1
|
Jiang W, Wu M, Gong Z, Han L, Cheng X, Tang X, Yu X, Dong X, Cheng Y, Ma L, Xing Q. Structure-guided engineering of a Rieske-type aromatic dioxygenase for enhanced consumption of 3-phenylpropionic acid in Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137954. [PMID: 40120277 DOI: 10.1016/j.jhazmat.2025.137954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Industrial derived aromatic hydrocarbons are persistent environmental pollutants due to their chemical stability, posing both ecological and health risks. Rieske-type aromatic dioxygenases (RDOs), known for their role in dihydroxylation of aromatic rings, play a pivotal role in microbial consumption and degradation of such compounds. While the industrial application of these enzymes has been impeded by their instability and low biodegradation rate. In this study, we focused on optimization and application of the Rieske-type dioxygenase HcaEF from Escherichia coli (E. coli) K-12, which initializes the degradation of 3-phenylpropionic acid (3-PP) and cinnamic acid (CI). Using cryo-electron microscopy (cryo-EM), we determined the high-resolution structures of the apo-form and 3-PP bound form of HcaEF, revealing key insights into substrate specificity and thermal stability. Leveraging these structural insights, we engineered a Q73I variant of HcaEF. Upon introduction of this mutation, the turnover rate increased from 29.6 % to 43.8 %, showing ∼50 % improvement. Overexpression of this variant in E. coli K-12 significantly enhanced the strain's ability to utilize 3-PP, demonstrating the potential for microbial engineering in environmental bioremediation and industrial applications. Our findings not only deepen the understanding of substrate recognition in RDOs, but also pave the way for developing high-efficiency enzymes for aromatic compound bio-utilization.
Collapse
Affiliation(s)
- Wenxue Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Miao Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Linhua Han
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Xiaoqi Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Xiaoqin Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Xiaolong Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Xu Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Yibin Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Qiong Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China.
| |
Collapse
|
2
|
Zhang L, Zhong Y, Fan Q, Li S, Zhu J, Ma X, Zhu Y, Wu R, Zhang Z, Zhou F, Wu Y, Cai M, Ma Y. Coupled Physical-Biogeochemical Dynamics of Polycyclic Aromatic Compounds in the East China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4684-4698. [PMID: 39967058 DOI: 10.1021/acs.est.4c11906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Polycyclic aromatic compounds (PACs), including harmful polycyclic aromatic hydrocarbons (PAHs) and more toxic derivatives, are continuously released contaminants. Their provenance and dynamics in coastal oceans remain poorly understood. This study presents the first comprehensive assessment of PACs in coastal oceans by combining their presence with key hydrological and biogeochemical indicators, and potential microbial degradation. High concentrations of Σ92PACs (48-660 ng/L) were observed in the East China Sea, influenced vertically by upwelling and related sediment resuspension during winter. Spatial heterogeneity reveals distinct distribution patterns: PAHs and alkyl-PAHs were mainly influenced by riverine inputs, horizontal transport via coastal currents, and fronts acting as barriers, in contrast, oxygen-PAHs and nitro-PAHs were primarily shaped by secondary transformations within warm water masses rich in nutrients. The relationship between dissolved PACs and chlorophyll a underscores the dominance of biodegradation over the marginal biological pump effect during wintertime low primary productivity. Metagenomic analysis further highlights microbial degradation as a crucial PAC removal pathway, with enhanced microbial diversity driven by terrigenous advection and upwelling. The methodologies and findings of this research provide valuable insights into PAC cycling in coastal oceans.
Collapse
Affiliation(s)
- Lihong Zhang
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Yisen Zhong
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Qilian Fan
- Leibniz Institute for Natural Product Research and Infection Biology─Hans Knöll Institute, 07745 Jena, Germany
| | - Shuangzhao Li
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Jincai Zhu
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Xiao Ma
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012 Hangzhou, China
| | - Yuanli Zhu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012 Hangzhou, China
| | - Ruiming Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200241 Shanghai, China
| | - Zhiwei Zhang
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Feng Zhou
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012 Hangzhou, China
| | - Yuehong Wu
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012 Hangzhou, China
| | - Minghong Cai
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, 200136 Shanghai, China
| | - Yuxin Ma
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, 200136 Shanghai, China
| |
Collapse
|
3
|
Lara‐Moreno A, Costa MC, Vargas‐Villagomez A, Carlier JD. New bacterial strains for ibuprofen biodegradation: Drug removal, transformation, and potential catabolic genes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13320. [PMID: 39187308 PMCID: PMC11347016 DOI: 10.1111/1758-2229.13320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/13/2024] [Indexed: 08/28/2024]
Abstract
Ibuprofen (IBU) is a significant contaminant frequently found in wastewater treatment plants due to its widespread use and limited removal during treatment processes. This leads to its discharge into the environment, causing considerable environmental concerns. The use of microorganisms has recently been recognized as a sustainable method for mitigating IBU contamination in wastewater. In this study, new bacteria capable of growing in a solid medium with IBU as the only carbon source and removing IBU from a liquid medium were isolated from environmental samples, including soil, marine, mine, and olive mill wastewater. Four bacterial strains, namely Klebsiella pneumoniae TIBU2.1, Klebsiella variicola LOIBU1.1, Pseudomonas aeruginosa LOIBU1.2, and Mycolicibacterium aubagnense HPB1.1, were identified through 16S rRNA gene sequencing. These strains demonstrated significant IBU removal efficiencies, ranging from 60 to 100% within 14 days, starting from an initial IBU concentration of 5 mg per litre. These bacteria have not been previously reported in the literature as IBU degraders, making this work a valuable contribution to further studies in the field of bioremediation in environments contaminated by IBU. Based on the IBU removal results, the most promising bacteria, K. pneumoniae TIBU2.1 and M. aubagnense HPB1.1, were selected for an in silico analysis to identify genes potentially involved in IBU biodegradation. Interestingly, in the tests with TIBU2.1, a peak of IBU transformation product(s) was detected by high-performance liquid chromatography, while in the tests with HPB1.1, it was not detected. The emerging peak was analysed by liquid chromatography-mass spectrometry, indicating the presence of possible conjugates between intermediates of IBU biodegradation. The proteins encoded on their whole-genome sequences were aligned with proteins involved in an IBU-degrading pathway reported in bacteria with respective catabolic genes. The analysis indicated that strain HPB1.1 possesses genes encoding proteins similar to most enzymes reported associated with the IBU metabolic pathways used as reference bacteria, while strain TIBU2.1 has genes encoding proteins similar to enzymes involved in both the upper and the lower part of that pathway. Notably, in the tests with the strain having more candidate genes encoding IBU-catabolic enzymes, no IBU transformation products were detected, while in the tests with the strain having fewer of these genes, detection occurred.
Collapse
Affiliation(s)
- Alba Lara‐Moreno
- Centre of Marine Sciences (CCMAR/CIMAR LA)University of the Algarve, Gambelas CampusFaroPortugal
- Department of Microbiology and Parasitology, Faculty of PharmacyUniversity of SevilleSevilleSpain
| | - Maria Clara Costa
- Centre of Marine Sciences (CCMAR/CIMAR LA)University of the Algarve, Gambelas CampusFaroPortugal
- Faculty of Sciences and TechnologiesUniversity of the Algarve, Gambelas CampusFaroPortugal
| | | | - Jorge Dias Carlier
- Centre of Marine Sciences (CCMAR/CIMAR LA)University of the Algarve, Gambelas CampusFaroPortugal
| |
Collapse
|
4
|
Beech JL, Fecko JA, Yennawar N, DuBois JL. Functional and spectroscopic approaches to determining thermal limitations of Rieske oxygenases. Methods Enzymol 2024; 703:299-328. [PMID: 39261001 PMCID: PMC11521362 DOI: 10.1016/bs.mie.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The biotechnological potential of Rieske Oxygenases (ROs) and their cognate reductases remains unmet, in part because these systems can be functionally short-lived. Here, we describe a set of experiments aimed at identifying both the functional and structural stability limitations of ROs, using terephthalate (TPA) dioxygenase (from Comamonas strain E6) as a model system. Successful expression and purification of a cofactor-complete, histidine-tagged TPA dioxygenase and reductase protein system requires induction with the Escherichia coli host at stationary phase as well as a chaperone inducing cold-shock and supplementation with additional iron, sulfur, and flavin. The relative stability of the Rieske cluster and mononuclear iron center can then be assessed using spectroscopic and functional measurements following dialysis in an iron chelating buffer. These experiments involve measurements of the overall lifetime of the system via total turnover number using both UV-Visible absorbance and HPLC analyses, as well specific activity as a function of temperature. Important methods for assessing the stability of these multi-cofactor, multi-protein dependent systems at multiple levels of structure (secondary to quaternary) include differential scanning calorimetry, circular dichroism, and metallospectroscopy. Results can be rationalized in terms of three-dimensional structures and bioinformatics. The experiments described here provide a roadmap to a detailed characterization of the limitations of ROs. With a few notable exceptions, these issues are not widely addressed in current literature.
Collapse
Affiliation(s)
- Jessica Lusty Beech
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Julia Ann Fecko
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Neela Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States.
| |
Collapse
|
5
|
Rogers MS, Lipscomb JD. Approaches to determination of the mechanism of the Rieske monooxygenase salicylate 5-hydroxylase. Methods Enzymol 2024; 704:259-290. [PMID: 39300650 DOI: 10.1016/bs.mie.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Rieske oxygenases catalyze an exceptionally broad range of discrete types of reactions despite the utilization of a highly conserved quaternary structure and metal cofactor complement. Oxygen activation within this family occurs at a mononuclear FeII site, which is located approximately 12 Å from a one-electron reduced Rieske-type iron-sulfur cluster. Electron transfer from the Rieske cluster to the mononuclear iron site occurs during O2 activation and product formation. A key question is whether all Rieske oxygenase reactions involve the same type of activated oxygen species. This question has been explored using the Rieske oxygenase salicylate 5-hydroxylase, which catalyzes both aromatic hydroxylation of salicylate and aromatic methyl hydroxylation when a methyl substituent is placed in the normal position of aromatic ring hydroxylation. We show here that the combined application of kinetic, biophysical, computational, and isotope effect methods reveals a uniform mechanism for initial O2 activation and substrate attack for both types of reactivity. However, the mechanism diverges during the later phases of the reactions in response to the electronic nature and geometry of the substrates as well as the lifetime of intermediates. Similar factors may be encountered broadly in the Rieske oxygenase family.
Collapse
Affiliation(s)
- Melanie S Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
6
|
de Kok NAW, Miao H, Schmidt S. In vitro analysis of the three-component Rieske oxygenase cumene dioxygenase from Pseudomonas fluorescens IP01. Methods Enzymol 2024; 703:167-192. [PMID: 39260995 DOI: 10.1016/bs.mie.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Rieske non-heme iron-dependent oxygenases (ROs) are a versatile group of enzymes traditionally associated with the degradation of aromatic xenobiotics. In addition, ROs have been found to play key roles in natural product biosynthesis, displaying a wide catalytic diversity with typically high regio- and stereo- selectivity. However, the detailed characterization of ROs presents formidable challenges due to their complex structural and functional properties, including their multi-component composition, cofactor dependence, and susceptibility to reactive oxygen species. In addition, the substrate availability of natural product biosynthetic intermediates, the limited solubility of aromatic hydrocarbons, and the radical-mediated reaction mechanism can further complicate functional assays. Despite these challenges, ROs hold immense potential as biocatalysts for pharmaceutical applications and bioremediation. Using cumene dioxygenase (CDO) from Pseudomonas fluorescens IP01 as a model enzyme, this chapter details techniques for characterizing ROs that oxyfunctionalize aromatic hydrocarbons. Moreover, potential pitfalls, anticipated complications, and proposed solutions for the characterization of novel ROs are described, providing a framework for future RO research and strategies for studying this enzyme class. In particular, we describe the methods used to obtain CDO, from construct design to expression conditions, followed by a purification procedure, and ultimately activity determination through various activity assays.
