1
|
Wang J, Xiang ZX, Luan MF, Gong JS, Su C, Li H, Xu ZH, Shi JS. High-level secretory expression of recombinant type III human-like collagen α1 in Pichia pastoris via multilevel systematic optimization. Int J Biol Macromol 2025; 313:144270. [PMID: 40381768 DOI: 10.1016/j.ijbiomac.2025.144270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Collagen is the main component that makes up the internal structure of animals and is extensively used in several industrial fields including food, materials, chemicals, and pharmaceuticals. Despite the variety of preparation methods available, there is significant potential for enhancing the yield of recombinant collagen produced through engineered Pichia pastoris (P. pastoris). Increasing the copy number of the recombinant type III human collagen α1 (hlCOLIII) gene to improve the level of expression of the recombinant protein and co-expression of molecular chaperones to alleviate the resulting endoplasmic reticulum stress further promotes hlCOLIII secretion. By optimizing transcription driven by the AOX1 promoter and improving translation efficiency, a strain of P. pastoris expressing hlCOLIII efficiently was constructed, achieving a yield of 10.3 g/L in a 5 L fermenter. Further, hlCOLIII demonstrated notable antioxidant capacity and performed well in bioactivity analyses, including cell proliferation, migration, and adhesion. This study lays a solid foundation for the scalable industrial production of recombinant collagen and opens new avenues for its exploration in advanced biomedical materials.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zhi-Xiang Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Meng-Fan Luan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
2
|
Zhao Z, Deng J, Fan D. Green biomanufacturing in recombinant collagen biosynthesis: trends and selection in various expression systems. Biomater Sci 2023; 11:5439-5461. [PMID: 37401335 DOI: 10.1039/d3bm00724c] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Collagen, classically derived from animal tissue, is an all-important protein material widely used in biomedical materials, cosmetics, fodder, food, etc. The production of recombinant collagen through different biological expression systems using bioengineering techniques has attracted significant interest in consideration of increasing market demand and the process complexity of extraction. Green biomanufacturing of recombinant collagen has become one of the focus topics. While the bioproduction of recombinant collagens (type I, II, III, etc.) has been commercialized in recent years, the biosynthesis of recombinant collagen is extremely challenging due to protein immunogenicity, yield, degradation, and other issues. The rapid development of synthetic biology allows us to perform a heterologous expression of proteins in diverse expression systems, thus optimizing the production and bioactivities of recombinant collagen. This review describes the research progress in the bioproduction of recombinant collagen over the past two decades, focusing on different expression systems (prokaryotic organisms, yeasts, plants, insects, mammalian and human cells, etc.). We also discuss the challenges and future trends in developing market-competitive recombinant collagens.
Collapse
Affiliation(s)
- Zilong Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| |
Collapse
|
3
|
Chen Z, Fan D, Shang L. Exploring the potential of the recombinant human collagens for biomedical and clinical applications: a short review. ACTA ACUST UNITED AC 2020; 16:012001. [PMID: 32679570 DOI: 10.1088/1748-605x/aba6fa] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural animal collagen and its recombinant collagen are favourable replacements in human tissue engineering due to their remarkable biomedical property. However, this exploitation is largely restricted due to the potential of immunogenicity and virus contamination. Exploring new ways to produce human collagen is fundamental to its biomedical and clinical application. All human fibrillar collagen molecules have three polypeptide chains constructed from a repeating Gly-Xaa-Yaa triplet, where Xaa and Yaa represent one random amino acid. Using cDNA techniques to modify several repeat sequences of the cDNA fragment, a novel human collagen, named recombinant human-like collagen (rHLC), with low immunogenicity and little risk from hidden virus can be engineered and notably tailored to specific applications. Human-like collagen (HLC) was initially used as a coating to modify the tissue engineering scaffold, and then used as the scaffold after cross-link agents were added to increase its mechanical strength. Due to its good biocompatibility, low immunogenicity, stabilised property, and the ability of mass production, HLC has been widely used in skin injury treatments, vascular scaffolds engineering, cartilage, bone defect repair, skincare, haemostatic sponge, and drug delivery, including coating with medical nanoparticles. In this review, we symmetrically reviewed the development, recent advances in design and application of HLC, and other recombinant human collagen-based biomedicine potentials. At the end, future improvements are also discussed.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province 710069, People's Republic of China. Shaanxi Key Laboratory of Degradable Biomedical Materials; Shaanxi R&D Center of Biomaterial and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, People's Republic of China
| | | | | |
Collapse
|
4
|
