1
|
Ma D, Lian F, Wang X. PLCG2 promotes hepatocyte proliferation in vitro via NF-κB and ERK pathway by targeting bcl2, myc and ccnd1. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3786-3792. [PMID: 31549850 DOI: 10.1080/21691401.2019.1669616] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Phospholipase Cγ2 (PLCG2) has been implicated in the regulation of cell proliferation, transformation, and tumor growth. In this study, we investigate the mechanism of PLCG2 action using a short interference RNA (siRNA) method. The effects of PLCG2 on rat liver BRL-3A cells treated siRNA were studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT assay), bromodeoxyuridine (BrdU) labelling assay, flow cytometry method (FCM), quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. The results showed when PLCG2 was reduced, cell vitality and proliferation rate were significantly decreased (p < .05 vs. control). FCM analysis showed that the number of cell division phase (G2 + M) was declined (p < .05 vs. control). RT-PCR and western blot revealed that the expression of signalling related genes NF-κB, FOS, JUN and ELK, target genes BCL2, CCNB1 and CCND1 were remarkably down-regulated in cells treated with PLCG2 siRNAs. Based on these results, we conclude PLCG2 plays an important role in rat liver cell proliferation via ERK and NF-κB pathway by regulating the expression of BCl2, MYC and CCND1.
Collapse
Affiliation(s)
- Donghui Ma
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University , Guangzhou , Guangdong , China
| | - Fang Lian
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University , Haikou , Hainan , China
| | - Xiaobai Wang
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University , Guangzhou , Guangdong , China
| |
Collapse
|
2
|
Guo Y, Lv Q, Zou XQ, Yan ZX, Yan YX. Mechanical Strain Regulates Osteoblast Proliferation Through Ca 2+-CaMK-CREB Signal Pathway. ACTA ACUST UNITED AC 2018; 31:100-106. [PMID: 28031098 DOI: 10.1016/s1001-9294(16)30033-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective To investigate the effects of mechanical strain on Ca2+-calmodulin dependent kinase (CaMK)-cAMP response element binding protein (CREB) signal pathway and proliferation of osteoblasts.Methods Using a four-point bending device, MC3T3-E1 cells were exposed to mechanical tensile strains of 2500 µs and 5000 µs at 0.5 Hz respectively. The intracellular free Ca2+ ([Ca2+]i) concentration and calmodulin activity were assayed by fluorospectrophotometry, CaMK II β, CREB, and phosphorylated (activated) CREB (p-CREB) were assessed by Western blot, and cells proliferation was assayed with MTT. Pretreatment with verapamil was carried out to block Ca2+ channel, and inhibitor U73122 was used to inhibit phospholipase C (PLC).Results Mechanical strains of 2500 µs and 5000 µs for 1 to 10 minutes both increased [Ca2+]i level of the cells. The 2500 µs strain, a periodicity of 1 h/d for 3 days, activated calmodulin, elevated protein levels of CaMK II β and p-CREB, and promoted cells proliferation, which were attenuated by pretreatment of verapamil or U73122. The effects of 5000 µs strain on calmodulin, CaMK II β, p-CREB and proliferation were contrary to 2500 µs strain.Conclusion The mechanical strain regulates osteoblasts proliferation through Ca2+-CaMK-CREB signal pathway via Ca2+ channel and PLC/IP3 transduction cascades.
Collapse
Affiliation(s)
- Yong Guo
- Depantment of Bioengineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, China; Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, China
| | - Qi Lv
- Experiment Management Center, Logistical College of People Armed Police Forces, Tianjin 300162, China
| | - Xian-Qiong Zou
- Depantment of Bioengineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Zhi-Xiong Yan
- Depantment of Bioengineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Yu-Xian Yan
- Depantment of Bioengineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, China; Experiment Management Center, Logistical College of People Armed Police Forces, Tianjin 300162, China
| |
Collapse
|
3
|
Barman A, Tamuli R. The pleiotropic vegetative and sexual development phenotypes of Neurospora crassa arise from double mutants of the calcium signaling genes plc-1, splA2, and cpe-1. Curr Genet 2017; 63:861-875. [PMID: 28265741 DOI: 10.1007/s00294-017-0682-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 11/25/2022]
Abstract
We investigated phenotypes of the double mutants of the calcium (Ca2+) signaling genes plc-1, splA2, and cpe-1 encoding for a phospholipase C1 (PLC-1), a secretory phospholipase A2 (sPLA2), and a Ca2+/H+ exchanger (CPE-1), respectively, to understand the cell functions regulated by their genetic interactions. Mutants lacking plc-1 and either splA2 or cpe-1 exhibited numerous defects including reduced colonial growth, stunted aerial hyphae, premature conidiation on plates with delayed germination, inappropriate conidiation in submerged culture, and lesser mycelial pigmentation. Moreover, the ∆plc-1; ∆splA2 and ∆plc-1; ∆cpe-1 double mutants were female-sterile when crossed with wild type as the male parent. In addition, ∆plc-1, ∆splA2, and ∆cpe-1 single mutants displayed higher carotenoid accumulation and an increased level of intracellular reactive oxygen species (ROS). Therefore, the pleiotropic phenotype of the double mutants of plc-1, splA2, and cpe-1 suggested that the genetic interaction of these genes plays a critical role for normal vegetative and sexual development in N. crassa.
Collapse
Affiliation(s)
- Ananya Barman
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India.
| |
Collapse
|
4
|
Targeting Protein Kinase C Downstream of Growth Factor and Adhesion Signalling. Cancers (Basel) 2015; 7:1271-91. [PMID: 26184315 PMCID: PMC4586769 DOI: 10.3390/cancers7030836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/25/2015] [Accepted: 07/03/2015] [Indexed: 12/11/2022] Open
Abstract
The signaling outputs of Receptor Tyrosine Kinases, G-protein coupled receptors and integrins converge to mediate key cell process such as cell adhesion, cell migration, cell invasion and cell proliferation. Once activated by their ligands, these cell surface proteins recruit and direct a diverse range of proteins to disseminate the appropriate response downstream of the specific environmental cues. One of the key groups of proteins required to regulate these activities is the family of serine/threonine intracellular kinases called Protein Kinase Cs. The activity and subcellular location of PKCs are mediated by a series of tightly regulated events and is dependent on several posttranslational modifications and the availability of second messengers. Protein Kinase Cs exhibit both pro- and anti-tumorigenic effects making them an interesting target for anti-cancer treatment.
Collapse
|
5
|
Restoration of responsiveness of phospholipase Cγ2-deficient platelets by enforced expression of phospholipase Cγ1. PLoS One 2015; 10:e0119739. [PMID: 25793864 PMCID: PMC4368822 DOI: 10.1371/journal.pone.0119739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/15/2015] [Indexed: 01/21/2023] Open
Abstract
Receptor-mediated platelet activation requires phospholipase C (PLC) activity to elevate intracellular calcium and induce actin cytoskeleton reorganization. PLCs are classified into structurally distinct β, γ, δ, ε, ζ, and η isoforms. There are two PLCγ isoforms (PLCγ1, PLCγ2), which are critical for activation by tyrosine kinase-dependent receptors. Platelets express both PLCγ1 and PLCγ2. Although PLCγ2 has been shown to play a dominant role in platelet activation, the extent to which PLCγ1 contributes has not been evaluated. To ascertain the relative contributions of PLCγ1 and PLCγ2 to platelet activation, we generated conditionally PLCγ1-deficient, wild-type (WT), PLCγ2-deficient, and PLCγ1/PLCγ2 double-deficient mice and measured the ability of platelets to respond to different agonists. We found that PLCγ2 deficiency abrogated αIIbβ3-dependent platelet spreading, GPVI-dependent platelet aggregation, and thrombus formation on collagen-coated surfaces under shear conditions, which is dependent on both GPVI and αIIbβ3. Addition of exogenous ADP overcame defective spreading of PLCγ2-deficient platelets on immobilized fibrinogen, suggesting that PLCγ2 is required for granule secretion in response to αIIbβ3 ligation. Consistently, αIIbβ3-mediated release of granule contents was impaired in the absence of PLCγ2. In contrast, PLCγ1-deficient platelets spread and released granule contents normally on fibrinogen, exhibited normal levels of GPVI-dependent aggregation, and formed thrombi normally on collagen-coated surfaces. Interestingly, enforced expression of PLCγ1 fully restored GPVI-dependent aggregation and αIIbβ3-dependent spreading of PLCγ2-deficient platelets. We conclude that platelet activation through GPVI and αIIbβ3 utilizes PLCγ2 because PLCγ1 levels are insufficient to support responsiveness, but that PLCγ1 can restore responsiveness if expressed at levels normally achieved by PLCγ2.