Collapse
Affiliation(s)
- Niels A W de Kok
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Hui Miao
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
7
|
Guo L, Ouyang X, Wang W, Qiu X, Zhao YL, Xu P, Tang H. Fine-tuning an aromatic ring-hydroxylating oxygenase to degrade high molecular weight polycyclic aromatic hydrocarbon. J Biol Chem 2024; 300:107343. [PMID: 38705395 PMCID: PMC11176777 DOI: 10.1016/j.jbc.2024.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
Rieske nonheme iron aromatic ring-hydroxylating oxygenases (RHOs) play pivotal roles in determining the substrate preferences of polycyclic aromatic hydrocarbon (PAH) degraders. However, their potential to degrade high molecular weight PAHs (HMW-PAHs) has been relatively unexplored. NarA2B2 is an RHO derived from a thermophilic Hydrogenibacillus sp. strain N12. In this study, we have identified four "hotspot" residues (V236, Y300, W316, and L375) that may hinder the catalytic capacity of NarA2B2 when it comes to HMW-PAHs. By employing structure-guided rational enzyme engineering, we successfully modified NarA2B2, resulting in NarA2B2 variants capable of catalyzing the degradation of six different types of HMW-PAHs, including pyrene, fluoranthene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene. Three representative variants, NarA2B2W316I, NarA2B2Y300F-W316I, and NarA2B2V236A-W316I-L375F, not only maintain their abilities to degrade low-molecular-weight PAHs (LMW-PAHs) but also exhibited 2 to 4 times higher degradation efficiency for HMW-PAHs in comparison to another isozyme, NarAaAb. Computational analysis of the NarA2B2 variants predicts that these modifications alter the size and hydrophobicity of the active site pocket making it more suitable for HMW-PAHs. These findings provide a comprehensive understanding of the relationship between three-dimensional structure and functionality, thereby opening up possibilities for designing improved RHOs that can be more effectively used in the bioremediation of PAHs.
Collapse
Affiliation(s)
- Lihua Guo
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaoyu Qiu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Beech JL, Maurya AK, Rodrigues da Silva R, Akpoto E, Asundi A, Fecko JA, Yennawar NH, Sarangi R, Tassone C, Weiss TM, DuBois JL. Understanding the stability of a plastic-degrading Rieske iron oxidoreductase system. Protein Sci 2024; 33:e4997. [PMID: 38723110 PMCID: PMC11081424 DOI: 10.1002/pro.4997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/01/2024] [Accepted: 04/06/2024] [Indexed: 05/13/2024]
Abstract
Rieske oxygenases (ROs) are a diverse metalloenzyme class with growing potential in bioconversion and synthetic applications. We postulated that ROs are nonetheless underutilized because they are unstable. Terephthalate dioxygenase (TPADO PDB ID 7Q05) is a structurally characterized heterohexameric α3β3 RO that, with its cognate reductase (TPARED), catalyzes the first intracellular step of bacterial polyethylene terephthalate plastic bioconversion. Here, we showed that the heterologously expressed TPADO/TPARED system exhibits only ~300 total turnovers at its optimal pH and temperature. We investigated the thermal stability of the system and the unfolding pathway of TPADO through a combination of biochemical and biophysical approaches. The system's activity is thermally limited by a melting temperature (Tm) of 39.9°C for the monomeric TPARED, while the independent Tm of TPADO is 50.8°C. Differential scanning calorimetry revealed a two-step thermal decomposition pathway for TPADO with Tm values of 47.6 and 58.0°C (ΔH = 210 and 509 kcal mol-1, respectively) for each step. Temperature-dependent small-angle x-ray scattering and dynamic light scattering both detected heat-induced dissociation of TPADO subunits at 53.8°C, followed by higher-temperature loss of tertiary structure that coincided with protein aggregation. The computed enthalpies of dissociation for the monomer interfaces were most congruent with a decomposition pathway initiated by β-β interface dissociation, a pattern predicted to be widespread in ROs. As a strategy for enhancing TPADO stability, we propose prioritizing the re-engineering of the β subunit interfaces, with subsequent targeted improvements of the subunits.
Collapse
Affiliation(s)
- Jessica Lusty Beech
- Department of Chemistry and BiochemistryMontana State UniversityBozemanMontanaUSA
| | - Anjani K. Maurya
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkCaliforniaUSA
| | | | - Emmanuel Akpoto
- Department of Chemistry and BiochemistryMontana State UniversityBozemanMontanaUSA
| | - Arun Asundi
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkCaliforniaUSA
| | - Julia Ann Fecko
- The Huck Institutes of the Life SciencesThe Pennsylvania State University, University ParkState CollegePennsylvaniaUSA
| | - Neela H. Yennawar
- The Huck Institutes of the Life SciencesThe Pennsylvania State University, University ParkState CollegePennsylvaniaUSA
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkCaliforniaUSA
| | - Christopher Tassone
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkCaliforniaUSA
| | - Thomas M. Weiss
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkCaliforniaUSA
| | - Jennifer L. DuBois
- Department of Chemistry and BiochemistryMontana State UniversityBozemanMontanaUSA
| |
Collapse
|
9
|
Zhu W, Wu P, Larson VA, Kumar A, Li XX, Seo MS, Lee YM, Wang B, Lehnert N, Nam W. Electronic Structure and Reactivity of Mononuclear Nonheme Iron-Peroxo Complexes as a Biomimetic Model of Rieske Oxygenases: Ring Size Effects of Macrocyclic Ligands. J Am Chem Soc 2024; 146:250-262. [PMID: 38147793 DOI: 10.1021/jacs.3c08559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
We report the macrocyclic ring size-electronic structure-electrophilic reactivity correlation of mononuclear nonheme iron(III)-peroxo complexes bearing N-tetramethylated cyclam analogues (n-TMC), [FeIII(O2)(12-TMC)]+ (1), [FeIII(O2)(13-TMC)]+ (2), and [FeIII(O2)(14-TMC)]+ (3), as a model study of Rieske oxygenases. The Fe(III)-peroxo complexes show the same δ and pseudo-σ bonds between iron and the peroxo ligand. However, the strength of these interactions varies depending on the ring size of the n-TMC ligands; the overall Fe-O bond strength and the strength of the Fe-O2 δ bond increase gradually as the ring size of the n-TMC ligands becomes smaller, such as from 14-TMC to 13-TMC to 12-TMC. MCD spectroscopy plays a key role in assigning the characteristic low-energy δ → δ* LMCT band, which provides direct insight into the strength of the Fe-O2 δ bond and which, in turn, is correlated with the superoxo character of the iron-peroxo group. In oxidation reactions, reactivities of 1-3 toward hydrocarbon C-H bond activation are compared, revealing the reactivity order of 1 > 2 > 3; the [FeIII(O2)(n-TMC)]+ complex with a smaller n-TMC ring size, 12-TMC, is much more reactive than that with a larger n-TMC ring size, 14-TMC. DFT analysis shows that the Fe(III)-peroxo complex is not reactive toward C-H bonds, but it is the end-on Fe(II)-superoxo valence tautomer that is responsible for the observed reactivity. The hydrogen atom abstraction (HAA) reactivity of these intermediates is correlated with the overall donicity of the n-TMC ligand, which modulates the energy of the singly occupied π* superoxo frontier orbital that serves as the electron acceptor in the HAA reaction. The implications of these results for the mechanism of Rieske oxygenases are further discussed.
Collapse
Affiliation(s)
- Wenjuan Zhu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Peng Wu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Virginia A Larson
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Akhilesh Kumar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Binju Wang
- Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi Province 716000, P. R. China
| |
Collapse
|
10
|
Guo L, Ouyang X, Wang W, Huang Y, Qiu X, Xu P, Tang H. Characterization of a novel aromatic ring-hydroxylating oxygenase, NarA2B2, from thermophilic Hydrogenibacillus sp. strain N12. Appl Environ Microbiol 2023; 89:e0086523. [PMID: 37819076 PMCID: PMC10617421 DOI: 10.1128/aem.00865-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/11/2023] [Indexed: 10/13/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are harmful to human health due to their carcinogenic, teratogenic, and mutagenic effects. A thermophilic Hydrogenibacillus sp. strain N12 capable of degrading a variety of PAHs and derivatives was previously isolated. In this study, an aromatic ring-hydroxylating oxygenase, NarA2B2, was identified from strain N12, with substrate specificity including naphthalene, phenanthrene, dibenzothiophene, fluorene, acenaphthene, carbazole, biphenyl, and pyrene. NarA2B2 was proposed to add one or two atoms of molecular oxygen to the substrate and catalyze biphenyl at C-2, 2 or C-3, 4 positions with different characteristics than before. The key catalytic amino acids, H222, H227, and D379, were identified as playing a pivotal role in the formation of the 2-his-1-carboxylate facial triad. Furthermore, we conducted molecular docking and molecular dynamics simulations, notably, D219 enhanced the stability of the iron center by forming two stable hydrogen bonds with H222, while the mutation of F216, T223, and H302 modulated the catalytic activity by altering the pocket's size and shape. Compared to the wild-type (WT) enzyme, the degradation ratios of acenaphthene by F216A, T223A, and H302A had an improvement of 23.08%, 26.87%, and 29.52%, the degradation ratios of naphthalene by T223A and H302A had an improvement of 51.30% and 65.17%, while the degradation ratio of biphenyl by V236A had an improvement of 77.94%. The purified NarA2B2 was oxygen-sensitive when it was incubated with L-ascorbic acid in an anaerobic environment, and its catalytic activity was restored in vitro. These results contribute to a better understanding of the molecular mechanism responsible for PAHs' degradation in thermophilic microorganisms.IMPORTANCE(i) A novel aromatic ring-hydroxylating oxygenase named NarA2B2, capable of degrading multiple polycyclic aromatic hydrocarbons and derivatives, was identified from the thermophilic microorganism Hydrogenibacillus sp. N12. (ii) The degradation characteristics of NarA2B2 were characterized by adding one or two atoms of molecular oxygen to the substrate. Unlike the previous study, NarA2B2 catalyzed biphenyl at C-2, 2 or C-3, 4 positions. (iii) Catalytic sites of NarA2B2 were conserved, and key amino acids F216, D219, H222, T223, H227, V236, F243, Y300, H302, W316, F369, and D379 played pivotal roles in catalysis, as confirmed by protein structure prediction, molecular docking, molecular dynamics simulations, and point mutation.
