1
|
Jeje O, Otun S, Aloke C, Achilonu I. Exploring NAD + metabolism and NNAT: Insights from structure, function, and computational modeling. Biochimie 2024; 220:84-98. [PMID: 38182101 DOI: 10.1016/j.biochi.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Nicotinamide Adenine Dinucleotide (NAD+), a coenzyme, is ubiquitously distributed and serves crucial functions in diverse biological processes, encompassing redox reactions, energy metabolism, and cellular signalling. This review article explores the intricate realm of NAD + metabolism, with a particular emphasis on the complex relationship between its structure, function, and the pivotal enzyme, Nicotinate Nucleotide Adenylyltransferase (NNAT), also known as nicotinate mononucleotide adenylyltransferase (NaMNAT), in the process of its biosynthesis. Our findings indicate that NAD + biosynthesis in humans and bacteria occurs via the same de novo synthesis route and the pyridine ring salvage pathway. Maintaining NAD homeostasis in bacteria is imperative, as most bacterial species cannot get NAD+ from their surroundings. However, due to lower sequence identity and structurally distant relationship of bacteria, including E. faecium and K. pneumonia, to its human counterpart, inhibiting NNAT, an indispensable enzyme implicated in NAD + biosynthesis, is a viable alternative in curtailing infections orchestrated by E. faecium and K. pneumonia. By merging empirical and computational discoveries and connecting the intricate NAD + metabolism network with NNAT's crucial role, it becomes clear that the synergistic effect of these insights may lead to a more profound understanding of the coenzyme's function and its potential applications in the fields of therapeutics and biotechnology.
Collapse
Affiliation(s)
- Olamide Jeje
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| | - Sarah Otun
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa.
| | - Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa; Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Nigeria
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| |
Collapse
|
2
|
Ghanem MS, Caffa I, Monacelli F, Nencioni A. Inhibitors of NAD + Production in Cancer Treatment: State of the Art and Perspectives. Int J Mol Sci 2024; 25:2092. [PMID: 38396769 PMCID: PMC10889166 DOI: 10.3390/ijms25042092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The addiction of tumors to elevated nicotinamide adenine dinucleotide (NAD+) levels is a hallmark of cancer metabolism. Obstructing NAD+ biosynthesis in tumors is a new and promising antineoplastic strategy. Inhibitors developed against nicotinamide phosphoribosyltransferase (NAMPT), the main enzyme in NAD+ production from nicotinamide, elicited robust anticancer activity in preclinical models but not in patients, implying that other NAD+-biosynthetic pathways are also active in tumors and provide sufficient NAD+ amounts despite NAMPT obstruction. Recent studies show that NAD+ biosynthesis through the so-called "Preiss-Handler (PH) pathway", which utilizes nicotinate as a precursor, actively operates in many tumors and accounts for tumor resistance to NAMPT inhibitors. The PH pathway consists of three sequential enzymatic steps that are catalyzed by nicotinate phosphoribosyltransferase (NAPRT), nicotinamide mononucleotide adenylyltransferases (NMNATs), and NAD+ synthetase (NADSYN1). Here, we focus on these enzymes as emerging targets in cancer drug discovery, summarizing their reported inhibitors and describing their current or potential exploitation as anticancer agents. Finally, we also focus on additional NAD+-producing enzymes acting in alternative NAD+-producing routes that could also be relevant in tumors and thus become viable targets for drug discovery.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
3
|
Chen Y, Ying Y, Lalsiamthara J, Zhao Y, Imani S, Li X, Liu S, Wang Q. From bacteria to biomedicine: Developing therapies exploiting NAD + metabolism. Bioorg Chem 2024; 142:106974. [PMID: 37984103 DOI: 10.1016/j.bioorg.2023.106974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) serves as a critical cofactor in cellular metabolism and redox reactions. Bacterial pathways rely on NAD+ participation, where its stability and concentration govern essential homeostasis and functions. This review delves into the role and metabolic regulation of NAD+ in bacteria, highlighting its influence on physiology and virulence. Notably, we explore enzymes linked to NAD+ metabolism as antibacterial drug targets and vaccine candidates. Moreover, we scrutinize NAD+'s medical potential, offering insights for its application in biomedicine. This comprehensive assessment informs future research directions in the dynamic realm of NAD+ and its biomedical significance.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Yuanyuan Ying
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Jonathan Lalsiamthara
- Molecular Microbiology & Immunology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Saber Imani
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Xin Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Sijing Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Qingjing Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| |
Collapse
|
4
|
Jeje O, Pandian R, Sayed Y, Achilonu I. Obtaining high yield recombinant Enterococcus faecium nicotinate nucleotide adenylyltransferase for X-ray crystallography and biophysical studies. Int J Biol Macromol 2023; 250:126066. [PMID: 37544558 DOI: 10.1016/j.ijbiomac.2023.126066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Nicotinate nucleotide adenylyltransferase (NNAT) has been a significant research focus on druggable targets, given its indispensability in the biosynthesis of NAD+, which is crucial to the survival of bacterial pathogens. However, no information is available on the structure-function of Enterococcus faecium NNAT (EfNNAT). This study established the expression and purification protocol for obtaining a high-yield recombinant EfNNAT using the E. coli expression system and a single-step IMAC purification method. Approximately 101 mg of EfNNAT was obtained per 7.8 g of wet E. coli cells, estimated to be over 98 % pure. We further characterized the biophysical structure and determined the three-dimensional structure of the EfNNAT. Biophysical studies revealed a dimeric protein with a higher α-helical composition. The highly stable protein crystalizes in multiple conditions, yielding high-quality crystals diffracting between 1.78 and 2.80 Å. Two high-resolution crystal structures of EfNNAT in its native and adenine-bound forms were determined at 1.90 Å and 1.82 Å, respectively. The X-ray structures of the EfNNAT revealed the presence of phosphate and sulfate ions occupying and interacting with conserved amino acid residues within the putative substrate binding site, hence providing insight into the probable substrate preference of EfNNAT and, consequently, why EfNNAT may not prefer β-nicotinamide mononucleotide as a substrate. With the accessibility to high-resolution structures of EfNNAT, further structural evaluation and drug-based screening can be achieved. Hence, we anticipate that this study will provide the basis for the discovery of structure-based inhibitors against this enzyme.
Collapse
Affiliation(s)
- Olamide Jeje
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Ramesh Pandian
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
5
|
Daya T, Jeje O, Maake R, Aloke C, Khoza T, Achilonu I. Expression, Purification, and Biophysical Characterization of Klebsiella Pneumoniae Nicotinate Nucleotide Adenylyltransferase. Protein J 2022; 41:141-156. [DOI: 10.1007/s10930-021-10037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
|
6
|
Jeje O, Maake R, van Deventer R, Esau V, Iwuchukwu EA, Meyer V, Khoza T, Achilonu I. Effect of Divalent Metal Ion on the Structure, Stability and Function of Klebsiella pneumoniae Nicotinate-Nucleotide Adenylyltransferase: Empirical and Computational Studies. Int J Mol Sci 2021; 23:116. [PMID: 35008542 PMCID: PMC8745210 DOI: 10.3390/ijms23010116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022] Open
Abstract
The continuous threat of drug-resistant Klebsiella pneumoniae justifies identifying novel targets and developing effective antibacterial agents. A potential target is nicotinate nucleotide adenylyltransferase (NNAT), an indispensable enzyme in the biosynthesis of the cell-dependent metabolite, NAD+. NNAT catalyses the adenylation of nicotinamide/nicotinate mononucleotide (NMN/NaMN), using ATP to form nicotinamide/nicotinate adenine dinucleotide (NAD+/NaAD). In addition, it employs divalent cations for co-substrate binding and catalysis and has a preference for different divalent cations. Here, the biophysical structure of NNAT from K. pneumoniae (KpNNAT) and the impact of divalent cations on its activity, conformational stability and substrate-binding are described using experimental and computational approaches. The experimental study was executed using an enzyme-coupled assay, far-UV circular dichroism, extrinsic fluorescence spectroscopy, and thermal shift assays, alongside homology modelling, molecular docking, and molecular dynamic simulation. The structure of KpNNAT revealed a predominately α-helical secondary structure content and a binding site that is partially hydrophobic. Its substrates ATP and NMN share the same binding pocket with similar affinity and exhibit an energetically favourable binding. KpNNAT showed maximum activity and minimal conformational changes with Mg2+ as a cofactor compared to Zn2+, Cu2+ and Ni2+. Overall, ATP binding affects KpNNAT dynamics, and the dynamics of ATP binding depend on the presence and type of divalent cation. The data obtained from this study would serve as a basis for further evaluation towards designing structure-based inhibitors with therapeutic potential.
Collapse
Affiliation(s)
- Olamide Jeje
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Reabetswe Maake
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Ruan van Deventer
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Veruschka Esau
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Emmanuel Amarachi Iwuchukwu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Vanessa Meyer
- Functional Genomics and Immunogenetics Laboratory, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Thandeka Khoza
- Department of Biochemistry, School of Life Sciences, Pietermaritzburg Campus, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
7
|
Wiedermannová J, Julius C, Yuzenkova Y. The expanding field of non-canonical RNA capping: new enzymes and mechanisms. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201979. [PMID: 34017598 PMCID: PMC8131947 DOI: 10.1098/rsos.201979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recent years witnessed the discovery of ubiquitous and diverse 5'-end RNA cap-like modifications in prokaryotes as well as in eukaryotes. These non-canonical caps include metabolic cofactors, such as NAD+/NADH, FAD, cell wall precursors UDP-GlcNAc, alarmones, e.g. dinucleotides polyphosphates, ADP-ribose and potentially other nucleoside derivatives. They are installed at the 5' position of RNA via template-dependent incorporation of nucleotide analogues as an initiation substrate by RNA polymerases. However, the discovery of NAD-capped processed RNAs in human cells suggests the existence of alternative post-transcriptional NC capping pathways. In this review, we compiled growing evidence for a number of these other mechanisms which produce various non-canonically capped RNAs and a growing repertoire of capping small molecules. Enzymes shown to be involved are ADP-ribose polymerases, glycohydrolases and tRNA synthetases, and may potentially include RNA 3'-phosphate cyclases, tRNA guanylyl transferases, RNA ligases and ribozymes. An emerging rich variety of capping molecules and enzymes suggests an unrecognized level of complexity of RNA metabolism.