Xing M, Fu R, Liu Y, Wang P, Ma P, Zhu C, Fan D. Human-like collagen promotes the healing of acetic acid-induced gastric ulcers in rats by regulating NOS and growth factors. Food Funct 2020; 11:4123-4137. [PMID: 32347870 DOI: 10.1039/d0fo00288g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human-like collagen (HLC), the collagen produced using fermentation technology, has been demonstrated previously to promote wound healing. However, the healing property of HLC in gastric ulcers remains to be verified. In this study, we investigated the healing efficacy and healing mechanisms of HLC on gastric ulcers. To investigate whether HLC still has healing activity on gastric ulcers after gastric digestion, we simulated gastric digestion in vitro to obtain a human-like collagen digestion product (HLCP) and used it as the control drug. A chronic gastric ulcer model induced by 60% acetic acid in rats was used to evaluate the healing effect of gastric ulcers in this study. The results showed that oral administration of HLC or HLCP for 4 or 7 days promoted ulcer healing, which can be directly observed by significant reductions in ulcer area. The oral administration of HLC and HLCP significantly increased the protein expression of growth factors (EGF, HGF, VEGF, bFGF and TGF-β1) and the HGF receptor (HGFr), promoted collagen deposition, regulated the activity of NOS, and decreased pro-inflammatory cytokines (TNF-a, il-6, il-10) and endothelin-1 (ET-1) levels in gastric tissue. Moreover, cell experiments showed that the effects of HLC on cell proliferation and migration are mainly caused by its digestion products. These findings indicate that HLC may be used as a nutritional supplement or therapeutic drug to promote the healing of gastric ulcers.
Collapse
Affiliation(s)
- Mimi Xing
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Kusuma SAF, Parwati I, Rostinawati T, Yusuf M, Fadhlillah M, Ahyudanari RR, Rukayadi Y, Subroto T. Optimization of culture conditions for Mpt64 synthetic gene expression in Escherichia coli BL21 (DE3) using surface response methodology. Heliyon 2019; 5:e02741. [PMID: 31844694 PMCID: PMC6895765 DOI: 10.1016/j.heliyon.2019.e02741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 12/01/2022] Open
Abstract
MPT64 is a specific protein that is secreted by Mycobacterium tuberculosis complex (MTBC). The objective of this study was to obtain optimum culture conditions for MPT64 synthetic gene expression in Escherichia coli BL21 (DE3) by response surface methodology (RSM). The RSM was undertaken to optimize the culture conditions under different cultivation conditions (medium concentration, induction time and inducer concentration), designed by the factorial Box-Bhenken using Minitab 17 statistical software. From the randomized combination, 15 treatments and three center point repetitions were obtained. Furthermore, expression methods were carried out in the flask scale fermentation in accordance with the predetermined design. Then, the MPT64 protein in the cytoplasm of E. coli cell was isolated and characterized using sodium dodecyl sulfate polyacrilamide electrophoresis (SDS-PAGE) then quantified using the ImageJ program. The optimum conditions were two-fold medium concentration (tryptone 20 mg/mL, yeast extract 10 mg/mL, and sodium chloride 20 mg/mL), 5 h of induction time and 4 mM rhamnose. The average concentration of recombinant MPT64 at optimum conditions was 0.0392 mg/mL, higher than the predicted concentration of 0.0311 mg/mL. In conclusion, the relationship between the selected optimization parameters strongly influenced the level of MPT64 gene expression in E. coli BL21 (DE3).
Collapse
Affiliation(s)
- Sri Agung Fitri Kusuma
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia.,Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Ida Parwati
- Department of Clinical Pathology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Tina Rostinawati
- Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia.,Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| | - Muhammad Fadhlillah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia.,Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia.,PT. Genpro Multiguna Sejahtera, Sumedang, Indonesia
| | - Risa R Ahyudanari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Yaya Rukayadi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Toto Subroto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia.,Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
6
|
Davison-Kotler E, Marshall WS, García-Gareta E. Sources of Collagen for Biomaterials in Skin Wound Healing. Bioengineering (Basel) 2019; 6:E56. [PMID: 31261996 PMCID: PMC6783949 DOI: 10.3390/bioengineering6030056] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/09/2023] Open
Abstract
Collagen is the most frequently used protein in the fields of biomaterials and regenerative medicine. Within the skin, collagen type I and III are the most abundant, while collagen type VII is associated with pathologies of the dermal-epidermal junction. The focus of this review is mainly collagens I and III, with a brief overview of collagen VII. Currently, the majority of collagen is extracted from animal sources; however, animal-derived collagen has a number of shortcomings, including immunogenicity, batch-to-batch variation, and pathogenic contamination. Recombinant collagen is a potential solution to the aforementioned issues, although production of correctly post-translationally modified recombinant human collagen has not yet been performed at industrial scale. This review provides an overview of current collagen sources, associated shortcomings, and potential resolutions. Recombinant expression systems are discussed, as well as the issues associated with each method of expression.