Collapse
Affiliation(s)
- Lihua Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqun Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Qiu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Mai Z, Wang H, Wang Y, Chen Q, Lyu L, Wei X, Zhou W, Cheng H. Radial Oxygen Loss from the Roots of Mangrove Seedlings Enhances the Removal of Polycyclic Aromatic Hydrocarbons. PLANTS (BASEL, SWITZERLAND) 2023; 12:3711. [PMID: 37960067 PMCID: PMC10647379 DOI: 10.3390/plants12213711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
The presence of polycyclic aromatic hydrocarbons (PAHs) in soil poses a significant global environmental concern, particularly in coastal wetlands. Mangrove ecosystems exhibit enormous potential in environmental purification; however, the underlying mechanisms involved in the degradation of pollutants (e.g., PAHs) remain ambiguous. In the present investigation, a soil pot experiment was conducted with the addition of pyrene to evaluate the effect of radial oxygen loss (ROL) from roots on PAH degradation using three mangrove seedlings (Rhizophora stylosa, Aegiceras corniculatum, and Avicennia marina). The results showed that mangrove plantation can significantly promote the efficiency of pyrene removal. As for the three mangrove species studied, the greatest removal rate (90.75%) was observed in the soils associated with A. marina, followed by A. corniculatum (83.83%) and R. stylosa (77.15%). The higher PAH removal efficiency of A. marina can be partially attributed to its distinctive root anatomical structure, characterized by a thin exodermis and high porosity, which facilitates ROL from the roots. The results from qPCR further demonstrate that ROL is beneficial for promoting the abundance of PAH-ring hydroxylating dioxygenase gene, leading to a higher removal efficiency. Additionally, Rhizobiales, Defferrisomatales, and Ardenticatenales may also play important roles in the process of pyrene degradation. In summary, this study provides evidence for elucidating the mechanism of PAH removal from the perspective of ROL, thereby contributing valuable insights for species selection during mangrove restoration and remediation.
Collapse
Affiliation(s)
- Zhimao Mai
- State Key Laboratory of Tropical Oceanography, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China (W.Z.)
| | - Hui Wang
- State Key Laboratory of Tropical Oceanography, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youshao Wang
- State Key Laboratory of Tropical Oceanography, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China (W.Z.)
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China
| | - Qiqi Chen
- State Key Laboratory of Tropical Oceanography, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China (W.Z.)
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Lina Lyu
- State Key Laboratory of Tropical Oceanography, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China (W.Z.)
| | - Xing Wei
- State Key Laboratory of Tropical Oceanography, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China (W.Z.)
| | - Weiwen Zhou
- State Key Laboratory of Tropical Oceanography, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China (W.Z.)
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China (W.Z.)
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China
| |
Collapse
|
12
|
Correa-Garcia S, Corelli V, Tremblay J, Dozois JA, Mukula E, Séguin A, Yergeau E. Soil fauna-microbial interactions shifts fungal and bacterial communities under a contamination disturbance. PLoS One 2023; 18:e0292227. [PMID: 37878639 PMCID: PMC10599570 DOI: 10.1371/journal.pone.0292227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/17/2023] [Indexed: 10/27/2023] Open
Abstract
The aim of this study was to determine whether the soil faunal-microbial interaction complexity (SFMIC) is a significant factor influencing the soil microbial communities and the willow growth in the context of PAH contamination. The SFMIC treatment had eight levels: just the microbial community, or the microbial community with nematodes, springtails, earthworms and all the possible combinations. SFMIC affected the height and biomass of willows after eight weeks or growth. SFMIC affected the structure and the composition of the bacterial, archaeal and fungal communities, with significant effects of SFMIC on the relative abundance of fungal genera such as Sphaerosporella, a known willow symbiont during phytoremediation, and bacterial phyla such as Actinobacteriota, containing many polycyclic aromatic hydrocarbons (PAH) degraders. These SFMIC effects on microbial communities were not clearly reflected in the community structure and abundance of PAH degraders, even though some degraders related to Actinobacteriota and the diversity of Gram-negative degraders were affected by the SFMIC treatments. Over 95% of PAH was degraded in all pots at the end of the experiment. Overall, our results suggest that, under our experimental conditions, SFMIC changes willow phytoremediation outcomes.
Collapse
Affiliation(s)
- Sara Correa-Garcia
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, QC, Canada
- Laurentian Forestry Center, Natural Resources Canada, Québec City, QC, Canada
| | - Vincenzo Corelli
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, QC, Canada
| | - Julien Tremblay
- Energy, Mining and Environment, National Research Council Canada, Montréal, QC, Canada
| | - Jessica Ann Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, QC, Canada
| | - Eugenie Mukula
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, QC, Canada
| | - Armand Séguin
- Laurentian Forestry Center, Natural Resources Canada, Québec City, QC, Canada
| | - Etienne Yergeau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, QC, Canada
| |
Collapse
|
13
|
Ghafouri M, Pourjafar F, Ghobadi Nejad Z, Yaghmaei S. Biological treatment of triclosan using a novel strain of Enterobacter cloacae and introducing naphthalene dioxygenase as an effective enzyme. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:131833. [PMID: 37473572 DOI: 10.1016/j.jhazmat.2023.131833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023]
Abstract
In recent years, triclosan (TCS) has been widely used as an antibacterial agent in personal care products due to the spread of the Coronavirus. TSC is an emerging contaminant, and due to its stability and toxicity, it cannot be completely degraded through traditional wastewater treatment methods. In this study, a novel strain of Enterobacter cloacae was isolated and identified that can grow in high TCS concentrations. Also, we introduced naphthalene dioxygenase as an effective enzyme in TCS biodegradation, and its role during the removal process was investigated along with the laccase enzyme. The change of cell surface hydrophobicity during TCS removal revealed that a glycolipid biosurfactant called rhamnolipid was involved in TCS removal, leading to enhanced biodegradation of TCS. The independent variables, such as initial TCS concentration, pH, removal duration, and temperature, were optimized using the response surface method (RSM). As a result, the maximum TCS removal (97%) was detected at a pH value of 7 and a temperature of 32 °C after 9 days and 12 h of treatment. Gas chromatography-mass spectrometry (GC/MS) analysis showed five intermediate products and a newly proposed pathway for TCS degradation. Finally, the phytotoxicity experiment conducted on Cucumis sativus and Lens culinaris seeds demonstrated an increase in germination power and growth of stems and roots in comparison to untreated water. These results indicate that the final treated water was less toxic.
Collapse
Affiliation(s)
- Mahsa Ghafouri
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Fatemeh Pourjafar
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Zahra Ghobadi Nejad
- Biochemical & Bioenvironmental Research Center, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran
| | - Soheila Yaghmaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Biochemical & Bioenvironmental Research Center, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran.
| |
Collapse
|
14
|
Tian J, Boggs DG, Donnan PH, Barroso GT, Garcia AA, Dowling DP, Buss JA, Bridwell-Rabb J. The NADH recycling enzymes TsaC and TsaD regenerate reducing equivalents for Rieske oxygenase chemistry. J Biol Chem 2023; 299:105222. [PMID: 37673337 PMCID: PMC10579966 DOI: 10.1016/j.jbc.2023.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023] Open
Abstract
Many microorganisms use both biological and nonbiological molecules as sources of carbon and energy. This resourcefulness means that some microorganisms have mechanisms to assimilate pollutants found in the environment. One such organism is Comamonas testosteroni, which metabolizes 4-methylbenzenesulfonate and 4-methylbenzoate using the TsaMBCD pathway. TsaM is a Rieske oxygenase, which in concert with the reductase TsaB consumes a molar equivalent of NADH. Following this step, the annotated short-chain dehydrogenase/reductase and aldehyde dehydrogenase enzymes TsaC and TsaD each regenerate a molar equivalent of NADH. This co-occurrence ameliorates the need for stoichiometric addition of reducing equivalents and thus represents an attractive strategy for integration of Rieske oxygenase chemistry into biocatalytic applications. Therefore, in this work, to overcome the lack of information regarding NADH recycling enzymes that function in partnership with Rieske non-heme iron oxygenases (Rieske oxygenases), we solved the X-ray crystal structure of TsaC to a resolution of 2.18 Å. Using this structure, a series of substrate analog and protein variant combination reactions, and differential scanning fluorimetry experiments, we identified active site features involved in binding NAD+ and controlling substrate specificity. Further in vitro enzyme cascade experiments demonstrated the efficient TsaC- and TsaD-mediated regeneration of NADH to support Rieske oxygenase chemistry. Finally, through in-depth bioinformatic analyses, we illustrate the widespread co-occurrence of Rieske oxygenases with TsaC-like enzymes. This work thus demonstrates the utility of these NADH recycling enzymes and identifies a library of short-chain dehydrogenase/reductase enzyme prospects that can be used in Rieske oxygenase pathways for in situ regeneration of NADH.
Collapse
Affiliation(s)
- Jiayi Tian
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - David G Boggs
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick H Donnan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Gage T Barroso
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Daniel P Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Joshua A Buss
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
15
|
Runda ME, de Kok NAW, Schmidt S. Rieske Oxygenases and Other Ferredoxin-Dependent Enzymes: Electron Transfer Principles and Catalytic Capabilities. Chembiochem 2023; 24:e202300078. [PMID: 36964978 DOI: 10.1002/cbic.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/27/2023]
Abstract
Enzymes that depend on sophisticated electron transfer via ferredoxins (Fds) exhibit outstanding catalytic capabilities, but despite decades of research, many of them are still not well understood or exploited for synthetic applications. This review aims to provide a general overview of the most important Fd-dependent enzymes and the electron transfer processes involved. While several examples are discussed, we focus in particular on the family of Rieske non-heme iron-dependent oxygenases (ROs). In addition to illustrating their electron transfer principles and catalytic potential, the current state of knowledge on structure-function relationships and the mode of interaction between the redox partner proteins is reviewed. Moreover, we highlight several key catalyzed transformations, but also take a deeper dive into their engineerability for biocatalytic applications. The overall findings from these case studies highlight the catalytic capabilities of these biocatalysts and could stimulate future interest in developing additional Fd-dependent enzyme classes for synthetic applications.
Collapse
Affiliation(s)
- Michael E Runda
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Niels A W de Kok
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
16
|
Quareshy M, Shanmugam M, Cameron AD, Bugg TDH, Chen Y. Characterisation of an unusual cysteine pair in the Rieske carnitine monooxygenase CntA catalytic site. FEBS J 2023; 290:2939-2953. [PMID: 36617384 PMCID: PMC10952381 DOI: 10.1111/febs.16722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Rieske monooxygenases undertake complex catalysis integral to marine, terrestrial and human gut-ecosystems. Group-I to -IV Rieske monooxygenases accept aromatic substrates and have well-characterised catalytic mechanisms. Nascent to our understanding are Group-V members catalysing the oxidation/breakdown of quaternary ammonium substrates. Phylogenetic analysis of Group V highlights a cysteine residue-pair adjacent to the mononuclear Fe active site with no established role. Following our elucidation of the carnitine monooxygenase CntA structure, we probed the function of the cysteine pair Cys206/Cys209. Utilising biochemical and biophysical techniques, we found the cysteine residues do not play a structural role nor influence the electron transfer pathway, but rather are used in a nonstoichiometric role to ensure the catalytic iron centre remains in an Fe(II) state.
Collapse
Affiliation(s)
| | | | | | | | - Yin Chen
- School of Life SciencesUniversity of WarwickCoventryUK
| |
Collapse
|
17
|
Tian J, Garcia AA, Donnan PH, Bridwell-Rabb J. Leveraging a Structural Blueprint to Rationally Engineer the Rieske Oxygenase TsaM. Biochemistry 2023. [PMID: 37188334 DOI: 10.1021/acs.biochem.3c00150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Rieske nonheme iron oxygenases use two metallocenters, a Rieske-type [2Fe-2S] cluster and a mononuclear iron center, to catalyze oxidation reactions on a broad range of substrates. These enzymes are widely used by microorganisms to degrade environmental pollutants and to build complexity in a myriad of biosynthetic pathways that are industrially interesting. However, despite the value of this chemistry, there is a dearth of understanding regarding the structure-function relationships in this enzyme class, which limits our ability to rationally redesign, optimize, and ultimately exploit the chemistry of these enzymes. Therefore, in this work, by leveraging a combination of available structural information and state-of-the-art protein modeling tools, we show that three "hotspot" regions can be targeted to alter the site selectivity, substrate preference, and substrate scope of the Rieske oxygenase p-toluenesulfonate methyl monooxygenase (TsaM). Through mutation of six to 10 residues distributed between three protein regions, TsaM was engineered to behave as either vanillate monooxygenase (VanA) or dicamba monooxygenase (DdmC). This engineering feat means that TsaM was rationally engineered to catalyze an oxidation reaction at the meta and ortho positions of an aromatic substrate, rather than its favored native para position, and that TsaM was redesigned to perform chemistry on dicamba, a substrate that is not natively accepted by the enzyme. This work thus contributes to unlocking our understanding of structure-function relationships in the Rieske oxygenase enzyme class and expands foundational principles for future engineering of these metalloenzymes.
