1
|
Straub CJ, Rusali LE, Kremiller KM, Riley AP. What We Have Gained from Ibogaine: α3β4 Nicotinic Acetylcholine Receptor Inhibitors as Treatments for Substance Use Disorders. J Med Chem 2023; 66:107-121. [PMID: 36440853 PMCID: PMC10034762 DOI: 10.1021/acs.jmedchem.2c01562] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For decades, ibogaine─the main psychoactive alkaloid found in Tabernanthe iboga─has been investigated as a possible treatment for substance use disorders (SUDs) due to its purported ability to interrupt the addictive properties of multiple drugs of abuse. Of the numerous pharmacological actions of ibogaine and its derivatives, the inhibition of α3β4 nicotinic acetylcholine receptors (nAChRs), represents a probable mechanism of action for their apparent anti-addictive activity. In this Perspective, we examine several classes of compounds that have been discovered and developed to target α3β4 nAChRs. Specifically, by focusing on compounds that have proven efficacious in pre-clinical models of drug abuse and have been evaluated clinically, we highlight the promising potential of the α3β4 nAChRs as viable targets to treat a wide array of SUDs. Additionally, we discuss the challenges faced by the existing classes of α3β4 nAChR ligands that must be overcome to develop them into therapeutic treatments.
Collapse
Affiliation(s)
- Carolyn J Straub
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Lisa E Rusali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Kyle M Kremiller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Andrew P Riley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
2
|
Vibholm AK, Dietz MJ, Beniczky S, Christensen J, Højlund A, Jacobsen J, Bender D, Møller A, Brooks DJ. Activated N-methyl-D-aspartate receptor ion channels detected in focal epilepsy with [ 18 F]GE-179 positron emission tomography. Epilepsia 2021; 62:2899-2908. [PMID: 34558066 DOI: 10.1111/epi.17074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Imaging activated glutamate N-methyl-D-aspartate receptor ion channels (NMDAR-ICs) using positron emission tomography (PET) has proved challenging due to low brain uptake, poor affinity and selectivity, and high metabolism and dissociation rates of candidate radioligands. The radioligand [18 F]GE-179 is a known use-dependent marker of NMDAR-ICs. We studied whether interictal [18 F]GE-179 PET would detect foci of abnormal NMDAR-IC activation in patients with refractory focal epilepsy. METHODS Ten patients with refractory focal epilepsy and 18 healthy controls had structural magnetic resonance imaging (MRI) followed by a 90-min dynamic [18 F]GE-179 PET scan with simultaneous electroencephalography (EEG). PET and EEG findings were compared with MRI and previous EEGs. Standard uptake value (SUV) images of [18 F]GE-179 were generated and global gray matter uptake was measured for each individual. To localize focal increases in uptake of [18 F]GE-179, the individual SUV images were interrogated with statistical parametric mapping in comparison to a normal database. Additionally, individual healthy control SUV images were compared with the rest of the control database to determine their prevalence of increased focal [18 F]GE-179 uptake. RESULTS Interictal [18 F]GE-179 PET detected clusters of significantly increased binding in eight of 10 patients with focal epilepsy but none of the controls. The number of clusters of raised [18 F]GE-179 uptake in the patients with epilepsy exceeded the focal abnormalities revealed by the simultaneously recorded EEG. Patients with extensive clusters of raised [18 F]GE-179 uptake showed the most abnormal EEGs. SIGNIFICANCE Detection of multiple foci of abnormal NMDAR-IC activation in 80% of our patients with refractory focal epilepsy using interictal [18 F]GE-179 PET could reflect enhanced neuronal excitability due to chronic seizure activity. This indicates that chronic epileptic activity is associated with abnormal NMDAR ion channel activation beyond the initial irritative zones. [18 F]GE-179 PET could be a candidate marker for identifying pathological brain areas in patients with treatment-resistant focal epilepsy.
Collapse
Affiliation(s)
- Ali K Vibholm
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and University Hospital, Aarhus, Denmark
| | - Martin J Dietz
- Center of Functionally Integrative Neuroscience, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sándor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Center and Aarhus University, Dianalund, Denmark
| | - Jakob Christensen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,National Center for Register-Based Research, Department of Economics and Business Economics, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | - Andreas Højlund
- Center of Functionally Integrative Neuroscience, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jan Jacobsen
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and University Hospital, Aarhus, Denmark
| | - Dirk Bender
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and University Hospital, Aarhus, Denmark
| | - Arne Møller
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and University Hospital, Aarhus, Denmark.,Center of Functionally Integrative Neuroscience, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David J Brooks
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and University Hospital, Aarhus, Denmark.,Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
3
|
Vibholm AK, Landau AM, Møller A, Jacobsen J, Vang K, Munk OL, Orlowski D, Sørensen JC, Brooks DJ. NMDA receptor ion channel activation detected in vivo with [ 18F]GE-179 PET after electrical stimulation of rat hippocampus. J Cereb Blood Flow Metab 2021; 41:1301-1312. [PMID: 32960687 PMCID: PMC8142139 DOI: 10.1177/0271678x20954928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The positron emission tomography (PET) tracer [18F]GE-179 binds to the phencyclidine (PCP) site in the open N-methyl-D-aspartate receptor ion channel (NMDAR-IC). To demonstrate that PET can visualise increased [18F]GE-179 uptake by active NMDAR-ICs and that this can be blocked by the PCP antagonist S-ketamine, 15 rats had an electrode unilaterally implanted in their ventral hippocampus. Seven rats had no stimulation, five received pulsed 400 µA supra-threshold 60 Hz stimulation alone, and three received intravenous S-ketamine injection prior to stimulation. Six other rats were not implanted. Each rat had a 90 min [18F]GE-179 PET scan. Stimulated rats had simultaneous depth-EEG recordings of induced seizure activity. [18F]GE-179 uptake (volume of distribution, VT) was compared between hemispheres and between groups. Electrical stimulation induced a significant increase in [18F]GE-179 uptake at the electrode site compared to the contralateral hippocampus (mean 22% increase in VT, p = 0.0014) and to non-stimulated comparator groups. Rats injected with S-ketamine prior to stimulation maintained non-stimulated levels of [18F]GE-179 uptake during stimulation. In conclusion, PET visualisation of focal [18F]GE-179 uptake during electrically activated NMDAR-ICs and the demonstration of specificity for PCP sites by blockade with S-ketamine support the in vivo utility of [18F]GE-179 PET as a use-dependent marker of NMDAR-IC activation.
Collapse
Affiliation(s)
- Ali K Vibholm
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark.,Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Arne Møller
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark.,Centre of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Jan Jacobsen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Kim Vang
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Ole L Munk
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Dariusz Orlowski
- Department of Neurosurgery and CENSE, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Ch Sørensen
- Department of Neurosurgery and CENSE, Aarhus University Hospital, Aarhus, Denmark
| | - David J Brooks
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Konecny J, Mezeiova E, Soukup O, Korabecny J. Review of Synthetic Approaches to Dizocilpine. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201230205835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N-Methyl-D-aspartate (NMDA) receptors, together with AMPA and kainite receptors,
belong to the family of ionotropic glutamate receptors. NMDA receptors play a crucial
role in neuronal plasticity and cognitive functions. Overactivation of those receptors leads to
glutamate-induced excitotoxicity, which could be suppressed by NMDA antagonists. Dizocilpine
was firstly reported in 1982 as an NMDA receptor antagonist with anticonvulsive properties,
but due to serious side effects like neuronal vacuolization, its use in human medicine is
restricted. However, dizocilpine is still used as a validated tool to induce the symptoms of
schizophrenia in animal models and also as a standard for comparative purposes to newly
developed NMDA receptor antagonists. For this reason, the synthesis of dizocilpine and especially
its more active enantiomer (+)-dizocilpine is still relevant. In this review, we bring a
collection of various synthetic approaches leading to dizocilpine and its analogues.
