 and S18 may also be involved in assuring translation fidelity by constraining the mRNA at the exit site of the channel. The mRNA also interacts with the 16S 3' end forming the Shine-Dalgarno complex at the initiation step; the 3' end may act as a 'hook' to reel in the mRNA to facilitate its exit.
Collapse
Affiliation(s)
- Ozge Kurkcuoglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, 34342, Bebek, Istanbul, Turkey
| | - Pemra Doruker
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, 34342, Bebek, Istanbul, Turkey
| | - Taner Z. Sen
- 1025 Crop Genome Informatics Laboratory, Ames, IA 50011, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Andrzej Kloczkowski
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- L.H. Baker Center for Bioinformatics and Biological Statistics Iowa State University, Ames, IA 50011, USA
| | - Robert L. Jernigan
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- L.H. Baker Center for Bioinformatics and Biological Statistics Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
23
|
Yu Z, Bajaj C. Computational approaches for automatic structural analysis of large biomolecular complexes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2008; 5:568-582. [PMID: 18989044 DOI: 10.1109/tcbb.2007.70226] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present computational solutions to two problems of macromolecular structure interpretation from reconstructed three-dimensional electron microscopy (3D-EM) maps of large bio-molecular complexes at intermediate resolution (5A-15 A). The two problems addressed are: 1) 3D structural alignment (matching) between identified and segmented 3D maps of structure units (e.g. trimeric configuration of proteins), and 2) the secondary structure identification of a segmented protein 3D map (i.e.locations of alpha-helices, beta-sheets). For problem 1, we present an efficient algorithm to correlate spatially (and structurally) two 3D maps of structure units. Besides providing a similarity score between structure units, the algorithm yields an effective technique for resolution refinement of repeated structure units, by 3D alignment and averaging. For problem 2, we present an efficient algorithm to compute eigenvalues and link eigenvectors of a Gaussian convoluted structure tensor derived from the protein 3D Map, thereby identifying and locating secondary structural motifs of proteins. The efficiency and performance of our approach is demonstrated on several experimentally reconstructed 3D maps of virus capsid shells from single-particle cryo-electron microscopy (cryo-EM), as well as computationally simulated protein structure density 3D maps generated from protein model entries in the Protein Data Bank.
Collapse
Affiliation(s)
- Zeyun Yu
- Department of Computer Science, University of Wisconsin, Milwaukee, WI 53211, USA.
| | | |
Collapse
|
24
|
Yan A, Wang Y, Kloczkowski A, Jernigan RL. Effects of protein subunits removal on the computed motions of partial 30S structures of the ribosome. J Chem Theory Comput 2008; 4:1757-1767. [PMID: 19771145 DOI: 10.1021/ct800223g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Anisotropic Network Model (ANM) is used to study motions of the 30S small ribosomal subunit. The effect of the absence of certain subunits on the motions of the remaining partial structures was investigated by removing one protein, pairs of proteins and selected sets of proteins at a time. Our results show that the removal of some proteins doesn't change the large-scale dynamics of the partial structures, but the removal of certain subunits does cause significant changes in motion of the remaining structure, and these changes can be reverted by the removal of other subunits, which indicates interdependence between motions of various parts of the 30S ribosomal structure. We further found that the subunits showing such interdependence have strong positive correlation of their motions, which indicates that these subunits function as a unit block in the 30S small ribosomal subunit. Dynamically interdependent subunit pairs identified in this paper are consistent with previous experimental observations that suggested dimerization of those subunits.
Collapse
Affiliation(s)
- Aimin Yan
- Laurence H. Baker Center for Bioinformatics and Biological Statistics and Department of Biochemistry, Biophysics and Molecular Biology Iowa State University, Ames, IA 50011
| | | | | | | |
Collapse
|
25
|
Zhou ZH. Towards atomic resolution structural determination by single-particle cryo-electron microscopy. Curr Opin Struct Biol 2008; 18:218-28. [PMID: 18403197 PMCID: PMC2714865 DOI: 10.1016/j.sbi.2008.03.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/01/2008] [Accepted: 03/04/2008] [Indexed: 11/19/2022]
Abstract
Recent advances in cryo-electron microscopy and single-particle reconstruction (collectively referred to as 'cryoEM') have made it possible to determine the three-dimensional (3D) structures of several macromolecular complexes at near-atomic resolution ( approximately 3.8-4.5A). These achievements were accomplished by overcoming the challenges in sample handling, instrumentation, image processing, and model building. At near-atomic resolution, many detailed structural features can be resolved, such as the turns and deep grooves of helices, strand separation in beta sheets, and densities for loops and bulky amino acid side chains. Such structural data of the cytoplasmic polyhedrosis virus (CPV), the Epsilon 15 bacteriophage and the GroEL complex have provided valuable constraints for atomic model building using integrative tools, thus significantly enhancing the value of the cryoEM structures. The CPV structure revealed a drastic conformational change from a helix to a beta hairpin associated with RNA packaging and replication, coupling of RNA processing and release, and the long sought-after polyhedrin-binding domain. These latest advances in single-particle cryoEM provide exciting opportunities for the 3D structural determination of viruses and macromolecular complexes that are either too large or too heterogeneous to be investigated by conventional X-ray crystallography or nuclear magnetic resonance (NMR) methods.