Collapse
Affiliation(s)
- Jiayi Tian
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Patrick H Donnan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer Bridwell-Rabb
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Yesankar PJ, Patil A, Kapley A, Qureshi A. Catalytic resilience of multicomponent aromatic ring-hydroxylating dioxygenases in Pseudomonas for degradation of polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 2023; 39:166. [PMID: 37076735 DOI: 10.1007/s11274-023-03617-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Hydrophobic organic compounds, either natural or introduced through anthropogenic activities, pose a serious threat to all spheres of life, including humankind. These hydrophobic compounds are recalcitrant and difficult to degrade by the microbial system; however, microbes have also evolved their metabolic and degradative potential. Pseudomonas species have been reported to have a multipotential role in the biodegradation of aromatic hydrocarbons through aromatic ring-hydroxylating dioxygenases (ARHDs). The structural complexity of different hydrophobic substrates and their chemically inert nature demands the explicit role of evolutionary conserved multicomponent enzyme ARHDs. These enzymes catalyze ring activation and subsequent oxidation by adding two molecular oxygen atoms onto the vicinal carbon of the aromatic nucleus. This critical metabolic step in the aerobic mode of degradation of polycyclic aromatic hydrocarbons (PAHs) catalyzed by ARHDs can also be explored through protein molecular docking studies. Protein data analysis enables an understanding of molecular processes and monitoring complex biodegradation reactions. This review summarizes the molecular characterization of five ARHDs from Pseudomonas species already reported for PAH degradation. Homology modeling for the amino acid sequences encoding the catalytic α-subunit of ARHDs and their docking analyses with PAHs suggested that the enzyme active sites show flexibility around the catalytic pocket for binding of low molecular weight (LMW) and high molecular weight (HMW) PAH substrates (naphthalene, phenanthrene, pyrene, benzo[α]pyrene). The alpha subunit harbours variable catalytic pockets and broader channels, allowing relaxed enzyme specificity toward PAHs. ARHD's ability to accommodate different LMW and HMW PAHs demonstrates its 'plasticity', meeting the catabolic demand of the PAH degraders.
Collapse
Affiliation(s)
- Prerna J Yesankar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ayurshi Patil
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
19
|
Diao D, Simaan AJ, Martinez A, Colomban C. Bioinspired complexes confined in well-defined capsules: getting closer to metalloenzyme functionalities. Chem Commun (Camb) 2023; 59:4288-4299. [PMID: 36946593 DOI: 10.1039/d2cc06990c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Reproducing the key features offered by metalloprotein binding cavities is an attractive approach to overcome the main bottlenecks of current open artificial models (in terms of stability, efficiency and selectivity). In this context, this featured article brings together selected examples of recent developments in the field of confined bioinspired complexes with an emphasis on the emerging hemicryptophane caged ligands. In particular, we focused on (1) the strategies allowing the insulation and protection of complexes sharing similarities with metalloprotein active sites, (2) the confinement-induced improvement of catalytic efficiencies and selectivities and (3) very recent efforts that have been made toward the development of bioinspired complexes equipped with weakly binding artificial cavities.
Collapse
Affiliation(s)
- Donglin Diao
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | | | - Cédric Colomban
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| |
Collapse
|
20
|
Engineering Rieske oxygenase activity one piece at a time. Curr Opin Chem Biol 2023; 72:102227. [PMID: 36410250 PMCID: PMC9939785 DOI: 10.1016/j.cbpa.2022.102227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Enzyme engineering plays a central role in the development of biocatalysts for biotechnology, chemical and pharmaceutical manufacturing, and environmental remediation. Rational design of proteins has historically relied on targeting active site residues to confer a protein with desirable catalytic properties. However, additional "hotspots" are also known to exist beyond the active site. Structural elements such as subunit-subunit interactions, entrance tunnels, and flexible loops influence enzyme catalysis and serve as potential "hotspots" for engineering. For the Rieske oxygenases, which use a Rieske cluster and mononuclear iron center to catalyze a challenging set of reactions, these outside of the active site regions are increasingly being shown to drive catalytic outcomes. Therefore, here, we highlight recent work on structurally characterized Rieske oxygenases that implicates architectural pieces inside and outside of the active site as key dictators of catalysis, and we suggest that these features may warrant attention in efforts aimed at Rieske oxygenase engineering.
Collapse
|
21
|
Rogers MS, Gordon AM, Rappe TM, Goodpaster JD, Lipscomb JD. Contrasting Mechanisms of Aromatic and Aryl-Methyl Substituent Hydroxylation by the Rieske Monooxygenase Salicylate 5-Hydroxylase. Biochemistry 2023; 62:507-523. [PMID: 36583545 PMCID: PMC9854337 DOI: 10.1021/acs.biochem.2c00610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hydroxylase component (S5HH) of salicylate-5-hydroxylase catalyzes C5 ring hydroxylation of salicylate but switches to methyl hydroxylation when a C5 methyl substituent is present. The use of 18O2 reveals that both aromatic and aryl-methyl hydroxylations result from monooxygenase chemistry. The functional unit of S5HH comprises a nonheme Fe(II) site located 12 Å across a subunit boundary from a one-electron reduced Rieske-type iron-sulfur cluster. Past studies determined that substrates bind near the Fe(II), followed by O2 binding to the iron to initiate catalysis. Stopped-flow-single-turnover reactions (STOs) demonstrated that the Rieske cluster transfers an electron to the iron site during catalysis. It is shown here that fluorine ring substituents decrease the rate constant for Rieske electron transfer, implying a prior reaction of an Fe(III)-superoxo intermediate with a substrate. We propose that the iron becomes fully oxidized in the resulting Fe(III)-peroxo-substrate-radical intermediate, allowing Rieske electron transfer to occur. STO using 5-CD3-salicylate-d8 occurs with an inverse kinetic isotope effect (KIE). In contrast, STO of a 1:1 mixture of unlabeled and 5-CD3-salicylate-d8 yields a normal product isotope effect. It is proposed that aromatic and aryl-methyl hydroxylation reactions both begin with the Fe(III)-superoxo reaction with a ring carbon, yielding the inverse KIE due to sp2 → sp3 carbon hybridization. After Rieske electron transfer, the resulting Fe(III)-peroxo-salicylate intermediate can continue to aromatic hydroxylation, whereas the equivalent aryl-methyl intermediate formation must be reversible to allow the substrate exchange necessary to yield a normal product isotope effect. The resulting Fe(III)-(hydro)peroxo intermediate may be reactive or evolve through a high-valent iron intermediate to complete the aryl-methyl hydroxylation.
Collapse
Affiliation(s)
- Melanie S. Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Adrian M. Gordon
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Todd M. Rappe
- Minnesota NMR Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jason D. Goodpaster
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Dell'Anno F, Joaquim van Zyl L, Trindade M, Buschi E, Cannavacciuolo A, Pepi M, Sansone C, Brunet C, Ianora A, de Pascale D, Golyshin PN, Dell'Anno A, Rastelli E. Microbiome enrichment from contaminated marine sediments unveils novel bacterial strains for petroleum hydrocarbon and heavy metal bioremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120772. [PMID: 36455775 DOI: 10.1016/j.envpol.2022.120772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Petroleum hydrocarbons and heavy metals are some of the most widespread contaminants affecting marine ecosystems, urgently needing effective and sustainable remediation solutions. Microbial-based bioremediation is gaining increasing interest as an effective, economically and environmentally sustainable strategy. Here, we hypothesized that the heavily polluted coastal area facing the Sarno River mouth, which discharges >3 tons of polycyclic aromatic hydrocarbons (PAHs) and ∼15 tons of heavy metals (HMs) into the sea annually, hosts unique microbiomes including marine bacteria useful for PAHs and HMs bioremediation. We thus enriched the microbiome of marine sediments, contextually selecting for HM-resistant bacteria. The enriched mixed bacterial culture was subjected to whole-DNA sequencing, metagenome-assembled-genomes (MAGs) annotation, and further sub-culturing to obtain the major bacterial species as pure strains. We obtained two novel isolates corresponding to the two most abundant MAGs (Alcanivorax xenomutans strain-SRM1 and Halomonas alkaliantarctica strain-SRM2), and tested their ability to degrade PAHs and remove HMs. Both strains exhibited high PAHs degradation (60-100%) and HMs removal (21-100%) yield, and we described in detail >60 genes in their MAGs to unveil the possible genetic basis for such abilities. Most promising yields (∼100%) were obtained towards naphthalene, pyrene and lead. We propose these novel bacterial strains and related genetic repertoire to be further exploited for effective bioremediation of marine environments contaminated with both PAHs and HMs.
Collapse
Affiliation(s)
- Filippo Dell'Anno
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Leonardo Joaquim van Zyl
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, 7535, Cape Town, South Africa.
| | - Marla Trindade
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, 7535, Cape Town, South Africa.
| | - Emanuela Buschi
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Antonio Cannavacciuolo
- Department of Integrative Marine Ecology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Milva Pepi
- Department of Integrative Marine Ecology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Christophe Brunet
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Peter N Golyshin
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK.
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| |
Collapse
|
23
|
Li X, Yao S, Bolan N, Wang Z, Jiang X, Song Y. Combined maize straw-biochar and oxalic acids induced a relay activity of abundant specific degraders for efficient phenanthrene degradation: Evidence based on the DNA-SIP technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119867. [PMID: 35940483 DOI: 10.1016/j.envpol.2022.119867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Biochar-oxalic acid composite application (BCOA) have shown to be efficient in the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil, but the functional degraders and the mechanism of improving biodegradation remains unclear. In this study, with the help of stable isotope probing technology of phenanthrene (Phe), we determined that BCOA significantly improved Phe mineralization by 2.1 times, which was ascribed to the increased numbers and abundances of functional degraders. The BCOA increased contents of dissolved organic carbon and available nutrients and decreased pH values in soil, thus promoting the activity, diversity and close cooperation of the functional Phe-degraders, and stimulating their functions associated with Phe degradation. In addition, there is a relay activity among more and diverse functional Phe-degraders in the soil with BCOA. Specifically, Pullulanibacillus persistently participated in Phe-degradation in the soil with BCOA throughout the incubation period. Moreover, Pullulanibacillus, Blastococcus, Alsobacter, Ramlibacter, and Mizugakiibacter were proved to be potential Phe-degraders in soil for the first time. The specific Phe degraders and their relay and cooperation activity in soils as impacted by BCOA were first identified with DNA-stable isotope probing technology. Our findings provided a novel perspective to understand the efficient degradation of PAH in the BCOA treatments, revealed the potential of soil native microbes in the efficient bioremediation of PAH-contaminated natural soil, and provided a basis for the development of in-situ phytoremediation technologies to remediate PAH pollution in future.