Collapse
Affiliation(s)
- Jan Konecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Khan I, Berg TC, Brown J, Bhalla R, Wilson A, Black A, McRobbie G, Nairne J, Olsson A, Trigg W. Development of an automated, GMP compliant FASTlab™ radiosynthesis of [ 18 F]GE-179 for the clinical study of activated NMDA receptors. J Labelled Comp Radiopharm 2020; 63:183-195. [PMID: 31986223 DOI: 10.1002/jlcr.3831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 07/25/2024]
Abstract
N-(2-chloro-5-(S-2-[18 F]fluoroethyl)thiophenyl)-N'-(3-thiomethylphenyl)-N'-methylguanidine, ([18 F]GE-179), has been identified as a promising positron emission tomography (PET) ligand for the intra-channel phencyclidine (PCP) binding site of the N-methyl-D-aspartate (NMDA) receptor. The radiosynthesis of [18 F]GE-179 has only been performed at low radioactivity levels. However, the manufacture of a GMP compliant product at high radioactivity levels was required for clinical studies. We describe the development of a process using the GE FASTlab™ radiosynthesis platform coupled with HPLC purification. The radiosynthesis is a two-step process, involving the nucleophilic fluorination of ethylene ditosylate, 11, followed by alkylation to the deprotonated thiol precursor, N-(2-chloro-5-thiophenol)-N'-(3-thiomethylphenyl)-N'-methyl guanidine, 8. The crude product was purified by semi-preparative HPLC to give the formulated product in an activity yield (AY) of 7 ± 2% (n = 15) with a total synthesis time of 120 minutes. The radioactive concentration (RAC) and radiochemical purity (RCP) were 328 ± 77 MBq/mL and 96.5 ± 1% respectively and the total chemical content was 2 ± 1 μg. The final formulation volume was 14 mL. The previously described radiosynthesis of [18 F]GE-179 was successfully modified to deliver an process on the FASTlab™ that allows the manufacture of a GMP quality product from high starting radioactivitity (up to 80 GBq) and delivers a product suitable for clinical use.
Collapse
Affiliation(s)
- Imtiaz Khan
- Core Imaging R&D, Life Sciences, GE Healthcare, Chalfont St Giles, Bucks, UK
| | | | - Jane Brown
- Core Imaging R&D, Life Sciences, GE Healthcare, Chalfont St Giles, Bucks, UK
| | - Rajiv Bhalla
- Core Imaging R&D, Life Sciences, GE Healthcare, Chalfont St Giles, Bucks, UK
| | - Anthony Wilson
- Core Imaging R&D, Life Sciences, GE Healthcare, Chalfont St Giles, Bucks, UK
| | - Andrew Black
- Core Imaging R&D, Life Sciences, GE Healthcare, Chalfont St Giles, Bucks, UK
| | - Graeme McRobbie
- Core Imaging R&D, Life Sciences, GE Healthcare, Chalfont St Giles, Bucks, UK
| | - James Nairne
- Core Imaging R&D, Life Sciences, GE Healthcare, Chalfont St Giles, Bucks, UK
| | - Andreas Olsson
- Core Imaging R&D, Life Sciences, GE Healthcare, Oslo, Norway
| | - William Trigg
- Core Imaging R&D, Life Sciences, GE Healthcare, Chalfont St Giles, Bucks, UK
| |
Collapse
|
6
|
Régio Brambilla C, Veselinović T, Rajkumar R, Mauler J, Orth L, Ruch A, Ramkiran S, Heekeren K, Kawohl W, Wyss C, Kops ER, Scheins J, Tellmann L, Boers F, Neumaier B, Ermert J, Herzog H, Langen K, Jon Shah N, Lerche C, Neuner I. mGluR5 receptor availability is associated with lower levels of negative symptoms and better cognition in male patients with chronic schizophrenia. Hum Brain Mapp 2020; 41:2762-2781. [PMID: 32150317 PMCID: PMC7294054 DOI: 10.1002/hbm.24976] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/29/2022] Open
Abstract
Consistent findings postulate disturbed glutamatergic function (more specifically a hypofunction of the ionotropic NMDA receptors) as an important pathophysiologic mechanism in schizophrenia. However, the role of the metabotropic glutamatergic receptors type 5 (mGluR5) in this disease remains unclear. In this study, we investigated their significance (using [11C]ABP688) for psychopathology and cognition in male patients with chronic schizophrenia and healthy controls. In the patient group, lower mGluR5 binding potential (BPND) values in the left temporal cortex and caudate were associated with higher general symptom levels (negative and depressive symptoms), lower levels of global functioning and worse cognitive performance. At the same time, in both groups, mGluR5 BPND were significantly lower in smokers (F[27,1] = 15.500; p = .001), but without significant differences between the groups. Our findings provide support for the concept that the impaired function of mGluR5 underlies the symptoms of schizophrenia. They further supply a new perspective on the complex relationship between tobacco addiction and schizophrenia by identifying glutamatergic neurotransmission—in particularly mGluR5—as a possible connection to a shared vulnerability.
Collapse
Affiliation(s)
- Cláudia Régio Brambilla
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Tanja Veselinović
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Ravichandran Rajkumar
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
- JARA – BRAIN – Translational MedicineAachenGermany
| | - Jörg Mauler
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Linda Orth
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Andrej Ruch
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Shukti Ramkiran
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Karsten Heekeren
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZürichSwitzerland
| | - Wolfram Kawohl
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZürichSwitzerland
| | - Christine Wyss
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZürichSwitzerland
| | - Elena Rota Kops
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Jürgen Scheins
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Lutz Tellmann
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Frank Boers
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Bernd Neumaier
- INM‐5, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Johannes Ermert
- INM‐5, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Hans Herzog
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Karl‐Josef Langen
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- JARA – BRAIN – Translational MedicineAachenGermany
- Department of Nuclear MedicineRWTH Aachen UniversityAachenGermany
| | - N. Jon Shah
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- JARA – BRAIN – Translational MedicineAachenGermany
- INM‐11, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of NeurologyRWTH Aachen UniversityAachenGermany
| | - Christoph Lerche
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Irene Neuner
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
- JARA – BRAIN – Translational MedicineAachenGermany
| |
Collapse
|
7
|
Automated production of a N-methyl-D-aspartate receptor radioligand [ 18F]GE179 for clinical use. Appl Radiat Isot 2019; 148:246-252. [PMID: 31026789 DOI: 10.1016/j.apradiso.2019.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/01/2019] [Accepted: 03/25/2019] [Indexed: 11/20/2022]
Abstract
N-Methyl-d-aspartate (NMDA) receptors are ligand and voltage-gated heteromeric ion channel receptors. Excessive activation of NMDA receptors is implicated in many neurological and psychiatric disorders, including ischemic stroke, neuropathic pain, epilepsy, drug addition, Alzheimer's disease, and schizophrenia. [18F]GE179 is a promising PET probe for imaging functional NMDA receptor alterations (activated or 'open' channel) with a high binding affinity (Kd = 2.4 nM). Here, we report the production of the NMDA receptor radioligand [18F]GE179 in a current Good Manufacturing Practice (cGMP) facility through a one-pot two-step strategy. [18F]GE179 was produced in approximately 110 min with a radiochemical yield of 12 ± 6% (n = 4, decay corrected), radiochemical purity >95%, molar activity of 146 ± 32 GBq/μmol (at the end of synthesis), an average mass of GE179 at 2.2 μg/batch, and total impurities less than 0.5 μg/batch (n = 4). The radiopharmaceutical dose meets all quality control (QC) criteria for human use, and is suitable for clinical PET studies of activated NMDA receptor ion channels.