Collapse
Affiliation(s)
- Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics and the California NanoSystems Institute, University of California at Los Angeles, 237 BSRB, 615 Charles E. Young Dr. S., Los Angeles, CA 90095-7364, USA.
| |
Collapse
|
26
|
Costa A, Patwardhan A. A novel mirror-symmetry analysis approach for the study of macromolecular assemblies imaged by electron microscopy. J Mol Biol 2008; 378:273-83. [PMID: 18353361 DOI: 10.1016/j.jmb.2008.02.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Accepted: 02/26/2008] [Indexed: 12/31/2022]
Abstract
Multivariate statistical symmetry analysis is widely employed in single-particle electron-microscopy studies for the detection of symmetry components within a set of noisy two-dimensional images. So far, this technique has been used to retrieve information from the analysis of end-on view oriented particles only. Here, we propose a method to detect symmetry components from side- and tilted-view oriented particles. This method is validated using a number of in silico generated as well as real datasets, can be used to analyze stoichiometrically heterogeneous datasets, and is useful for separating particle datasets with respect to their symmetry components. Additionally, translational components in lock-washer ring configurations can be detected. Most relevantly, this method represents a powerful tool for the characterisation of distinct symmetry components within multi-layered protein assemblies, and any putative symmetry mismatch between layers. Such configurations have often been postulated, though rarely observed directly, and are thought to have a crucial role in conferring dynamicity to molecular machineries like nucleic acid packaging motors, ClpAP/ClpXP proteases, flagellar motors and the F1/F0 ATPase.
Collapse
Affiliation(s)
- Alessandro Costa
- Department of Life Sciences, Imperial College London SW7 2AZ, UK
| | | |
Collapse
|
27
|
Iben JR, Draper DE. Specific interactions of the L10(L12)4 ribosomal protein complex with mRNA, rRNA, and L11. Biochemistry 2008; 47:2721-31. [PMID: 18247578 DOI: 10.1021/bi701838y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Large ribosomal subunit proteins L10 and L12 form a pentameric protein complex, L10(L12) 4, that is intimately involved in the ribosome elongation cycle. Its contacts with rRNA or other ribosomal proteins have been only partially resolved by crystallography. In Escherichia coli, L10 and L12 are encoded from a single operon for which L10(L12) 4 is a translational repressor that recognizes a secondary structure in the mRNA leader. In this study, L10(L12) 4 was expressed from the moderate thermophile Bacillus stearothermophilus to quantitatively compare strategies for binding of the complex to mRNA and ribosome targets. The minimal mRNA recognition structure is widely distributed among bacteria and has the potential to form a kink-turn structure similar to one identified in the rRNA as part of the L10(L12) 4 binding site. Mutations in equivalent positions between the two sequences have similar effects on L10(L12) 4-RNA binding affinity and identify the kink-turn motif and a loop AA sequence as important recognition elements. In contrast to the larger rRNA structure, the mRNA apparently positions the kink-turn motif and loop for protein recognition without the benefit of Mg (2+)-dependent tertiary structure. The mRNA and rRNA fragments bind L10(L12) 4 with similar affinity ( approximately 10 (8) M (-1)), but fluorescence binding studies show that a nearby protein in the ribosome, L11, enhances L10(L12) 4 binding approximately 100-fold. Thus, mRNA and ribosome targets use similar RNA features, held in different structural contexts, to recognize L10(L12) 4, and the ribosome ensures the saturation of its L10(L12) 4 binding site by means of an additional protein-protein interaction.
Collapse
Affiliation(s)
- James R Iben
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
28
|
Xiong Y. From electron microscopy to X-ray crystallography: molecular-replacement case studies. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2008; 64:76-82. [PMID: 18094470 PMCID: PMC2394795 DOI: 10.1107/s090744490705398x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 10/29/2007] [Indexed: 11/16/2022]
Abstract
Multi-component molecular complexes are increasingly being tackled by structural biology, bringing X-ray crystallography into the purview of electron-microscopy (EM) studies. X-ray crystallography can utilize a low-resolution EM map for structure determination followed by phase extension to high resolution. Test studies have been conducted on five crystal structures of large molecular assemblies, in which EM maps are used as models for structure solution by molecular replacement (MR) using various standard MR packages such as AMoRe, MOLREP and Phaser. The results demonstrate that EM maps are viable models for molecular replacement. Possible difficulties in data analysis, such as the effects of the EM magnification error, and the effect of MR positional/rotational errors on phase extension are discussed.