Collapse
Affiliation(s)
| | | | - Yulia Yuzenkova
- Medical School, NUBI, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Wang X, Feng Y, Guo X, Wang Q, Ning S, Li Q, Wang J, Wang L, Zhao ZK. Creating enzymes and self-sufficient cells for biosynthesis of the non-natural cofactor nicotinamide cytosine dinucleotide. Nat Commun 2021; 12:2116. [PMID: 33837188 PMCID: PMC8035330 DOI: 10.1038/s41467-021-22357-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) and its reduced form are indispensable cofactors in life. Diverse NAD mimics have been developed for applications in chemical and biological sciences. Nicotinamide cytosine dinucleotide (NCD) has emerged as a non-natural cofactor to mediate redox transformations, while cells are fed with chemically synthesized NCD. Here, we create NCD synthetase (NcdS) by reprograming the substrate binding pockets of nicotinic acid mononucleotide (NaMN) adenylyltransferase to favor cytidine triphosphate and nicotinamide mononucleotide over their regular substrates ATP and NaMN, respectively. Overexpression of NcdS alone in the model host Escherichia coli facilitated intracellular production of NCD, and higher NCD levels up to 5.0 mM were achieved upon further pathway regulation. Finally, the non-natural cofactor self-sufficiency was confirmed by mediating an NCD-linked metabolic circuit to convert L-malate into D-lactate. NcdS together with NCD-linked enzymes offer unique tools and opportunities for intriguing studies in chemical biology and synthetic biology.
Collapse
Affiliation(s)
- Xueying Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Yanbin Feng
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Xiaojia Guo
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Qian Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Siyang Ning
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Qing Li
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Junting Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Lei Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian, PR China.
| |
Collapse
|
9
|
Lee Y, Jeong H, Park KH, Kim KW. Effects of NAD + in Caenorhabditis elegans Models of Neuronal Damage. Biomolecules 2020; 10:E993. [PMID: 32630651 PMCID: PMC7407593 DOI: 10.3390/biom10070993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor that mediates numerous biological processes in all living cells. Multiple NAD+ biosynthetic enzymes and NAD+-consuming enzymes are involved in neuroprotection and axon regeneration. The nematode Caenorhabditis elegans has served as a model to study the neuronal role of NAD+ because many molecular components regulating NAD+ are highly conserved. This review focuses on recent findings using C. elegans models of neuronal damage pertaining to the neuronal functions of NAD+ and its precursors, including a neuroprotective role against excitotoxicity and axon degeneration as well as an inhibitory role in axon regeneration. The regulation of NAD+ levels could be a promising therapeutic strategy to counter many neurodegenerative diseases, as well as neurotoxin-induced and traumatic neuronal damage.
Collapse
Affiliation(s)
- Yuri Lee
- Department of Life Science, Hallym University, Chuncheon 24252, Korea; (Y.L.); (H.J.); (K.H.P.)
| | - Hyeseon Jeong
- Department of Life Science, Hallym University, Chuncheon 24252, Korea; (Y.L.); (H.J.); (K.H.P.)
| | - Kyung Hwan Park
- Department of Life Science, Hallym University, Chuncheon 24252, Korea; (Y.L.); (H.J.); (K.H.P.)
| | - Kyung Won Kim
- Department of Life Science, Hallym University, Chuncheon 24252, Korea; (Y.L.); (H.J.); (K.H.P.)
- Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
- Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
10
|
Structural and Functional Characterization of NadR from Lactococcus lactis. Molecules 2020; 25:molecules25081940. [PMID: 32331317 PMCID: PMC7221760 DOI: 10.3390/molecules25081940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/02/2022] Open
Abstract
NadR is a bifunctional enzyme that converts nicotinamide riboside (NR) into nicotinamide mononucleotide (NMN), which is then converted into nicotinamide adenine dinucleotide (NAD). Although a crystal structure of the enzyme from the Gram-negative bacterium Haemophilus influenzae is known, structural understanding of its catalytic mechanism remains unclear. Here, we purified the NadR enzyme from Lactococcus lactis and established an assay to determine the combined activity of this bifunctional enzyme. The conversion of NR into NAD showed hyperbolic dependence on the NR concentration, but sigmoidal dependence on the ATP concentration. The apparent cooperativity for ATP may be explained because both reactions catalyzed by the bifunctional enzyme (phosphorylation of NR and adenylation of NMN) require ATP. The conversion of NMN into NAD followed simple Michaelis-Menten kinetics for NMN, but again with the sigmoidal dependence on the ATP concentration. In this case, the apparent cooperativity is unexpected since only a single ATP is used in the NMN adenylyltransferase catalyzed reaction. To determine the possible structural determinants of such cooperativity, we solved the crystal structure of NadR from L. lactis (NadRLl). Co-crystallization with NAD, NR, NMN, ATP, and AMP-PNP revealed a ‘sink’ for adenine nucleotides in a location between two domains. This sink could be a regulatory site, or it may facilitate the channeling of substrates between the two domains.
Collapse
|
11
|
Contreras Rodríguez LE, Ziegler M, Ramírez Hernández MH. Kinetic and oligomeric study of Leishmania braziliensis nicotinate/nicotinamide mononucleotide adenylyltransferase. Heliyon 2020; 6:e03733. [PMID: 32322725 PMCID: PMC7160426 DOI: 10.1016/j.heliyon.2020.e03733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/03/2019] [Accepted: 03/31/2020] [Indexed: 11/30/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme involved in REDOX reactions and oxidative stress defense systems. Furthermore, NAD is used as substrate by proteins that regulate essential cellular functions as DNA repair, genetic, and signal transduction, among many others. NAD biosynthesis can be completed through the de novo and salvage pathways, which converge at the common step catalyzed by the nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT EC: 2.7.7.1/18). Here, we report the kinetic characterization of the NMNAT of Leishmania braziliensis (LbNMNAT), one of the etiological agents of leishmaniasis, a relevant parasitic disease. The expression and homogeneous purification of the recombinant 6xHis-LbNMNAT protein was carried out and its kinetic study, which included analysis of K m , V max , K cat and the equilibrium constant (K D ) for both the forward and reverse reactions, was completed. The oligomeric state of the recombinant 6xHis-LbNMNAT protein was studied through size exclusion chromatography. Our results indicated the highest and lowest K m values for ATP and NAD, respectively. According to the calculated K D , the pyrophosphorolytic cleavage of NAD is favored in vitro. Moreover, the recombinant 6xHis-LbNMNAT protein showed a monomeric state, although it exhibits a structural element involved in potential subunits interaction. Altogether, our results denote notable differences of the LbNMNAT protein in relation to the human orthologs HsNMNAT1-3. These differences constitute initial findings that have to be continued to finally propose the NMNAT as a promissory pharmacological target in L. braziliensis.
Collapse
Affiliation(s)
- Luis Ernesto Contreras Rodríguez
- Laboratorio de Investigaciones Básicas en Bioquímica-LIBBIQ, Facultad de Ciencias, Universidad Nacional de Colombia, 111321 Bogotá, Colombia
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - María Helena Ramírez Hernández
- Laboratorio de Investigaciones Básicas en Bioquímica-LIBBIQ, Facultad de Ciencias, Universidad Nacional de Colombia, 111321 Bogotá, Colombia
| |
Collapse
|
12
|
Osterman AL, Rodionova I, Li X, Sergienko E, Ma CT, Catanzaro A, Pettigrove ME, Reed RW, Gupta R, Rohde KH, Korotkov KV, Sorci L. Novel Antimycobacterial Compounds Suppress NAD Biogenesis by Targeting a Unique Pocket of NaMN Adenylyltransferase. ACS Chem Biol 2019; 14:949-958. [PMID: 30969758 DOI: 10.1021/acschembio.9b00124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Conventional treatments to combat the tuberculosis (TB) epidemic are falling short, thus encouraging the search for novel antitubercular drugs acting on unexplored molecular targets. Several whole-cell phenotypic screenings have delivered bioactive compounds with potent antitubercular activity. However, their cellular target and mechanism of action remain largely unknown. Further evaluation of these compounds may include their screening in search for known antitubercular drug targets hits. Here, a collection of nearly 1400 mycobactericidal compounds was screened against Mycobacterium tuberculosis NaMN adenylyltransferase ( MtNadD), a key enzyme in the biogenesis of NAD cofactor that was recently validated as a new drug target for dormant and active tuberculosis. We found three chemotypes that efficiently inhibit MtNadD in the low micromolar range in vitro. SAR and cheminformatics studies of commercially available analogues point to a series of benzimidazolium derivatives, here named N2, with bactericidal activity on different mycobacteria, including M. abscessus, multidrug-resistant M. tuberculosis, and dormant M. smegmatis. The on-target activity was supported by the increased resistance of an M. smegmatis strain overexpressing the target and by a rapid decline in NAD(H) levels. A cocrystal structure of MtNadD with N2-8 inhibitor reveals that the binding of the inhibitor induced the formation of a new quaternary structure, a dimer-of-dimers where two copies of the inhibitor occupy symmetrical positions in the dimer interface, thus paving the way for the development of a new generation of selective MtNadD bioactive inhibitors. All these results strongly suggest that pharmacological inhibition of MtNadD is an effective strategy to combat dormant and resistant Mtb strains.