Collapse
|
6
|
Mangal D, Uboh CE, Jiang Z, Soma LR. Interleukin-1β inhibits synthesis of 5-lipooxygenase in lipopolysaccharide-stimulated equine whole blood. Prostaglandins Other Lipid Mediat 2014; 108:9-22. [PMID: 24530239 DOI: 10.1016/j.prostaglandins.2014.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 01/07/2014] [Accepted: 01/28/2014] [Indexed: 12/25/2022]
Abstract
Interleukin-1β (IL-1β) is a pro-inflammatory cytokine. It induces the synthesis of prostaglandin E2 (PGE2) catalyzed by cyclooxygenase (COX) and microsomal prostaglandin E synthase (m-PGES). Besides its pro-inflammatory properties, PGE2 also exhibits anti-inflammatory properties by inhibiting synthesis of 5-lipooxygenase (5-LO) products which are in themselves, pro-inflammatory mediators. Thus, inhibition of 5-LO products is beneficial in regulating immune-responses and pro-inflammatory processes. To investigate the hypothesis that IL-1β is responsible for the increase in the synthesis of PGE2 and in the reduction of 5-LO products, equine whole blood (EWB) was treated with lipopolysaccharide (LPS). In vitro treatment of EWB with LPS resulted in increased expression of IL-1β while expression of 5-LO was suppressed. Quantification of eicosanoids using liquid-chromatography-mass spectrometry/multiple reaction monitoring (LC-MS/MRM) showed increased concentrations of prostaglandins and decreased 5-LO products in LPS-treated EWB. Pretreatment of EWB with IL-1β followed by calcium ionophore A23187 (CI) reduced synthesis of 5-LO products. However, pretreatment of EWB with COX-2 inhibitor (NS-398) or m-PGES-1 inhibitor (CAY 10526) and IL-1β followed with CI resulted in a significant (p<0.0001) increase in 5-LO products. Pretreatment of EWB with phospholipase C inhibitor (U73122) followed with LPS reduced PGE2 production but increased 5-LO products. The result of this study indicated that increased PGE2 production led to reduction in 5-LO products in LPS-treated EWB via IL-1β. However, other pathways, cytokines and mediators may be involved in inhibiting 5-LO products but the present study did not include those other potential pathways. Inhibition of 5-LO products by PGE2 in EWB may regulate the initiation and pathogenesis of inflammatory responses in the horse.
Collapse
Affiliation(s)
- Dipti Mangal
- University of Pennsylvania School of Veterinary Medicine, Department of Clinical Studies, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA 19348, USA
| | - Cornelius E Uboh
- University of Pennsylvania School of Veterinary Medicine, Department of Clinical Studies, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA 19348, USA; PA Equine Toxicology & Research Center, West Chester University, Department of Chemistry, 220 East Rosedale Avenue, West Chester, PA 19382, USA.
| | - Zibin Jiang
- University of Pennsylvania School of Veterinary Medicine, Department of Clinical Studies, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA 19348, USA
| | - Lawrence R Soma
- University of Pennsylvania School of Veterinary Medicine, Department of Clinical Studies, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA 19348, USA
| |
Collapse
|
7
|
Arabshahi HJ, Leung E, Barker D, Reynisson J. The development of thieno[2,3-b]pyridine analogues as anticancer agents applying in silico methods. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00320e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Leung E, Hung JM, Barker D, Reynisson J. The effect of a thieno[2,3-b]pyridine PLC-γ inhibitor on the proliferation, morphology, migration and cell cycle of breast cancer cells. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00290j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Atlas D. The Voltage-Gated Calcium Channel Functions as the Molecular Switch of Synaptic Transmission. Annu Rev Biochem 2013; 82:607-35. [DOI: 10.1146/annurev-biochem-080411-121438] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel;
| |
Collapse
|
10
|
Sekerková G, Watanabe M, Martina M, Mugnaini E. Differential distribution of phospholipase C beta isoforms and diaglycerol kinase-beta in rodents cerebella corroborates the division of unipolar brush cells into two major subtypes. Brain Struct Funct 2013; 219:719-49. [PMID: 23503970 DOI: 10.1007/s00429-013-0531-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/19/2013] [Indexed: 11/26/2022]
Abstract
Sublineage diversification of specific neural cell classes occurs in complex as well as simply organized regions of the central and peripheral nervous systems; the significance of the phenomenon, however, remains insufficiently understood. The unipolar brush cells (UBCs) are glutamatergic cerebellar interneurons that occur at high density in vestibulocerebellum. As they are classified into subsets that differ in chemical phenotypes, intrinsic properties, and lobular distribution, they represent a valuable neuronal model to study subclass diversification. In this study, we show that cerebellar UBCs of adult rats and mice form two subclasses-type I and type II UBCs-defined by somatodendritic expression of calretinin (CR), mGluR1α, phospholipases PLCβ1 and PLCβ4, and diacylglycerol kinase-beta (DGKβ). We demonstrate that PLCβ1 is associated only with the CR(+) type I UBCs, while PLCβ4 and DGKβ are exclusively present in mGluR1α(+) type II UBCs. Notably, all PLCβ4(+) UBCs, representing about 2/3 of entire UBC population, also express mGluR1α. Furthermore, our data show that the sum of CR(+) type I UBCs and mGluR1α(+) type II UBCs accounts for the entire UBC class identified with Tbr2 immunolabeling. The two UBC subtypes also show a very different albeit somehow overlapping topographical distribution as illustrated by detailed cerebellar maps in this study. Our data not only complement and extend the previous knowledge on the diversity and subclass specificity of the chemical phenotypes within the UBC population, but also provide a new angle to the understanding of the signaling networks in type I and type II UBCs.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, 5-465 Searle bldg. 320 E. Superior str, Chicago, IL, 60611, USA,
| | | | | | | |
Collapse
|
11
|
Adjobo-Hermans MJ, Crosby KC, Putyrski M, Bhageloe A, van Weeren L, Schultz C, Goedhart J, Gadella TW. PLCβ isoforms differ in their subcellular location and their CT-domain dependent interaction with Gαq. Cell Signal 2013; 25:255-63. [DOI: 10.1016/j.cellsig.2012.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/08/2012] [Accepted: 09/16/2012] [Indexed: 11/15/2022]
|
12
|
Wang X, Barrett M, Sondek J, Harden TK, Zhang Q. Fluorescent phosphatidylinositol 4,5-bisphosphate derivatives with modified 6-hydroxy group as novel substrates for phospholipase C. Biochemistry 2012; 51:5300-6. [PMID: 22703043 DOI: 10.1021/bi300637h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The capacity to monitor spatiotemporal activity of phospholipase C (PLC) isozymes with a PLC-selective sensor would dramatically enhance understanding of the physiological function and disease relevance of these signaling proteins. Previous structural and biochemical studies defined critical roles for several of the functional groups of the endogenous substrate of PLC isozymes, phosphatidylinositol 4,5-bisphosphate (PIP(2)), indicating that these sites cannot be readily modified without compromising interactions with the lipase active site. However, the role of the 6-hydroxy group of PIP(2) for interaction and hydrolysis by PLC has not been explored, possibly due to challenges in synthesizing 6-hydroxy derivatives. Here, we describe an efficient route for the synthesis of novel, fluorescent PIP(2) derivatives modified at the 6-hydroxy group. Two of these derivatives were used in assays of PLC activity in which the fluorescent PIP(2) substrates were separated from their diacylglycerol products and reaction rates quantified by fluorescence. Both PIP(2) analogues effectively function as substrates of PLC-δ1, and the K(M) and V(max) values obtained with one of these are similar to those observed with native PIP(2) substrate. These results indicate that the 6-hydroxy group can be modified to develop functional substrates for PLC isozymes, thereby serving as the foundation for further development of PLC-selective sensors.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
13
|
Feng L, Reynisdóttir I, Reynisson J. The effect of PLC-γ2 inhibitors on the growth of human tumour cells. Eur J Med Chem 2012; 54:463-9. [PMID: 22698703 DOI: 10.1016/j.ejmech.2012.05.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 05/16/2012] [Accepted: 05/22/2012] [Indexed: 12/01/2022]
Abstract
The phosphoinositide specific-phospholipase C-γ (PLC-γ1 and 2) enzymes are plausible anticancer targets implicated in cell motility important to invasion and dissemination of tumour cells. A host of known PLC-γ2 inhibitors were tested against the NCI60 panel of human tumour cell lines as well as their commercially available structural derivatives. A class of thieno[2,3-b]pyridines showed excellent growth arrest with derivative 3 giving GI(50) = 58 nM for the melanoma MDA-MB-435 cell line. The PLC-γ2 is uniquely expressed in haematopoietic cells and the leukaemia tumour cell lines were growth restricted on average GI(50) = 275 nM by derivative 3 indicating a specific interaction with this isoform. Furthermore, a moderate growth inhibition was found for compound classes of indoles and 1H-pyrazoles. It is likely that the active compounds do not only inhibit the PLC-γ2 isoform but other PLCs as well due to their conserved binding site. The compounds tested were identified by applying the tools of chemoinformatics, which supports the use of in silico methods in drug design.
Collapse
Affiliation(s)
- Linda Feng
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
14
|
Raabe AC, Wengelnik K, Billker O, Vial HJ. Multiple roles for Plasmodium berghei phosphoinositide-specific phospholipase C in regulating gametocyte activation and differentiation. Cell Microbiol 2011; 13:955-66. [PMID: 21518218 PMCID: PMC3132445 DOI: 10.1111/j.1462-5822.2011.01591.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Critical events in the life cycle of malaria parasites are controlled by calcium-dependent signalling cascades, yet the molecular mechanisms of calcium release remain poorly understood. The synchronized development of Plasmodium berghei gametocytes relies on rapid calcium release from internal stores within 10 s of gametocytes being exposed to mosquito-derived xanthurenic acid (XA). Here we addressed the function of phosphoinositide-specific phospholipase C (PI-PLC) for regulating gametocyte activation. XA triggered the hydrolysis of PIP2 and the production of the secondary messenger IP3 in gametocytes. Both processes were selectively blocked by a PI-PLC inhibitor, which also reduced the early Ca2+ signal. However, microgametocyte differentiation into microgametes was blocked even when the inhibitor was added up to 5 min after activation, suggesting a requirement for PI-PLC beyond the early mobilization of calcium. In contrast, inhibitors of calcium release through ryanodine receptor channels were active only during the first minute of gametocyte activation. Biochemical determination of PI-PLC activity was confirmed using transgenic parasites expressing a fluorescent PIP2/IP3 probe that translocates from the parasite plasmalemma to the cytosol upon cell activation. Our study revealed a complex interdependency of Ca2+ and PI-PLC activity, with PI-PLC being essential throughout gamete formation, possibly explaining the irreversibility of this process.