Collapse
Affiliation(s)
- Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
29
|
Leipuviene R, Björk GR. Alterations in the two globular domains or in the connecting alpha-helix of bacterial ribosomal protein L9 induces +1 frameshifts. J Bacteriol 2007; 189:7024-31. [PMID: 17660285 PMCID: PMC2045208 DOI: 10.1128/jb.00710-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ribosomal 50S subunit protein L9, encoded by the gene rplI, is an elongated protein with an alpha-helix connecting the N- and C-terminal globular domains. We isolated rplI mutants that suppress the +1 frameshift mutation hisC3072 in Salmonella enterica serovar Typhimurium. These mutants have amino acid substitutions in the N-terminal domain (G24D) or in the C-terminal domain (I94S, A102D, G126V, and F132S) of L9. In addition, different one-base deletions in rplI altered either the final portion of the C terminus or removed the C-terminal domain with or without the connecting alpha-helix. An alanine-to-proline substitution at position 59 (A59P), which breaks the alpha-helix between the globular domains, induced +1 frameshifting, suggesting that the geometrical relationship between the N and C domains is important to maintain the reading frame. Except for the alterations G126V in the C terminus and A59P in the connecting alpha-helix, our results confirm earlier results obtained by using the phage T4 gene 60-based system to monitor bypassing. The way rplI mutations suppress various frameshift mutations suggests that bypassing of many codons from several takeoff and landing sites occurred instead of a specific frameshift forward at overlapping codons.
Collapse
Affiliation(s)
- Ramune Leipuviene
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | | |
Collapse
|
30
|
Kouvela EC, Gerbanas GV, Xaplanteri MA, Petropoulos AD, Dinos GP, Kalpaxis DL. Changes in the conformation of 5S rRNA cause alterations in principal functions of the ribosomal nanomachine. Nucleic Acids Res 2007; 35:5108-19. [PMID: 17652323 PMCID: PMC1976436 DOI: 10.1093/nar/gkm546] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
5S rRNA is an integral component of the large ribosomal subunit in virtually all living organisms. Polyamine binding to 5S rRNA was investigated by cross-linking of N1-azidobenzamidino (ABA)-spermine to naked 5S rRNA or 50S ribosomal subunits and whole ribosomes from Escherichia coli cells. ABA-spermine cross-linking sites were kinetically measured and their positions in 5S rRNA were localized by primer extension analysis. Helices III and V, and loops A, C, D and E in naked 5S rRNA were found to be preferred polyamine binding sites. When 50S ribosomal subunits or poly(U)-programmed 70S ribosomes bearing tRNAPhe at the E-site and AcPhe-tRNA at the P-site were targeted, the susceptibility of 5S rRNA to ABA-spermine was greatly reduced. Regardless of 5S rRNA assembly status, binding of spermine induced significant changes in the 5S rRNA conformation; loop A adopted an apparent ‘loosening’ of its structure, while loops C, D, E and helices III and V achieved a more compact folding. Poly(U)-programmed 70S ribosomes possessing 5S rRNA cross-linked with spermine were more efficient than control ribosomes in tRNA binding, peptidyl transferase activity and translocation. Our results support the notion that 5S rRNA serves as a signal transducer between regions of 23S rRNA responsible for principal ribosomal functions.
Collapse
|
31
|
Rázga F, Koča J, Mokdad A, Šponer J. Elastic properties of ribosomal RNA building blocks: molecular dynamics of the GTPase-associated center rRNA. Nucleic Acids Res 2007; 35:4007-17. [PMID: 17553840 PMCID: PMC1919483 DOI: 10.1093/nar/gkm245] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Explicit solvent molecular dynamics (MD) was used to describe the intrinsic flexibility of the helix 42–44 portion of the 23S rRNA (abbreviated as Kt-42+rGAC; kink-turn 42 and GTPase-associated center rRNA). The bottom part of this molecule consists of alternating rigid and flexible segments. The first flexible segment (Hinge1) is the highly anharmonic kink of Kt-42. The second one (Hinge2) is localized at the junction between helix 42 and helices 43/44. The rigid segments are the two arms of helix 42 flanking the kink. The whole molecule ends up with compact helices 43/44 (Head) which appear to be modestly compressed towards the subunit in the Haloarcula marismortui X-ray structure. Overall, the helix 42–44 rRNA is constructed as a sophisticated intrinsically flexible anisotropic molecular limb. The leading flexibility modes include bending at the hinges and twisting. The Head shows visible internal conformational plasticity, stemming from an intricate set of base pairing patterns including dynamical triads and tetrads. In summary, we demonstrate how rRNA building blocks with contrasting intrinsic flexibilities can form larger architectures with highly specific patterns of preferred low-energy motions and geometries.