Collapse
Affiliation(s)
- Andrei L. Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Irina Rodionova
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Xiaoqing Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Eduard Sergienko
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Chen-Ting Ma
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Antonino Catanzaro
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Mark E. Pettigrove
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Robert W. Reed
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Rashmi Gupta
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| | - Kyle H. Rohde
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Leonardo Sorci
- Department of Materials, Environmental Sciences and Urban Planning, Division of Bioinformatics and Biochemistry, Polytechnic University of Marche, Ancona 60131, Italy
| |
Collapse
|
13
|
Kim KW, Tang NH, Piggott CA, Andrusiak MG, Park S, Zhu M, Kurup N, Cherra SJ, Wu Z, Chisholm AD, Jin Y. Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD + in axon regeneration. eLife 2018; 7:39756. [PMID: 30461420 PMCID: PMC6281318 DOI: 10.7554/elife.39756] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
The mechanisms underlying axon regeneration in mature neurons are relevant to the understanding of normal nervous system maintenance and for developing therapeutic strategies for injury. Here, we report novel pathways in axon regeneration, identified by extending our previous function-based screen using the C. elegans mechanosensory neuron axotomy model. We identify an unexpected role of the nicotinamide adenine dinucleotide (NAD+) synthesizing enzyme, NMAT-2/NMNAT, in axon regeneration. NMAT-2 inhibits axon regrowth via cell-autonomous and non-autonomous mechanisms. NMAT-2 enzymatic activity is required to repress regrowth. Further, we find differential requirements for proteins in membrane contact site, components and regulators of the extracellular matrix, membrane trafficking, microtubule and actin cytoskeleton, the conserved Kelch-domain protein IVNS-1, and the orphan transporter MFSD-6 in axon regrowth. Identification of these new pathways expands our understanding of the molecular basis of axonal injury response and regeneration.
Collapse
Affiliation(s)
- Kyung Won Kim
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Christopher A Piggott
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Matthew G Andrusiak
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Seungmee Park
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Ming Zhu
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Naina Kurup
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Salvatore J Cherra
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Zilu Wu
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Andrew D Chisholm
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla, United States
| |
Collapse
|
14
|
Contreras-Rodríguez LE, Marin-Mogollon CY, Sánchez-Mejía LM, Ramírez-Hernández MH. Structural insights into Plasmodium falciparum nicotinamide mononucleotide adenylyltransferase: oligomeric assembly. Mem Inst Oswaldo Cruz 2018; 113:e180073. [PMID: 29995110 PMCID: PMC6037046 DOI: 10.1590/0074-02760180073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023] Open
Abstract
The biochemical pathways involved in nicotinamide adenine dinucleotide (NAD) biosynthesis converge at the enzymatic step catalysed by nicotinamide mononucleotide adenylyltransferase (NMNAT, EC: 2.7.7.1). The majority of NMNATs are assembled into homo-oligomeric states that comprise 2-6 subunits. Recently, the NMNAT of Plasmodium falciparum (PfNMNAT) has been identified as a pharmacological target. The enzymatic characterisation, cellular location, and tertiary structure of the PfNMNAT protein have been reported. Nonetheless, its quaternary structure remains to be explored. The present study describes the oligomeric assembly of the 6 x His-PfNMNAT recombinant protein using immobilised metal affinity chromatography coupled with size exclusion chromatography (SEC) and native protein electrophoresis combined with Ferguson plot graphing. These chromatographic approaches resulted in the elution of an active monomer from the SEC column, whereas the Ferguson plot indicated a dimeric assembly of the 6 x His-PfNMNAT protein.
Collapse
|
15
|
Konishi K, Ueda S, Kawano M, Osawa S, Tamura T, Hokazono E, Kayamori Y, Sakasegawa SI. Characterization and application of a novel nicotinamide mononucleotide adenylyltransferase from Thermus thermophilus HB8. J Biosci Bioeng 2017; 125:385-389. [PMID: 29175123 DOI: 10.1016/j.jbiosc.2017.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/10/2017] [Accepted: 10/26/2017] [Indexed: 01/07/2023]
Abstract
Herein, we describe a novel enzymatic cycling method to measure nicotinamide mononucleotide (NMN) or nicotinic acid mononucleotide (NaMN), which are precursors of NAD biosynthesis. A gene encoding an NMN adenylyltransferase (NMNAT, EC 2.7.7.1) homologue was identified in Thermus thermophilus HB8. The gene from T. thermophilus (TtNMNAT) was engineered for expression in Escherichia coli and the recombinant enzyme found to be stable, retaining full activity after incubation for 45 min at 70°C. The Km values for NMN and ATP were calculated to be 0.263 and 1.27 mM, respectively, with a Vmax value of 60.3 μmoL/min/mg. TtNMNAT was successfully applied to the colorimetric NMN or NaMN assays, which employed (i) adenylation of NMN to NAD by TtNMNAT or adenylation of NaMN to deamido-NAD (NaAD) by TtNMNAT followed by amidation of NaAD to NAD by NAD synthetase (NADS, EC 6.3.1.5) and (ii) an NAD cycling reaction using 12α-hydroxysteroid dehydrogenase (12α-HSD, EC 1.1.1.176) and diaphorase (DI, EC 1.6.99.3) to accumulate reduced WST-8. This enzymatic cycling method enabled detection of 0.5 μM (12.2 nM in the reaction mixture) NMN or NaMN in an automatic clinical analyzer.
Collapse
Affiliation(s)
- Kenji Konishi
- Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni-shi, Shizuoka 410-2321, Japan
| | - Shigeru Ueda
- Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni-shi, Shizuoka 410-2321, Japan
| | - Miki Kawano
- International University of Health and Welfare Graduate School, Medical Laboratory Sciences, Chiba 286-8686, Japan; Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Susumu Osawa
- International University of Health and Welfare Graduate School, Medical Laboratory Sciences, Chiba 286-8686, Japan
| | - Tomohiro Tamura
- National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan; Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Eisaku Hokazono
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuzo Kayamori
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shin-Ichi Sakasegawa
- Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni-shi, Shizuoka 410-2321, Japan.
| |
Collapse
|
16
|
Naz S, Ngo T, Farooq U, Abagyan R. Analysis of drug binding pockets and repurposing opportunities for twelve essential enzymes of ESKAPE pathogens. PeerJ 2017; 5:e3765. [PMID: 28948099 PMCID: PMC5609521 DOI: 10.7717/peerj.3765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022] Open
Abstract
Background The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis. The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Methods Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli, two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. Results High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis. Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket alignments and distance-based maps provide guidelines for drug discovery and repurposing. In addition they also provide recommendations for the relevant model bacteria that may be used for initial drug testing. Discussion Comparing ligand binding sites through sequence identity calculation could be an effective approach to identify conserved orthologs as drug binding pockets have shown higher level of conservation among various species. By using this approach we could avoid the problems associated with full sequence comparison. We identified essential metabolic enzymes among ESKAPE pathogens that share high sequence identity in their putative drug binding pockets (up to 100%), of which known inhibitors can potentially antagonize these identical pockets in the various species in a similar manner.
Collapse
Affiliation(s)
- Sadia Naz
- Department of Chemistry, COMSATS Intitute of Information Technology, Abbottabad, Pakistan.,Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, CA, United States of America
| | - Tony Ngo
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, CA, United States of America.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Umar Farooq
- Department of Chemistry, COMSATS Intitute of Information Technology, Abbottabad, Pakistan
| | - Ruben Abagyan
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, CA, United States of America
| |
Collapse
|
17
|
Sedlyarova N, Rescheneder P, Magán A, Popitsch N, Rziha N, Bilusic I, Epshtein V, Zimmermann B, Lybecker M, Sedlyarov V, Schroeder R, Nudler E. Natural RNA Polymerase Aptamers Regulate Transcription in E. coli. Mol Cell 2017; 67:30-43.e6. [PMID: 28648779 PMCID: PMC5535762 DOI: 10.1016/j.molcel.2017.05.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/10/2017] [Accepted: 05/23/2017] [Indexed: 01/19/2023]
Abstract
In search for RNA signals that modulate transcription via direct interaction with RNA polymerase (RNAP), we deep sequenced an E. coli genomic library enriched for RNAP-binding RNAs. Many natural RNAP-binding aptamers, termed RAPs, were mapped to the genome. Over 60% of E. coli genes carry RAPs in their mRNA. Combining in vitro and in vivo approaches, we characterized a subset of inhibitory RAPs (iRAPs) that promote Rho-dependent transcription termination. A representative iRAP within the coding region of the essential gene, nadD, greatly reduces its transcriptional output in stationary phase and under oxidative stress, demonstrating that iRAPs control gene expression in response to changing environment. The mechanism of iRAPs involves active uncoupling of transcription and translation, making nascent RNA accessible to Rho. iRAPs encoded in the antisense strand also promote gene expression by reducing transcriptional interference. In essence, our work uncovers a broad class of cis-acting RNA signals that globally control bacterial transcription.