Collapse
Affiliation(s)
- Xiaona Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Nanthi Bolan
- School of Agriculture and Environment, UWA Institute of Agriculture, The University of Western Australia, Nedland, WA, 6009, Australia
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Medić AB, Karadžić IM. Pseudomonas in environmental bioremediation of hydrocarbons and phenolic compounds- key catabolic degradation enzymes and new analytical platforms for comprehensive investigation. World J Microbiol Biotechnol 2022; 38:165. [PMID: 35861883 DOI: 10.1007/s11274-022-03349-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Pollution of the environment with petroleum hydrocarbons and phenolic compounds is one of the biggest problems in the age of industrialization and high technology. Species of the genus Pseudomonas, present in almost all hydrocarbon-contaminated areas, play a particular role in biodegradation of these xenobiotics, as the genus has the potential to decompose various hydrocarbons and phenolic compounds, using them as its only source of carbon. Plasticity of carbon metabolism is one of the adaptive strategies used by Pseudomonas to survive exposure to toxic organic compounds, so a good knowledge of its mechanisms of degradation enables the development of new strategies for the treatment of pollutants in the environment. The capacity of microorganisms to metabolize aromatic compounds has contributed to the evolutionally conserved oxygenases. Regardless of the differences in structure and complexity between mono- and polycyclic aromatic hydrocarbons, all these compounds are thermodynamically stable and chemically inert, so for their decomposition, ring activation by oxygenases is crucial. Genus Pseudomonas uses several upper and lower metabolic pathways to transform and degrade hydrocarbons, phenolic compounds, and petroleum hydrocarbons. Data obtained from newly developed omics analytical platforms have enormous potential not only to facilitate our understanding of processes at the molecular level but also enable us to instigate and monitor complex biodegradations by Pseudomonas. Biotechnological application of aromatic metabolic pathways in Pseudomonas to bioremediation of environments polluted with crude oil, biovalorization of lignin for production of bioplastics, biofuel, and bio-based chemicals, as well as Pseudomonas-assisted phytoremediation are also considered.
Collapse
Affiliation(s)
- Ana B Medić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Belgrade, Serbia.
| | - Ivanka M Karadžić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Belgrade, Serbia
| |
Collapse
|
25
|
The α- and β-Subunit Boundary at the Stem of the Mushroom-Like α
3
β
3
-Type Oxygenase Component of Rieske Non-Heme Iron Oxygenases Is the Rieske-Type Ferredoxin-Binding Site. Appl Environ Microbiol 2022; 88:e0083522. [PMID: 35862661 PMCID: PMC9361823 DOI: 10.1128/aem.00835-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cumene dioxygenase (CumDO) is an initial enzyme in the cumene degradation pathway of Pseudomonas fluorescens IP01 and is a Rieske non-heme iron oxygenase (RO) that comprises two electron transfer components (reductase [CumDO-R] and Rieske-type ferredoxin [CumDO-F]) and one catalytic component (α3β3-type oxygenase [CumDO-O]). Catalysis is triggered by electrons that are transferred from NAD(P)H to CumDO-O by CumDO-R and CumDO-F. To investigate the binding mode between CumDO-F and CumDO-O and to identify the key CumDO-O amino acid residues for binding, we simulated docking between the CumDO-O crystal structure and predicted model of CumDO-F and identified two potential binding sites: one is at the side-wise site and the other is at the top-wise site in mushroom-like CumDO-O. Then, we performed alanine mutagenesis of 16 surface amino acid residues at two potential binding sites. The results of reduction efficiency analyses using the purified components indicated that CumDO-F bound at the side-wise site of CumDO-O, and K117 of the α-subunit and R65 of the β-subunit were critical for the interaction. Moreover, these two positively charged residues are well conserved in α3β3-type oxygenase components of ROs whose electron donors are Rieske-type ferredoxins. Given that these residues were not conserved if the electron donors were different types of ferredoxins or reductases, the side-wise site of the mushroom-like structure is thought to be the common binding site between Rieske-type ferredoxin and α3β3-type oxygenase components in ROs. IMPORTANCE We clarified the critical amino acid residues of the oxygenase component (Oxy) of Rieske non-heme iron oxygenase (RO) for binding with Rieske-type ferredoxin (Fd). Our results showed that Rieske-type Fd-binding site is commonly located at the stem (side-wise site) of the mushroom-like α3β3 quaternary structure in many ROs. The resultant binding site was totally different from those reported at the top-wise site of the doughnut-like α3-type Oxy, although α3-type Oxys correspond to the cap (α3 subunit part) of the mushroom-like α3β3-type Oxys. Critical amino acid residues detected in this study were not conserved if the electron donors of Oxys were different types of Fds or reductases. Altogether, we can suggest that unique binding modes between Oxys and electron donors have evolved, depending on the nature of the electron donors, despite Oxy molecules having shared α3β3 quaternary structures.
Collapse
|
26
|
Pati SG, Bopp CE, Kohler HPE, Hofstetter TB. Substrate-Specific Coupling of O 2 Activation to Hydroxylations of Aromatic Compounds by Rieske Non-heme Iron Dioxygenases. ACS Catal 2022; 12:6444-6456. [PMID: 35692249 PMCID: PMC9171724 DOI: 10.1021/acscatal.2c00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/09/2022] [Indexed: 02/07/2023]
Abstract
![]()
Rieske dioxygenases
catalyze the initial steps in the hydroxylation
of aromatic compounds and are critical for the metabolism of xenobiotic
substances. Because substrates do not bind to the mononuclear non-heme
FeII center, elementary steps leading to O2 activation
and substrate hydroxylation are difficult to delineate, thus making
it challenging to rationalize divergent observations on enzyme mechanisms,
reactivity, and substrate specificity. Here, we show for nitrobenzene
dioxygenase, a Rieske dioxygenase capable of transforming nitroarenes
to nitrite and substituted catechols, that unproductive O2 activation with the release of the unreacted substrate and reactive
oxygen species represents an important path in the catalytic cycle.
Through correlation of O2 uncoupling for a series of substituted
nitroaromatic compounds with 18O and 13C kinetic
isotope effects of dissolved O2 and aromatic substrates,
respectively, we show that O2 uncoupling occurs after the
rate-limiting formation of FeIII-(hydro)peroxo species
from which substrates are hydroxylated. Substituent effects on the
extent of O2 uncoupling suggest that the positioning of
the substrate in the active site rather than the susceptibility of
the substrate for attack by electrophilic oxygen species is responsible
for unproductive O2 uncoupling. The proposed catalytic
cycle provides a mechanistic basis for assessing the very different
efficiencies of substrate hydroxylation vs unproductive O2 activation and generation of reactive oxygen species in reactions
catalyzed by Rieske dioxygenases.
Collapse
Affiliation(s)
- Sarah G. Pati
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Charlotte E. Bopp
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Hans-Peter E. Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Thomas B. Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
27
|
Chen Z, Hu H, Xu P, Tang H. Soil bioremediation by Pseudomonas brassicacearum MPDS and its enzyme involved in degrading PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152522. [PMID: 34953839 DOI: 10.1016/j.scitotenv.2021.152522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) commonly coexist in contaminated sites, posing a significant threat to ecosystem. Strains that degrade a wide range of substrates play important roles in bioremediation of contaminated environment. In this study, we reveal that Pseudomonas brassicacearum MPDS was able to remove 31.1% naphthalene of 500 mg/kg from soil within 2 d, while its relative abundance decreased significantly on Day 20, indicating its applicable potential in soil remediation. In addition to naphthalene, dibenzofuran, dibenzothiophene, and fluorene as reported previously, strain MPDS is able to degrade carbazole, phenanthrene, pyrene, and 2-bromonaphthalene. Moreover, NahA from strain MPDS has multi-substrate catalytic capacities on naphthalene, dibenzofuran, dibenzothiophene, phenanthrene, and 2-bromonaphthalene into dihydrodiols, while converts fluorene and carbazole into monohydroxy compounds according to GC-MS analysis. This study provides further insights into the exploration of soil remediation by strain MPDS and the mining of enzymes involved in the degradation of PAHs.
Collapse
Affiliation(s)
- Zhengshi Chen
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
28
|
Csizi K, Eckert L, Brunken C, Hofstetter TB, Reiher M. The Apparently Unreactive Substrate Facilitates the Electron Transfer for Dioxygen Activation in Rieske Dioxygenases. Chemistry 2022; 28:e202103937. [PMID: 35072969 PMCID: PMC9306888 DOI: 10.1002/chem.202103937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/29/2022]
Abstract
Rieske dioxygenases belong to the non-heme iron family of oxygenases and catalyze important cis-dihydroxylation as well as O-/N-dealkylation and oxidative cyclization reactions for a wide range of substrates. The lack of substrate coordination at the non-heme ferrous iron center, however, makes it particularly challenging to delineate the role of the substrate for productive O 2 activation. Here, we studied the role of the substrate in the key elementary reaction leading to O 2 activation from a theoretical perspective by systematically considering (i) the 6-coordinate to 5-coordinate conversion of the non-heme FeII upon abstraction of a water ligand, (ii) binding of O 2 , and (iii) transfer of an electron from the Rieske cluster. We systematically evaluated the spin-state-dependent reaction energies and structural effects at the active site for all combinations of the three elementary processes in the presence and absence of substrate using naphthalene dioxygenase as a prototypical Rieske dioxygenase. We find that reaction energies for the generation of a coordination vacancy at the non-heme FeII center through thermoneutral H2 O reorientation and exothermic O 2 binding prior to Rieske cluster oxidation are largely insensitive to the presence of naphthalene and do not lead to formation of any of the known reactive Fe-oxygen species. By contrast, the role of the substrate becomes evident after Rieske cluster oxidation and exclusively for the 6-coordinate non-heme FeII sites in that the additional electron is found at the substrate instead of at the iron and oxygen atoms. Our results imply an allosteric control of the substrate on Rieske dioxygenase reactivity to happen prior to changes at the non-heme FeII in agreement with a strategy that avoids unproductive O 2 activation.
Collapse
Affiliation(s)
- Katja‐Sophia Csizi
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Lina Eckert
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Christoph Brunken
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Thomas B. Hofstetter
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
| | - Markus Reiher
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| |
Collapse
|
29
|
Identification of New Dioxygenases Able to Recognize Polycyclic Aromatic Hydrocarbons with High Aromaticity. Catalysts 2022. [DOI: 10.3390/catal12030279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs), products from the incomplete combustion of crude oil, are pollutants present in nature. Ring hydroxylating dioxygenase enzymes are able to catalyze polycyclic aromatic hydrocarbons in the biodegradation process with a high degree of stereo-, regio-, and enantiospecificity. In this work, we present the first approximation of the binding modes of 9 PAHs with high aromaticity in the catalytic sites of biphenyl or naphthalene dioxygenases from four microorganisms usually used in bio-remediation processes: Sphingobium yanoikuyae, Rhodococcus jostii RHA1, Pseudomonas sp. C18, and Paraburkholderia xenovorans. Molecular modeling studies of two biphenyl dioxygenases from Sphingobium yanoikuyae and Paraburkholderia xenovorans showed good binding affinity for PAHs with 2–4 benzene rings (fluoranthene, pyrene, and chrysene), and both enzymes had a similar amount of substrate binding. Molecular docking studies using naphthalene dioxygenase from Pseudomonas sp. C18 showed that the enzyme is able to accommodate PAHs with high aromaticity (benzo(a)pyrene, indeno(1,2,3-cd)pyrene), with good docking scores. This study provides important insight into the utility of naphthalene dioxygenases in the degradation of HAPs with high aromaticity.