Collapse
Affiliation(s)
- Filip Rázga
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic and Department of Biochemistry and Biophysics, School of Medicine, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Jaroslav Koča
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic and Department of Biochemistry and Biophysics, School of Medicine, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Ali Mokdad
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic and Department of Biochemistry and Biophysics, School of Medicine, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic and Department of Biochemistry and Biophysics, School of Medicine, University of California at San Francisco, San Francisco, CA 94158, USA
- *To whom correspondence should be addressed. (420) 5415 17133(420) 5412 12179
| |
Collapse
|
32
|
Xiao C, Rossmann MG. Interpretation of electron density with stereographic roadmap projections. J Struct Biol 2007; 158:182-7. [PMID: 17116403 PMCID: PMC1978246 DOI: 10.1016/j.jsb.2006.10.013] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 09/05/2006] [Accepted: 10/13/2006] [Indexed: 11/18/2022]
Abstract
The program RIVEM (Radial Interpretation of Viral Electron density Maps) was developed to project density radially onto a sphere that is then presented as a stereographic diagram. This permits features resulting from an asymmetric reconstruction to be projected and positioned onto an icosahedral virus surface. The features that constitute the viral surface can also be simultaneously represented in terms of atoms, amino acid residues, potential charge distribution, and surface topology. The procedure can also be adapted for the investigation of various molecular interactions.
Collapse
Affiliation(s)
- Chuan Xiao
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907-2054, USA
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907-2054, USA
| |
Collapse
|
33
|
Serysheva II, Chiu W, Ludtke SJ. Single-particle electron cryomicroscopy of the ion channels in the excitation-contraction coupling junction. Methods Cell Biol 2007; 79:407-35. [PMID: 17327167 DOI: 10.1016/s0091-679x(06)79016-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Irina I Serysheva
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
34
|
Matadeen R, Hon WC, Heath JK, Jones EY, Fuller S. The dynamics of signal triggering in a gp130-receptor complex. Structure 2007; 15:441-8. [PMID: 17437716 PMCID: PMC1885967 DOI: 10.1016/j.str.2007.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 01/10/2007] [Accepted: 02/15/2007] [Indexed: 01/30/2023]
Abstract
gp130 is a shared signal-transducing membrane-associated receptor for several hematopoietic cytokines. The 30 A resolution cryo-electron microscopy (cryo-EM) structure of the Interleukin 11(IL-11)-IL-11 Receptor-gp130 extracellular complex reveals the architecture and dynamics of this gp130-containing signaling complex. Normal-mode analysis reveals a repertoire of conformational changes that could function in signal triggering. This suggests a concerted mechanism of signaling involving all the components of the complex. This could provide a general mechanism of signal transfer for cytokines utilizing the JAK-STAT signaling cascade.
Collapse
Affiliation(s)
- Rishi Matadeen
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, United Kingdom. <>
| | | | | | | | | |
Collapse
|
35
|
Wuchty S, Ipsaro JJ. A Draft of Protein Interactions in the Malaria Parasite P. falciparum. J Proteome Res 2007; 6:1461-70. [PMID: 17300188 DOI: 10.1021/pr0605769] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent advances have provided a working interactome map for the human malaria parasite Plasmodium falciparum. The aforementioned map, generated from genome-scale analyses, has provided a basis for proteomic studies of the parasite; however, such large-scale approaches commonly suffer from undersampling and lack of coverage. The current map bears no exception, containing only one-quarter of the organism's proteins. Inspired by the needs of the current map and the wealth of bioinformatics data, we assembled a map of 19 979 interactions among 2321 proteins in P. falciparum. The resultant map was generated by computationally inferring protein-protein interactions from evolutionarily conserved protein interactions, underlying domain interactions, and experimental observations. To compile this information into a repository of meaningful data, we assessed interaction quality by applying a logistic regression method, which correlated the presence of an interaction with relevant cellular parameters. Interestingly, it was found that sub-networks from different sources are quite dissimilar in their topologies and overlap to a very small extent. Applying Markov clustering, we observe a typical cluster composition, featuring common cellular functions that were previously reported absent, making this map a valuable resource for understanding the biology of this organism.
Collapse
Affiliation(s)
- Stefan Wuchty
- Northwestern Institute on Complexity, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
36
|
Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ. EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 2007; 157:38-46. [PMID: 16859925 DOI: 10.1016/j.jsb.2006.05.009] [Citation(s) in RCA: 2394] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 05/29/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
EMAN is a scientific image processing package with a particular focus on single particle reconstruction from transmission electron microscopy (TEM) images. It was first released in 1999, and new versions have been released typically 2-3 times each year since that time. EMAN2 has been under development for the last two years, with a completely refactored image processing library, and a wide range of features to make it much more flexible and extensible than EMAN1. The user-level programs are better documented, more straightforward to use, and written in the Python scripting language, so advanced users can modify the programs' behavior without any recompilation. A completely rewritten 3D transformation class simplifies translation between Euler angle standards and symmetry conventions. The core C++ library has over 500 functions for image processing and associated tasks, and it is modular with introspection capabilities, so programmers can add new algorithms with minimal effort and programs can incorporate new capabilities automatically. Finally, a flexible new parallelism system has been designed to address the shortcomings in the rigid system in EMAN1.