Collapse
Affiliation(s)
- Nadezda Sedlyarova
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, 1030 Vienna, Austria
| | - Philipp Rescheneder
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna & Medical University of Vienna, 1030 Vienna, Austria
| | - Andrés Magán
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, 1030 Vienna, Austria
| | - Niko Popitsch
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090 Vienna, Austria
| | - Natascha Rziha
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, 1030 Vienna, Austria
| | - Ivana Bilusic
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, 1030 Vienna, Austria
| | - Vitaly Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Bob Zimmermann
- Department of Molecular Evolution and Development, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Meghan Lybecker
- University of Colorado, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Renée Schroeder
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, 1030 Vienna, Austria.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
18
|
Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis. Appl Environ Microbiol 2017; 83:AEM.00692-17. [PMID: 28455340 DOI: 10.1128/aem.00692-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/25/2017] [Indexed: 11/20/2022] Open
Abstract
NAD and its reduced form NADH function as essential redox cofactors and have major roles in determining cellular metabolic features. NAD can be synthesized through the deamidated and amidated pathways, for which the key reaction involves adenylylation of nicotinic acid mononucleotide (NaMN) and nicotinamide mononucleotide (NMN), respectively. In Escherichia coli, NAD de novo biosynthesis depends on the protein NadD-catalyzed adenylylation of NaMN to nicotinic acid adenine dinucleotide (NaAD), followed by NAD synthase-catalyzed amidation. In this study, we engineered NadD to favor NMN for improved amidated pathway activity. We designed NadD mutant libraries, screened by a malic enzyme-coupled colorimetric assay, and identified two variants, 11B4 (Y84V/Y118D) and 16D8 (A86W/Y118N), with a high preference for NMN. Whereas in the presence of NMN both variants were capable of enabling the viability of cells of E. coli BW25113-derived NAD-auxotrophic strain YJE003, for which the last step of the deamidated pathway is blocked, the 16D8 expression strain could grow without exogenous NMN and accumulated a higher cellular NAD(H) level than BW25113 in the stationary phase. These mutants established fully active amidated NAD biosynthesis and offered a new opportunity to manipulate NAD metabolism for biocatalysis and metabolic engineering.IMPORTANCE Adenylylation of nicotinic acid mononucleotide (NaMN) and adenylylation of nicotinamide mononucleotide (NMN), respectively, are the key steps in the deamidated and amidated pathways for NAD biosynthesis. In most organisms, canonical NAD biosynthesis follows the deamidated pathway. Here we engineered Escherichia coli NaMN adenylyltransferase to favor NMN and expressed the mutant enzyme in an NAD-auxotrophic E. coli strain that has the last step of the deamidated pathway blocked. The engineered strain survived in M9 medium, which indicated the implementation of a functional amidated pathway for NAD biosynthesis. These results enrich our understanding of NAD biosynthesis and are valuable for manipulation of NAD homeostasis for metabolic engineering.
Collapse
|
19
|
Bathke J, Fritz-Wolf K, Brandstädter C, Burkhardt A, Jortzik E, Rahlfs S, Becker K. Structural and Functional Characterization of Plasmodium falciparum Nicotinic Acid Mononucleotide Adenylyltransferase. J Mol Biol 2016; 428:4946-4961. [PMID: 27984041 DOI: 10.1016/j.jmb.2016.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/19/2016] [Accepted: 10/24/2016] [Indexed: 11/24/2022]
Abstract
Nicotinic acid mononucleotide adenylyltransferase (NaMNAT) is an indispensable enzyme for the synthesis of NAD and NAD phosphate. It catalyzes the adenylylation of nicotinic acid mononucleotide (NaMN) to yield nicotinic acid adenine dinucleotide (NaAD). Since NAD(H) and NAD phosphate(H) are essentially involved in metabolic and redox regulatory reactions, NaMNAT is an attractive drug target in the fight against bacterial and parasitic infections. Notably, NaMNAT of the malaria parasite Plasmodium falciparum possesses only 20% sequence identity with the homologous human enzyme. Here, we present for the first time the two X-ray structures of P. falciparum NaMNAT (PfNaMNAT)-in the product-bound state with NaAD and complexed with an α,β-non-hydrolizable ATP analog-the structures were determined to a resolution of 2.2Å and 2.5Å, respectively. The overall architecture of PfNaMNAT was found to be more similar to its bacterial homologs than its human counterparts although the PPHK motif conserved in bacteria is missing. Furthermore, PfNaMNAT possesses two cysteine residues within the active site that have not been described for any other NaMNATase so far and are likely to be involved in redox regulation of PfNaMNAT activity. Enzymatic studies and surface plasmon resonance data reveal that PfNaMNAT is capable of utilizing NaMN and nicotinamide mononucleotide with a slight preference for NaMN. Surprisingly, a comparison with the active site of Escherichia coli NaMNAT showed very similar architectures, despite different substrate preferences.
Collapse
Affiliation(s)
- Jochen Bathke
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392 Giessen, Germany
| | - Karin Fritz-Wolf
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392 Giessen, Germany; Max-Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Christina Brandstädter
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392 Giessen, Germany
| | - Anja Burkhardt
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Esther Jortzik
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392 Giessen, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392 Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392 Giessen, Germany.
| |
Collapse
|
20
|
Abstract
Universal and ubiquitous redox cofactors, nicotinamide adenine dinucleotide (NAD) and its phosphorylated analog (NADP), collectively contribute to approximately 12% of all biochemical reactions included in the metabolic model of Escherichia coli K-12. A homeostasis of the NAD pool faithfully maintained by the cells results from a dynamic balance in a network of NAD biosynthesis, utilization, decomposition, and recycling pathways that is subject to tight regulation at various levels. A brief overview of NAD utilization processes is provided in this review, including some examples of nonredox utilization. The review focuses mostly on those aspects of NAD biogenesis and utilization in E. coli and Salmonella that emerged within the past 12 years. The first pyridine nucleotide cycle (PNC) originally identified in mammalian systems and termed the Preiss-Handler pathway includes a single-step conversion of niacin (Na) to NaMN by nicotinic acid phosphoribosyltransferase (PncB). In E. coli and many other prokaryotes, this enzyme, together with nicotinamide deamidase (PncA), compose the major pathway for utilization of the pyridine ring in the form of amidated (Nm) or deamidated (Na) precursors. The existence of various regulatory mechanisms and checkpoints that control the NAD biosynthetic machinery reflects the importance of maintaining NAD homeostasis in a variety of growth conditions. Among the most important regulatory mechanisms at the level of individual enzymes are a classic feedback inhibition of NadB, the first enzyme of NAD de novo biosynthesis, by NAD and a metabolic regulation of NadK by reduced cofactors.
Collapse
|
21
|
Pfoh R, Pai EF, Saridakis V. Nicotinamide mononucleotide adenylyltransferase displays alternate binding modes for nicotinamide nucleotides. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2032-9. [PMID: 26457427 PMCID: PMC4601368 DOI: 10.1107/s1399004715015497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 08/18/2015] [Indexed: 11/10/2022]
Abstract
Nicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes the biosynthesis of NAD(+) and NaAD(+). The crystal structure of NMNAT from Methanobacterium thermoautotrophicum complexed with NAD(+) and SO4(2-) revealed the active-site residues involved in binding and catalysis. Site-directed mutagenesis was used to further characterize the roles played by several of these residues. Arg11 and Arg136 were implicated in binding the phosphate groups of the ATP substrate. Both of these residues were mutated to lysine individually. Arg47 does not interact with either NMN or ATP substrates directly, but was deemed to play a role in binding as it is proximal to Arg11 and Arg136. Arg47 was mutated to lysine and glutamic acid. Surprisingly, when expressed in Escherichia coli all of these NMNAT mutants trapped a molecule of NADP(+) in their active sites. This NADP(+) was bound in a conformation that was quite different from that displayed by NAD(+) in the native enzyme complex. When NADP(+) was co-crystallized with wild-type NMNAT, the same structural arrangement was observed. These studies revealed a different conformation of NADP(+) in the active site of NMNAT, indicating plasticity of the active site.
Collapse
Affiliation(s)
- Roland Pfoh
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Emil F. Pai
- Campbell Family Institute for Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto Medical Discovery Tower–MaRS Centre, 101 College Street, Toronto, ON M5G 1L7, Canada
- Departments of Biochemistry, Medical Biophysics and Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Vivian Saridakis
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
22
|
Rodionova IA, Zuccola HJ, Sorci L, Aleshin AE, Kazanov MD, Ma CT, Sergienko E, Rubin EJ, Locher CP, Osterman AL. Mycobacterial nicotinate mononucleotide adenylyltransferase: structure, mechanism, and implications for drug discovery. J Biol Chem 2015; 290:7693-706. [PMID: 25631047 DOI: 10.1074/jbc.m114.628016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotinate mononucleotide adenylyltransferase NadD is an essential enzyme in the biosynthesis of the NAD cofactor, which has been implicated as a target for developing new antimycobacterial therapies. Here we report the crystal structure of Mycobacterium tuberculosis NadD (MtNadD) at a resolution of 2.4 Å. A remarkable new feature of the MtNadD structure, compared with other members of this enzyme family, is a 310 helix that locks the active site in an over-closed conformation. As a result, MtNadD is rendered inactive as it is topologically incompatible with substrate binding and catalysis. Directed mutagenesis was also used to further dissect the structural elements that contribute to the interactions of the two MtNadD substrates, i.e. ATP and nicotinic acid mononucleotide (NaMN). For inhibitory profiling of partially active mutants and wild type MtNadD, we used a small molecule inhibitor of MtNadD with moderate affinity (Ki ∼ 25 μM) and antimycobacterial activity (MIC80) ∼ 40-80 μM). This analysis revealed interferences with some of the residues in the NaMN binding subsite consistent with the competitive inhibition observed for the NaMN substrate (but not ATP). A detailed steady-state kinetic analysis of MtNadD suggests that ATP must first bind to allow efficient NaMN binding and catalysis. This sequential mechanism is consistent with the requirement of transition to catalytically competent (open) conformation hypothesized from structural modeling. A possible physiological significance of this mechanism is to enable the down-regulation of NAD synthesis under ATP-limiting dormancy conditions. These findings point to a possible new strategy for designing inhibitors that lock the enzyme in the inactive over-closed conformation.