Collapse
|
8
|
Metaxas A, van Berckel BNM, Klein PJ, Verbeek J, Nash EC, Kooijman EJM, Renjaän VA, Golla SSV, Boellaard R, Christiaans JAM, Windhorst AD, Leysen JE. Binding characterization of N-(2-chloro-5-thiomethylphenyl)-N'-(3-[ 3 H] 3 methoxy phenyl)-N'-methylguanidine ([ 3 H]GMOM), a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist. Pharmacol Res Perspect 2019; 7:e00458. [PMID: 30784206 PMCID: PMC6381215 DOI: 10.1002/prp2.458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 01/18/2023] Open
Abstract
Labeled with carbon‐11, N‐(2‐chloro‐5‐thiomethylphenyl)‐N′‐(3‐methoxyphenyl)‐N′‐methylguanidine ([11C]GMOM) is currently the only positron emission tomography (PET) tracer that has shown selectivity for the ion‐channel site of N‐methyl‐D‐aspartate (NMDA) receptors in human imaging studies. The present study reports on the selectivity profile and in vitro binding properties of GMOM. The compound was screened on a panel of 80 targets, and labeled with tritium ([3H]GMOM). The binding properties of [3H]GMOM were compared to those of the reference ion‐channel ligand [3H](+)‐dizocilpine maleate ([3H]MK‐801), in a set of concentration‐response, homologous and heterologous inhibition, and association kinetics assays, performed with repeatedly washed rat forebrain preparations. GMOM was at least 70‐fold more selective for NMDA receptors compared to all other targets examined. In homologous inhibition and concentration‐response assays, the binding of [3H]GMOM was regulated by NMDA receptor agonists, albeit in a less prominent manner compared to [3H]MK‐801. Scatchard transformation of homologous inhibition data produced concave upward curves for [3H]GMOM and [3H]MK‐801. The radioligands showed bi‐exponential association kinetics in the presence of 100 μmol L−1l‐glutamate/30 μmol L−1 glycine. [3H]GMOM (3 nmol L−1 and 10 nmol L−1) was inhibited with dual affinity by (+)‐MK‐801, (R,S)‐ketamine and memantine, in both presence and absence of agonists. [3H]MK‐801 (2 nmol L−1) was inhibited in a monophasic manner by GMOM under baseline and combined agonist conditions, with an IC50 value of ~19 nmol L−1. The non‐linear Scatchard plots, biphasic inhibition by open channel blockers, and bi‐exponential kinetics of [3H]GMOM indicate a complex mechanism of interaction with the NMDA receptor ionophore. The implications for quantifying the PET signal of [11C]GMOM are discussed.
Collapse
Affiliation(s)
- Athanasios Metaxas
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Pieter J Klein
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Joost Verbeek
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Emily C Nash
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Esther J M Kooijman
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Véronique A Renjaän
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Sandeep S V Golla
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Johannes A M Christiaans
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Josée E Leysen
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Fu H, Chen Z, Josephson L, Li Z, Liang SH. Positron Emission Tomography (PET) Ligand Development for Ionotropic Glutamate Receptors: Challenges and Opportunities for Radiotracer Targeting N-Methyl-d-aspartate (NMDA), α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA), and Kainate Receptors. J Med Chem 2019; 62:403-419. [PMID: 30110164 PMCID: PMC6393217 DOI: 10.1021/acs.jmedchem.8b00714] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission within the mammalian central nervous system. iGluRs exist as three main groups: N-methyl-d-aspartate receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and kainate receptors. The past decades have witnessed a remarkable development of PET tracers targeting different iGluRs including NMDARs and AMPARs, and several of the tracers have advanced to clinical imaging studies. Here, we assess the recent development of iGluR PET probes, focusing on tracer design, brain kinetics, and performance in PET imaging studies. Furthermore, this review will not only present challenges in the tracer development but also provide novel approaches in conjunction with most recent drug discovery efforts on these iGluRs, including subtype-selective NMDAR and transmembrane AMPAR regulatory protein modulators and positive allosteric modulators (PAMs) of AMPARs. These approaches, if successful as PET tracers, may provide fundamental knowledge to understand the roles of iGluR receptors under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology, Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| |
Collapse
|
10
|
McGinnity CJ, Årstad E, Beck K, Brooks DJ, Coles JP, Duncan JS, Galovic M, Hinz R, Hirani E, Howes OD, Jones PA, Koepp MJ, Luo F, Riaño Barros DA, Singh N, Trigg W, Hammers A. Comment on " In Vivo [ 18F]GE-179 Brain Signal Does Not Show NMDA-Specific Modulation with Drug Challenges in Rodents and Nonhuman Primates". ACS Chem Neurosci 2019; 10:768-772. [PMID: 30346706 DOI: 10.1021/acschemneuro.8b00246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Schoenberger and colleagues ( Schoenberger et al. ( 2018 ) ACS Chem. Neurosci. 9 , 298 - 305 ) recently reported attempts to demonstrate specific binding of the positron emission tomography (PET) radiotracer, [18F]GE-179, to NMDA receptors in both rats and Rhesus macaques. GE-179 did not work as expected in animal models; however, we disagree with the authors' conclusion that "the [18F]GE-179 signal seems to be largely nonspecific". It is extremely challenging to demonstrate specific binding for the use-dependent NMDA receptor intrachannel ligands such as [18F]GE-179 in animals via traditional blocking, due to its low availability of target sites ( Bmax'). Schoenberger and colleagues anesthetized rats and Rhesus monkeys using isoflurane, which has an inhibitory effect on NMDA receptor function and thus would be expected to further reduce the Bmax'. The extent of glutamate release achieved in the provocation experiments is uncertain, as is whether a significant increase in NMDA receptor channel opening can be expected under anesthesia. Prior data suggest that the uptake of disubstituted arylguanidine-based ligands such as GE-179 can be reduced by phencyclidine binding site antagonists, if injection is performed in the absence of ketamine and isoflurane anesthesia, e.g., with GE-179's antecedent, CNS 5161 ( Biegon et al. ( 2007 ) Synapse 61 , 577 - 586 ), and with GMOM ( van der Doef et al. ( 2016 ) J. Cereb. Blood Flow Metab. 36 , 1111 - 1121 ). However, the extent of nonspecific uptake remains uncertain.
Collapse
Affiliation(s)
- Colm J. McGinnity
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
- King’s
College London & Guy’s and St Thomas’ PET Centre,
St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Erik Årstad
- Institute of Nuclear Medicine and Department of Chemistry, University College London, London NW1 2BU, United Kingdom
| | - Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
| | - David J. Brooks
- Department of Nuclear Medicine, Aarhus University, Aarhus 8200, Denmark
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Jonathan P. Coles
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - John S. Duncan
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- Epilepsy Society, Gerrards Cross SL9 0RJ, United Kingdom
| | - Marian Galovic
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- Epilepsy Society, Gerrards Cross SL9 0RJ, United Kingdom
- Department of Neurology, Kantonsspital St Gallen, 9007 St. Gallen, Switzerland
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester M20 3LJ, United Kingdom
| | - Ella Hirani
- GE Healthcare Ltd, Amersham HP7 9LL, United Kingdom
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
| | | | - Matthias J. Koepp
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- Epilepsy Society, Gerrards Cross SL9 0RJ, United Kingdom
| | - Feng Luo
- GE Healthcare Ltd, Amersham HP7 9LL, United Kingdom
| | - Daniela A. Riaño Barros
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, London BR3 3BX, United Kingdom
| | - Nisha Singh
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
| | | | - Alexander Hammers
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
- King’s
College London & Guy’s and St Thomas’ PET Centre,
St Thomas’ Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
11
|
Schoenberger M, Schroeder FA, Placzek MS, Carter RL, Rosen BR, Hooker JM, Sander CY. In Vivo [ 18F]GE-179 Brain Signal Does Not Show NMDA-Specific Modulation with Drug Challenges in Rodents and Nonhuman Primates. ACS Chem Neurosci 2018; 9:298-305. [PMID: 29050469 PMCID: PMC5894869 DOI: 10.1021/acschemneuro.7b00327] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As one of the major excitatory ion channels in the brain, NMDA receptors have been a leading research target for neuroscientists, physicians, medicinal chemists, and pharmaceutical companies for decades. Molecular imaging of NMDA receptors by means of positron emission tomography (PET) with [18F]GE-179 quickly progressed to clinical PET studies, but a thorough understanding of its binding specificity has been missing and has thus limited signal interpretation. Here a preclinical study with [18F]GE-179 in rodents and nonhuman primates (NHPs) is presented in an attempt to characterize [18F]GE-179 signal specificity. Rodent PET/CT was used to study drug occupancy and functional manipulation in rats by pretreating animals with NMDA targeted blocking/modulating drug doses followed by a single bolus of [18F]GE-179. Binding competition with GE-179, MK801, PCP, and ketamine, allosteric inhibition by ifenprodil, and brain activation with methamphetamine did not alter the [18F]GE-179 brain signal in rats. In addition, multimodal imaging with PET/MRI in NHPs was used to evaluate changes in radiotracer binding as a function of pharmacological challenges. Drug-induced hemodynamic changes were monitored simultaneously using functional MRI (fMRI). Comparisons of baseline and signal after drug challenge in NHPs demonstrated that the [18F]GE-179 signal cannot be manipulated in a predictable fashion in vivo. fMRI data acquired simultaneously with PET data supported this finding and provided evidence that radiotracer delivery is not altered by blood flow changes. In conclusion, the [18F]GE-179 brain signal is not readily interpretable in the context of NMDA receptor binding on the basis of the results shown in this study.