Collapse
Affiliation(s)
- Guang Tang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Mainprize IL, Beniac DR, Falkovskaia E, Cleverley RM, Gierasch LM, Ottensmeyer FP, Andrews DW. The structure of Escherichia coli signal recognition particle revealed by scanning transmission electron microscopy. Mol Biol Cell 2006; 17:5063-74. [PMID: 16987964 PMCID: PMC1679673 DOI: 10.1091/mbc.e06-05-0384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Structural studies on various domains of the ribonucleoprotein signal recognition particle (SRP) have not converged on a single complete structure of bacterial SRP consistent with the biochemistry of the particle. We obtained a three-dimensional structure for Escherichia coli SRP by cryoscanning transmission electron microscopy and mapped the internal RNA by electron spectroscopic imaging. Crystallographic data were fit into the SRP reconstruction, and although the resulting model differed from previous models, they could be rationalized by movement through an interdomain linker of Ffh, the protein component of SRP. Fluorescence resonance energy transfer experiments determined interdomain distances that were consistent with our model of SRP. Docking our model onto the bacterial ribosome suggests a mechanism for signal recognition involving interdomain movement of Ffh into and out of the nascent chain exit site and suggests how SRP could interact and/or compete with the ribosome-bound chaperone, trigger factor, for a nascent chain during translation.
Collapse
Affiliation(s)
- Iain L. Mainprize
- *Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Canada
| | - Daniel R. Beniac
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Winnipeg R3E 3R2, Canada
| | - Elena Falkovskaia
- Departments of Biochemistry and Molecular Biology and Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Robert M. Cleverley
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Lila M. Gierasch
- Departments of Biochemistry and Molecular Biology and Chemistry, University of Massachusetts, Amherst, MA 01003
| | - F. Peter Ottensmeyer
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto M5G 2M9, Canada
| | - David W. Andrews
- *Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Canada
| |
Collapse
|
38
|
Abstract
The large and small subunits of the ribosome are joined by a series of bridges that are conserved among mitochondrial, bacterial, and eukaryal ribosomes. In addition to joining the subunits together at the initiation of protein synthesis, a variety of other roles have been proposed for these bridges. These roles include transmission of signals between the functional centers of the two subunits, modulation of tRNA-ribosome and factor-ribosome interactions, and mediation of the relative movement of large and small ribosomal subunits during translocation. The majority of the bridges involve RNA-RNA interactions, and to gain insight into their function, we constructed mutations in the 23 S rRNA regions involved in forming 7 of the 12 intersubunit bridges in the Escherichia coli ribosome. The majority of the mutants were viable in strains expressing mutant rRNA exclusively but had distinct growth phenotypes, particularly at 30 degrees C, and the mutant ribosomes promoted a variety of miscoding errors. Analysis of subunit association activities both in vitro and in vivo indicated that, with the exception of the bridge B5 mutants, at least one mutation at each bridge site affected 70 S ribosome formation. These results confirm the structural data linking bridges with subunit-subunit interactions and, together with the effects on decoding fidelity, indicate that intersubunit bridges function at multiple stages of protein synthesis.
Collapse
Affiliation(s)
- Aivar Liiv
- Estonian Biocentre, Tartu University, Tartu 51010, Estonia
| | | |
Collapse
|
39
|
Ogura T, Sato C. A fully automatic 3D reconstruction method using simulated annealing enables accurate posterioric angular assignment of protein projections. J Struct Biol 2006; 156:371-86. [PMID: 16949302 DOI: 10.1016/j.jsb.2006.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 04/28/2006] [Accepted: 05/19/2006] [Indexed: 10/24/2022]
Abstract
Single-particle analysis is a structure determining method using electron microscopic (EM) images, which does not require protein crystal. In this method, projections are picked up and used to reconstruct a three-dimensional (3D) structure. When the conical tilting method is not available, the particle images are usually classified and averaged to improve the signal-to-noise ratio. The Euler angles of these average images must be posteriorically assigned to create a primary 3D model. We developed a new, fully automatic unsupervised Euler angle assignment method, which does not require an initial 3D reference and which is applicable to asymmetric molecules. In this method, the Euler angle of each average image is initially set randomly and then automatically corrected in relation to those of the other averages by iterated optimizations using the Simulated Annealing (SA) algorithm. At each iteration, the 3D structure is reconstructed based on the current Euler angles and reprojected back in the average-input directions. A modified cross-correlation between each reprojection and its corresponding original average is then calculated. The correlations are summed as a total 3D echo-correlation score to evaluate the Euler angles at this iteration. Then, one of the projections is selected, its Euler angle is changed randomly, and the score is also calculated. Based on the score change, judgment of whether to accept or reject the new angle is made using the SA algorithm, which is introduced to overcome the local minimums. After a certain number of iterations of this process, the angles of all averages converge so as to create a reliable primary 3D model. This echo-correlated 3D reconstruction with simulated annealing also has potential for wide application to general 3D reconstruction from various types of 2D images.