Collapse
Affiliation(s)
- Andreas C Raabe
- UMR5235, CNRS-Université Montpellier 2, Place Eugène Bataillon, Montpellier cedex 5, France
| | | | | | | |
Collapse
|
15
|
Bunney TD, Katan M. PLC regulation: emerging pictures for molecular mechanisms. Trends Biochem Sci 2010; 36:88-96. [PMID: 20870410 DOI: 10.1016/j.tibs.2010.08.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/20/2010] [Accepted: 08/23/2010] [Indexed: 11/28/2022]
Abstract
Phosphoinositide-specific phospholipase C (PLC) enzymes are common signalling components linked to the activation of most cellular receptors. All PLC families are complex, modular, multi-domain proteins and together cover a broad spectrum of regulatory interactions, including direct binding to G protein subunits, small GTPases from Rho and Ras families, receptor and non-receptor tyrosine kinases and lipid components of cellular membranes. Recent structural determinations of PLC components and their complexes with regulatory proteins and direct mechanistic studies, together with earlier work, have provided the foundation to propose molecular mechanisms that stringently regulate PLC activity.
Collapse
Affiliation(s)
- Tom D Bunney
- The Institute of Cancer Research, Section for Cell and Molecular Biology, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | | |
Collapse
|
16
|
Xie Z, Chen Y, Pennypacker SD, Zhou Z, Peng D. The SH3 domain, but not the catalytic domain, is required for phospholipase C-gamma1 to mediate epidermal growth factor-induced mitogenesis. Biochem Biophys Res Commun 2010; 398:719-22. [PMID: 20621058 DOI: 10.1016/j.bbrc.2010.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 07/02/2010] [Indexed: 11/17/2022]
Abstract
Phospholipase C-gamma1 (PLC-gamma1) is a multiple-domain protein and plays an important role in epidermal growth factor (EGF)-induced cell mitogenesis, but the underlying mechanism is unclear. We have previously demonstrated that PLC-gamma1 is required for EGF-induced mitogenesis of squamous cell carcinoma (SCC) cells, but the mitogenic function of PLC-gamma1 is independent of its lipase activity. Earlier studies suggest that the Src homology 3 (SH3) domain of PLC-gamma1 possesses mitogenic activity. In the present study, we sought to determine the role of the SH3 domain of PLC-gamma1 in EGF-induced SCC cell mitogenesis. We examined the effect of overexpression of PLC-gamma1, a catalytically active PLC-gamma1 mutant lacking the SH3 domain or a catalytically inactive PLC-gamma1 mutant lacking the X domain on EGF-induced SCC4 (tongue squamous cell carcinoma) cell mitogenesis. We found that overexpression of PLC-gamma1 enhanced EGF-induced SCC4 cell mitogenesis. This enhancement was abolished by deletion of the SH3 domain but not by deletion of the X catalytic domain. These data suggest that the SH3 domain, but not the catalytic domain, is required for PLC-gamma1 to mediate EGF-induced SCC4 cell mitogenesis.
Collapse
Affiliation(s)
- Zhongjian Xie
- Endocrine Unit, Veterans Affairs Medical Center, Northern California Institute for Research and Education, University of California, San Francisco, CA 94121, USA.
| | | | | | | | | |
Collapse
|
17
|
Hong J, Behar J, Wands J, Resnick M, Wang LJ, Delellis RA, Lambeth D, Cao W. Bile acid reflux contributes to development of esophageal adenocarcinoma via activation of phosphatidylinositol-specific phospholipase Cgamma2 and NADPH oxidase NOX5-S. Cancer Res 2010; 70:1247-55. [PMID: 20086178 DOI: 10.1158/0008-5472.can-09-2774] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gastroesophageal reflux disease complicated by Barrett's esophagus (BE) is a major risk factor for esophageal adenocarcinoma (EA). However, the mechanisms of the progression from BE to EA are not fully understood. Besides acid reflux, bile acid reflux may also play an important role in the progression from BE to EA. In this study, we examined the role of phosphatidylinositol-specific phospholipase C (PI-PLC) and a novel NADPH oxidase NOX5-S in bile acid-induced increase in cell proliferation. We found that taurodeoxycholic acid (TDCA) significantly increased NOX5-S expression, hydrogen peroxide (H(2)O(2)) production, and cell proliferation in EA cells. The TDCA-induced increase in cell proliferation was significantly reduced by U73122, an inhibitor of PI-PLC. PI-PLCbeta1, PI-PLCbeta3, PI-PLCbeta4, PI-PLCgamma1, and PI-PLCgamma2, but not PI-PLCbeta2 and PI-PLCdelta1, were detectable in FLO cells by Western blot analysis. Knockdown of PI-PLCgamma2 or extracellular signal-regulated kinase (ERK) 2 mitogen-activated protein (MAP) kinase with small interfering RNAs (siRNA) significantly decreased TDCA-induced NOX5-S expression, H(2)O(2) production, and cell proliferation. In contrast, knockdown of PI-PLCbeta1, PI-PLCbeta3, PI-PLCbeta4, PI-PLCgamma1, or ERK1 MAP kinase had no significant effect. TDCA significantly increased ERK2 phosphorylation, an increase that was reduced by U73122 or PI-PLCgamma2 siRNA. We conclude that TDCA-induced increase in NOX5-S expression and cell proliferation may depend on sequential activation of PI-PLCgamma2 and ERK2 MAP kinase in EA cells. It is possible that bile acid reflux present in patients with BE may increase reactive oxygen species production and cell proliferation via activation of PI-PLCgamma2, ERK2 MAP kinase, and NADPH oxidase NOX5-S, thereby contributing to the development of EA.
Collapse
Affiliation(s)
- Jie Hong
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wilsher NE, Court WJ, Ruddle R, Newbatt YM, Aherne W, Sheldrake PW, Jones NP, Katan M, Eccles SA, Raynaud FI. The phosphoinositide-specific phospholipase C inhibitor U73122 (1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione) spontaneously forms conjugates with common components of cell culture medium. Drug Metab Dispos 2007; 35:1017-22. [PMID: 17403917 DOI: 10.1124/dmd.106.014498] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphoinositide-specific phospholipase C (PLC) is a key enzyme in the regulation of Ca(2+) release from inositol 1,4,5-triphosphate-sensitive stores. U73122 (1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione) has been extensively used as a pharmacological inhibitor of PLC to elucidate the importance of this enzyme family in signal transduction pathways. U73122 has an electrophilic maleimide group, which readily reacts with nucleophiles such as thiols and amines. In the current study the conjugation of U73122 to common components of cell culture medium, namely l-glutamine, glutathione, and bovine serum albumin (BSA), was demonstrated. The half-life of U73122 on incubation with phosphate-buffered saline (PBS), Hanks' buffered saline solution (with 2 mM glutamine), optimized basal nutrient medium (MCDB131, without BSA), complete medium, Dulbecco's modified Eagle's medium (with 2 mM l-glutamine) was approximately 150, 60, 32, 30, and 18 min, respectively. However, U73122 was not recoverable from medium supplemented with 0.5% BSA. U73122 underwent hydrolysis of the maleimide group when incubated with PBS. Glutamine conjugates of U73122 were identified in cell culture medium. Furthermore, the inhibition of epidermal growth factor-stimulated Ca(2+) release in a human epidermoid carcinoma cell line (A431) by U73122 was substantially reduced by the presence of BSA in a time-dependent manner. In complex cellular assays, the availability of U73122 to inhibit PLC may be limited by its chemical reactivity and lead to the misinterpretation of results in pharmacological assays.
Collapse
Affiliation(s)
- Nicola E Wilsher
- Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Belmont, Surrey, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Choi JH, Ryu SH, Suh PG. On/off-regulation of phospholipase C-gamma 1-mediated signal transduction. ACTA ACUST UNITED AC 2007; 47:104-16. [PMID: 17336371 DOI: 10.1016/j.advenzreg.2006.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jang Hyun Choi
- National Research Laboratory of Signaling Network, Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | |
Collapse
|
20
|
Malcuit C, Fissore RA. Activation of fertilized and nuclear transfer eggs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 591:117-31. [PMID: 17176559 DOI: 10.1007/978-0-387-37754-4_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In all animal species, initiation of embryonic development occurs shortly after the joining together of the gametes from each of the sexes. The first of these steps, referred to as "egg activation", is a series of molecular events that results in the syngamy of the two haploid genomes and the beginning of cellular divisions for the new diploid embryo. For many years it has been known that the incoming sperm drives this process, as an unfertilized egg will remain dormant until it can no longer sustain normal metabolic processes. Until recently, it was also believed that the sperm was the only cell capable of creating a viable embryo and offspring. Recent advances in cell biology have allowed researchers to not only understand the molecular mechanisms of egg activation, but to exploit the use of pharmacological agents to bypass sperm-induced egg activation for the creation of animals by somatic cell nuclear transfer. This chapter will focus on the molecular events of egg activation in mammals as they take place during fertilization, and will discuss how these mechanisms are successfully bypassed in processes such as somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Christopher Malcuit
- Department of Veterinary and Animal Sciences, Paige Laboratory, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
21
|
Corbalán-García S, Gómez-Fernández JC. Protein kinase C regulatory domains: the art of decoding many different signals in membranes. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:633-54. [PMID: 16809062 DOI: 10.1016/j.bbalip.2006.04.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 04/27/2006] [Accepted: 04/28/2006] [Indexed: 11/29/2022]
Abstract
Protein kinase C (PKC) is a member of a family of Ser/Thr phosphotransferases that are involved in many cellular signaling pathways. These enzymes possess two regulatory domains, C1 and C2, that are the targets of different second messengers. The purpose of this review is to describe in molecular terms the diverse mechanisms of activation of PKCs in the light of very significant advances made in this field over recent years. The role of some critical amino acid residues concerning activation of the enzymes and their location within known structures of isolated domains will be presented. For example, the recently deduced 3D structures of the C2 domains show that these domains can additionally act as PtdIns(4,5)P(2)-binding or phosphotyrosine-binding modules depending on the isoenzyme. All these capacities to play different roles in the cell wide web of signals underline the notion that we are dealing with a multifunctional family of enzymes which, after 30 years of investigation, we are just beginning to understand.