Collapse
Affiliation(s)
- Irina A Rodionova
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Harmon J Zuccola
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts 02210
| | - Leonardo Sorci
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Ancona 60131, Italy
| | - Alexander E Aleshin
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Marat D Kazanov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 127051 Moscow, Russia, and
| | - Chen-Ting Ma
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Eduard Sergienko
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | | | - Andrei L Osterman
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037,
| |
Collapse
|
23
|
Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum. PLoS One 2014; 9:e94061. [PMID: 24747974 PMCID: PMC3991606 DOI: 10.1371/journal.pone.0094061] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/11/2014] [Indexed: 11/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite utilized as a redox cofactor and enzyme substrate in numerous cellular processes. Elevated NAD+ levels have been observed in red blood cells infected with the malaria parasite Plasmodium falciparum, but little is known regarding how the parasite generates NAD+. Here, we employed a mass spectrometry-based metabolomic approach to confirm that P. falciparum lacks the ability to synthesize NAD+ de novo and is reliant on the uptake of exogenous niacin. We characterized several enzymes in the NAD+ pathway and demonstrate cytoplasmic localization for all except the parasite nicotinamidase, which concentrates in the nucleus. One of these enzymes, the P. falciparum nicotinate mononucleotide adenylyltransferase (PfNMNAT), is essential for NAD+ metabolism and is highly diverged from the human homolog, but genetically similar to bacterial NMNATs. Our results demonstrate the enzymatic activity of PfNMNAT in vitro and demonstrate its ability to genetically complement the closely related Escherichia coli NMNAT. Due to the similarity of PfNMNAT to the bacterial enzyme, we tested a panel of previously identified bacterial NMNAT inhibitors and synthesized and screened twenty new derivatives, which demonstrate a range of potency against live parasite culture. These results highlight the importance of the parasite NAD+ metabolic pathway and provide both novel therapeutic targets and promising lead antimalarial compounds.
Collapse
|
24
|
Martinez-Vargas S, Martinez AI, Valdés-Martínez J, Perry DL. Preparation of three new 4′-phenyl-terpyridine–copper(II) complexes containing nicotinate or iso-nicotinate ligands. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2012.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
da Fonsêca MM, Zaha A, Caffarena ER, Vasconcelos ATR. Structure-based functional inference of hypothetical proteins from Mycoplasma hyopneumoniae. J Mol Model 2012; 18:1917-25. [PMID: 21870198 PMCID: PMC3340535 DOI: 10.1007/s00894-011-1212-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/05/2011] [Indexed: 10/27/2022]
Abstract
Enzootic pneumonia caused by Mycoplasma hyopneumoniae is a major constraint to efficient pork production throughout the world. This pathogen has a small genome with 716 coding sequences, of which 418 are homologous to proteins with known functions. However, almost 42% of the 716 coding sequences are annotated as hypothetical proteins. Alternative methodologies such as threading and comparative modeling can be used to predict structures and functions of such hypothetical proteins. Often, these alternative methods can answer questions about the properties of a model system faster than experiments. In this study, we predicted the structures of seven proteins annotated as hypothetical in M. hyopneumoniae, using the structure-based approaches mentioned above. Three proteins were predicted to be involved in metabolic processes, two proteins in transcription and two proteins where no function could be assigned. However, the modeled structures of the last two proteins suggested experimental designs to identify their functions. Our findings are important in diminishing the gap between the lack of annotation of important metabolic pathways and the great number of hypothetical proteins in the M. hyopneumoniae genome.
Collapse
Affiliation(s)
- Marbella Maria da Fonsêca
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática, Petrópolis, 25651-075 RJ Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS Brazil
| | - Ernesto R. Caffarena
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, RJ Brazil
| | | |
Collapse
|
26
|
Bi J, Wang H, Xie J. Comparative genomics of NAD(P) biosynthesis and novel antibiotic drug targets. J Cell Physiol 2011; 226:331-40. [PMID: 20857400 DOI: 10.1002/jcp.22419] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
NAD(P) is an indispensable cofactor for all organisms and its biosynthetic pathways are proposed as promising novel antibiotics targets against pathogens such as Mycobacterium tuberculosis. Six NAD(P) biosynthetic pathways were reconstructed by comparative genomics: de novo pathway (Asp), de novo pathway (Try), NmR pathway I (RNK-dependent), NmR pathway II (RNK-independent), Niacin salvage, and Niacin recycling. Three enzymes pivotal to the key reactions of NAD(P) biosynthesis are shared by almost all organisms, that is, NMN/NaMN adenylyltransferase (NMN/NaMNAT), NAD synthetase (NADS), and NAD kinase (NADK). They might serve as ideal broad spectrum antibiotic targets. Studies in M. tuberculosis have in part tested such hypothesis. Three regulatory factors NadR, NiaR, and NrtR, which regulate NAD biosynthesis, have been identified. M. tuberculosis NAD(P) metabolism and regulation thereof, potential drug targets and drug development are summarized in this paper.
Collapse
Affiliation(s)
- Jicai Bi
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | | | | |
Collapse
|
27
|
Huang N, Kolhatkar R, Eyobo Y, Sorci L, Rodionova I, Osterman AL, MacKerell AD, Zhang H. Complexes of bacterial nicotinate mononucleotide adenylyltransferase with inhibitors: implication for structure-based drug design and improvement. J Med Chem 2010; 53:5229-39. [PMID: 20578699 PMCID: PMC2915899 DOI: 10.1021/jm100377f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial nicotinate mononucleotide adenylyltransferase encoded by the essential gene nadD plays a central role in the synthesis of the redox cofactor NAD(+). The NadD enzyme is conserved in the majority of bacterial species and has been recognized as a novel target for developing new and potentially broad-spectrum antibacterial therapeutics. Here we report the crystal structures of Bacillus anthracis NadD in complex with three NadD inhibitors, including two analogues synthesized in the present study. These structures revealed a common binding site shared by different classes of NadD inhibitors and explored the chemical environment surrounding this site. The structural data obtained here also showed that the subtle changes in ligand structure can lead to significant changes in the binding mode, information that will be useful for future structure-based optimization and design of high affinity inhibitors.
Collapse
Affiliation(s)
- Nian Huang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390
| | - Rohit Kolhatkar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| | - Yvonne Eyobo
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390
| | - Leonardo Sorci
- The Burnham Institute for Medical Research, La Jolla, CA 92037
| | - Irina Rodionova
- The Burnham Institute for Medical Research, La Jolla, CA 92037
| | | | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| | - Hong Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390
| |
Collapse
|
28
|
Gazzaniga F, Stebbins R, Chang SZ, McPeek MA, Brenner C. Microbial NAD metabolism: lessons from comparative genomics. Microbiol Mol Biol Rev 2009; 73:529-41, Table of Contents. [PMID: 19721089 PMCID: PMC2738131 DOI: 10.1128/mmbr.00042-08] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
NAD is a coenzyme for redox reactions and a substrate of NAD-consuming enzymes, including ADP-ribose transferases, Sir2-related protein lysine deacetylases, and bacterial DNA ligases. Microorganisms that synthesize NAD from as few as one to as many as five of the six identified biosynthetic precursors have been identified. De novo NAD synthesis from aspartate or tryptophan is neither universal nor strictly aerobic. Salvage NAD synthesis from nicotinamide, nicotinic acid, nicotinamide riboside, and nicotinic acid riboside occurs via modules of different genes. Nicotinamide salvage genes nadV and pncA, found in distinct bacteria, appear to have spread throughout the tree of life via horizontal gene transfer. Biochemical, genetic, and genomic analyses have advanced to the point at which the precursors and pathways utilized by a microorganism can be predicted. Challenges remain in dissecting regulation of pathways.
Collapse
Affiliation(s)
- Francesca Gazzaniga
- Department of Genetics and Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | | | | | | | |
Collapse
|
29
|
Zhai RG, Rizzi M, Garavaglia S. Nicotinamide/nicotinic acid mononucleotide adenylyltransferase, new insights into an ancient enzyme. Cell Mol Life Sci 2009; 66:2805-18. [PMID: 19448972 PMCID: PMC11115848 DOI: 10.1007/s00018-009-0047-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/16/2009] [Accepted: 04/28/2009] [Indexed: 12/14/2022]
Abstract
Nicotinamide/nicotinic acid mononucleotide adenylyltransferase (NMNAT) has long been known as the master enzyme in NAD biosynthesis in living organisms. A burst of investigations on NMNAT, going beyond enzymology, have paralleled increasing discoveries of key roles played by NAD homeostasis in a number or patho-physiological conditions. The availability of in-depth kinetics and structural enzymology analyses carried out on NMNATs from different organisms offer a powerful tool for uncovering fascinating evolutionary relationships. On the other hand, additional functions featuring NMNAT have emerged from investigations aimed at unraveling the molecular mechanisms responsible for complex biological phenomena such as neurodegeneration. NMNAT appears to be a multifunctional protein that sits both at the core of central metabolism and at a crossroads of multiple cellular processes. The resultant wealth of biochemical data has built a robust framework upon which design of NMNAT activators, inhibitors or enzyme variants of potential medical interest can be based.
Collapse
Affiliation(s)
- Rong Grace Zhai
- Department of Molecular and Cellular Pharmacology, Neuroscience Center, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| | - Menico Rizzi
- DiSCAFF, University of Piemonte Orientale “A. Avogadro”, Via Bovio, 6, 28100 Novara, Italy
| | - Silvia Garavaglia
- DiSCAFF, University of Piemonte Orientale “A. Avogadro”, Via Bovio, 6, 28100 Novara, Italy
| |
Collapse
|
30
|
Sorci L, Pan Y, Eyobo Y, Rodionova I, Huang N, Kurnasov O, Zhong S, MacKerell AD, Zhang H, Osterman AL. Targeting NAD biosynthesis in bacterial pathogens: Structure-based development of inhibitors of nicotinate mononucleotide adenylyltransferase NadD. CHEMISTRY & BIOLOGY 2009; 16:849-61. [PMID: 19716475 PMCID: PMC2770502 DOI: 10.1016/j.chembiol.2009.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/08/2009] [Accepted: 07/15/2009] [Indexed: 01/07/2023]
Abstract
The emergence of multidrug-resistant pathogens necessitates the search for new antibiotics acting on previously unexplored targets. Nicotinate mononucleotide adenylyltransferase of the NadD family, an essential enzyme of NAD biosynthesis in most bacteria, was selected as a target for structure-based inhibitor development. Using iterative in silico and in vitro screens, we identified small molecule compounds that efficiently inhibited target enzymes from Escherichia coli (ecNadD) and Bacillus anthracis (baNadD) but had no effect on functionally equivalent human enzymes. On-target antibacterial activity was demonstrated for some of the selected inhibitors. A 3D structure of baNadD was solved in complex with one of these inhibitors (3_02), providing mechanistic insights and guidelines for further improvement. Most importantly, the results of this study help validate NadD as a target for the development of antibacterial agents with potential broad-spectrum activity.