Collapse
Affiliation(s)
- Toshihiko Ogura
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | | |
Collapse
|
40
|
Wuchty S. Topology and weights in a protein domain interaction network--a novel way to predict protein interactions. BMC Genomics 2006; 7:122. [PMID: 16716232 PMCID: PMC1523346 DOI: 10.1186/1471-2164-7-122] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 05/23/2006] [Indexed: 11/10/2022] Open
Abstract
Background While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. Results We consider a web of interactions between protein domains of the Protein Family database (PFAM), which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Conclusion Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we show a simple way to predict potential protein interactions by utilizing expectation scores of single domain interactions.
Collapse
Affiliation(s)
- Stefan Wuchty
- Northwestern Institute on Complexity, Northwestern University, 600 Foster Street, Evanston, IL 60208, USA.
| |
Collapse
|
41
|
Bonicontro A, Risuleo G. Structural studies of E. coli ribosomes by spectroscopic techniques: a specialized review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2005; 62:1070-80. [PMID: 15950526 DOI: 10.1016/j.saa.2005.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 04/15/2005] [Indexed: 05/02/2023]
Abstract
We present a review on our interdisciplinary line of research based on strategies of molecular biology and biophysics. These have been applied to the study of the prokaryotic ribosome of the bacterium Escherichia coli. Our investigations on this organelle have continued for more than a decade and we have adopted different spectroscopic biophysical techniques such as: dielectric and fluorescence spectroscopy as well as light scattering (photon correlation spectroscopy). Here we report studies on the whole 70S ribosomes and on the separated subunits 30S and 50S. Our results evidence intrinsic structural features of the subunits: the small shows a more "floppy" structure, while the large one appears to be more rigid. Also, an inner "kernel" formed by the RNA/protein association is found within the ribosome. This kernel is surrounded by a ribonucleoprotein complex more exposed to the solvent. Initial analyses were done on the so called Kaldtschmit-Wittmann ribosome: more recently we have extended the studies to the "tight couple" ribosome known for its better functional performance in vitro. Data evidence a phenomenological correlation between the differential biological activity and the intrinsic structural properties of the two-ribosome species. Finally, investigations were also conducted on particles treated at sub-denaturing temperatures and on ribosomes partially deproteinized by salt treatment (ribosomal cores). Results suggest that the thermal treatment and the selective removal of proteins cause analogous structural alterations.
Collapse
Affiliation(s)
- Adalberto Bonicontro
- INFM-CRS SOFT, Dipartimento di Fisica, Università di Roma La Sapienza, P.le A. Moro 2, I-00185 Roma, Italy
| | | |
Collapse
|
42
|
Jiang W, Ludtke SJ. Electron cryomicroscopy of single particles at subnanometer resolution. Curr Opin Struct Biol 2005; 15:571-7. [PMID: 16140524 DOI: 10.1016/j.sbi.2005.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/09/2005] [Accepted: 08/24/2005] [Indexed: 11/24/2022]
Abstract
Electron cryomicroscopy and single-particle reconstruction have advanced substantially over the past two decades. There are now numerous examples of structures that have been solved using this technique to better than 10 A resolution. At such resolutions, direct identification of alpha helices is possible and, often, beta-sheet-containing regions can be identified. The most numerous subnanometer resolution structures are the icosahedral viruses, as higher resolution is easier to achieve with higher symmetry. Important non-icosahedral structures solved to subnanometer resolution include several ribosome structures, clathrin assemblies and, most recently, the Ca2+ release channel. There is now hope that, in the next few years, this technique will achieve resolutions approaching 4 A, permitting a complete trace of the protein backbone without reference to a crystal structure.
Collapse
Affiliation(s)
- Wen Jiang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
43
|
Abstract
Single-particle electron microscopy has now reached maturity, becoming a commonly used method in the examination of macromolecular structure. Using a small amount of purified protein, isolated molecules are observed under the electron microscope and the data collected can be averaged into a 3D reconstruction. Single-particle electron microscopy is an appropriate tool for the analysis of proteins that can only be obtained in modest quantities, like many of the large complexes currently of interest in biomedicine. Whilst the use of electron microscopy expands, new methods are being developed and improved to deal with further challenges, such as reaching higher resolutions and the combination of information at different levels of structural detail. More importantly, present methodology is still not robust enough when studying certain tricky proteins like those displaying extensive conformational flexibility and a great deal of user expertise is required, posing a threat to the consistency of the final structure. This mini review describes a brief outline of the methods currently used in the 3D analysis of macromolecules using single-particle electron microscopy, intended for those first approaching this field. A summary of methods, techniques, software, and some recent work is presented. The spectacular improvements to the technique in recent years, its advantages and limitations compared to other structural methods, and its future developments are discussed.