Collapse
Affiliation(s)
- Senena Corbalán-García
- Dpto. de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Murcia, Apdo. 4021, E-30100 Murcia, Spain.
| | | |
Collapse
|
22
|
Abstract
Fertilization in all species studied to date induces an increase in the intracellular concentration of free calcium ions ([Ca2+]i) within the egg. In mammals, this [Ca2+]i signal is delivered in the form of long-lasting [Ca2+]i oscillations that begin shortly after fusion of the gametes and persist beyond the time of completion of meiosis. While not fully elucidated, recent evidence supports the notion that the sperm delivers into the ooplasm a trigger of oscillations, the so-called sperm factor (SF). The recent discovery that mammalian sperm harbor a specific phospholipase C (PLC), PLCzeta has consolidated this view. The fertilizing sperm, and presumably PLCzeta promote Ca2+ release in eggs via the production of inositol 1,4,5-trisphosphate (IP3), which binds and gates its receptor, the type-1 IP3 receptor, located on the endoplasmic reticulum, the Ca2+ store of the cell. Repetitive Ca2+ release in this manner results in a positive cumulative effect on downstream signaling molecules that are responsible for the completion of all the events comprising egg activation. This review will discuss recent advances in our understanding of how [Ca2+]i oscillations are initiated and regulated in mammals, highlight areas of discrepancies, and emphasize the need to better characterize the downstream molecular cascades that are dependent on [Ca2+]i oscillations and that may impact embryo development.
Collapse
Affiliation(s)
- Christopher Malcuit
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
23
|
Stallings JD, Tall EG, Pentyala S, Rebecchi MJ. Nuclear Translocation of Phospholipase C-δ1 Is Linked to the Cell Cycle and Nuclear Phosphatidylinositol 4,5-Bisphosphate. J Biol Chem 2005; 280:22060-9. [PMID: 15809301 DOI: 10.1074/jbc.m413813200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, fluctuate throughout the cell cycle and are linked to proliferation and differentiation. Here we report that phospholipase C-delta(1) accumulates in the nucleus at the G(1)/S boundary and in G(0) phases of the cell cycle. Furthermore, as wild-type protein accumulated in the nucleus, nuclear phosphatidylinositol 4,5-bisphosphate levels were elevated 3-5-fold, whereas total levels were decreased compared with asynchronous cultures. To test whether phosphatidylinositol 4,5-bisphosphate binding is important during this process, we introduced a R40D point mutation within the pleckstrin homology domain of phospholipase C-delta(1), which disables high affinity phosphatidylinositol 4,5-bisphosphate binding, and found that nuclear translocation was significantly reduced at G(1)/S and in G(0). These results demonstrate a cell cycle-dependent compartmentalization of phospholipase C-delta(1) and support the idea that relative levels of phosphoinositides modulate the portioning of phosphoinositide-binding proteins between the nucleus and other compartments.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Blotting, Western
- Cell Cycle
- Cell Differentiation
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Proliferation
- Chromatography, Thin Layer
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Detergents/pharmacology
- Fibroblasts/metabolism
- Flow Cytometry
- Fluorescent Antibody Technique, Indirect
- G1 Phase
- Glioma/metabolism
- Green Fluorescent Proteins/metabolism
- Humans
- Image Processing, Computer-Assisted
- Isoenzymes/chemistry
- Isoenzymes/metabolism
- Lipid Metabolism
- Mice
- Microscopy, Fluorescence
- Models, Biological
- NIH 3T3 Cells
- Phosphatidylinositol 4,5-Diphosphate/metabolism
- Phospholipase C delta
- Point Mutation
- Protein Structure, Tertiary
- Protein Transport
- Resting Phase, Cell Cycle
- S Phase
- Subcellular Fractions
- Time Factors
- Transfection
- Type C Phospholipases/chemistry
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Jonathan D Stallings
- Department of Anesthesiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
24
|
Lü J, Izvolsky KI, Qian J, Cardoso WV. Identification of FGF10 Targets in the Embryonic Lung Epithelium during Bud Morphogenesis. J Biol Chem 2005; 280:4834-41. [PMID: 15556938 DOI: 10.1074/jbc.m410714200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic studies implicate Fgf10-Fgfr2 signaling as a critical regulator of bud morphogenesis in the embryo. However, little is known about the transcriptional targets of Fgf10 during this process. Here we identified global changes in gene expression in lung epithelial explants undergoing FGF10-mediated budding in the absence of other growth factors and mesenchyme. Targets were confirmed by their localization at sites where endogenous Fgf10 signaling is active in embryonic lungs and by demonstrating their induction in intact lungs in response to local application of FGF10 protein. We show that the initial stages of budding are characterized by marked up-regulation of genes associated with cell rearrangement and cell migration, inflammatory process, and lipid metabolism but not cell proliferation. We also found that some genes implicated in tumor invasion and metastatic behavior are epithelial targets of Fgf10 in the lung and other developing organs that depend on Fgf10-Fgfr2 signaling to properly form. Our approach identifies Fgf10 targets that are common to multiple biological processes and provides insights into potential mechanisms by which Fgf signaling regulates epithelial cell behavior.
Collapse
Affiliation(s)
- Jining Lü
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
25
|
Choi JH, Park JB, Bae SS, Yun S, Kim HS, Hong WP, Kim IS, Kim JH, Han MY, Ryu SH, Patterson RL, Snyder SH, Suh PG. Phospholipase C-gamma1 is a guanine nucleotide exchange factor for dynamin-1 and enhances dynamin-1-dependent epidermal growth factor receptor endocytosis. J Cell Sci 2004; 117:3785-95. [PMID: 15252117 DOI: 10.1242/jcs.01220] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase C-gamma1 (PLC-gamma1), which interacts with a variety of signaling molecules through its two Src homology (SH) 2 domains and a single SH3 domain has been implicated in the regulation of many cellular functions. We demonstrate that PLC-gamma1 acts as a guanine nucleotide exchange factor (GEF) of dynamin-1, a 100 kDa GTPase protein, which is involved in clathrin-mediated endocytosis of epidermal growth factor (EGF) receptor. Overexpression of PLC-gamma1 increases endocytosis of the EGF receptor by increasing guanine nucleotide exchange activity of dynamin-1. The GEF activity of PLC-gamma1 is mediated by the direct interaction of its SH3 domain with dynamin-1. EGF-dependent activation of ERK and serum response element (SRE) are both up-regulated in PC12 cells stably overexpressing PLC-gamma1, but knockdown of PLC-gamma1 by siRNA significantly reduces ERK activation. These results establish a new role for PLC-gamma1 in the regulation of endocytosis and suggest that endocytosis of activated EGF receptors may mediate PLC-gamma1-dependent proliferation.
Collapse
Affiliation(s)
- Jang Hyun Choi
- Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyojadong, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yoon J, Leung HT, Lee S, Geng C, Kim Y, Baek K, Pak WL. Specific molecular alterations in the norpA-encoded phospholipase C of Drosophila and their effects on electrophysiological responses in vivo. J Neurochem 2004; 89:998-1008. [PMID: 15140198 DOI: 10.1111/j.1471-4159.2004.02384.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A large number of mutants in the norpA gene, which encodes the phospholipase C (PLC) involved in Drosophila phototransduction, is available for the investigation of the effects of specific amino acid substitutions in PLC on biochemical and electrophysiological properties of these mutants. Of the 47 norpA mutants screened for PLC protein content, all but one (H43) displayed drastically decreased amounts of the protein suggesting that almost any mutational alteration has a deleterious effect on the integrity of the protein. Three new amino acids were identified in the catalytic domains X and Y that are important for PLC catalytic activity and the generation of photoreceptor responses (ERG). One of them was found substituted in H43, which showed a low specific PLC activity, a pronounced decrease in ERG sensitivity, and a wild-type-like response termination time. The response termination times obtained from three mutants was found to be approximately inversely proportional to the amount of PLC. In addition, we show that (i) the specific PLC activity is a key factor determining the photoreceptor sensitivity; (ii) the catalytic activity and response termination are separable functions of PLC; and (iii) a mutation in the putative G alpha-interacting C2 domain causes a preferentially strong defect in latency.