Collapse
Affiliation(s)
- Leonardo Sorci
- Burnham Institute for Medical Research, La Jolla, CA 92037
| | - Yongping Pan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| | - Yvonne Eyobo
- Department of Biochemistry and University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | - Nian Huang
- Department of Biochemistry and University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Oleg Kurnasov
- Burnham Institute for Medical Research, La Jolla, CA 92037
| | - Shijun Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| | - Hong Zhang
- Department of Biochemistry and University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | |
Collapse
|
31
|
Huerta C, Borek D, Machius M, Grishin NV, Zhang H. Structure and mechanism of a eukaryotic FMN adenylyltransferase. J Mol Biol 2009; 389:388-400. [PMID: 19375431 PMCID: PMC2928223 DOI: 10.1016/j.jmb.2009.04.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/08/2009] [Accepted: 04/11/2009] [Indexed: 10/20/2022]
Abstract
Flavin mononucleotide adenylyltransferase (FMNAT) catalyzes the formation of the essential flavocoenzyme flavin adenine dinucleotide (FAD) and plays an important role in flavocoenzyme homeostasis regulation. By sequence comparison, bacterial and eukaryotic FMNAT enzymes belong to two different protein superfamilies and apparently utilize different sets of active-site residues to accomplish the same chemistry. Here we report the first structural characterization of a eukaryotic FMNAT from the pathogenic yeast Candida glabrata. Four crystal structures of C. glabrata FMNAT in different complexed forms were determined at 1.20-1.95 A resolutions, capturing the enzyme active-site states prior to and after catalysis. These structures reveal a novel flavin-binding mode and a unique enzyme-bound FAD conformation. Comparison of the bacterial and eukaryotic FMNATs provides a structural basis for understanding the convergent evolution of the same FMNAT activity from different protein ancestors. Structure-based investigation of the kinetic properties of FMNAT should offer insights into the regulatory mechanisms of FAD homeostasis by FMNAT in eukaryotic organisms.
Collapse
Affiliation(s)
- Carlos Huerta
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Dominika Borek
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Mischa Machius
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Nick V. Grishin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Hong Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
32
|
Frago S, Velázquez-Campoy A, Medina M. The puzzle of ligand binding to Corynebacterium ammoniagenes FAD synthetase. J Biol Chem 2009; 284:6610-9. [PMID: 19136717 PMCID: PMC2652324 DOI: 10.1074/jbc.m808142200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/11/2008] [Indexed: 11/06/2022] Open
Abstract
In bacteria, riboflavin phosphorylation and subsequent conversion of FMN into FAD are carried out by FAD synthetase, a single bifunctional enzyme. Both reactions require ATP and Mg(2+). The N-terminal domain of FAD synthetase appears to be responsible for the adenylyltransferase activity, whereas the C-terminal domain would be in charge of the kinase activity. Binding to Corynebacterium ammoniagenes FAD synthetase of its products and substrates, as well as of several analogues, is analyzed. Binding parameters for adenine nucleotides to each one of the two adenine nucleotide sites are reported. In addition, it is demonstrated for the first time that the enzyme presents two independent flavin sites, each one related with one of the enzymatic activities. The binding parameters of flavins to these sites are also provided. The presence of Mg(2+) and of both adenine nucleotides and flavins cooperatively modulates the interaction parameters for the other ligands. Our data also suggest that during its double catalytic cycle FAD synthetase must suffer conformational changes induced by adenine nucleotide-Mg(2+) or flavin binding. They might include not only rearrangement of the different protein loops but also alternative conformations between domains.
Collapse
Affiliation(s)
- Susana Frago
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, and Institute of Biocomputation and Physics of Complex Systems
| | | | | |
Collapse
|
33
|
Sershon VC, Santarsiero BD, Mesecar A. Kinetic and X-ray structural evidence for negative cooperativity in substrate binding to nicotinate mononucleotide adenylyltransferase (NMAT) from Bacillus anthracis. J Mol Biol 2009; 385:867-88. [PMID: 18977360 PMCID: PMC2654404 DOI: 10.1016/j.jmb.2008.10.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/06/2008] [Accepted: 10/09/2008] [Indexed: 11/18/2022]
Abstract
Biosynthesis of NAD(P) in bacteria occurs either de novo or through one of the salvage pathways that converge at the point where the reaction of nicotinate mononucleotide (NaMN) with ATP is coupled to the formation of nicotinate adenine dinucleotide (NaAD) and inorganic pyrophosphate. This reaction is catalyzed by nicotinate mononucleotide adenylyltransferase (NMAT), which is essential for bacterial growth, making it an attractive drug target for the development of new antibiotics. Steady-state kinetic and direct binding studies on NMAT from Bacillus anthracis suggest a random sequential Bi-Bi kinetic mechanism. Interestingly, the interactions of NaMN and ATP with NMAT were observed to exhibit negative cooperativity, i.e. Hill coefficients <1.0. Negative cooperativity in binding is supported by the results of X-ray crystallographic studies. X-ray structures of the B. anthracis NMAT apoenzyme, and the NaMN- and NaAD-bound complexes were determined to resolutions of 2.50 A, 2.60 A and 1.75 A, respectively. The X-ray structure of the NMAT-NaMN complex revealed only one NaMN molecule bound in the biological dimer, supporting negative cooperativity in substrate binding. The kinetic, direct-binding, and X-ray structural studies support a model in which the binding affinity of substrates to the first monomer of NMAT is stronger than that to the second, and analysis of the three X-ray structures reveals significant conformational changes of NMAT along the enzymatic reaction coordinate. The negative cooperativity observed in B. anthracis NMAT substrate binding is a unique property that has not been observed in other prokaryotic NMAT enzymes. We propose that regulation of the NAD(P) biosynthetic pathway may occur, in part, at the reaction catalyzed by NMAT.
Collapse
Affiliation(s)
- Valerie C. Sershon
- From the Department of Medicinal Chemistry and Pharmacognosy & the Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607
| | - Bernard D. Santarsiero
- From the Department of Medicinal Chemistry and Pharmacognosy & the Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607
| | - Andrew Mesecar
- From the Department of Medicinal Chemistry and Pharmacognosy & the Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
34
|
Segl’a P, Miklovič J, Mikloš D, Mrázová V, Krupková L, Hudecová D, Ondrušová Z, Švorec J, Moncol J, Melník M. Synthesis, spectroscopic properties, crystal structure and biological activities of copper(II) 2-methylthionicotinate complexes with furopyridines. TRANSIT METAL CHEM 2008. [DOI: 10.1007/s11243-008-9151-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Lu S, Smith CD, Yang Z, Pruett PS, Nagy L, McCombs D, DeLucas LJ, Brouillette WJ, Brouillette CG. Structure of nicotinic acid mononucleotide adenylyltransferase from Bacillus anthracis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:893-8. [PMID: 18931430 PMCID: PMC2564882 DOI: 10.1107/s1744309108029102] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 09/10/2008] [Indexed: 11/10/2022]
Abstract
Nicotinic acid mononucleotide adenylyltransferase (NaMNAT; EC 2.7.7.18) is the penultimate enzyme in the biosynthesis of NAD(+) and catalyzes the adenylation of nicotinic acid mononucleotide (NaMN) by ATP to form nicotinic acid adenine dinucleotide (NaAD). This enzyme is regarded as a suitable candidate for antibacterial drug development; as such, Bacillus anthracis NaMNAT (BA NaMNAT) was heterologously expressed in Escherichia coli for the purpose of inhibitor discovery and crystallography. The crystal structure of BA NaMNAT was determined by molecular replacement, revealing two dimers per asymmetric unit, and was refined to an R factor and R(free) of 0.228 and 0.263, respectively, at 2.3 A resolution. The structure is very similar to that of B. subtilis NaMNAT (BS NaMNAT), which is also a dimer, and another independently solved structure of BA NaMNAT recently released from the PDB along with two ligated forms. Comparison of these and other less related bacterial NaMNAT structures support the presence of considerable conformational heterogeneity and flexibility in three loops surrounding the substrate-binding area.