Collapse
Affiliation(s)
- Matthias Schoenberger
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Chemical Biology and Imaging, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| | - Frederick A Schroeder
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
| | - Michael S Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Department of Psychiatry, McLean Imaging Center, McLean Hospital , Belmont, Massachusetts 02478, United States
- Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Imaging the glutamate receptor subtypes-Much achieved, and still much to do. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 25:27-36. [PMID: 29233264 DOI: 10.1016/j.ddtec.2017.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 11/20/2022]
Abstract
Functional imaging of glutamate receptors using PET imaging modality can be used to study numerous CNS disorders and also to select appropriate doses of clinically relevant glutamate-receptor-targeting candidate drugs. Great strides have been made in developing PET imaging probes for the non-invasive detection of glutamate receptors in the brain. This review highlights recent progress made towards the development of glutamatergic PET imaging agents. Focus is placed on PET imaging probes that have been labelled with either carbon-11 or fluorine-18.
Collapse
|
13
|
Klein PJ, Schuit RC, Metaxas A, Christiaans JAM, Kooijman E, Lammertsma AA, van Berckel BNM, Windhorst AD. Synthesis, radiolabeling and preclinical evaluation of a [ 11C]GMOM derivative as PET radiotracer for the ion channel of the N-methyl-D-aspartate receptor. Nucl Med Biol 2017; 51:25-32. [PMID: 28528265 DOI: 10.1016/j.nucmedbio.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/29/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Presently available PET ligands for the NMDAr ion channel generally suffer from fast metabolism. The purpose of this study was to develop a metabolically more stable ligand for the NMDAr ion channel, taking [11C]GMOM ([11C]1) as the lead compound. METHODS [11C]1, its fluoralkyl analogue [18F]PK209 ([18F]2) and the newly synthesized fluorovinyloxy analogue [11C]7b were evaluated ex vivo in male Wistar rats for metabolic stability. In addition, [11C]7b was subjected to a biodistribution study and its affinity (Ki) and lipophilicity (logD7.4) values were determined. RESULTS The addition of a vinyl chain in the fluoromethoxy moiety did not negatively alter the affinity of [11C]7b for the NMDAr, while lipophilicity was increased. Biodistribution studies showed higher uptake of [11C]7b in forebrain regions compared with cerebellum. Pre-treatment with MK-801 decreased the overall brain uptake significantly, but not in a region-specific manner. 45min after injection 78, 90 and 87% of activity in the brain was due to parent compound for [11C]1, [18F]2 and [11C]7b, respectively. In plasma, 26-31% of activity was due to parent compound. CONCLUSION Complete substitution of the alpha-carbon increased lipophilicity to more favorable values. Substitution of one or more hydrogens of the alpha-carbon atom in the methoxy moiety improved metabolic stability. In plasma, more parent compound was found for [18F]2 and [11C]7b then for [11C]1, although differences were not significant. At 45min, significantly more parent [18F]2 and [11C]7b was measured in the brain compared with [11C]1.
Collapse
Affiliation(s)
- Pieter J Klein
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| | - Robert C Schuit
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Athanasios Metaxas
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Johannes A M Christiaans
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Esther Kooijman
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
14
|
van der Doef TF, Golla SSV, Klein PJ, Oropeza-Seguias GM, Schuit RC, Metaxas A, Jobse E, Schwarte LA, Windhorst AD, Lammertsma AA, van Berckel BNM, Boellaard R. Quantification of the novel N-methyl-d-aspartate receptor ligand [11C]GMOM in man. J Cereb Blood Flow Metab 2016; 36:1111-21. [PMID: 26661185 PMCID: PMC4904354 DOI: 10.1177/0271678x15608391] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/26/2015] [Indexed: 11/17/2022]
Abstract
[(11)C]GMOM (carbon-11 labeled N-(2-chloro-5-thiomethylphenyl)-N'-(3-[(11)C]methoxy-phenyl)-N'-methylguanidine) is a PET ligand that binds to the N-methyl-d-aspartate receptor with high specificity and affinity. The purpose of this first in human study was to evaluate kinetics of [(11)C]GMOM in the healthy human brain and to identify the optimal pharmacokinetic model for quantifying these kinetics, both before and after a pharmacological dose of S-ketamine. Dynamic 90 min [(11)C]GMOM PET scans were obtained from 10 subjects. In six of the 10 subjects, a second PET scan was performed following an S-ketamine challenge. Metabolite corrected plasma input functions were obtained for all scans. Regional time activity curves were fitted to various single- and two-tissue compartment models. Best fits were obtained using a two-tissue irreversible model with blood volume parameter. The highest net influx rate (Ki) of [(11)C]GMOM was observed in regions with high N-methyl-d-aspartate receptor density, such as hippocampus and thalamus. A significant reduction in the Ki was observed for the entire brain after administration of ketamine, suggesting specific binding to the N-methyl-d-aspartate receptors. This initial study suggests that the [(11)C]GMOM could be used for quantification of N-methyl-d-aspartate receptors.
Collapse
Affiliation(s)
- Thalia F van der Doef
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandeep S V Golla
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter J Klein
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Gisela M Oropeza-Seguias
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert C Schuit
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Athanasios Metaxas
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Ellen Jobse
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Lothar A Schwarte
- Department of Anesthesiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
15
|
McGinnity CJ, Koepp MJ, Hammers A, Riaño Barros DA, Pressler RM, Luthra S, Jones PA, Trigg W, Micallef C, Symms MR, Brooks DJ, Duncan JS. NMDA receptor binding in focal epilepsies. J Neurol Neurosurg Psychiatry 2015; 86:1150-7. [PMID: 25991402 PMCID: PMC4602274 DOI: 10.1136/jnnp-2014-309897] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/16/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To demonstrate altered N-methyl-d-aspartate (NMDA) receptor availability in patients with focal epilepsies using positron emission tomography (PET) and [(18)F]GE-179, a ligand that selectively binds to the open NMDA receptor ion channel, which is thought to be overactive in epilepsy. METHODS Eleven patients (median age 33 years, 6 males) with known frequent interictal epileptiform discharges had an [(18)F]GE-179 PET scan, in a cross-sectional study. MRI showed a focal lesion but discordant EEG changes in two, was non-localising with multifocal EEG abnormalities in two, and was normal in the remaining seven patients who all had multifocal EEG changes. Individual patient [(18)F]GE-179 volume-of-distribution (VT) images were compared between individual patients and a group of 10 healthy controls (47 years, 7 males) using Statistical Parametric Mapping. RESULTS Individual analyses revealed a single cluster of focal VT increase in four patients; one with a single and one with multifocal MRI lesions, and two with normal MRIs. Post hoc analysis revealed that, relative to controls, patients not taking antidepressants had globally increased [(18)F]GE-179 VT (+28%; p<0.002), and the three patients taking an antidepressant drug had globally reduced [(18)F]GE-179 VT (-29%; p<0.002). There were no focal abnormalities common to the epilepsy group. CONCLUSIONS In patients with focal epilepsies, we detected primarily global increases of [(18)F]GE-179 VT consistent with increased NMDA channel activation, but reduced availability in those taking antidepressant drugs, consistent with a possible mode of action of this class of drugs. [(18)F]GE-179 PET showed focal accentuations of NMDA binding in 4 out of 11 patients, with difficult to localise and treat focal epilepsy.