Collapse
|
30
|
Ferreira P, Fernandes P, Ramos M. The archaeal non-heme iron-containing Sulfur Oxygenase Reductase. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Design principles for site-selective hydroxylation by a Rieske oxygenase. Nat Commun 2022; 13:255. [PMID: 35017498 PMCID: PMC8752792 DOI: 10.1038/s41467-021-27822-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/15/2021] [Indexed: 01/12/2023] Open
Abstract
Rieske oxygenases exploit the reactivity of iron to perform chemically challenging C–H bond functionalization reactions. Thus far, only a handful of Rieske oxygenases have been structurally characterized and remarkably little information exists regarding how these enzymes use a common architecture and set of metallocenters to facilitate a diverse range of reactions. Herein, we detail how two Rieske oxygenases SxtT and GxtA use different protein regions to influence the site-selectivity of their catalyzed monohydroxylation reactions. We present high resolution crystal structures of SxtT and GxtA with the native β-saxitoxinol and saxitoxin substrates bound in addition to a Xenon-pressurized structure of GxtA that reveals the location of a substrate access tunnel to the active site. Ultimately, this structural information allowed for the identification of six residues distributed between three regions of SxtT that together control the selectivity of the C–H hydroxylation event. Substitution of these residues produces a SxtT variant that is fully adapted to exhibit the non-native site-selectivity and substrate scope of GxtA. Importantly, we also found that these selectivity regions are conserved in other structurally characterized Rieske oxygenases, providing a framework for predictively repurposing and manipulating Rieske oxygenases as biocatalysts. SxtT and GxtA are Rieske oxygenases that are involved in paralytic shellfish toxin biosynthesis and catalyze monohydroxylation reactions at different positions on the toxin scaffold. Here, the authors present crystal structures of SxtT and GxtA with the native substrates β-saxitoxinol and saxitoxin as well as a Xenon-pressurized structure of GxtA, which reveal a substrate access tunnel to the active site. Through structure-based mutagenesis studies the authors identify six residues in three different protein regions that determine the substrate specificity and site selectivity of SxtT and GxtA. These findings will aid the rational engineering of other Rieske oxygenases.
Collapse
|
32
|
Structural insights into dihydroxylation of terephthalate, a product of polyethylene terephthalate degradation. J Bacteriol 2022; 204:e0054321. [PMID: 35007143 DOI: 10.1128/jb.00543-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biodegradation of terephthalate (TPA) is a highly desired catabolic process for the bacterial utilization of this Polyethylene terephthalate (PET) depolymerization product, but to date, the structure of terephthalate dioxygenase (TPDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of TPA to a cis-diol is unavailable. In this study, we characterized the steady-state kinetics and first crystal structure of TPDO from Comamonas testosteroni KF1 (TPDOKF1). The TPDOKF1 exhibited the substrate specificity for TPA (kcat/Km = 57 ± 9 mM-1s-1). The TPDOKF1 structure harbors characteristics RO features as well as a unique catalytic domain that rationalizes the enzyme's function. The docking and mutagenesis studies reveal that its substrate specificity to TPA is mediated by Arg309 and Arg390 residues, two residues positioned on opposite faces of the active site. Additionally, residue Gln300 is also proven to be crucial for the activity, its substitution to alanine decreases the activity (kcat) by 80%. Together, this study delineates the structural features that dictate the substrate recognition and specificity of TPDO. Importance The global plastic pollution has become the most pressing environmental issue. Recent studies on enzymes depolymerizing polyethylene terephthalate plastic into terephthalate (TPA) show some potential in tackling this. Microbial utilization of this released product, TPA is an emerging and promising strategy for waste-to-value creation. Research from the last decade has discovered terephthalate dioxygenase (TPDO), as being responsible for initiating the enzymatic degradation of TPA in a few Gram-negative and Gram-positive bacteria. Here, we have determined the crystal structure of TPDO from Comamonas testosteroni KF1 and revealed that it possesses a unique catalytic domain featuring two basic residues in the active site to recognize TPA. Biochemical and mutagenesis studies demonstrated the crucial residues responsible for the substrate specificity of this enzyme.
Collapse
|
33
|
Imam A, Kumar Suman S, Kanaujia PK, Ray A. Biological machinery for polycyclic aromatic hydrocarbons degradation: A review. BIORESOURCE TECHNOLOGY 2022; 343:126121. [PMID: 34653630 DOI: 10.1016/j.biortech.2021.126121] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hazardous environmental pollutants with widespread and well-recognized health concerns. Amidst more than a hundred known PAHs, 16 are categorized as priority pollutants. Use of widely diverse biological machinery comprising bacteria, fungi, and algae harnessed from contaminated sites has emerged as an ecologically safe and sustainable approach for PAH degradation. The potential of these biological systems has been thoroughly examined to maximize the degradation of specific PAHs by understanding their detailed biochemical pathways, enzymatic system, and gene organization. Recent advancements in microbial genetic engineering and metabolomics using modern analytical tools have facilitated the bioremediation of such xenobiotics. This review explores the role of microbes, their biochemical pathways, genetic regulation of metabolic pathways, and the effect of biosurfactants against the backdrop of PAH substrate structures.
Collapse
Affiliation(s)
- Arfin Imam
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Pankaj K Kanaujia
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Anjan Ray
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India.
| |
Collapse
|
34
|
Mahto JK, Neetu N, Waghmode B, Kuatsjah E, Sharma M, Sircar D, Sharma AK, Tomar S, Eltis LD, Kumar P. Molecular insights into substrate recognition and catalysis by phthalate dioxygenase from Comamonas testosteroni. J Biol Chem 2021; 297:101416. [PMID: 34800435 PMCID: PMC8649396 DOI: 10.1016/j.jbc.2021.101416] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
Phthalate, a plasticizer, endocrine disruptor, and potential carcinogen, is degraded by a variety of bacteria. This degradation is initiated by phthalate dioxygenase (PDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of phthalate to a dihydrodiol. PDO has long served as a model for understanding ROs despite a lack of structural data. Here we purified PDOKF1 from Comamonas testosteroni KF1 and found that it had an apparent kcat/Km for phthalate of 0.58 ± 0.09 μM-1s-1, over 25-fold greater than for terephthalate. The crystal structure of the enzyme at 2.1 Å resolution revealed that it is a hexamer comprising two stacked α3 trimers, a configuration not previously observed in RO crystal structures. We show that within each trimer, the protomers adopt a head-to-tail configuration typical of ROs. The stacking of the trimers is stabilized by two extended helices, which make the catalytic domain of PDOKF1 larger than that of other characterized ROs. Complexes of PDOKF1 with phthalate and terephthalate revealed that Arg207 and Arg244, two residues on one face of the active site, position these substrates for regiospecific hydroxylation. Consistent with their roles as determinants of substrate specificity, substitution of either residue with alanine yielded variants that did not detectably turnover phthalate. Together, these results provide critical insights into a pollutant-degrading enzyme that has served as a paradigm for ROs and facilitate the engineering of this enzyme for bioremediation and biocatalytic applications.
Collapse
Affiliation(s)
- Jai Krishna Mahto
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| | - Neetu Neetu
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| | | | - Eugene Kuatsjah
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Monica Sharma
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| | | | - Shailly Tomar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| | - Lindsay D Eltis
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India.
| |
Collapse
|
35
|
Coin G, Latour JM. Nitrene transfers mediated by natural and artificial iron enzymes. J Inorg Biochem 2021; 225:111613. [PMID: 34634542 DOI: 10.1016/j.jinorgbio.2021.111613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022]
Abstract
Amines are ubiquitous in biology and pharmacy. As a consequence, introducing N functionalities in organic molecules is attracting strong continuous interest. The past decade has witnessed the emergence of very efficient and selective catalytic systems achieving this goal thanks to engineered hemoproteins. In this review, we examine how these enzymes have been engineered focusing rather on the rationale behind it than the methodology employed. These studies are put in perspective with respect to in vitro and in vivo nitrene transfer processes performed by cytochromes P450. An emphasis is put on mechanistic aspects which are confronted to current molecular knowledge of these reactions. Forthcoming developments are delineated.
Collapse
Affiliation(s)
- Guillaume Coin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France; Univ. Grenoble Alpes, CNRS UMR 5250, DCM, CIRE, F-38000 Grenoble, France
| | - Jean-Marc Latour
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France.
| |
Collapse
|
36
|
Golubev SN, Muratova AY, Panchenko LV, Shchyogolev SY, Turkovskaya OV. Mycolicibacterium sp. strain PAM1, an alfalfa rhizosphere dweller, catabolizes PAHs and promotes partner-plant growth. Microbiol Res 2021; 253:126885. [PMID: 34624611 DOI: 10.1016/j.micres.2021.126885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
This research was focused on the isolation and characterization of a PAH-catabolizing mycobacterial strain from the petroleum hydrocarbon-contaminated rhizosphere of alfalfa, as well as on revealing some points of interaction between the microorganism and the plant. Mycolicibacterium sp. PAM1, a pyrene degrader isolated from the niche of interest to us, can catabolize fluoranthene, anthracene, fluorene, and phenanthrene. On the basis of curves of PAM1 growth with different PAHs as the sole carbon sources and on the basis of PAH-degradation rates, we found that pollutant availability to the strain decreased in the sequence phenanthrene > fluorene > fluoranthene ∼ pyrene > anthracene. For each PAH, the catabolic products were identified. PAM1 was found to have the functional genes nidA and nidB. New data modeling the 2D and 3D structures, intrinsic structural disorder, and molecular dynamics of the nidA and nidB gene products were obtained. The identified genes and intermediates of pyrene degradation indicate that PAM1 has a PAH catabolic pathway that is peculiar to known mycobacterial pyrene degraders. PAM1 utilized some components of alfalfa root exudates as nutrients and promoted plant growth. The use of mycobacterial partners of alfalfa is attractive for enhancing the phytoremediation of PAH-contaminated soils.
Collapse
Affiliation(s)
- Sergey N Golubev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation.
| | - Anna Yu Muratova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
| | - Leonid V Panchenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
| | - Sergey Yu Shchyogolev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
| | - Olga V Turkovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
| |
Collapse
|
37
|
Bete SC, Otte M. Heteroleptische Koordination durch einen
endo
‐funktionalisierten Käfig. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah C. Bete
- Institut für Anorganische Chemie Universität Göttingen Tammannstraße 4 37077 Göttingen Deutschland
| | - Matthias Otte
- Institut für Anorganische Chemie Universität Göttingen Tammannstraße 4 37077 Göttingen Deutschland
| |
Collapse
|
38
|
Bete SC, Otte M. Heteroleptic Ligation by an endo-Functionalized Cage. Angew Chem Int Ed Engl 2021; 60:18582-18586. [PMID: 34124838 PMCID: PMC8456844 DOI: 10.1002/anie.202106341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 12/20/2022]
Abstract
A conceptual approach for the synthesis of quasi-heteroleptic complexes with properly endo-functionalized cages as ligands is presented. The cage ligand reported here is of a covalent organic nature, it has been synthesized via a dynamic combinatorial chemistry approach, making use of a masked amine. Inspired by enzymatic active sites, the described system bears one carboxylate and two imidazole moieties as independent ligating units through which it is able to coordinate to transition metals. Analysis of the iron(II) complex in solution and the solid state validates the structure and shows that no undesired but commonly observed dimerization process takes place. The solid-state structure shows a five-coordinate metal center with the carboxylate bidentately bound to iron, which makes Fe@2 an unprecedentedly detailed structural model complex for this kind of non-heme iron oxygenases. As, as confirmed by the crystal structure, sufficient space for other organic ligands is available, the biologically relevant ligand α-ketoglutarate is implemented. We observe biomimetic reaction behavior towards dioxygen that opens studies investigating Fe@2 as a functional model complex.