Collapse
Affiliation(s)
- Oscar Llorca
- Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu, 9 Campus Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
44
|
Ispolatov I, Yuryev A, Mazo I, Maslov S. Binding properties and evolution of homodimers in protein-protein interaction networks. Nucleic Acids Res 2005; 33:3629-35. [PMID: 15983135 PMCID: PMC1160523 DOI: 10.1093/nar/gki678] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We demonstrate that protein-protein interaction networks in several eukaryotic organisms contain significantly more self-interacting proteins than expected if such homodimers randomly appeared in the course of the evolution. We also show that on average homodimers have twice as many interaction partners than non-self-interacting proteins. More specifically, the likelihood of a protein to physically interact with itself was found to be proportional to the total number of its binding partners. These properties of dimers are in agreement with a phenomenological model, in which individual proteins differ from each other by the degree of their 'stickiness' or general propensity toward interaction with other proteins including oneself. A duplication of self-interacting proteins creates a pair of paralogous proteins interacting with each other. We show that such pairs occur more frequently than could be explained by pure chance alone. Similar to homodimers, proteins involved in heterodimers with their paralogs on average have twice as many interacting partners than the rest of the network. The likelihood of a pair of paralogous proteins to interact with each other was also shown to decrease with their sequence similarity. This points to the conclusion that most of interactions between paralogs are inherited from ancestral homodimeric proteins, rather than established de novo after duplication. We finally discuss possible implications of our empirical observations from functional and evolutionary standpoints.
Collapse
Affiliation(s)
- Iaroslav Ispolatov
- Ariadne Genomics Inc. 9700 Great Seneca Highway, Suite 113, Rockville, MD 20850, USA.
| | | | | | | |
Collapse
|
45
|
Serysheva II. Structural insights into excitation-contraction coupling by electron cryomicroscopy. BIOCHEMISTRY (MOSCOW) 2005; 69:1226-32. [PMID: 15627376 DOI: 10.1007/s10541-005-0068-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In muscle, excitation-contraction coupling is defined as the process linking depolarization of the surface membrane with Ca2+ release from cytoplasmic stores, which activates contraction of striated muscle. This process is primarily controlled by interplay between two Ca2+ channels--the voltage-gated L-type Ca2+ channel (dihydropyridine receptor, DHPR) localized in the t-tubule membrane and the Ca2+-release channel (ryanodine receptor, RyR) of the sarcoplasmic reticulum membrane. The structures of both channels have been extensively studied by several groups using electron cryomicroscopy and single particle reconstruction techniques. The structures of RyR, determined at resolutions of 22-30 A, reveal a characteristic mushroom shape with a bulky cytoplasmic region and the membrane-spanning stem. While the cytoplasmic region exhibits a complex structure comprising a multitude of distinctive domains with numerous intervening cavities, at this resolution no definitive statement can be made about the location of the actual pore within the transmembrane region. Conformational changes associated with functional transitions of the Ca2+ release channel from closed to open states have been characterized. Further experiments determined localization of binding sites for various channel ligands. The structural studies of the DHPR are less developed. Although four 3D maps of the DHPR were reported recently at 24-30 A resolution from studies of frozen-hydrated and negatively stained receptors, there are some discrepancies between reported structures with respect to the overall appearance and dimensions of the channel structure. Future structural studies at higher resolution are needed to refine the structures of both channels and to substantiate a proposed molecular model for their interaction.
Collapse
Affiliation(s)
- I I Serysheva
- Department of Molecular Physiology and Biophysics, National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Borgnia MJ, Shi D, Zhang P, Milne JLS. Visualization of alpha-helical features in a density map constructed using 9 molecular images of the 1.8 MDa icosahedral core of pyruvate dehydrogenase. J Struct Biol 2005; 147:136-45. [PMID: 15193642 DOI: 10.1016/j.jsb.2004.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 02/03/2004] [Indexed: 11/26/2022]
Abstract
Strategies to achieve the highest resolutions in structures of protein complexes determined by cryo-electron microscopy generally involve averaging information from large numbers of individual molecular images. However, significant limitations are posed by heterogeneity in image quality and in protein conformation that are inherent to large data sets of images. Here, we demonstrate that the combination of iterative refinement and stringent molecular sorting is an effective method to obtain substantial improvements in map quality of the 1.8 MDa icosahedral catalytic core of the pyruvate dehydrogenase complex from Bacillus stearothermophilus. From a starting set of 42,945 images of the core complex, we show that using only the best 139 particles in the data set produces a map that is superior to those constructed with greater numbers of images, and that the location of many of the alpha-helices in the structure can be unambiguously visualized in a map constructed from as few as 9 particles.