Collapse
Affiliation(s)
- C J McGinnity
- Division of Neuroscience, Department of Medicine, Imperial College London, London, UK Medical Research Council Clinical Sciences Centre, London, UK Division of Imaging Sciences & Biomedical Engineering, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - M J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK MRI Unit, Epilepsy Society, Chalfont St. Peter, UK
| | - A Hammers
- Division of Neuroscience, Department of Medicine, Imperial College London, London, UK Medical Research Council Clinical Sciences Centre, London, UK Division of Imaging Sciences & Biomedical Engineering, Faculty of Life Sciences & Medicine, King's College London, London, UK Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK MRI Unit, Epilepsy Society, Chalfont St. Peter, UK The Neurodis Foundation, CERMEP Imagerie du Vivant, Lyon, France
| | - D A Riaño Barros
- Division of Neuroscience, Department of Medicine, Imperial College London, London, UK Medical Research Council Clinical Sciences Centre, London, UK
| | - R M Pressler
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - S Luthra
- GE Healthcare plc, The Grove Centre, Amersham, UK
| | - P A Jones
- GE Healthcare plc, The Grove Centre, Amersham, UK
| | - W Trigg
- GE Healthcare plc, The Grove Centre, Amersham, UK
| | - C Micallef
- National Hospital for Neurology and Neurosurgery, London, UK
| | - M R Symms
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK MRI Unit, Epilepsy Society, Chalfont St. Peter, UK
| | - D J Brooks
- Division of Neuroscience, Department of Medicine, Imperial College London, London, UK Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - J S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK MRI Unit, Epilepsy Society, Chalfont St. Peter, UK
| |
Collapse
|
16
|
Salabert AS, Fonta C, Fontan C, Adel D, Alonso M, Pestourie C, Belhadj-Tahar H, Tafani M, Payoux P. Radiolabeling of [18F]-fluoroethylnormemantine and initial in vivo evaluation of this innovative PET tracer for imaging the PCP sites of NMDA receptors. Nucl Med Biol 2015; 42:643-53. [PMID: 25963911 DOI: 10.1016/j.nucmedbio.2015.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/19/2015] [Accepted: 04/01/2015] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The N-methyl-D-aspartate receptor (NMDAr) is an ionotropic receptor that mediates excitatory transmission. NMDAr overexcitation is thought to be involved in neurological and neuropsychiatric disorders such as Alzheimer disease and schizophrenia. We synthesized [(18)F]-fluoroethylnormemantine ([(18)F]-FNM), a memantine derivative that binds to phencyclidine (PCP) sites within the NMDA channel pore. These sites are primarily accessible when the channel is in the active and open state. METHODS Radiosynthesis was carried out using the Raytest® SynChrom R&D fluorination module. Affinity of this new compound was determined by competition assay. We ran a kinetic study in rats and computed a time-activity curve based on a volume-of-interest analysis, using CARIMAS® software. We performed an ex vivo autoradiography, exposing frozen rat brain sections to a phosphorscreen. Adjacent sections were used to detect NMDAr by immunohistochemistry with an anti-NR1 antibody. As a control of the specificity of our compound for NMDAr, we used a rat anesthetized with ketamine. Correlation analysis was performed with ImageJ software between signal of autoradiography and immunostaining. RESULTS Fluorination yield was 10.5% (end of synthesis), with a mean activity of 3145 MBq and a specific activity above 355 GBq/μmol. Affinity assessment allowed us to determine [(19)F]-FNM IC50 at 6.1 10(-6)M. [(18)F]-FMN concentration gradually increased in the brain, stabilizing at 40 minutes post injection. The brain-to-blood ratio was 6, and 0.4% of the injected dose was found in the brain. Combined ex vivo autoradiography and immunohistochemical staining demonstrated colocalization of NMDAr and [(18)F]-FNM (r=0.622, p<0.0001). The highest intensity was found in the cortex and cerebellum, and the lowest in white matter. A low and homogeneous signal corresponding to unspecific binding was observed when PCP sites were blocked with ketamine. CONCLUSIONS [(18)F]-FNM appears to be a promising tracer for imaging NMDAr activity for undertaking preclinical studies in perspective of clinical detection of neurological or neuropsychological disorders.
Collapse
Affiliation(s)
- Anne-Sophie Salabert
- Brain Imaging and Neurological Disability UMR 825, INSERM, F-31059 Toulouse, France; Brain imaging and neurological disability UMR 825, University of Toulouse, UPS, CHU Purpan, Place du Dr Baylac, F-31059 Toulouse Cedex 9, France; Radiopharmacy Department, University Hospital, Toulouse, France.
| | - Caroline Fonta
- Research Center for Brain and Cognition, University of Toulouse UPS, Toulouse, France; CerCo, CNRS, Toulouse, France
| | - Charlotte Fontan
- Brain Imaging and Neurological Disability UMR 825, INSERM, F-31059 Toulouse, France; Brain imaging and neurological disability UMR 825, University of Toulouse, UPS, CHU Purpan, Place du Dr Baylac, F-31059 Toulouse Cedex 9, France; Radiopharmacy Department, University Hospital, Toulouse, France
| | - Djilali Adel
- Brain Imaging and Neurological Disability UMR 825, INSERM, F-31059 Toulouse, France; Brain imaging and neurological disability UMR 825, University of Toulouse, UPS, CHU Purpan, Place du Dr Baylac, F-31059 Toulouse Cedex 9, France
| | - Mathieu Alonso
- Radiopharmacy Department, University Hospital, Toulouse, France
| | | | - Hafid Belhadj-Tahar
- Research and Expertise Group, French Association for the Promotion of Medical Research (AFPREMED), Toulouse, France
| | - Mathieu Tafani
- Brain Imaging and Neurological Disability UMR 825, INSERM, F-31059 Toulouse, France; Brain imaging and neurological disability UMR 825, University of Toulouse, UPS, CHU Purpan, Place du Dr Baylac, F-31059 Toulouse Cedex 9, France; Radiopharmacy Department, University Hospital, Toulouse, France
| | - Pierre Payoux
- Brain Imaging and Neurological Disability UMR 825, INSERM, F-31059 Toulouse, France; Brain imaging and neurological disability UMR 825, University of Toulouse, UPS, CHU Purpan, Place du Dr Baylac, F-31059 Toulouse Cedex 9, France; Nuclear Medicine Department, University Hospital, Toulouse, France
| |
Collapse
|
17
|
Synthesis, structure activity relationship, radiolabeling and preclinical evaluation of high affinity ligands for the ion channel of the N-methyl-d-aspartate receptor as potential imaging probes for positron emission tomography. Bioorg Med Chem 2015; 23:1189-206. [DOI: 10.1016/j.bmc.2014.12.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/20/2022]
|
18
|
Golla SSV, Klein PJ, Bakker J, Schuit RC, Christiaans JAM, van Geest L, Kooijman EJM, Oropeza-Seguias GM, Langermans JAM, Leysen JE, Boellaard R, Windhorst AD, van Berckel BNM, Metaxas A. Preclinical evaluation of [(18)F]PK-209, a new PET ligand for imaging the ion-channel site of NMDA receptors. Nucl Med Biol 2014; 42:205-12. [PMID: 25451213 DOI: 10.1016/j.nucmedbio.2014.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/17/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The present study was designed to assess whether [(18)F]PK-209 (3-(2-chloro-5-(methylthio)phenyl)-1-(3-([(18)F]fluoromethoxy)phenyl)-1-methylguanidine) is a suitable ligand for imaging the ion-channel site of N-methyl-D-aspartate receptors (NMDArs) using positron emission tomography (PET). METHODS Dynamic PET scans were acquired from male rhesus monkeys over 120min, at baseline and after the acute administration of dizocilpine (MK-801, 0.3mg/kg; n=3/condition). Continuous and discrete arterial blood samples were manually obtained, to generate metabolite-corrected input functions. Parametric volume-of-distribution (VT) images were obtained using Logan analysis. The selectivity profile of PK-209 was assessed in vitro, on a broad screen of 79 targets. RESULTS PK-209 was at least 50-fold more selective for NMDArs over all other targets examined. At baseline, prolonged retention of radioactivity was observed in NMDAr-rich cortical regions relative to the cerebellum. Pretreatment with MK-801 reduced the VT of [(18)F]PK-209 compared with baseline in two of three subjects. The rate of radioligand metabolism was high, both at baseline and after MK-801 administration. CONCLUSIONS PK-209 targets the intrachannel site with high selectivity. Imaging of the NMDAr is feasible with [(18)F]PK-209, despite its fast metabolism. Further in vivo evaluation in humans is warranted.