Collapse
Affiliation(s)
- Sarah C Bete
- Institut für Anorganische Chemie, University of Goettingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Matthias Otte
- Institut für Anorganische Chemie, University of Goettingen, Tammannstraße 4, 37077, Göttingen, Germany
| |
Collapse
|
39
|
Wissner JL, Schelle JT, Escobedo‐Hinojosa W, Vogel A, Hauer B. Semi‐Rational Engineering of Toluene Dioxygenase from
Pseudomonas putida
F1 towards Oxyfunctionalization of Bicyclic Aromatics. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Julian L. Wissner
- Institute of Technical Biochemistry University of Stuttgart Allmandring 31 70569 Stuttgart Germany
| | - Jona T. Schelle
- Institute of Technical Biochemistry University of Stuttgart Allmandring 31 70569 Stuttgart Germany
| | - Wendy Escobedo‐Hinojosa
- Institute of Technical Biochemistry University of Stuttgart Allmandring 31 70569 Stuttgart Germany
| | | | - Bernhard Hauer
- Institute of Technical Biochemistry University of Stuttgart Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
40
|
Structural and Biochemical Analysis Reveals a Distinct Catalytic Site of Salicylate 5-Monooxygenase NagGH from Rieske Dioxygenases. Appl Environ Microbiol 2021; 87:AEM.01629-20. [PMID: 33452034 DOI: 10.1128/aem.01629-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
Rieske nonheme iron oxygenases (ROs) catalyze the oxidation of a wide variety of substrates and play important roles in aromatic compound degradation and polycyclic aromatic hydrocarbon degradation. Those Rieske dioxygenases that usually act on hydrophobic substrates have been extensively studied and structurally characterized. Here, we report the crystal structure of a novel Rieske monooxygenase, NagGH, the oxygenase component of a salicylate 5-monooxygenase from Ralstonia sp. strain U2 that catalyzes the hydroxylation of a hydrophilic substrate salicylate (2-hydroxybenzoate), forming gentisate (2, 5-dihydroxybenzoate). The large subunit NagG and small subunit NagH share the same fold as that for their counterparts of Rieske dioxygenases and assemble the same α3β3 hexamer, despite that they share low (or no identity for NagH) sequence identities with these dioxygenase counterparts. A potential substrate-binding pocket was observed in the vicinity of the nonheme iron site. It featured a positively charged residue Arg323 that was surrounded by hydrophobic residues. The shift of nonheme iron atom caused by residue Leu228 disrupted the usual substrate pocket observed in other ROs. Residue Asn218 at the usual substrate pocket observed in other ROs was likewise involved in substrate binding and oxidation, yet residues Gln316 and Ser367, away from the usual substrate pocket of other ROs, were shown to play a more important role in substrate oxidation than Asn218. The unique binding pocket and unusual substrate-protein hydrophilic interaction provide new insights into Rieske monooxygenases.IMPORTANCE Rieske oxygenases are involved in the degradation of various aromatic compounds. These dioxygenases usually carry out hydroxylation of hydrophobic aromatic compounds and supply substrates with hydroxyl groups for extradiol/intradiol dioxygenases to cleave rings, and have been extensively studied. Salicylate 5-hydroxylase NagGH is a novel Rieske monooxygenase with high similarity to Rieske dioxygenases, and also shares reductase and ferredoxin similarity with a Rieske dioxygenase naphthalene 1,2-dioxygenase (NagAcAd) in Ralstonia sp. strain U2. The structure of NagGH, the oxygenase component of salicylate 5-monooxygenase, gives a representative of those monooxygenases and will help us understand the mechanism of their substrate binding and product regio-selectivity.
Collapse
|
41
|
Heinemann PM, Armbruster D, Hauer B. Active-site loop variations adjust activity and selectivity of the cumene dioxygenase. Nat Commun 2021; 12:1095. [PMID: 33597523 PMCID: PMC7889853 DOI: 10.1038/s41467-021-21328-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023] Open
Abstract
Active-site loops play essential roles in various catalytically important enzyme properties like activity, selectivity, and substrate scope. However, their high flexibility and diversity makes them challenging to incorporate into rational enzyme engineering strategies. Here, we report the engineering of hot-spots in loops of the cumene dioxygenase from Pseudomonas fluorescens IP01 with high impact on activity, regio- and enantioselectivity. Libraries based on alanine scan, sequence alignments, and deletions along with a novel insertion approach result in up to 16-fold increases in activity and the formation of novel products and enantiomers. CAVER analysis suggests possible increases in the active pocket volume and formation of new active-site tunnels, suggesting additional degrees of freedom of the substrate in the pocket. The combination of identified hot-spots with the Linker In Loop Insertion approach proves to be a valuable addition to future loop engineering approaches for enhanced biocatalysts.
Collapse
Affiliation(s)
- Peter M Heinemann
- Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Daniel Armbruster
- Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
42
|
Galitskaya P, Biktasheva L, Kuryntseva P, Selivanovskaya S. Response of soil bacterial communities to high petroleum content in the absence of remediation procedures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9610-9627. [PMID: 33155112 DOI: 10.1007/s11356-020-11290-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Oil spills are events that frequently lead to petroleum pollution. This pollution may cause stress to microbial communities, which require long adaption periods. Soil petroleum pollution is currently considered one of the most serious environmental problems. In the present work, processes occurring in the bacterial communities of three soil samples with different physicochemical characteristics, artificially polluted with 12% of crude oil, were investigated in 120-day laboratory experiment. It was found that the total petroleum hydrocarbon content did not decrease during this time; however, the proportion of petroleum fractions was altered. Petroleum pollution led to a short-term decrease in the bacterial 16S rRNA gene copy number. On the basis of amplicon sequencing analysis, it was concluded that bacterial community successions were similar in the three soils investigated. Thus, the phyla Actinobacteria and Proteobacteria and candidate TM7 phylum (Saccaribacteria) were predominant with relative abundances ranging from 35 to 58%, 25 to 30%, and 15 to 35% in different samples, respectively. The predominant operational taxonomic units (OTUs) after pollution belonged to the genera Rhodococcus and Mycobacterium, families Nocardioidaceae and Sinobacteraceae, and candidate class ТМ7-3. Genes from the alkIII group encoding monoxygenases were the most abundant compared with other catabolic genes from the alkI, alkII, GN-PAH, and GP-PAH groups, and their copy number significantly increased after pollution. The copy numbers of expressed genes involved in the horizontal transfer of catabolic genes, FlgC, TraG, and OmpF, also increased after pollution by 11-33, 16-63, and 11-71 times, respectively. The bacterial community structure after a high level of petroleum pollution changed because of proliferation of the cells that initially were able to decompose hydrocarbons, and in the second place, because proliferation of the cells that received these catabolic genes through horizontal transfer.
Collapse
Affiliation(s)
- Polina Galitskaya
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008
| | - Liliya Biktasheva
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008.
| | - Polina Kuryntseva
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008
| | | |
Collapse
|
43
|
Nguyen BAT, Hsieh JL, Lo SC, Wang SY, Hung CH, Huang E, Hung SH, Chin WC, Huang CC. Biodegradation of dioxins by Burkholderia cenocepacia strain 869T2: Role of 2-haloacid dehalogenase. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123347. [PMID: 33113713 DOI: 10.1016/j.jhazmat.2020.123347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/10/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Dioxin compounds are persistent carcinogenic byproducts of anthropogenic activities such as waste combustion and other industrial activities. The ubiquitous distribution of dioxins is global concerns these days. Among of recent techniques, bioremediation, an eco-friendly and cost-effective technology, uses bacteria or fungi to detoxify in dioxins; however, not many bacteria can degrade the most toxic dioxin congener 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (TCDD). In this study, the endophytic bacterium Burkholderia cenocapacia 869T2 was capable of TCDD degradation by nearly 95 % after one-week of an aerobic incubation. Through transcriptomic analysis of the strain 869T2 at 6 -h and 12 -h TCDD exposure, a number of catabolic genes involved in dioxin metabolism were detected with high gene expressions in the presence of TCDD. The transcriptome data also indicated that B. cenocepacia strain 869T2 metabolized the dioxin compounds from an early phase (at 6 h) of the incubation, and the initial outline for a general dioxin degradation pathway were proposed. One of the catabolic genes, l-2-haloacid dehalogenase (2-HAD) was cloned to investigate its contribution in dioxin dehalogenation. By detecting the increasing concentration of chloride ions released from TCDD, our results indicated that the dehalogenase played a crucial role in dehalogenation of dioxin in the aerobic condition.
Collapse
Affiliation(s)
- Bao-Anh Thi Nguyen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ju-Liang Hsieh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Shou-Chen Lo
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Sui-Yuan Wang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Chun-Hsiung Hung
- Department of Environmental Engineering, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Eugene Huang
- College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Shih-Hsun Hung
- Department of Horticulture, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Wei-Chih Chin
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, Taiwan, Republic of China; Department of Biological Sciences and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan, Republic of China.
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China.
| |
Collapse
|
44
|
Soil Characteristics Constrain the Response of Microbial Communities and Associated Hydrocarbon Degradation Genes during Phytoremediation. Appl Environ Microbiol 2021; 87:AEM.02170-20. [PMID: 33097512 DOI: 10.1128/aem.02170-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022] Open
Abstract
Rhizodegradation is a promising cleanup technology where microorganisms degrade soil contaminants in the rhizosphere. A symbiotic relationship is expected to occur between plant roots and soil microorganisms in contaminated soils that enhances natural microbial degradation. However, little is known about how different initial microbiotas influence the rhizodegradation outcome. Recent studies have hinted that soil initial diversity has a determining effect on the outcome of contaminant degradation. To test this, we either planted (P) or not (NP) balsam poplars (Populus balsamifera) in two soils of contrasting diversity (agricultural and forest) that were contaminated or not with 50 mg kg-1 of phenanthrene (PHE). The DNA from the rhizosphere of the P and the bulk soil of the NP pots was extracted and the bacterial genes encoding the 16S rRNA, the PAH ring-hydroxylating dioxygenase alpha subunits (PAH-RHDα) of Gram-positive and Gram-negative bacteria, and the fungal ITS region were sequenced to characterize the microbial communities. The abundances of the PAH-RHDα genes were quantified by real-time quantitative PCR. Plant presence had a significant effect on PHE degradation only in the forest soil, whereas both NP and P agricultural soils degraded the same amount of PHE. Fungal communities were mainly affected by plant presence, whereas bacterial communities were principally affected by the soil type, and upon contamination the dominant PAH-degrading community was similarly constrained by soil type. Our results highlight the crucial importance of soil microbial and physicochemical characteristics in the outcome of rhizoremediation.IMPORTANCE Polycyclic aromatic hydrocarbons (PAH) are a group of organic contaminants that pose a risk to ecosystems' health. Phytoremediation is a promising biotechnology with the potential to restore PAH-contaminated soils. However, some limitations prevent it from becoming the remediation technology of reference, despite being environmentally friendlier than mainstream physicochemical alternatives. Recent reports suggest that the original soil microbial diversity is the key to harnessing the potential of phytoremediation. Therefore, this study focused on determining the effect of two different soil types in the fate of phenanthrene (a polycyclic aromatic hydrocarbon) under balsam poplar remediation. Poplar increased the degradation of phenanthrene in forest, but not in agricultural soil. The fungi were affected by poplars, whereas total bacteria and specific PAH-degrading bacteria were constrained by soil type, leading to different degradation patterns between soils. These results highlight the importance of performing preliminary microbiological studies of contaminated soils to determine whether plant presence could improve remediation rates or not.