Collapse
Affiliation(s)
- Jaeseung Yoon
- Graduate School of Biotechnology, KyungHee University, Yongin City, Kyungki-Do, Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Gambhir A, Hangyás-Mihályné G, Zaitseva I, Cafiso DS, Wang J, Murray D, Pentyala SN, Smith SO, McLaughlin S. Electrostatic sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of proteins. Biophys J 2004; 86:2188-207. [PMID: 15041659 PMCID: PMC1304070 DOI: 10.1016/s0006-3495(04)74278-2] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Accepted: 11/11/2003] [Indexed: 11/21/2022] Open
Abstract
The basic effector domain of myristoylated alanine-rich C kinase substrate (MARCKS), a major protein kinase C substrate, binds electrostatically to acidic lipids on the inner leaflet of the plasma membrane; interaction with Ca2+/calmodulin or protein kinase C phosphorylation reverses this binding. Our working hypothesis is that the effector domain of MARCKS reversibly sequesters a significant fraction of the L-alpha-phosphatidyl-D-myo-inositol 4,5-bisphosphate (PIP2) on the plasma membrane. To test this, we utilize three techniques that measure the ability of a peptide corresponding to its effector domain, MARCKS(151-175), to sequester PIP2 in model membranes containing physiologically relevant fractions (15-30%) of the monovalent acidic lipid phosphatidylserine. First, we measure fluorescence resonance energy transfer from Bodipy-TMR-PIP2 to Texas Red MARCKS(151-175) adsorbed to large unilamellar vesicles. Second, we detect quenching of Bodipy-TMR-PIP2 in large unilamellar vesicles when unlabeled MARCKS(151-175) binds to vesicles. Third, we identify line broadening in the electron paramagnetic resonance spectra of spin-labeled PIP2 as unlabeled MARCKS(151-175) adsorbs to vesicles. Theoretical calculations (applying the Poisson-Boltzmann relation to atomic models of the peptide and bilayer) and experimental results (fluorescence resonance energy transfer and quenching at different salt concentrations) suggest that nonspecific electrostatic interactions produce this sequestration. Finally, we show that the PLC-delta1-catalyzed hydrolysis of PIP2, but not binding of its PH domain to PIP2, decreases markedly as MARCKS(151-175) sequesters most of the PIP2.
Collapse
Affiliation(s)
- Alok Gambhir
- Department of Physics and Astronomy, SUNY Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
FYVE domains are membrane targeting domains that are found in proteins involved in endosomal trafficking and signal transduction pathways. Most FYVE domains bind specifically to phosphatidylinositol 3-phosphate (PI(3)P), a lipid that resides mainly in endosomal membranes. Though the specific interactions between FYVE domains and the headgroup of PI(3)P have been well characterized, principally through structural studies, the available experimental structures suggest several different models for FYVE/membrane association. Thus, the manner in which FYVE domains adsorb to the membrane surface remains to be elucidated. Towards this end, recent experiments have shown that FYVE domains bind PI(3)P in the context of phospholipid bilayers and that hydrophobic residues on a conserved loop are able to penetrate the membrane interface in a PI(3)P-dependent manner.Here, the finite difference Poisson-Boltzmann (FDPB) method has been used to calculate the energetic interactions of FYVE domains with phospholipid membranes. Based on the computational analysis, it is found that (1) recruitment to membranes is facilitated by non-specific electrostatic interactions that occur between basic residues on the domains and acidic phospholipids in the membrane, (2) the energetic analysis can quantitatively differentiate among the modes of membrane association proposed by the experimentally determined structures, (3) FDPB calculations predict energetically feasible models for the membrane-associated states of FYVE domains, (4) these models are consistent with the observation that conserved hydrophobic residues insert into the membrane interface, and (5) the calculations provide a molecular model for the hydrophobic partitioning: binding of PI(3)P significantly neutralizes positive potential in the region of the hydrophobic residues, which acts as an "electrostatic switch" by reducing the energetic barrier for membrane penetration. Finally, the computational results are extended to FYVE domains of unknown structure through the construction of high quality homology models for human FYVE sequences.
Collapse
Affiliation(s)
- Karthikeyan Diraviyam
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, Box 62, New York, NY 10021, USA
| | | | | | | |
Collapse
|
29
|
Nakano T, Osanai T, Tomita H, Sekimata M, Homma Y, Okumura K. Enhanced activity of variant phospholipase C-delta1 protein (R257H) detected in patients with coronary artery spasm. Circulation 2002; 105:2024-9. [PMID: 11980680 DOI: 10.1161/01.cir.0000014613.36469.3f] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We recently demonstrated that phospholipase C (PLC)-delta1 activity in cultured skin fibroblasts obtained from patients with coronary spastic angina (CSA) is enhanced. We tested the hypothesis that structural abnormality in PLC-delta1 isoform is a cause of the enhanced activity. METHODS AND RESULTS Sequence analysis of the cDNA coding for PLC-delta1 obtained from fibroblasts revealed that one conversion of guanine to adenine (A) was present at nucleotide position 864 in one CSA patient, resulting in the amino acid replacement of arginine 257 by histidine (R257H). The incidence of 864A/A in genomic DNA, analyzed by single-strand conformation polymorphism, was greater in patients with CSA than in male control subjects (6 of 57 patients with CSA versus 1 of 62 control subjects, P<0.05). The activity of the variant PLC-delta1 protein under free calcium concentration between 10(-8) and 10(-7) mol/L was 2-fold higher than that of the wild-type protein. Baseline intracellular calcium concentration ([Ca2+]i) in human embryonic kidney 293 cells transfected with the variant PLC-delta1 was higher than that in cells with the wild type. The peak increase in [Ca2+]i in response to acetylcholine at 10(-6) and 10(-5) mol/L was greater in the cells with the variant PLC-delta1 than in those with the wild type. CONCLUSIONS These findings indicate that the R257H variant in the PLC-delta1 gene detected in patients with CSA is associated with enhancement of enzyme activity, and they describe a novel mechanism for the enhanced coronary vasomotility in CSA.
Collapse
Affiliation(s)
- Takao Nakano
- Second Department of Internal Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Gerber SH, Rizo J, Südhof TC. Role of electrostatic and hydrophobic interactions in Ca(2+)-dependent phospholipid binding by the C(2)A-domain from synaptotagmin I. Diabetes 2002; 51 Suppl 1:S12-8. [PMID: 11815451 DOI: 10.2337/diabetes.51.2007.s12] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Most C(2)-domains bind to phospholipid bilayers as a function of Ca(2+). Although phospholipid binding is central for the normal functions of C(2)-domain proteins, the precise mechanism of phospholipid binding is unclear. One of the key questions is whether phospholipid binding by C(2)-domains is primarily governed by electrostatic or hydrophobic interactions. We have now examined this question for the C(2)A-domain of synaptotagmin I, a membrane protein of secretory vesicles with an essential function in Ca(2+)-triggered exocytosis. Our results confirm previous data showing that Ca(2+)-dependent phospholipid binding by the synaptotagmin C(2)A-domain is exquisitely sensitive to ionic strength, suggesting an essential role for electrostatic interactions. However, we find that hydrophobic interactions mediated by exposed residues in the Ca(2+)-binding loops of the C(2)A-domain, in particular methionine 173, are also essential for tight phospholipid binding. Furthermore, we demonstrate that the apparent Ca(2+) affinity of the C(2)A-domain is determined not only by electrostatic interactions as shown previously, but also by hydrophobic interactions. Together these data indicate that phospholipid binding by the C(2)A-domain, although triggered by an electrostatic Ca(2+)-dependent switch, is stabilized by a hydrophobic mechanism. As a result, Ca(2+)-dependent phospholipid binding proceeds by a multimodal mechanism that mirrors the amphipathic nature of the phospholipid bilayer. The complex phospholipid binding mode of synaptotagmins may be important for its role in regulated exocytosis of secretory granules and synaptic vesicles.
Collapse
Affiliation(s)
- Stefan H Gerber
- Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, Dallas, Texas, USA
| | | | | |
Collapse
|
31
|
Rodriguez R, Matsuda M, Perisic O, Bravo J, Paul A, Jones NP, Light Y, Swann K, Williams RL, Katan M. Tyrosine residues in phospholipase Cgamma 2 essential for the enzyme function in B-cell signaling. J Biol Chem 2001; 276:47982-92. [PMID: 11606584 DOI: 10.1074/jbc.m107577200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase Cgamma (PLCgamma) isoforms are regulated through activation of tyrosine kinase-linked receptors. The importance of growth factor-stimulated phosphorylation of specific tyrosine residues has been documented for PLCgamma1; however, despite the critical importance of PLCgamma2 in B-cell signal transduction, neither the tyrosine kinase(s) that directly phosphorylate PLCgamma2 nor the sites in PLCgamma2 that become phosphorylated after stimulation are known. By measuring the ability of human PLCgamma2 to restore calcium responses to the B-cell receptor stimulation or oxidative stress in a B-cell line (DT40) deficient in PLCgamma2, we have demonstrated that two tyrosine residues, Tyr(753) and Tyr(759), were important for the PLCgamma2 signaling function. Furthermore, the double mutation Y753F/Y759F in PLCgamma2 resulted in a loss of tyrosine phosphorylation in stimulated DT40 cells. Of the two kinases that previously have been proposed to phosphorylate PLCgamma2, Btk, and Syk, purified Btk had much greater ability to phosphorylate recombinant PLCgamma2 in vitro, whereas Syk efficiently phosphorylated adapter protein BLNK. Using purified proteins to analyze the formation of complexes, we suggest that function of Syk is to phosphorylate BLNK, providing binding sites for PLCgamma2. Further analysis of PLCgamma2 tyrosine residues phosphorylated by Btk and several kinases from the Src family has suggested multiple sites of phosphorylation and, in the context of a peptide incorporating residues Tyr(753) and Tyr(759), shown preferential phosphorylation of Tyr(753).