Collapse
Affiliation(s)
- Mario J Borgnia
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
47
|
Stewart A, Grigorieff N. Noise bias in the refinement of structures derived from single particles. Ultramicroscopy 2005; 102:67-84. [PMID: 15556702 DOI: 10.1016/j.ultramic.2004.08.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2004] [Revised: 08/14/2004] [Accepted: 08/24/2004] [Indexed: 10/26/2022]
Abstract
One of the main goals in the determination of three-dimensional macromolecular structures from electron microscope images of individual molecules and complexes (single particles) is a sufficiently high spatial resolution, about 4 A, at which the interpretation with an atomic model becomes possible. To reach high resolution, an iterative refinement procedure using an expectation maximization algorithm is often used that leads to a more accurate alignment of the positional and orientational parameters for each particle. We show here the results of refinement algorithms that use a phase residual, a linear correlation coefficient, or a weighted correlation coefficient to align individual particles. The algorithms were applied to computer-generated data sets that contained projections from model structures, as well as noise. The algorithms show different degrees of over-fitting, especially at high resolution where the signal is weak. We demonstrate that the degree of over-fitting is reduced with a weighting scheme that depends on the signal-to-noise ratio in the data. The weighting also improves the accuracy of resolution measurement by the commonly used Fourier shell correlation. The performance of the refinement algorithms is compared to that using a maximum likelihood approach. The weighted correlation coefficient was implemented in the computer program FREALIGN.
Collapse
Affiliation(s)
- Alex Stewart
- Howard Hughes Medical Institute and Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, MS029, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | | |
Collapse
|
48
|
Zhao Q, Ofverstedt LG, Skoglund U, Isaksson LA. Morphological variation of individual Escherichia coli 50S ribosomal subunits in situ, as revealed by cryo-electron tomography. Exp Cell Res 2004; 300:190-201. [PMID: 15383326 DOI: 10.1016/j.yexcr.2004.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 07/08/2004] [Indexed: 10/26/2022]
Abstract
Electron tomography (ET) has been used to reconstruct in situ individual 50S ribosomal subunits in Escherichia coli rifampicin-treated cells. Rifampicin inhibits transcription initiation. As a result, rapid degradation of preformed mRNA and dissociation of 70S ribosomes give accumulation of free subunits. In the 50S subunit, the L1 stalk, the L7/L12 stalk, the central protuberance (CP), and the peptidyl transferase center (PTC) cleft are the most dynamic and flexible parts in the reconstructed structures with clear movements indicated. Different locations of the tunnel in the central cross-sections through the in situ 50S subunits indicate the flexible nature of the pathway inside the large ribosomal subunit. In addition, gross morphological heterogeneity was observed in the reconstructions. Our results demonstrate a considerable structural variability among individual 50S subunits in the intracellular environment.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
49
|
Serysheva II. Structural insights into excitation—contraction coupling by electron cryomicroscopy. BIOCHEMISTRY (MOSCOW) 2004. [DOI: 10.1007/pl00021759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Ogura T, Iwasaki K, Sato C. Topology representing network enables highly accurate classification of protein images taken by cryo electron-microscope without masking. J Struct Biol 2004; 143:185-200. [PMID: 14572474 DOI: 10.1016/j.jsb.2003.08.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In single-particle analysis, a three-dimensional (3-D) structure of a protein is constructed using electron microscopy (EM). As these images are very noisy in general, the primary process of this 3-D reconstruction is the classification of images according to their Euler angles, the images in each classified group then being averaged to reduce the noise level. In our newly developed strategy of classification, we introduce a topology representing network (TRN) method. It is a modified method of a growing neural gas network (GNG). In this system, a network structure is automatically determined in response to the images input through a growing process. After learning without a masking procedure, the GNG creates clear averages of the inputs as unit coordinates in multi-dimensional space, which are then utilized for classification. In the process, connections are automatically created between highly related units and their positions are shifted where the inputs are distributed in multi-dimensional space. Consequently, several separated groups of connected units are formed. Although the interrelationship of units in this space are not easily understood, we succeeded in solving this problem by converting the unit positions into two-dimensional (2-D) space, and by further optimizing the unit positions with the simulated annealing (SA) method. In the optimized 2-D map, visualization of the connections of units provided rich information about clustering. As demonstrated here, this method is clearly superior to both the multi-variate statistical analysis (MSA) and the self-organizing map (SOM) as a classification method and provides a first reliable classification method which can be used without masking for very noisy images.
Collapse
Affiliation(s)
- Toshihiko Ogura
- Neuroscience Research Institute and Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | | | | |
Collapse
|