Collapse
Affiliation(s)
- Evan Davison-Kotler
- Biology Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
- Regenerative Biomaterials Group, The RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - William S Marshall
- Biology Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Elena García-Gareta
- Regenerative Biomaterials Group, The RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, UK.
| |
Collapse
|
7
|
Seyfi R, Babaeipour V, Mofid MR, Kahaki FA. Expression and production of recombinant scorpine as a potassium channel blocker protein in Escherichia coli. Biotechnol Appl Biochem 2018; 66:119-129. [DOI: 10.1002/bab.1704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/04/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Roghayyeh Seyfi
- Department of Bioscience and Biotechnology; Malek Ashtar University of Technology; Tehran Iran
| | - Valiollah Babaeipour
- Department of Bioscience and Biotechnology; Malek Ashtar University of Technology; Tehran Iran
| | - Mohammad Reza Mofid
- Department of Biochemistry; Bioinformatics Research Center; School of Pharmacy and Pharmaceutical Sciences; Isfahan University of Medical Sciences; Isfahan Iran
| | - Fatemeh Abarghooi Kahaki
- Department of Biotechnology; School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
8
|
Cheng Z, Chen X, Zhai D, Gao F, Guo T, Li W, Hao S, Ji J, Wang B. Development of keratin nanoparticles for controlled gastric mucoadhesion and drug release. J Nanobiotechnology 2018; 16:24. [PMID: 29554910 PMCID: PMC5858146 DOI: 10.1186/s12951-018-0353-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Nanotechnology-based drug delivery systems have been widely used for oral and systemic dosage forms delivery depending on the mucoadhesive interaction, and keratin has been applied for biomedical applications and drug delivery. However, few reports have focused on the keratin-based mucoadhesive drug delivery system and their mechanisms of mucoadhesion. Thus, the mucoadhesion controlled kerateine (reduced keratin, KTN)/keratose (oxidized keratin, KOS) composite nanoparticles were prepared via adjusting the proportion of KTN and KOS to achieve controlled gastric mucoadhesion and drug release based on their different mucoadhesive abilities and pH-sensitive properties. Furthermore, the mechanisms of mucoadhesion for KTN and KOS were also investigated in the present study. RESULTS The composite keratin nanoparticles (KNPs) with different mass ratio of KTN to KOS, including 100/0 (KNP-1), 75/25 (KNP-2), 50/50 (KNP-3), and 25/75 (KNP-4), displayed different drug release rates and gastric mucoadhesion capacities, and then altered the drug pharmacokinetic performances. The stronger mucoadhesive ability of nanoparticle could supply longer gastric retention time, indicating that KTN displayed a stronger mucoadhesion than that of KOS. Furthermore, the mechanisms of mucoadhesion for KTN and KOS at different pH conditions were also investigated. The binding between KTN and porcine gastric mucin (PGM) is dominated by electrostatic attractions and hydrogen bondings at pH 4.5, and disulfide bonds also plays a key role in the interaction at pH 7.4. While, the main mechanisms of KOS and PGM interactions are hydrogen bondings and hydrophobic interactions in pH 7.4 condition and were hydrogen bondings at pH 4.5. CONCLUSIONS The resulting knowledge offer an efficient strategy to control the gastric mucoadhesion and drug release of nano drug delivery systems, and the elaboration of mucoadhesive mechanism of keratins will enable the rational design of nanocarriers for specific mucoadhesive drug delivery.