Collapse
Affiliation(s)
- R Rodriguez
- Cancer Research Campaign Centre for Cell and Molecular Biology, Chester Beatty Laboratories, the Institute of Cancer Research, Fulham Rd., London SW3 6JB, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fernandez I, Araç D, Ubach J, Gerber SH, Shin O, Gao Y, Anderson RG, Südhof TC, Rizo J. Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron 2001; 32:1057-69. [PMID: 11754837 DOI: 10.1016/s0896-6273(01)00548-7] [Citation(s) in RCA: 316] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Synaptotagmin 1 probably functions as a Ca2+ sensor in neurotransmitter release via its two C2-domains, but no common Ca2+-dependent activity that could underlie a cooperative action between them has been described. The NMR structure of the C2B-domain now reveals a beta sandwich that exhibits striking similarities and differences with the C2A-domain. Whereas the bottom face of the C2B-domain has two additional alpha helices that may be involved in specialized Ca2+-independent functions, the top face binds two Ca2+ ions and is remarkably similar to the C2A-domain. Consistent with these results, but in contrast to previous studies, we find that the C2B-domain binds phospholipids in a Ca2+-dependent manner similarly to the C2A-domain. These results suggest a novel view of synaptotagmin function whereby the two C2-domains cooperate in a common activity, Ca2+-dependent phospholipid binding, to trigger neurotransmitter release.
Collapse
Affiliation(s)
- I Fernandez
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Van Dijken P, Van Haastert PJM. Phospholipase Cdelta regulates germination of Dictyostelium spores. BMC Cell Biol 2001; 2:25. [PMID: 11737859 PMCID: PMC60988 DOI: 10.1186/1471-2121-2-25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2001] [Accepted: 12/05/2001] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Many eukaryotes, including plants and fungi make spores that resist severe environmental stress. The micro-organism Dictyostelium contains a single phospholipase C gene (PLC); deletion of the gene has no effect on growth, cell movement and differentiation. In this report we show that PLC is essential to sense the environment of food-activated spores. RESULTS Plc-null spores germinate at alkaline pH, reduced temperature or increased osmolarity, conditions at which the emerging amoebae can not grow. In contrast, food-activated wild-type spores return to dormancy till conditions in the environment allow growth. The analysis of inositol 1,4,5-trisphosphate (IP3) levels and the effect of added IP3 uncover an unexpected mechanism how PLC regulates spore germination: i) deletion of PLC induces the enhanced activity of an IP5 phosphatase leading to high IP3 levels in plc-null cells; ii) in wild-type spores unfavourable conditions inhibit PLC leading to a reduction of IP3 levels; addition of exogenous IP3 to wild-type spores induces germination at unfavourable conditions; iii) in plc-null spores IP3 levels remain high, also at unfavourable environmental conditions. CONCLUSIONS The results imply that environmental conditions regulate PLC activity and that IP3 induces spore germination; the uncontrolled germination of plc-null spores is not due to a lack of PLC activity but to the constitutive activation of an alternative IP3-forming pathway.
Collapse
Affiliation(s)
- Peter Van Dijken
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter JM Van Haastert
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
34
|
Gerber SH, Rizo J, Südhof TC. The top loops of the C(2) domains from synaptotagmin and phospholipase A(2) control functional specificity. J Biol Chem 2001; 276:32288-92. [PMID: 11447211 DOI: 10.1074/jbc.c100108200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phospholipid-binding specificities of C(2) domains, widely distributed Ca(2+)-binding modules, differ greatly despite similar three-dimensional structures. To understand the molecular basis for this specificity, we have examined the synaptotagmin 1 C(2)A domain, which interacts in a primarily electrostatic, Ca(2+)-dependent reaction with negatively charged phospholipids, and the cytosolic phospholipase A(2) (cPLA(2)) C(2) domain, which interacts by a primarily hydrophobic Ca(2+)-dependent mechanism with neutral phospholipids. We show that grafting the short Ca(2+)-binding loops from the tip of the cPLA(2) C(2) domain onto the top of the synaptotagmin 1 C(2)A domain confers onto the synaptotagmin 1 C(2)A domain the phospholipid binding specificity of the cPLA(2) C(2) domain, indicating that the functional specificity of C(2) domains is determined by their short top loops.
Collapse
Affiliation(s)
- S H Gerber
- Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
35
|
Fernández-Chacón R, Königstorfer A, Gerber SH, García J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C, Südhof TC. Synaptotagmin I functions as a calcium regulator of release probability. Nature 2001; 410:41-9. [PMID: 11242035 DOI: 10.1038/35065004] [Citation(s) in RCA: 726] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In all synapses, Ca2+ triggers neurotransmitter release to initiate signal transmission. Ca2+ presumably acts by activating synaptic Ca2+ sensors, but the nature of these sensors--which are the gatekeepers to neurotransmission--remains unclear. One of the candidate Ca2+ sensors in release is the synaptic Ca2+-binding protein synaptotagmin I. Here we have studied a point mutation in synaptotagmin I that causes a twofold decrease in overall Ca2+ affinity without inducing structural or conformational changes. When introduced by homologous recombination into the endogenous synaptotagmin I gene in mice, this point mutation decreases the Ca2+ sensitivity of neurotransmitter release twofold, but does not alter spontaneous release or the size of the readily releasable pool of neurotransmitters. Therefore, Ca2+ binding to synaptotagmin I participates in triggering neurotransmitter release at the synapse.
Collapse
Affiliation(s)
- R Fernández-Chacón
- Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas 75390-9111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rebecchi MJ, Pentyala SN. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 2000; 80:1291-335. [PMID: 11015615 DOI: 10.1152/physrev.2000.80.4.1291] [Citation(s) in RCA: 733] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phosphoinositide-specific phospholipase C (PLC) subtypes beta, gamma, and delta comprise a related group of multidomain phosphodiesterases that cleave the polar head groups from inositol lipids. Activated by all classes of cell surface receptor, these enzymes generate the ubiquitous second messengers inositol 1,4, 5-trisphosphate and diacylglycerol. The last 5 years have seen remarkable advances in our understanding of the molecular and biological facets of PLCs. New insights into their multidomain arrangement and catalytic mechanism have been gained from crystallographic studies of PLC-delta(1), while new modes of controlling PLC activity have been uncovered in cellular studies. Most notable is the realization that PLC-beta, -gamma, and -delta isoforms act in concert, each contributing to a specific aspect of the cellular response. Clues to their true biological roles were also obtained. Long assumed to function broadly in calcium-regulated processes, genetic studies in yeast, slime molds, plants, flies, and mammals point to specific and conditional roles for each PLC isoform in cell signaling and development. In this review we consider each subtype of PLC in organisms ranging from yeast to mammals and discuss their molecular regulation and biological function.
Collapse
Affiliation(s)
- M J Rebecchi
- Departments of Anesthesiology and Physiology and Biophysics, School of Medicine, State University of New York, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
37
|
Wang T, Dowal L, El-Maghrabi MR, Rebecchi M, Scarlata S. The pleckstrin homology domain of phospholipase C-beta(2) links the binding of gbetagamma to activation of the catalytic core. J Biol Chem 2000; 275:7466-9. [PMID: 10713048 DOI: 10.1074/jbc.275.11.7466] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pleckstrin homology (PH) domains are membrane tethering devices found in many signal transducing proteins. These domains also couple to the betagamma subunits of GTP binding proteins (G proteins), but whether this association transmits allosteric information to the catalytic core is unclear. To address this question, we constructed protein chimeras in which the PH domain of phospholipase C-beta(2) (PLC-beta(2)), which is regulated by Gbetagamma, replaces the PH domain of PLC-delta(1) which binds to, but is not regulated by, Gbetagamma. We found that attachment of the PH domain of PLC-beta(2) onto PLC-delta(1) not only causes the membrane-binding properties of PLC-delta(1) to become similar to those of PLC-beta(2), but also results in a Gbetagamma-regulated enzyme. Thus, PH domains are more than simple tethering devices and mediate regulatory signals to the host protein.
Collapse
Affiliation(s)
- T Wang
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York 11794-8661, USA
| | | | | | | | | |
Collapse
|
38
|
Hendrickson HS, Hendrickson EK. Binding of phosphatidylinositol-specific phospholipase C to phospholipid interfaces, determined by fluorescence resonance energy transfer. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1440:107-17. [PMID: 10477830 DOI: 10.1016/s1388-1981(99)00116-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dissociation constants for binding of phosphatidylinositol-specific phospholipase C from Bacillus cereus (bcPI-PLC) and the mammalian phosphatidylinositol-specific phospholipase C-delta(1) to lipid interfaces containing phosphoinositol, phosphocholine, and phosphomethanol head groups were determined by fluorescence resonance energy transfer. Dansyl-labeled lipid probes were used as acceptors, with intrinsic tryptophan of the enzyme as the donor. Titration of protein into lipid provided data from which K(d) and N, the limiting number of lipid molecules per protein bound, were calculated by non-linear regression analysis of exact binding equations. These results were compared with apparent K(m) values from kinetic data. K(d) values in the low microM range in terms of lipid monomers or low nM range in terms of binding sites were calculated with good fits of experimental data to theoretical binding curves. bcPI-PLC binds with high affinity to PI interfaces, slightly lower affinity to PC interfaces, and much lower affinity to PM interfaces. The mammalian enzyme also binds with high affinity to PI interfaces, but shows little or no binding with PC interfaces under similar concentration conditions. These K(d) values correlate reasonably with apparent K(m) values from kinetic experiments.