Collapse
|
45
|
Bacosa HP, Kang A, Lu K, Liu Z. Initial oil concentration affects hydrocarbon biodegradation rates and bacterial community composition in seawater. MARINE POLLUTION BULLETIN 2021; 162:111867. [PMID: 33276157 DOI: 10.1016/j.marpolbul.2020.111867] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
During oil spills in the field or for laboratory incubation studies, different oil concentrations are often encountered or applied, yet how initial oil concentration affects biodegradation rates of hydrocarbons and the development of oil degraders remains unclear. We incubated seawater for 50 d with different oil concentrations (0, 50, 100, 200, 400 and 800 ppm). n-Alkanes and polycyclic aromatic hydrocarbons (PAHs), and the bacterial community were analyzed periodically. Results show that the biodegradation rates of alkanes, derived from first order kinetics, decreased with increasing oil concentration, but percent residual was ~50% regardless of the initial concentration. In contrast, the biodegradation rates of PAHs increased with concentration, and the percent residual increased with oil concentration. Increasing oil concentration resulted in increased abundances of Rhodobacterales, Altererythrobacter, and Neptuniibacter. However, Alcanivorax abundance was barely detected in 400 and 800 ppm. Overall, oil concentration critically affected the degradation of hydrocarbons and the bacterial community.
Collapse
Affiliation(s)
- Hernando P Bacosa
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA; Department of Biological Sciences, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines.
| | - Andrew Kang
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA; University of Guam Marine Laboratory, UOG Station, Mangilao, Guam 96923, USA
| | - Kaijun Lu
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Zhanfei Liu
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
| |
Collapse
|
46
|
Han X, Wang F, Zhang D, Feng T, Zhang L. Nitrate-assisted biodegradation of polycyclic aromatic hydrocarbons (PAHs) in the water-level-fluctuation zone of the three Gorges Reservoir, China: Insights from in situ microbial interaction analyses and a microcosmic experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115693. [PMID: 33002789 DOI: 10.1016/j.envpol.2020.115693] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
An increase in polycyclic aromatic hydrocarbon (PAH) pollution poses significant challenges to human and ecosystem health in the Three Gorges Reservoir (TGR) of the Yangtze River. Based on the combination of PAH analysis with qPCR and high-throughput sequencing of bacteria, 32 topsoil samples collected from 16 sites along the TGR were used to investigate the distribution and biodegradation pathways of PAHs in the water-level-fluctuation zone (WLFZ). The results indicated that the concentrations of PAHs were 43.8-228.2 and 30.8-206.3 ng/g soil (dry weight) under the high- and low-water-level (HWL and LWL) conditions, respectively. The PAH concentration in urban areas was higher than that in rural areas. Under both the HWL and LWL conditions, the abundance of the bamA gene, a biomarker of anaerobic PAH biodegradation, was significantly higher than that of the ring-hydroxylating-dioxygenase (RHD) gene, a biomarker of aerobic PAH biodegradation. The abundance of the bamA gene was significantly positively correlated with PAHs (R2 = 0.8), and the biodegradation percentage of PAHs incubated anaerobically was greater than that in the aerobically incubated microcosm experiments. These data implicated a key role of the anaerobic pathway in PAH biodegradation. Co-occurrence network analysis suggested that anaerobic Anaerolineaceae, Dechloromonas, Bacteroidetes_vadin HA17 and Geobacter were key participants in the biodegradation of PAHs. The diversity analysis of functional bacteria based on the bamA gene and microcosm experiments further demonstrated that nitrate was the primary electron acceptor for PAH biodegradation. These findings provide a new perspective on the mechanism of PAH biodegradation in the TGR and knowledge that can be used to develop strategies for environmental management.
Collapse
Affiliation(s)
- Xinkuan Han
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Fengwen Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China.
| | - Ting Feng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
47
|
Zheng R, Sun C. Sphingosinithalassobacter tenebrarum sp. nov., isolated from a deep-sea cold seep. Int J Syst Evol Microbiol 2020; 70:5561-5566. [PMID: 32924915 DOI: 10.1099/ijsem.0.004448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, facultatively anaerobic, yellow-pigmented, non-motile, rod-shaped bacterium, designated zrk23T, was isolated from a deep-sea cold seep. The strain was characterized by a polyphasic approach to clarify its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequences placed zrk23T within the genus Sphingosinithalassobacter and showed the highest similarity to Sphingosinithalassobacter portus FM6T (97.93 %). Growth occurs at temperatures from 16 to 45 °C (optimum, 30 °C), at pH values between pH 6.0 and 8.5 (optimum, pH 7.0) and in 0-5.0 % (w/v) NaCl (optimum, 1.5 %). The major fatty acids were C16 : 0, C14 : 0 2-OH and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The major isoprenoid quinone was ubiquinone-10. Predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, one unidentified phosphoglycolipid, three unidentified glycolipids and three unidentified phospholipids. The G+C content of the genomic DNA was 64.69 %. The average nucleotide identity values between zrk23T and the most closely related available genome, of Sphingosinithalassobacter portus FM6T, was 82.21 %, indicating that zrk23T was clearly distinguished from S. portus. The analysis of genome sequence of zrk23T revealed that there were many genes associated with degradation of aromatic compounds existing in the genome of zrk23T. As a result of the combination of the results of phylogenetic analysis and phenotypic and chemotaxonomic data, zrk23T was considered to represent a novel species of the genus Sphingosinithalassobacter, for which the name Sphingosinithalassobacter tenebrarum sp. nov. is proposed. The type strain is zrk23T (=KCTC 72896T=MCCC 1K04416T).
Collapse
Affiliation(s)
- Rikuan Zheng
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, PR China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Chaomin Sun
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, PR China
| |
Collapse
|
48
|
Massmig M, Reijerse E, Krausze J, Laurich C, Lubitz W, Jahn D, Moser J. Carnitine metabolism in the human gut: characterization of the two-component carnitine monooxygenase CntAB from Acinetobacter baumannii. J Biol Chem 2020; 295:13065-13078. [PMID: 32694223 DOI: 10.1074/jbc.ra120.014266] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/24/2020] [Indexed: 01/29/2023] Open
Abstract
Bacterial formation of trimethylamine (TMA) from carnitine in the gut microbiome has been linked to cardiovascular disease. During this process, the two-component carnitine monooxygenase (CntAB) catalyzes the oxygen-dependent cleavage of carnitine to TMA and malic semialdehyde. Individual redox states of the reductase CntB and the catalytic component CntA were investigated based on mutagenesis and electron paramagnetic resonance (EPR) spectroscopic approaches. Protein ligands of the flavin mononucleotide (FMN) and the plant-type [2Fe-2S] cluster of CntB and also of the Rieske-type [2Fe-2S] cluster and the mononuclear [Fe] center of CntA were identified. EPR spectroscopy of variant CntA proteins suggested a hierarchical metallocenter maturation, Rieske [2Fe-2S] followed by the mononuclear [Fe] center. NADH-dependent electron transfer via the redox components of CntB and within the trimeric CntA complex for the activation of molecular oxygen was investigated. EPR experiments indicated that the two electrons from NADH were allocated to the plant-type [2Fe-2S] cluster and to FMN in the form of a flavin semiquinone radical. Single-turnover experiments of this reduced CntB species indicated the translocation of the first electron onto the [Fe] center and the second electron onto the Rieske-type [2Fe-2S] cluster of CntA to finally allow for oxygen activation as a basis for carnitine cleavage. EPR spectroscopic investigation of CntA variants indicated an unusual intermolecular electron transfer between the subunits of the CntA trimer via the "bridging" residue Glu-205. On the basis of these data, a redox catalytic cycle for carnitine monooxygenase was proposed.
Collapse
Affiliation(s)
- Marco Massmig
- Institute of Microbiology, Technical University Braunschweig, Braunschweig, Germany
| | - Edward Reijerse
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Joern Krausze
- Institute of Plant Biology, Technical University Braunschweig, Braunschweig, Germany
| | - Christoph Laurich
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Dieter Jahn
- Braunschweig Centre of Integrated Systems Biology, Braunschweig, Germany
| | - Jürgen Moser
- Institute of Microbiology, Technical University Braunschweig, Braunschweig, Germany.
| |
Collapse
|
49
|
Structural basis for divergent C-H hydroxylation selectivity in two Rieske oxygenases. Nat Commun 2020; 11:2991. [PMID: 32532989 PMCID: PMC7293229 DOI: 10.1038/s41467-020-16729-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/15/2020] [Indexed: 12/05/2022] Open
Abstract
Biocatalysts that perform C–H hydroxylation exhibit exceptional substrate specificity and site-selectivity, often through the use of high valent oxidants to activate these inert bonds. Rieske oxygenases are examples of enzymes with the ability to perform precise mono- or dioxygenation reactions on a variety of substrates. Understanding the structural features of Rieske oxygenases responsible for control over selectivity is essential to enable the development of this class of enzymes for biocatalytic applications. Decades of research has illuminated the critical features common to Rieske oxygenases, however, structural information for enzymes that functionalize diverse scaffolds is limited. Here, we report the structures of two Rieske monooxygenases involved in the biosynthesis of paralytic shellfish toxins (PSTs), SxtT and GxtA, adding to the short list of structurally characterized Rieske oxygenases. Based on these structures, substrate-bound structures, and mutagenesis experiments, we implicate specific residues in substrate positioning and the divergent reaction selectivity observed in these two enzymes. Rieske oxygenases are iron-dependent enzymes that catalyse C–H mono- and dihydroxylation reactions. Here, the authors characterise two cyanobacterial Rieske oxygenases, SxtT and GxtA that are involved in the biosynthesis of paralytic shellfish toxins and determine their substrate free and saxitoxin analog-bound crystal structures and by using mutagenesis experiments identify residues, which are important for substrate positioning and reaction selectivity.
Collapse
|
50
|
Vila MA, Steck V, Rodriguez Giordano S, Carrera I, Fasan R. C-H Amination via Nitrene Transfer Catalyzed by Mononuclear Non-Heme Iron-Dependent Enzymes. Chembiochem 2020; 21:1981-1987. [PMID: 32189465 DOI: 10.1002/cbic.201900783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/12/2020] [Indexed: 12/18/2022]
Abstract
Expanding the reaction scope of natural metalloenzymes can provide new opportunities for biocatalysis. Mononuclear non-heme iron-dependent enzymes represent a large class of biological catalysts involved in the biosynthesis of natural products and catabolism of xenobiotics, among other processes. Here, we report that several members of this enzyme family, including Rieske dioxygenases as well as α-ketoglutarate-dependent dioxygenases and halogenases, are able to catalyze the intramolecular C-H amination of a sulfonyl azide substrate, thereby exhibiting a promiscuous nitrene transfer reactivity. One of these enzymes, naphthalene dioxygenase (NDO), was further engineered resulting in several active site variants that function as C-H aminases. Furthermore, this enzyme could be applied to execute this non-native transformation on a gram scale in a bioreactor, thus demonstrating its potential for synthetic applications. These studies highlight the functional versatility of non-heme iron-dependent enzymes and pave the way to their further investigation and development as promising biocatalysts for non-native metal-catalyzed transformations.
Collapse
Affiliation(s)
- Maria Agustina Vila
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica y Departamento de Biociencias. Facultad de Química, Universidad de la República, Av General Flores 2124, CP 11800, Montevideo, Uruguay
| | - Viktoria Steck
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, NY 14627, USA
| | - Sonia Rodriguez Giordano
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica y Departamento de Biociencias. Facultad de Química, Universidad de la República, Av General Flores 2124, CP 11800, Montevideo, Uruguay
| | - Ignacio Carrera
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica y Departamento de Biociencias. Facultad de Química, Universidad de la República, Av General Flores 2124, CP 11800, Montevideo, Uruguay
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, NY 14627, USA
| |
Collapse
|