Collapse
Affiliation(s)
- Zhongjun Cheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030 China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030 China
| | - Xiaoliang Chen
- Department of Nuclear Medicine, Chongqing Cancer Institution, Chongqing, 400030 China
| | - Dongliang Zhai
- Department of Nuclear Medicine, Chongqing Cancer Institution, Chongqing, 400030 China
| | - Feiyan Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030 China
| | - Tingwang Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030 China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030 China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030 China
| | - Jingou Ji
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030 China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030 China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030 China
| |
Collapse
|
9
|
Microencapsulation of Phosphorylated Human-Like Collagen-Calcium Chelates for Controlled Delivery and Improved Bioavailability. Polymers (Basel) 2018; 10:polym10020185. [PMID: 30966221 PMCID: PMC6414964 DOI: 10.3390/polym10020185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/17/2022] Open
Abstract
The bioavailability of Phosphorylated Human-like Collagen-calcium chelates (PHLC-Ca) as calcium supplement is influenced by the extremely low pH and proteolytic enzymes in the gastrointestinal tract. This study addresses these issues by microencapsulation technology using alginate (ALG) and chitosan (CS) as wall materials. The different ratio of ALG to PHLC-Ca on microcapsules encapsulation efficiency (EE) and loading capacity (LC) was evaluated and 1:1/2 was selected as the optimal proportion. The microcapsules were micron-sized and spherical in shape. PHLC-Ca was successfully entrapped into the matrix of ALG through forming intermolecular hydrogen bonding or other interactions. The confocal laser scanning microscopy (CLSM) indicated that CS was coated on ALG microspheres. The MTT assay exhibited that CS/ALG-(PHLC-Ca) microcapsules extracts were safe to L929. The animal experiment showed that CS/ALG-(PHLC-Ca) microcapsules was superior to treating osteoporosis than PHLC-Ca. These results illustrated that the bioavailability of PHLC-Ca was improved by microencapsulated.
Collapse
|
10
|
Zhu C, Yang F, Fan D, Wang Y, Yu Y. Higher iron bioavailability of a human-like collagen iron complex. J Biomater Appl 2017; 32:82-92. [PMID: 28494636 DOI: 10.1177/0885328217708638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Iron deficiency remains a public health problem around the world due to low iron intake and/or bioavailability. FeSO4, ferrous succinate, and ferrous glycinate chelate are rich in iron but have poor bioavailability. To solve the problem of iron deficiency, following previous research studies, a thiolated human-like collagen-ironcomplex supplement with a high iron content was prepared in an anaerobic workstation. In addition, cell viability tests were evaluated after conducting an MTT assay, and a quantitative analysis of the thiolated human-like collagen-iron digesta samples was performed using the SDS-PAGE method coupled with gel filtration chromatography. The iron bioavailability was assessed using Caco-2 cell monolayers and iron-deficiency anemia mice models. The results showed that (1) one mole of thiolated human-like collagen-iron possessed approximately 35.34 moles of iron; (2) thiolated human-like collagen-iron did not exhibit cytotoxity and (3) thiolated human-like collagen- iron digesta samples had higher bioavailability than other iron supplements, including FeSO4, ferrous succinate, ferrous glycine chelate and thiolated human-like collagen-Fe iron. Finally, the iron bioavailability was significantly enhanced by vitamin C. These results indicated that thiolated human-like collagen-iron is a promising iron supplement for use in the future.
Collapse
Affiliation(s)
- Chenhui Zhu
- 1 Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, China.,2 Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Fan Yang
- 1 Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, China.,2 Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Daidi Fan
- 1 Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, China.,2 Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Ya Wang
- 1 Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, China.,2 Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Yuanyuan Yu
- 3 Shaanxi Xueqian Normal University, Xi'an, China
| |
Collapse
|
11
|
Lu J, Song Q, Ji Z, Liu X, Wang T, Kang Q. Fermentation optimization of maltose-binding protein fused to neutrophil-activating protein from Escherichia coli TB1. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
12
|
Keskin Gündoğdu T, Deniz İ, Çalışkan G, Şahin ES, Azbar N. Experimental design methods for bioengineering applications. Crit Rev Biotechnol 2014; 36:368-88. [DOI: 10.3109/07388551.2014.973014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Lu M, A R, Guan X, Xu X, Cui Y, Gao T. Optimization of preparation process for allylamine-bacterial cellulose via graft copolymerization by response surface methodology. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-3263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Zhu C, Sun Y, Wang Y, Luo Y, Fan D. The preparation and characterization of novel human-like collagen metal chelates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2611-9. [DOI: 10.1016/j.msec.2013.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/21/2013] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
|
15
|
LUO M, GUAN Y, YAO S. Optimization of DsbA Purification from Recombinant Escherichia coli Broth Using Box-Behnken Design Methodology. Chin J Chem Eng 2013. [DOI: 10.1016/s1004-9541(13)60457-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
YANG K, TAN F, WANG F, LONG Y, WEN Y. Response Surface Optimization for Process Parameters of LiFePO4/C Preparation by Carbothermal Reduction Technology. Chin J Chem Eng 2012. [DOI: 10.1016/s1004-9541(11)60250-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
GUO J, LUO Y, FAN D, GAO P, MA X, ZHU C. Analysis of Metabolic Products by Response Surface Methodology for Production of Human-like Collagen II. Chin J Chem Eng 2010. [DOI: 10.1016/s1004-9541(09)60135-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|