Collapse
Affiliation(s)
- H S Hendrickson
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, WA 98195-1700, USA.
| | | |
Collapse
|
39
|
Nozaki T, Toh-e A, Fujii M, Yagisawa H, Nakazawa M, Takeuchi T. Cloning and characterization of a gene encoding phosphatidyl inositol-specific phospholipase C from Trypanosoma cruzi. Mol Biochem Parasitol 1999; 102:283-95. [PMID: 10498184 DOI: 10.1016/s0166-6851(99)00108-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A gene encoding phosphatidyl inositol-4,5-bisphosphate phospholipase C (PLC) was cloned from the protozoan parasite Trypanosoma cruzi. A partial cDNA encoding putative PLC was obtained by a polymerase chain reaction (PCR) using degenerate oligonucleotide primers corresponding to conserved regions of PLCs. A 2178-bp protein coding region of the T. cruzi PLC gene, composed from cDNA and genomic clones, encodes a putative PLC with a calculated molecular mass of 82,032 Da and an isoelectric point of 5.93. The deduced amino acid sequence of T. cruzi PLC exhibited 23-42% overall identities with the PLCs from other organisms. Among them, PLC from Ictalurus punctatus revealed the highest identity to T. cruzi PLC. The percentage identities of the entire proteins and the catalytic X/Y domains suggested that T. cruzi PLC is more evolutionarily related to the PLCs of higher eukaryotes than to those of lower unicellular eukaryotes. The tetrad analysis of the segregants of the Saccharomyces cerevisiae PLC1/plc1::HIS3 diploid strain transformed with the T. cruzi PLC-expressing plasmid showed that expression of T. cruzi PLC suppressed the growth defect caused by the plc1 disruption in yeasts. Temperature-sensitive phenotype of the S. cerevisiae plc1-mutant haploid strain was also suppressed by the expression of T. cruzi PLC. The phosphatidyl inositol-4,5-biphosphate (PtdIns(4,5)P2) hydrolyzing activity of T. cruzi PLC was demonstrated in the lysate from the plc1-temperature sensitive yeast mutant strain transformed with the T. cruzi PLC-expressing plasmid. The yeast-expressed T. cruzi PLC showed an absolute Ca2+ dependence which was similar to mammalian PLC isoforms: the half-maximal activity at 0.5-1 x 10(-5) M Ca2+ and the maximal activity at 1-2 x 10(-4) M Ca2+.
Collapse
Affiliation(s)
- T Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Gross BS, Melford SK, Watson SP. Evidence that phospholipase C-gamma2 interacts with SLP-76, Syk, Lyn, LAT and the Fc receptor gamma-chain after stimulation of the collagen receptor glycoprotein VI in human platelets. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:612-23. [PMID: 10469124 DOI: 10.1046/j.1432-1327.1999.00560.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Platelet activation by collagen is mediated by the sequential tyrosine phosphorylation of the Fc receptor gamma-chain (FcR gamma-chain), which is part of the collagen receptor glycoprotein VI, the tyrosine kinase Syk and phospholipase C-gamma2 (PLC-gamma2). In this study tyrosine-phosphorylated proteins that associate with PLC-gamma2 after stimulation by a collagen-related peptide (CRP) were characterized using glutathione S-transferase fusion proteins of PLC-gamma2 Src homology (SH) domains and by immunoprecipitation of endogenous PLC-gamma2. The majority of the tyrosine-phosphorylated proteins that associate with PLC-gamma2 bind to its C-terminal SH2 domain. These were found to include PLC-gamma2, Syk, SH2-domain-containing leucocyte protein of 76 kDa (SLP-76), Lyn, linker for activation of T cells (LAT) and the FcR gamma-chain. Direct association was detected between PLC-gamma2 and SLP-76, and between PLC-gamma2 and LAT upon CRP stimulation of platelets by far-Western blotting. FcR gamma-chain and Lyn were found to co-immunoprecipitate with PLC-gamma2 as well as with unidentified 110-kDa and 75-kDa phosphoproteins. The absence of an in vivo association between Syk and PLC-gamma2 in platelets is in contrast with that for PLC-gamma1 and Syk in B cells. The in vivo function of PLC-gamma2 SH2 domains was examined through measurement of Ca2+ increases in mouse megakaryocytes that had been microinjected with recombinant proteins. This revealed that the C-terminal SH2 domain is involved in the regulation of PLC-gamma2. These data indicate that the C-terminal SH2 domain of PLC-gamma2 is important for PLC-gamma2 regulation through possible interactions with SLP-76, Syk, Lyn, LAT and the FcR gamma-chain.
Collapse
Affiliation(s)
- B S Gross
- Department of Pharmacology, University of Oxford, UK
| | | | | |
Collapse
|
41
|
Wang T, Pentyala S, Elliott JT, Dowal L, Gupta E, Rebecchi MJ, Scarlata S. Selective interaction of the C2 domains of phospholipase C-beta1 and -beta2 with activated Galphaq subunits: an alternative function for C2-signaling modules. Proc Natl Acad Sci U S A 1999; 96:7843-6. [PMID: 10393909 PMCID: PMC22149 DOI: 10.1073/pnas.96.14.7843] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phospholipase C (PLC)-beta1 and PLC-beta2 are regulated by the Gq family of heterotrimeric G proteins and contain C2 domains. These domains are Ca2+-binding modules that serve as membrane-attachment motifs in a number of signal transduction proteins. To determine the role that C2 domains play in PLC-beta1 and PLC-beta2 function, we measured the binding of the isolated C2 domains to membrane bilayers. We found, unexpectedly, that these modules do not bind to membranes but they associate strongly and specifically to activated [guanosine 5'-[gamma-thio]triphosphate (GTP[gammaS])-bound] Galphaq subunits. The C2 domain of PLC-beta1 effectively suppressed the activation of the intact isozyme by Galphaq(GTP[gammaS]), indicating that the C2-Galphaq interaction may be physiologically relevant. C2 affinity for Galphaq(GTP[gammaS]) was reduced when Galphaq was deactivated to the GDP-bound state. Binding to activated Galphai1 subunits or to Gbetagamma subunits was not detected. Also, Galphaq(GTP[gammaS]) failed to associate with the C2 domain of PLC-delta, an isozyme that is not activated by Galphaq. These results indicate that the C2 domains of PLC-beta1 and PLC-beta2 provide a surface to which Galphaq subunits can dock, leading to activation of the native protein.
Collapse
Affiliation(s)
- T Wang
- Department of Physiology and Biophysics, State University of New York, Stony Brook, NY 11794-8661, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Gijón MA, Spencer DM, Kaiser AL, Leslie CC. Role of phosphorylation sites and the C2 domain in regulation of cytosolic phospholipase A2. J Cell Biol 1999; 145:1219-32. [PMID: 10366595 PMCID: PMC2133140 DOI: 10.1083/jcb.145.6.1219] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/1999] [Revised: 04/09/1999] [Indexed: 11/24/2022] Open
Abstract
Cytosolic phospholipase A2 (cPLA2) mediates agonist-induced arachidonic acid release, the first step in eicosanoid production. cPLA2 is regulated by phosphorylation and by calcium, which binds to a C2 domain and induces its translocation to membrane. The functional roles of phosphorylation sites and the C2 domain of cPLA2 were investigated. In Sf9 insect cells expressing cPLA2, okadaic acid, and the calcium-mobilizing agonists A23187 and CryIC toxin induce arachidonic acid release and translocation of green fluorescent protein (GFP)-cPLA2 to the nuclear envelope. cPLA2 is phosphorylated on multiple sites in Sf9 cells; however, only S505 phosphorylation partially contributes to cPLA2 activation. Although okadaic acid does not increase calcium, mutating the calcium-binding residues D43 and D93 prevents arachidonic acid release and translocation of cPLA2, demonstrating the requirement for a functional C2 domain. However, the D93N mutant is fully functional with A23187, whereas the D43N mutant is nearly inactive. The C2 domain of cPLA2 linked to GFP translocates to the nuclear envelope with calcium-mobilizing agonists but not with okadaic acid. Consequently, the C2 domain is necessary and sufficient for translocation of cPLA2 to the nuclear envelope when calcium is increased; however, it is required but not sufficient with okadaic acid.
Collapse
Affiliation(s)
- M A Gijón
- Division of Basic Science, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
43
|
LeVine H. Structural features of heterotrimeric G-protein-coupled receptors and their modulatory proteins. Mol Neurobiol 1999; 19:111-49. [PMID: 10371466 DOI: 10.1007/bf02743657] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Over the past 20 years, the general mechanism for signaling through 7-transmembrane helix receptors coupled to GTP hydrolysis has been worked out. Although similar in overall organization, subtype variability and subcellular localization of components have built in considerable signaling specificity. Atomic resolution structures for many of the components have delineated the domain organization of these complex proteins and have given physical form to the idea of subtype specificity. This review describes what is known about the physical structures of the 7-transmembrane helix receptors, the heterotrimeric GTP binding coupling proteins, the adenylate cyclase and phospholipase C effector proteins, and signaling modulatory proteins, such as arrestin, phosducin, recoverin-type myristoyl switch proteins, and the pleckstrin homology domain of G-protein receptor kinase-2. These images allow experimenters to contemplate the details of the supramolecular organization of the multiprotein complexes involved in the transmission of signals across the cellular lipid bilayer.
Collapse
Affiliation(s)
- H LeVine
- Parke-Davis Pharmaceutical Research Division of Warner-Lambert Company, Ann Arbor, MI 48105, USA
| |
Collapse
|
44
|
Katan M. Families of phosphoinositide-specific phospholipase C: structure and function. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:5-17. [PMID: 9838022 DOI: 10.1016/s0005-2760(98)00125-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A large number of extracellular signals stimulate hydrolysis of phosphatidylinositol 4,5-bisphosphate by phosphoinositide-specific phospholipase C (PI-PLC). PI-PLC isozymes have been found in a broad spectrum of organisms and although they have common catalytic properties, their regulation involves different signalling pathways. A number of recent studies provided an insight into domain organisation of PI-PLC isozymes and contributed towards better understanding of the structural basis for catalysis, cellular localisation and molecular changes that could underlie the process of their activation.