Collapse
Affiliation(s)
- Shanyun Lu
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400, USA
| | - Craig D. Smith
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400, USA
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400, USA
| | - Zhengrong Yang
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400, USA
| | - Pamela S. Pruett
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400, USA
| | - Lisa Nagy
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400, USA
| | - Deborah McCombs
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400, USA
| | - Lawrence J. DeLucas
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400, USA
- Department of Optometry, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400, USA
| | - Wayne J. Brouillette
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400, USA
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400, USA
| | - Christie G. Brouillette
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400, USA
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400, USA
| |
Collapse
|
36
|
Crystal structure, spectroscopic and magnetic properties, and antimicrobial activities of cobalt(II) 2-methylthionicotinate complexes with N-heterocyclic ligands. TRANSIT METAL CHEM 2008. [DOI: 10.1007/s11243-008-9137-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Huang N, Sorci L, Zhang X, Brautigan C, Li X, Raffaelli N, Magni G, Grishin NV, Osterman A, Zhang H. Bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase: structure and function in bacterial NAD metabolism. Structure 2008; 16:196-209. [PMID: 18275811 PMCID: PMC2258087 DOI: 10.1016/j.str.2007.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/30/2007] [Accepted: 11/18/2007] [Indexed: 11/28/2022]
Abstract
Bacterial NadM-Nudix is a bifunctional enzyme containing a nicotinamide mononucleotide (NMN) adenylyltransferase and an ADP-ribose (ADPR) pyrophosphatase domain. While most members of this enzyme family, such as that from a model cyanobacterium Synechocystis sp., are involved primarily in nicotinamide adenine dinucleotide (NAD) salvage/recycling pathways, its close homolog in a category-A biodefense pathogen, Francisella tularensis, likely plays a central role in a recently discovered novel pathway of NAD de novo synthesis. The crystal structures of NadM-Nudix from both species, including their complexes with various ligands and catalytic metal ions, revealed detailed configurations of the substrate binding and catalytic sites in both domains. The structure of the N-terminal NadM domain may be exploited for designing new antitularemia therapeutics. The ADPR binding site in the C-terminal Nudix domain is substantially different from that of Escherichia coli ADPR pyrophosphatase, and is more similar to human NUDT9. The latter observation provided new insights into the ligand binding mode of ADPR-gated Ca2+ channel TRPM2.
Collapse
Affiliation(s)
- Nian Huang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Leonardo Sorci
- The Burnham Institute for Medical Research, La Jolla, CA 92037
| | - Xuejun Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Chad Brautigan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Xiaoqing Li
- The Burnham Institute for Medical Research, La Jolla, CA 92037
| | - Nadia Raffaelli
- Instituto di Biotecnologie Biochimiche, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Giulio Magni
- Instituto di Biotecnologie Biochimiche, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Nick V. Grishin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Andrei Osterman
- The Burnham Institute for Medical Research, La Jolla, CA 92037
| | - Hong Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
38
|
Khan JA, Forouhar F, Tao X, Tong L. Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery. Expert Opin Ther Targets 2007; 11:695-705. [PMID: 17465726 DOI: 10.1517/14728222.11.5.695] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) has crucial roles in many cellular processes, both as a coenzyme for redox reactions and as a substrate to donate ADP-ribose units. Enzymes involved in NAD(+) metabolism are attractive targets for drug discovery against a variety of human diseases, including cancer, multiple sclerosis, neurodegeneration and Huntington's disease. A small-molecule inhibitor of nicotinamide phosphoribosyltransferase, an enzyme in the salvage pathway of NAD(+) biosynthesis, is presently in clinical trials against cancer. An analog of a kynurenine pathway intermediate is efficacious against multiple sclerosis in an animal model. Indoleamine 2,3-dioxygenase plays an important role in immune evasion by cancer cells and other disease processes. Inhibitors against kynurenine 3-hydroxylase can reduce the production of neurotoxic metabolites while increasing the production of neuroprotective compounds. This review summarizes the existing knowledge on NAD(+) metabolic enzymes, with emphasis on their relevance for drug discovery.
Collapse
Affiliation(s)
- Javed A Khan
- Columbia University, Department of Biological Sciences, New York, NY 10027, USA
| | | | | | | |
Collapse
|
39
|
Jia H, Yan T, Feng Y, Zeng C, Shi X, Zhai Q. Identification of a critical site in Wld(s): essential for Nmnat enzyme activity and axon-protective function. Neurosci Lett 2006; 413:46-51. [PMID: 17207927 DOI: 10.1016/j.neulet.2006.11.067] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 11/10/2006] [Accepted: 11/14/2006] [Indexed: 11/22/2022]
Abstract
The chimeric Wld(s) protein consisting of the N-terminal 70 amino acids of Ufd2 and the complete sequence of nicotinamide mononucleotide adenylyltransferase1 (Nmnat1), delays Wallerian degeneration in Wld(s) mice. Although Nmnat1 enzyme activity was showed to be critical for the function of Wld(s) protein, the expected phenotype was not observed in Nmnat1 transgenic mice. To further check whether Nmnat1 enzyme activity is involved, we aligned sequences of eukaryotic Nmnats, and found that Phe in helix A is highly conserved not only in various species, but also in different homologues. The Phe is a residue located near to the highly conserved GXFXPX(T/H)XXH motif and resides in the same helix as the last His of this conserved motif. To investigate the role of the conserved Phe in Nmnat activity, we made the point mutation of Phe. The Phe28 mutation of mouse Nmnat1 in Wld(s) completely abolished its Nmnat enzyme activity. To study the role of mutant Wld(s) in axon degeneration, herpes viruses were packaged to infect cultured SCGs. We found that the mutant Wld(s) failed to protect axon degeneration from morphological changes, microtubule integration and neurofilament degradation. Therefore, we have identified a Phe residue that critical for both enzyme activity of Nmnat and the axon-protective function of Wld(s), and further confirmed that Nmnat1 enzyme activity is required in Wld(s) function.
Collapse
Affiliation(s)
- Haiqun Jia
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Han S, Forman MD, Loulakis P, Rosner MH, Xie Z, Wang H, Danley DE, Yuan W, Schafer J, Xu Z. Crystal structure of nicotinic acid mononucleotide adenylyltransferase from Staphyloccocus aureus: structural basis for NaAD interaction in functional dimer. J Mol Biol 2006; 360:814-25. [PMID: 16784754 DOI: 10.1016/j.jmb.2006.05.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
Bacterial nicotinic acid mononucleotide adenylyltransferase (NaMNAT; EC 2.7.7.18) encoded by the nadD gene, is essential for cell survival and is thus an attractive target for developing new antibacterial agents. The NaMNAT catalyzes the transfer of an adenylyl group of ATP to nicotinic acid mononucleotide (NaMN) to form nicotinic acid dinucleotide (NaAD). Two independently derived, high-resolution structures of Staphylococcus aureus NaMNAT-NaAD complexes establish the conserved features of the core dinucleotide-binding fold with other adenylyltransferases from bacteria to human despite a limited sequence conservation. The crystal structures reveal that the nicotinate carboxylates of NaAD are recognized by interaction with the main-chain amides of Thr85 and Tyr117, a positive helix dipole and two bridged-water molecules. Unlike other bacterial adenylyltransferases, where a partially conserved histidine residue interacts with the nicotinate ring, the Leu44 side-chain interacts with the nicotinate ring by van der Waals contact. Importantly, the S. aureus NaMNAT represents a distinct adenylyltransferase subfamily identifiable in part by common features of dimerization and substrate recognition in the loop connecting beta5 to beta6 (residues 132-146) and the additional beta6 strand. The unique beta6 strand helps orient the residues in the loop connecting beta5 to beta6 for substrate/product recognition and allows the beta7 strand structural flexibility to make key dimer interface interactions. Taken together, these structural results provide a molecular basis for understanding the coupled activity and recognition specificity for S. aureus NaMNAT and for rational design of selective inhibitors.
Collapse
Affiliation(s)
- Seungil Han
- Pfizer Inc. Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Syntheses and Characterization of Cr(III)-Hydrogensalicylato and -Hydroxonitrophenolato Tetraaza Macrocyclic Complexes. B KOREAN CHEM SOC 2006. [DOI: 10.5012/bkcs.2006.27.5.687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Kalinowska M, Siemieniuk E, Kostro A, Lewandowski W. The application of Aj, BAC, I6, HOMA indexes for quantitative determination of aromaticity of metal complexes with benzoic, salicylic, nicotinic acids and benzene derivatives. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.theochem.2006.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Stancek M, Schnell R, Rydén-Aulin M. Analysis of Escherichia coli nicotinate mononucleotide adenylyltransferase mutants in vivo and in vitro. BMC BIOCHEMISTRY 2005; 6:16. [PMID: 16153292 PMCID: PMC1249556 DOI: 10.1186/1471-2091-6-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 09/09/2005] [Indexed: 11/23/2022]
Abstract
Background Adenylation of nicotinate mononucleotide to nicotinate adenine dinucleotide is the penultimate step in NAD+ synthesis. In Escherichia coli, the enzyme nicotinate mononucleotide adenylyltransferase is encoded by the nadD gene. We have earlier made an initial characterization in vivo of two mutant enzymes, NadD72 and NadD74. Strains with either mutation have decreased intracellular levels of NAD+, especially for one of the alleles, nadD72. Results In this study these two mutant proteins have been further characterized together with ten new mutant variants. Of the, in total, twelve mutations four are in a conserved motif in the C-terminus and eight are in the active site. We have tested the activity of the enzymes in vitro and their effect on the growth phenotype in vivo. There is a very good correlation between the two data sets. Conclusion The mutations in the C-terminus did not reveal any function for the conserved motif. On the other hand, our data has lead us to assign amino acid residues His-19, Arg-46 and Asp-109 to the active site. We have also shown that the nadD gene is essential for growth in E. coli.