Collapse
Affiliation(s)
- Sandeep S V Golla
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Pieter J Klein
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Jaco Bakker
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Robert C Schuit
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Johannes A M Christiaans
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Leo van Geest
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Esther J M Kooijman
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Gisela M Oropeza-Seguias
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Josée E Leysen
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Athanasios Metaxas
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
19
|
McGinnity CJ, Hammers A, Riaño Barros DA, Luthra SK, Jones PA, Trigg W, Micallef C, Symms MR, Brooks DJ, Koepp MJ, Duncan JS. Initial evaluation of 18F-GE-179, a putative PET Tracer for activated N-methyl D-aspartate receptors. J Nucl Med 2014; 55:423-30. [PMID: 24525206 DOI: 10.2967/jnumed.113.130641] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED N-methyl D-aspartate (NMDA) ion channels play a key role in a wide range of physiologic (e.g., memory and learning tasks) and pathologic processes (e.g., excitotoxicity). To date, suitable PET markers of NMDA ion channel activity have not been available. (18)F-GE-179 is a novel radioligand that selectively binds to the open/active state of the NMDA receptor ion channel, displacing the binding of (3)H-tenocyclidine from the intrachannel binding site with an affinity of 2.4 nM. No significant binding was observed with 10 nM GE-179 at 60 other neuroreceptors, channels, or transporters. We describe the kinetic behavior of the radioligand in vivo in humans. METHODS Nine healthy participants (6 men, 3 women; median age, 37 y) each underwent a 90-min PET scan after an intravenous injection of (18)F-GE-179. Continuous arterial blood sampling over the first 15 min was followed by discrete blood sampling over the duration of the scan. Brain radioactivity (KBq/mL) was measured in summation images created from the attenuation- and motion-corrected dynamic images. Metabolite-corrected parent plasma input functions were generated. We assessed the abilities of 1-, 2-, and 3-compartment models to kinetically describe cerebral time-activity curves using 6 bilateral regions of interest. Parametric volume-of-distribution (V(T)) images were generated by voxelwise rank-shaping regularization of exponential spectral analysis (RS-ESA). RESULTS A 2-brain-compartment, 4-rate-constant model best described the radioligand's kinetics in normal gray matter of subjects at rest. At 30 min after injection, 37% of plasma radioactivity represented unmetabolized (18)F-GE-179. The highest mean levels of gray matter radioactivity were seen in the putamina and peaked at 7.5 min. A significant positive correlation was observed between K1 and V(T) (Spearman ρ = 0.398; P = 0.003). Between-subject coefficients of variation of V(T) ranged between 12% and 16%. Voxelwise RS-ESA yielded similar V(T)s and coefficients of variation. CONCLUSION (18)F-GE-179 exhibits high and rapid brain extraction, with a relatively homogeneous distribution in gray matter and acceptable between-subject variability. Despite its rapid peripheral metabolism, quantification of (18)F-GE-179 VT is feasible both within regions of interest and at the voxel level. The specificity of (18)F-GE-179 binding, however, requires further characterization with in vivo studies using activation and disease models.
Collapse
Affiliation(s)
- Colm J McGinnity
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Zhou X, Zhang J, Yan C, Cao G, Zhang R, Cai G, Jiang M, Wang S. Preliminary studies of (99m)Tc-memantine derivatives for NMDA receptor imaging. Nucl Med Biol 2012; 39:1034-41. [PMID: 22516779 DOI: 10.1016/j.nucmedbio.2012.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/10/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Novel technetium-labeled ligands, (99m)Tc-NCAM and (99m)Tc-NHAM were developed from the N-methyl-d-aspartate (NMDA) receptor agonist memantine as a lead compound by coupling with N(2)S(2). This study evaluated the binding affinity and specificity of the ligands for the NMDA receptor. METHODS Ligand biodistribution and uptake specificity in the brain were investigated in mice. Binding affinity and specificity were determined by radioligand receptor binding assay. Three antagonists were used for competitive binding analysis. In addition, uptake of the complexes into SH-SY5Y nerve cells was evaluated. RESULTS The radiochemical purity of (99m)Tc-labeled ligands was more than 95%. Analysis of brain regional uptake showed higher concentration in the frontal lobe and specific uptake in the hippocampus. (99m)Tc-NCAM reached a higher target to nontarget ratio than (99m)Tc-NHAM. The results indicated that (99m)Tc-NCAM bound to a single site on the NMDA receptor with a K(d) of 701.21 nmol/l and a B(max) of 62.47 nmol/mg. Specific inhibitors of the NMDA receptor, ketamine and dizocilpine, but not the dopamine D(2) and 5HT(1A) receptor partial agonist aripiprazole, inhibited specific binding of (99m)Tc-NCAM to the NMDA receptor. Cell physiology experiments showed that NCAM can increase the viability of SH-SY5Y cells after glutamate-induced injury. CONCLUSIONS The new radioligand (99m)Tc-NCAM has good affinity for and specific binding to the NMDA receptor, and easily crosses the blood-brain barrier; suggesting that it might be a potentially useful tracer for NMDA receptor expression.
Collapse
Affiliation(s)
- Xingqin Zhou
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Labas R, Gilbert G, Nicole O, Dhilly M, Abbas A, Tirel O, Buisson A, Henry J, Barré L, Debruyne D, Sobrio F. Synthesis, evaluation and metabolic studies of radiotracers containing a 4-(4-[18F]-fluorobenzyl)piperidin-1-yl moiety for the PET imaging of NR2B NMDA receptors. Eur J Med Chem 2011; 46:2295-309. [DOI: 10.1016/j.ejmech.2011.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/25/2011] [Accepted: 03/07/2011] [Indexed: 11/25/2022]
|
23
|
Synthesis and in vitro evaluation of 18F-labelled S-fluoroalkyl diarylguanidines: Novel high-affinity NMDA receptor antagonists for imaging with PET. Bioorg Med Chem Lett 2010; 20:1749-51. [DOI: 10.1016/j.bmcl.2010.01.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 11/24/2022]
|
24
|
Abstract
Recent advances in the development and applications of neurochemical brain imaging methods have improved the ability to study the neurochemistry of the living brain in normal processes as well as psychiatric disorders. In particular, positron emission tomography (PET) and single photon emission computed tomography (SPECT) have been used to determine neurochemical substrates of schizophrenia and to uncover the mechanism of action of antipsychotic medications. The growing availability of radiotracers for monoaminergic neurotransmitter synthesis, transporters and receptors, has enabled the evaluation of hypotheses regarding neurotransmitter function in schizophrenia derived from preclinical and clinical observations. This chapter reviews the studies using neurochemical brain imaging methods for (1) detection of abnormalities in indices of dopamine and serotonin transmission in patients with schizophrenia compared to controls, (2) development of new tools to study other neurotransmitters systems, such as gamma-aminobutyric acid (GABA) and glutamate, and (3) characterization of target occupancy by antipsychotic drugs, as well as its relationship to efficacy and side effects. As more imaging tools become available, this knowledge will expand and will lead to better detection of disease, as well as better therapeutic approaches.
Collapse
Affiliation(s)
- Nina Urban
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
25
|
Knol RJJ, de Bruin K, van Eck-Smit BLF, Pimlott S, Wyper DJ, Booij J. In vivo [(123)I]CNS-1261 binding to D-serine-activated and MK801-blocked NMDA receptors: A storage phosphor imaging study in rats. Synapse 2009; 63:557-64. [PMID: 19288577 DOI: 10.1002/syn.20629] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Disturbances of activity of the glutamatergic neurotransmitter system in the brain are present in many neuropsychiatric disorders. The N-methyl-D-aspartate (NMDA) receptor is the most abundant receptor of the glutamatergic system. In the neurodegenerative events of Alzheimer's disease, excessive activation of NMDA receptors may contribute to neuronal death. Inhibition of NMDA receptor activation may have neuroprotective effects and (semi)quantitative imaging of the activated system may help in the selection of patients for such inhibition therapies. In this study we evaluated [(123)I]CNS-1261 binding in the rat brain. This radiotracer binds in vivo to the MK801 binding site of activated NMDA receptors. To determine the optimal time point for ex vivo assessments after bolus injection [(123)I]CNS-1261 binding in rats, we performed a time course biodistribution study using dissection techniques. [(123)I]CNS-1261 binding was also studied in the rat brain using autoradiography by means of storage phosphor imaging, with prior facilitation of NMDA receptor activation by injection of the potent coagonist D-serine and after blocking of the NMDA receptor binding site by MK801 injection in D-serine pretreated rats. Measurements of [(123)I]CNS-1261 uptake matched the distribution of similar tracers for the MK801 binding site of the NMDA receptor and revealed an optimal time point of 2 h post injection for the assessment of tracer distribution in the rat brain. The blocking experiments indicated specific binding of [(123)I]CNS-1261 to NMDA receptors but also a considerable amount of nonspecific binding. Facilitation of NMDA receptor activation by D-serine did not result in an enhancement of binding of the radiotracer in the NMDA receptor-rich rat hippocampus compared to the untreated group, as measured by autoradiography. In conclusion, our study has shown that [(123)I]CNS-1261 binding is influenced by NMDA receptor availability. However, high nonspecific binding limits quantification and small changes in receptor availability are unlikely to be detected.