Collapse
Affiliation(s)
- M Katan
- CRC Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
45
|
Sutton RB, Sprang SR. Structure of the protein kinase Cbeta phospholipid-binding C2 domain complexed with Ca2+. Structure 1998; 6:1395-405. [PMID: 9817842 DOI: 10.1016/s0969-2126(98)00139-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Conventional isoforms (alpha, beta and gamma) of protein kinase C (PKC) are synergistically activated by phosphatidylserine and Ca2+; both bind to C2 domains located within the PKC amino-terminal regulatory regions. C2 domains contain a bipartite or tripartite Ca2+-binding site formed by opposing loops at one end of the protein. Neither the structural basis for cooperativity between phosphatidylserine and Ca2+, nor the binding site for phosphatidylserine are known. RESULTS The structure of the C2 domain from PKCbeta complexed with Ca2+ and o-phospho-L-serine has been determined to 2.7 A resolution using X-ray crystallography. The eight-stranded, Greek key beta-sandwich fold of PKCbeta-C2 is similar to that of the synaptotagmin I type I C2 domain. Three Ca2+ ions, one at a novel site, were located, each sharing common aspartate ligands. One of these ligands is donated by a dyad-related C2 molecule. A phosphoserine molecule binds to a lysine-rich cluster in C2. CONCLUSIONS Shared ligation among the three Ca2+ ions suggests that they bind cooperatively to PKCbeta-C2. Cooperativity may be compromised by the accumulation of positive charge in the binding site as successive ions are bound. Model building shows that the C1 domain could provide carboxylate and carbonyl ligands for two of the three Ca2+ sites. Ca2+-mediated interactions between the two domains could contribute to enzyme activation as well as to the creation of a positively charged phosphatidylserine-binding site.
Collapse
Affiliation(s)
- R B Sutton
- Howard Hughes Medical Institute Department of Biochemistry The University of Texas Southwestern Medical Center 5323 Harry Hines Blvd. Dallas, TX 75235-9050, USA
| | | |
Collapse
|
46
|
Rebecchi MJ, Scarlata S. Pleckstrin homology domains: a common fold with diverse functions. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1998; 27:503-28. [PMID: 9646876 DOI: 10.1146/annurev.biophys.27.1.503] [Citation(s) in RCA: 233] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pleckstrin homology (PH) motifs are approximately 100 amino-acid residues long and have been identified in nearly 100 different eukaryotic proteins, many of which participate in cell signaling and cytoskeletal regulation. Despite minimal sequence homology, the three-dimensional structures are remarkably conserved. This review gives an overview of the PH domain architecture and examines the best-studied examples in an attempt to understand their function.
Collapse
Affiliation(s)
- M J Rebecchi
- Department of Anesthesiology, State University of New York at Stony Brook 11794, USA.
| | | |
Collapse
|
47
|
Hendrickson HS. Continuous spectrophotometric assay of mammalian phosphoinositide-specific phospholipase Cdelta1 with a thiophosphate substrate analog. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1392:16-22. [PMID: 9593806 DOI: 10.1016/s0005-2760(98)00025-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1,2-Dimyristoyloxypropane-3-thiophospho(1D-1-myo-inositol) (D-thio-DMPI) was used as a substrate for the continuous assay of phosphoinositide-specific phospholipase C (PI-PLC). Its activity with a Delta(1-132) deletion mutant of mammalian PI-PLCdelta1 is about one-fourth that with PI under similar conditions. Optimal conditions for the assay include 0.2 mM substrate, 0.2 mM Ca2+, and a mole ratio of hexadecylphosphocholine detergent to substrate of 2.0. A minimum of about 60 ng of pure enzyme can be detected. The apparent bulk Km for PI-PLC with D-thio-DMPI under these conditions is about 6 microM. Enzyme activity as a function of surface concentration of substrate shows no sign of saturation up to the maximum mole fraction.
Collapse
Affiliation(s)
- H S Hendrickson
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, WA 98195-1700, USA.
| |
Collapse
|
48
|
Ellis MV, James SR, Perisic O, Downes CP, Williams RL, Katan M. Catalytic domain of phosphoinositide-specific phospholipase C (PLC). Mutational analysis of residues within the active site and hydrophobic ridge of plcdelta1. J Biol Chem 1998; 273:11650-9. [PMID: 9565585 DOI: 10.1074/jbc.273.19.11650] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural studies of phospholipase C delta1 (PLCdelta1) in complexes with the inositol-lipid headgroup and calcium identified residues within the catalytic domain that could be involved in substrate recognition, calcium binding, and catalysis. In addition, the structure of the PLCdelta1 catalytic domain revealed a cluster of hydrophobic residues at the rim of the active site opening (hydrophobic ridge). To assess a role of each of these residues, we have expressed, purified, and characterized enzymes with the point mutations of putative active site residues (His311, Asn312, Glu341, Asp343, His356, Glu390, Lys438, Lys440, Ser522, Arg549, and Tyr551) and residues from the hydrophobic ridge (Leu320, Phe360, and Trp555). The replacements of most active site residues by alanine resulted in a great reduction (1,000-200,000-fold) of PLC activity analyzed in an inositol lipid/sodium cholate mixed micelle assay. Measurements of the enzyme activity toward phosphatidylinositol, phosphatidylinositol 4-monophosphate, and phosphatidylinositol 4, 5-bis-phosphate (PIP2) identified Ser522, Lys438, and Arg549 as important for preferential hydrolysis of polyphosphoinositides, whereas replacement of Lys440 selectively affected only hydrolysis of PIP2. When PLC activity was analyzed at different calcium concentrations, substitutions of Asn312, Glu390, Glu341, and Asp343 resulted in a shift toward higher calcium concentrations required for PIP2 hydrolysis, suggesting that all these residues contribute toward Ca2+ binding. Mutational analysis also confirmed the importance of His311 ( approximately 20,000-fold reduction) and His356 ( approximately 6,000-fold reduction) for the catalysis. Mutations within the hydrophobic ridge, which had little effect on PIP2 hydrolysis in the mixed-micelles, resulted in an enzyme that was less dependent on the surface pressure when analyzed in a monolayer. This systematic mutational analysis provides further insights into the structural basis for the substrate specificity, requirement for Ca2+ ion, catalysis, and surface pressure/activity dependence, with general implications for eukaryotic phosphoinositide-specific PLCs.
Collapse
Affiliation(s)
- M V Ellis
- Cancer Research Campaign Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Chen J, Prestwich GD. Asymmetric Synthesis of Water-Soluble, Nonhydrolyzable Phosphonate Analogue of Phosphatidylinositol 4,5-Bisphosphate. J Org Chem 1998; 63:430-431. [PMID: 11672027 DOI: 10.1021/jo972046p] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian Chen
- Department of Medicinal Chemistry, The University of Utah, 30 South 2000 East, Room 201, Salt Lake City, Utah 84112-5820
| | | |
Collapse
|
50
|
Heinz DW, Essen LO, Williams RL. Structural and mechanistic comparison of prokaryotic and eukaryotic phosphoinositide-specific phospholipases C. J Mol Biol 1998; 275:635-50. [PMID: 9466937 DOI: 10.1006/jmbi.1997.1490] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphoinositide-specific phospholipases C (PI-PLCs) are ubiquitous enzymes that catalyse the hydrolysis of phosphoinositides to inositol phosphates and diacylglycerol (DAG). Whereas the eukaryotic PI-PLCs play a central role in most signal transduction cascades by producing two second messengers, inositol-1,4,5-trisphosphate and DAG, prokaryotic PI-PLCs are of interest because they act as virulence factors in some pathogenic bacteria. Bacterial PI-PLCs consist of a single domain of 30 to 35 kDa, while the much larger eukaryotic enzymes (85 to 150 kDa) are organized in several distinct domains. The catalytic domain of eukaryotic PI-PLCs is assembled from two highly conserved polypeptide stretches, called regions X and Y, that are separated by a divergent linker sequence. There is only marginal sequence similarity between the catalytic domain of eukaryotic and prokaryotic PI-PLCs. Recently the crystal structures of a bacterial and a eukaryotic PI-PLC have been determined, both in complexes with substrate analogues thus enabling a comparison of these enzymes in structural and mechanistic terms. Eukaryotic and prokaryotic PI-PLCs contain a distorted (beta alpha)8-barrel as a structural motif with a surprisingly large structural similarity for the first half of the (beta alpha)8-barrel and a much weaker similarity for the second half. The higher degree of structure conservation in the first half of the barrel correlates with the presence of all catalytic residues, in particular two catalytic histidine residues, in this portion of the enzyme. The second half contributes mainly to the features of the substrate binding pocket that result in the distinct substrate preferences exhibited by the prokaryotic and eukaryotic enzymes. A striking difference between the enzymes is the utilization of a catalytic calcium ion that electrostatically stabilizes the transition state in eukaryotic enzymes, whereas this role is filled by an analogously positioned arginine in bacterial PI-PLCs. The catalytic domains of all PI-PLCs may share not only a common fold but also a similar catalytic mechanism utilizing general base/acid catalysis. The conservation of the topology and parts of the active site suggests a divergent evolution from a common ancestral protein.
Collapse
Affiliation(s)
- D W Heinz
- Institut für Organische Chemie und Biochemie, Universität Freiburg, Germany
| | | | | |
Collapse
|