Collapse
Affiliation(s)
- Martin Stancek
- In vitro Sweden AB, Box 21160, S-100 31 Stockholm, Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Monica Rydén-Aulin
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
45
|
Lewandowski W, Kalinowska M, Lewandowska H. The influence of metals on the electronic system of biologically important ligands. Spectroscopic study of benzoates, salicylates, nicotinates and isoorotates. Review. J Inorg Biochem 2005; 99:1407-23. [PMID: 15927261 DOI: 10.1016/j.jinorgbio.2005.04.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 04/12/2005] [Accepted: 04/14/2005] [Indexed: 01/04/2023]
Abstract
This paper reviews the results of the intense experimental and theoretical studies on the influence of selected metals on the electronic system of biologically important molecules such as benzoic, 2-hydroxybenzoic and 3-pyridine carboxylic acids as well as 5-carboxyuracil. The research involved following techniques: infrared (FT-IR), Raman (FT-Raman), FT-IR Ar matrix, electronic absorption spectroscopy (UV/visible), nuclear magnetic resonance ((1)H, (13)C, (15)N, (17)O NMR), X-ray and quantum mechanical calculations. The influence of metals on the electronic system was examined through comparison of the changes in so called "logical series". The exemplary series are: Li-->Na-->K-->Rb-->Cs, Na(I)-->Ca(II)-->La(III)-->Th(IV); Na(I)-->Mg(II)-->Al(III) or long series of La(III) and fourteen lanthanides La(III)-->Ce(III)-->Lu(III). The correlation between the perturbation of the electronic system of ligands and the position of metals in the periodic table was found. The influence of the carboxylic anion structure and the effect of hydration on the perturbation of the electronic system of molecule were also discussed. The partial explanation in what way metals disturb and stabilize electronic system of studied ligands was done. It is necessary to carry out the physico-chemical studies of benzoates, salicylates, 3-pyridine carboxylates and isoorotates in order to understand the nature of the interactions of these compounds with their biological targets (e.g., receptors in the cell or important cell components). The results of this study make possible to predict some properties of a molecule, such as its reactivity, durability of complex compounds, and kinship to enzymes.
Collapse
Affiliation(s)
- W Lewandowski
- Department of Chemistry, Białystok Technical University, Zamenhofa 29, 15-435 Białystok, Poland.
| | | | | |
Collapse
|
46
|
Yoon HJ, Kim HL, Mikami B, Suh SW. Crystal Structure of Nicotinic Acid Mononucleotide Adenylyltransferase from Pseudomonas aeruginosa in its Apo and Substrate-complexed Forms Reveals a Fully Open Conformation. J Mol Biol 2005; 351:258-65. [PMID: 16009375 DOI: 10.1016/j.jmb.2005.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 05/31/2005] [Accepted: 06/01/2005] [Indexed: 11/23/2022]
Abstract
The enzyme nicotinic acid mononucleotide adenylyltransferase (NaMN AT; EC 2.7.7.18) is essential for the synthesis of nicotinamide adenine dinucleotide and is a potential target for antibiotics. It catalyzes the transfer of an AMP moiety from ATP to nicotinic acid mononucleotide to form nicotinic acid adenine dinucleotide. In order to provide missing structural information on the substrate complexes of NaMN AT and to assist structure-based design of specific inhibitors for antibacterial discovery, we have determined the crystal structure of NaMN AT from Pseudomonas aeruginosa in three distinct states, i.e. the NaMN-bound form at 1.7A resolution and ATP-bound form at 2.0A as well as its apo-form at 2.0A. They represent crucial structural information necessary for better understanding of the substrate recognition and the catalytic mechanism. The substrate-unbound and substrate-complexed structures are all in the fully open conformation and there is little conformational change upon binding each of the substrates. Our structures indicate that a conformational change is necessary to bring the two substrates closer together for initiating the catalysis. We suggest that such a conformational change likely occurs only after both substrates are simultaneously bound in the active site.
Collapse
Affiliation(s)
- Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, South Korea
| | | | | | | |
Collapse
|
47
|
Kundu A, Kishore N. Thermodynamics of α-lactalbumin–dl-α-dipalmitoylphosphatidylcholine interactions and effect of the antioxidant nicotinamide on these interactions. Biophys Chem 2005; 114:157-67. [PMID: 15829349 DOI: 10.1016/j.bpc.2004.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 11/24/2004] [Accepted: 11/24/2004] [Indexed: 11/22/2022]
Abstract
Differential scanning calorimetry has been used to understand the thermodynamics of the interactions of dl-alpha-dipalmitoylphosphatidylcholine (DPPC) with alpha-lactalbumin and the effect of the antioxidant nicotinamide on these interactions. Nicotinamide decreases the thermal transition temperature of both the lipid and the protein at high concentrations. The thermal unfolding transitions of the protein were two state and calorimetrically reversible. There was no significant change in the shape and thermodynamic parameters accompanying the lipid endotherms, suggesting that nicotinamide did not penetrate the lipid bilayer. The thermal unfoldings of alpha-lactalbumin in the presence of DPPC as cosolute also adhered to two-state reversible mechanism. The changes in the thermodynamic parameters accompanying the thermal transitions were small, indicating no significant interaction of alpha-lactalbumin with DPPC. The changes in the thermodynamic parameters indicate that the lipid bilayer organization, as well as the partitioning of the extrinsic protein alpha-lactalbumin into the bilayer, is not affected in the entire studied concentration range of the lipid. It is observed that the presence of increasing concentration of nicotinamide (as high as 1.0 mol dm(-3)) in the lipid-protein mixture does not affect its partitioning into the lipid bilayer, although nicotinamide preferentially interacts with alpha-lactalbumin. The change in the effect of nicotinamide on lipid transition temperature in the mixture and literature report suggests that nicotinamide may be forming a hydrogen-bonded complex with the protein through its amide functionality. The surface tension data of aqueous nicotinamide in combination with the thermal denaturation results of protein in presence of nicotinamide confirmed that surface tension effect does not have any significant contribution to the effect of nicotinamide on protein.
Collapse
Affiliation(s)
- Agnita Kundu
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | |
Collapse
|
48
|
Franchetti P, Cappellacci L, Pasqualini M, Grifantini M, Lorenzi T, Raffaelli N, Magni G. Dinucleoside polyphosphate NAD analogs as potential NMN adenylyltransferase inhibitors. Synthesis and biological evaluation. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:865-8. [PMID: 14565298 DOI: 10.1081/ncn-120022673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Two dinucleoside polyphosphate NAD analogs, P1-(adenosine-5')-P3-(nicotinamide riboside-5')triphosphate (Np3A, 1) and P1-(adenosine-5')-P4-(nicotinamide riboside-5')tetraphosphate (Np4A, 2), were synthesized and tested as inhibitors of both microbial and human recombinant NMN adenylyltransferase. Compounds 1 and 2 proved to be selective inhibitors of microbial enzymes.
Collapse
Affiliation(s)
- P Franchetti
- Department of Chemical Sciences, University of Camerino, Camerino, Italy.
| | | | | | | | | | | | | |
Collapse
|
49
|
Pattridge KA, Weber CH, Friesen JA, Sanker S, Kent C, Ludwig ML. Glycerol-3-phosphate cytidylyltransferase. Structural changes induced by binding of CDP-glycerol and the role of lysine residues in catalysis. J Biol Chem 2003; 278:51863-71. [PMID: 14506262 DOI: 10.1074/jbc.m306174200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial enzyme, glycerol-3-phosphate cytidylyltransferase (GCT), is a model for mammalian cytidylyltransferases and is a member of a large superfamily of nucleotidyltransferases. Dimeric GCT from Bacillus subtilis displays unusual negative cooperativity in substrate binding and appears to form products only when both active sites are occupied by substrates. Here we describe a complex of GCT with the product, CDP-glycerol, in a crystal structure in which bound sulfate serves as a partial mimic of the second product, pyrophosphate. Binding of sulfate to form a pseudo-ternary complex is observed in three of the four chains constituting the asymmetric unit and is accompanied by a backbone rearrangement at Asp11 and ordering of the C-terminal helix. Comparison with the CTP complex of GCT, determined previously, reveals that in the product complex the active site closes around the glycerol phosphate moiety with a concerted motion of the segment 37-47 that includes helix B. This rearrangement allows lysines 44 and 46 to interact with the glycerol and cytosine phosphates of CDP-glycerol. Binding of CDP-glycerol also induces smaller movements of residues 92-100. Roles of lysines 44 and 46 in catalysis have been confirmed by mutagenesis of these residues to alanine, which decreases Vmax(app) and has profound effects on the Km(app) for glycerol-3-phosphate.
Collapse
Affiliation(s)
- Katherine A Pattridge
- Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | |
Collapse
|
50
|
Saridakis V, Pai EF. Mutational, structural, and kinetic studies of the ATP-binding site of Methanobacterium thermoautotrophicum nicotinamide mononucleotide adenylyltransferase. J Biol Chem 2003; 278:34356-63. [PMID: 12810729 DOI: 10.1074/jbc.m205369200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several residues lining the ATP-binding site of Methanobacterium thermoautotrophicum nicotinamide mononucleotide adenylyltransferase (NMNATase) were mutated in an effort to better characterize their roles in substrate binding and catalysis. Residues selected were Arg-11 and Arg-136, both of which had previously been implicated as substrate binding residues, as well as His-16 and His-19, part of the HXGH active site motif and postulated to be of importance in catalysis. Kinetic studies revealed that both Arg-11 and Arg-136 contributed to the binding of the substrate, ATP. When these amino acids were replaced by lysines, the apparent Km values of the respective mutants for ATP decreased by factors of 1.3 and 2.9 and by factors of 1.9 and 8.8 when the same residues were changed to alanines. All four Arg mutants displayed unaltered Km values for NMN. The apparent kcat values of the R11K and R136K mutants were the same as those of WT NMNATase but the apparent kcat values of the alanine mutants had decreased. Crystal structures of the Arg mutants revealed NAD+ and SO42- molecules trapped at their active sites. The binding interactions of NAD+ were unchanged but the binding of SO42- was altered in these mutants compared with wild type. The alanine mutants at positions His-16 and His-19 retained approximately 6 and 1.3%, respectively, of WT NMNATase activity indicating that His-19 is a key catalytic group. Surprisingly, this H19A mutant displayed a novel and distinct mode of NAD+ binding when co-crystallized in the presence of NAD+ and SO42-.
Collapse
Affiliation(s)
- Vivian Saridakis
- Molecular and Structural Biology, Ontario Cancer Institute, University Health Network, and the Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | |
Collapse
|