Collapse
Affiliation(s)
- Remco J J Knol
- Department of Nuclear Medicine, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
G-protein inwardly rectifying potassium channels are involved in the hypotensive effect of I1-imidazoline receptor selective ligands. J Hypertens 2008; 26:1025-32. [PMID: 18398346 DOI: 10.1097/hjh.0b013e3282f5ed44] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The present study examined the role of G-protein inwardly rectifying potassium (GIRK) channels in the depressor responses elicited by intracisternal injections of imidazoline-like drugs in anesthetized rabbits. METHODS AND RESULTS Intracisternal injections of the I1-imidazoline receptor (I1R) selective ligands LNP509 (30 microg/kg) and LNP640 (2 microg/kg) (subthreshold doses), and of the GIRK channel opener flupirtine (30 microg/kg) did not affect mean arterial blood pressure (MAP). LNP509 and LNP640, however, elicited substantial depressor responses in rabbits pretreated with flupirtine (-17 +/- 2 and -18 +/- 1 mmHg, respectively, P < 0.05). Injection of higher doses of LNP509 (200 microg/kg) or LNP640 (10 microg/kg) elicited substantial reductions in MAP (-45 +/- 3 and -39 +/- 2 mmHg, respectively, P < 0.05) in naive rabbits. The depressor responses elicited by the higher doses of LNP509 or LNP640 were markedly diminished by pretreatment with the GIRK channel blocker tertiapin-Q (10 microg/kg) (-23 +/- 3 and -26 +/- 2 mmHg, respectively, P < 0.05 compared with nonpretreated rabbits), whereas tertiapin-Q (10 microg/kg) did not affect MAP by itself. Maximal-specific binding (Bmax) of the I1R ligand [I]LNP911 to PC12 cell membranes (296 +/- 59 fmol/mg protein) was enhanced by flupirtine pretreatment whereas it was reduced by tertiapin-Q pretreatment (687 +/- 122 and 68 +/- 21 fmol/mg protein, respectively, P < 0.05 vs. control binding). CONCLUSION These findings demonstrate that the modulation of GIRK channels affects I1R's function and raise the possibility that GIRK channels, and I1Rs are parts of a single proteic complex.
Collapse
|
27
|
Abstract
Studies using positron emission tomography (PET) have advanced our pathophysiological and biochemical understanding of focal and generalized epilepsies. H(2) (15)O PET allows quantification of cerebral blood flow and (18)F-fluorodeoxyglucose-PET quantification of cerebral glucose metabolism. Neurotransmitters are directly responsible for modulating synaptic activity and newer PET tracers can provide information about synaptic activity and specific ligand-receptor relationships, which are important for epileptogenesis and the spread of epileptic activity.
Collapse
Affiliation(s)
- Matthias J Koepp
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
28
|
Biegon A, Gibbs A, Alvarado M, Ono M, Taylor S. In vitro and in vivo characterization of [3H]CNS-5161—A use-dependent ligand for theN-methyl-d-aspartate receptor in rat brain. Synapse 2007; 61:577-86. [PMID: 17455246 DOI: 10.1002/syn.20400] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain. Glutamate activation of the N-methyl-D-aspartate (NMDA) receptor subtype is thought to mediate important physiological and pathological processes, including memory formation and excitotoxicity. The goal of the present work was to characterize and validate a candidate agent for noninvasive positron emission tomography (PET) imaging of this receptor. [(3)H]-labeled N-[3-(3)H]-methyl-3-(thiomethylphenyl)cyanamide (CNS-5161) was incubated with rat brain homogenates at increasing concentrations, temperatures, and times to establish the binding kinetics and affinity of the ligand in vitro. Nonspecific binding was measured with 100 microM MK-801. The compound was also injected i.v. in rats pretreated with saline, NMDA, MK801, or a combination, and organ and brain regional uptake was assessed at various times after injection by autoradiography or dissection. Blood and brain samples were assayed for metabolites by high-performance liquid chromatography. CNS-5161 binds brain membranes with high affinity (K(d) < 4 nM) and fast association and dissociation kinetics. Specific binding increased in the presence of glutamate and glycine. Intravenous administration in control rats resulted in a heterogeneous brain distribution with hippocampus and cortex > thalamus > striatum > cerebellum, and a cortex/cerebellum ratio of 1.4. Pretreatment with NMDA increased the hippocampus-to-cerebellum ratio to 1.6-1.9 while MK801 abolished this increase, resulting in ratios close to 1. Thus, CNS-5161 binds preferentially to the activated state of the NMDA receptor channel in vitro and in vivo. The high affinity and fast kinetics make it compatible with PET imaging of a carbon-11 labeled CNS-5161.
Collapse
Affiliation(s)
- Anat Biegon
- Medical Department, Brookhaven National Laboratory, Upton, New York, USA.
| | | | | | | | | |
Collapse
|
29
|
Waterhouse RN, Zhao J. In vivo tomographic imaging studies of neurodegeneration and neuroprotection: a review. Methods Mol Biol 2007; 399:215-233. [PMID: 18309935 DOI: 10.1007/978-1-59745-504-6_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Noninvasive tomographic imaging methods including positron emission tomography (PET) and single photon emission computed tomography (SPECT) are extremely sensitive and are capable of measuring biochemical processes that occur at concentrations in the nanomolar range. Inherent to neurodegenerative processes is neuronal loss. Thus, PET or SPECT monitoring of biochemical processes altered by neuronal loss (changes in neurotransmitter turnover, alterations in receptor, transporter or enzyme concentrations) can provide unique information not attainable by other methods. Such imaging techniques can also be used to longtitudinally monitor the effects of neuroprotective treatments. This review highlights current imaging probes used to evaluate patients with specific neurodegenerative disorders (e.g., Alzheimer's Disease, Parkinson's Disease, Huntington's Chorea), including those that image receptors of the dopaminergic, cholinergic and glutamatergic systems. Areas of future research focus are also defined. It is clear that monitoring the progression of neurodegenerative disorders and the impact of neuroprotective treatments are two different but related goals for which noninvasive imaging via PET and SPECT methods plays a powerful and unique role.
Collapse
Affiliation(s)
- Rikki N Waterhouse
- Neurobiology and Imaging Program, Department of Biological Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | | |
Collapse
|
30
|
Matsumoto R, Haradahira T, Ito H, Fujimura Y, Seki C, Ikoma Y, Maeda J, Arakawa R, Takano A, Takahashi H, Higuchi M, Suzuki K, Fukui K, Suhara T. Measurement of glycine binding site ofN-methyl-d-asparate receptors in living human brain using 4-acetoxy derivative of L-703,717, 4-acetoxy-7-chloro-3-[3-(4-[11c] methoxybenzyl) phenyl]-2(1H)-quinolone (AcL703) with positron emission tomography. Synapse 2007; 61:795-800. [PMID: 17598152 DOI: 10.1002/syn.20415] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors are of major interest in brain functions and neuropsychiatric disorders. However, at present there are few suitable radioligands for in vivo imaging of NMDA receptors. 7-choloro-4-hydroxy-3-[3-(4-methoxybenzyl) phenyl]-2(1H)-quinolone (L-703,717) is one of the potent ligands for the glycine-binding site of NMDA receptors. 4-Acetoxy derivative of L-703,717 (AcL703) is a candidate, as a positron emission tomography (PET) ligand for NMDA receptors, because of its better permeability at the blood-brain barrier compared with L-703,717. After intravenous injection of 624-851 MBq of [11C]AcL703, dynamic PET scan was performed on six healthy males for 90 min. Regions-of-interest were located on the cerebral cortices, cerebellar cortex, and cerebral white matter. The binding potential (BP) was calculated from the ratio of the area under the curve (AUC) of radioactivities from 40 to 90 min in the target region to that in white matter. Regional radioactivities reached close to equilibrium in all regions after about 40 min postinjection. Regional brain uptake of [11C]AcL703 at 40 min after injection was 0.00028-0.00065% of the injected dose/milliliter. Radioactivity concentration of [11C]AcL703 was highest in the cerebellar cortex and lowest in white matter. AUC in the cerebellar cortex was higher than those of cerebral cortices, thalamus, striatum, and white matter. BP in the cerebellar cortex was twofold higher than in the cerebral cortices (cerebellar cortex: BP=2.20+/-0.72; cerebral cortices: BP=1.05+/-0.45). Despite the low brain uptake of [11C]AcL703, regional distributions were in good agreement with our previous studies of rodents. This indicates the possibility of in vivo evaluation of NMDA receptors using PET with [11C]AcL703 in living human brain.
Collapse
Affiliation(s)
- Ryohei Matsumoto
- Department of Molecular Neuroimaging, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhao Y, Robins E, Turton D, Brady F, Luthra SK, Årstad E. Synthesis and characterization ofN-(2-chloro-5-methylthiophenyl)-N′-(3-methylthiophenyl)-N′-[11C]methylguanidine [11C]CNS 5161, a candidate PET tracer for functional imaging of NMDA receptors. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.1033] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Lipina T, Labrie V, Weiner I, Roder J. Modulators of the glycine site on NMDA receptors, D-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology (Berl) 2005; 179:54-67. [PMID: 15759151 DOI: 10.1007/s00213-005-2210-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 02/08/2005] [Indexed: 01/29/2023]
Abstract
RATIONALE Schizophrenia is characterized by disturbances in sensorimotor gating and attentional processes, which can be measured by prepulse inhibition (PPI) and latent inhibition (LI), respectively. Research has implicated dysfunction of neurotransmission at the NMDA-type glutamate receptor in this disorder. OBJECTIVES This study was conducted to examine whether compounds that enhance NMDA receptor (NMDAR) activity via glycine B site, D-serine and ALX 5407 (glycine transporter type 1 inhibitor), alter PPI and LI in the presence or absence of an NMDAR antagonist, MK-801. METHODS C57BL/6J mice were tested in a standard PPI paradigm with three prepulse intensities. LI was measured in a conditioned emotional response procedure by comparing suppression of drinking in response to a noise in mice that previously received 0 (non-preexposed) or 40 noise exposures (preexposed) followed by two or four noise-foot shock pairings. RESULTS Clozapine (3 mg/kg) and D-serine (600 mg/kg), but not ALX 5407, facilitated PPI. MK-801 dose dependently reduced PPI. The PPI disruptive effect of MK-801 (1 mg/kg) could be reversed by clozapine and ALX 5407, but not by D-serine. All the compounds were able to potentiate LI under conditions that disrupted LI in controls. MK-801 induced abnormal persistence of LI at a dose of 0.15 mg/kg. Clozapine, D-serine, and ALX 5407 were equally able to reverse persistent LI induced by MK-801. CONCLUSIONS D-Serine and ALX 5407 display similar effects to clozapine in PPI and LI mouse models, suggesting potential neuroleptic action. Moreover, the finding that agonists of NMDARs and clozapine can restore disrupted LI and disrupt persistent LI may point to a unique ability of the NMDA system to regulate negative and positive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Tatiana Lipina
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | | | | | | |
Collapse
|
33
|
Scott Mason N, Mathis CA. Positron Emission Tomography Agents for Central Nervous System Drug Development Applications. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2005. [DOI: 10.1016/s0065-7743(05)40004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
34
|
Waterhouse RN, Slifstein M, Dumont F, Zhao J, Chang RC, Sudo Y, Sultana A, Balter A, Laruelle M. In vivo evaluation of [11C]N-(2-chloro-5-thiomethylphenyl)-N′- (3-methoxy-phenyl)-N′-methylguanidine ([11C]GMOM) as a potential PET radiotracer for the PCP/NMDA receptor. Nucl Med Biol 2004; 31:939-48. [PMID: 15464396 DOI: 10.1016/j.nucmedbio.2004.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2003] [Revised: 01/12/2004] [Accepted: 03/14/2004] [Indexed: 10/26/2022]
Abstract
The development of imaging methods to measure changes in NMDA ion channel activation would provide a powerful means to probe the mechanisms of drugs and device based treatments (e.g., ECT) thought to alter glutamate neurotransmission. To provide a potential NMDA/PCP receptor PET tracer, we synthesized the radioligand [11C]GMOM (ki = 5.2 +/-0.3 nM; log P = 2.34) and evaluated this ligand in vivo in awake male rats and isoflurane anesthetized baboons. In rats, the regional brain uptake of [11C]GMOM ranged from 0.75+/-0.13% ID/g in the medulla and pons to 1.15+/-0.17% ID/g in the occipital cortex. MK801 (1 mg/kg i.v.) significantly reduced (24-28%) [11C]GMOM uptake in all regions. D-serine (10 mg/kg i.v.) increased [11C]GMOM %ID/g values in all regions (10-24%) reaching significance in the frontal cortex and cerebellum only. The NR2B ligand RO 25-6981 (10 mg/kg i.v.) reduced [11C]GMOM uptake significantly (24-38%) in all regions except for the cerebellum and striatum. Blood activity was 0.11+/-0.03 %ID/g in the controls group and did not vary significantly across groups. PET imaging in isoflurane-anesthetized baboons with high specific activity [11C]GMOM provided fairly uniform regional brain distribution volume (VT) values (12.8-17.1 ml g(-1)). MK801 (0.5 mg/kg, i.v., n = 1, and 1.0 mg/kg, i.v., n = 1) did not significantly alter regional VT values, indicating a lack of saturable binding. However, the potential confounding effects associated with ketamine induction of anesthesia along with isoflurane maintenance must be considered because both agents are known to reduce NMDA ion channel activation. Future and carefully designed studies, presumably utilizing an optimized NMDA/PCP site tracer, will be carried out to further explore these hypotheses. We conclude that, even though [11C]GMOM is not an optimized PCP site radiotracer, its binding is altered in vivo in awake rats as expected by modulation of NMDA ion channel activity by MK801, D-serine or RO 25-6981. The development of higher affinity NMDA/PCP site radioligands is in progress.
Collapse
Affiliation(s)
- Rikki N Waterhouse
- Department of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to consider the current and potential role of neuroimaging from an epilepsy perspective, and to illustrate that by combining appropriate imaging techniques, neuroimaging can contribute greatly to elucidating the basic mechanisms of the various forms of epileptic disorders. RECENT FINDINGS New magnetic resonance imaging sequences (magnetization transfer imaging) and positron emission tomography ligands (serotonergic system) were biologically validated in large groups of patients with localization-related epilepsies. Investigations in genetically determined homogenous patient populations (PAX6, juvenile myoclonic epilepsy) have strengthened the link between genetic defects and neuropathological targets (anterior commissure, thalamus). Magnetic resonance spectroscopy and electroencephalogram-triggered functional magnetic resonance imaging provided converging evidence for a key role of the thalamus in the generation of generalized seizures. The role of functional magnetic resonance imaging in identifying eloquent areas of cortex and its relationship to structural lesions, in particular malformations of cortical development, has been further elucidated. Longitudinal magnetic resonance imaging studies reported progressive volume loss after febrile convulsions and in active epilepsy. SUMMARY Neuroimaging is essential for improving the efficacy and safety of therapeutic, in particular, surgical procedures. Investigations of larger, more homogenous genetic disorders and longitudinal rather than cross-sectional neuroimaging studies have advanced our knowledge about the cause and effect of epileptic disorders, and will ultimately link defects in molecular genetics with specific neuropathological targets.
Collapse
Affiliation(s)
- Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | | |
Collapse
|
36
|
Hammers A. Flumazenil positron emission tomography and other ligands for functional imaging. Neuroimaging Clin N Am 2004; 14:537-51. [PMID: 15324863 DOI: 10.1016/j.nic.2004.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Most PET receptor studies in idiopathic generalized epilepsy conducted to date include only small numbers of patients and should be interpreted with caution. Differences between earlier and later studies can largely be explained by different inclusion criteria and improving methodology. The finding of some increase of GABAA receptor binding in IGE has a potential pathologic basis in microdysgenesis. Future studies aiming to elucidate the pathophysiology of IGEs may benefit from the use of subtype-specific opioid ligands, available now, and GABAB ligands, if and when they become available.
Collapse
Affiliation(s)
- Alexander Hammers
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|