1
|
Salikin NH, Keong LC, Azemin WA, Philip N, Yusuf N, Daud SA, Rashid SA. Combating multidrug-resistant (MDR) Staphylococcus aureus infection using terpene and its derivative. World J Microbiol Biotechnol 2024; 40:402. [PMID: 39627623 DOI: 10.1007/s11274-024-04190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus represents a major global health issue resulting in a wide range of debilitating infections and fatalities. The slow progression of new antibiotics, limited choices for treatment, and scarcity of new drug approvals create immense obstacles in new drug line development. S. aureus poses a significant public health risk, due to the emergence of methicillin-resistant (MRSA) and vancomycin-resistant strains (VRSA), necessitating novel antibiotics for effective control management. Current studies are delving into the terpenes' potential as an antimicrobial agent, indicating positive prospects as promising substitutes or complementary to conventional antibiotics. Concurrent reactions of terpenes with conventional antibiotics create synergistic effects that significantly enhance antibiotic efficacy. Accumulated evidence has shown that while efflux pump (e.g., NorA, TetK, and MepA) is revealed as an essential defense of S. aureus against antibiotics, terpene and its derivative act as its potent inhibitor, suggesting the promising potential of terpenes in combating those infectious pathogens. Furthermore, pronounced cell membrane disruptive activity and antibiofilm properties by terpenes have been exerted, signifying their significance as promising prevention against microbial pathogenesis and antimicrobial resistance. This review provides an overview of the potential of terpenes and their derivatives in combating S. aureus infections, highlighting their potential mechanisms of action (MOA), synergistic effects with conventional antibiotics, and challenges in clinical translation. The unique properties of terpenes offer an opportunity for their use in developing an exceptional defense strategy against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Nor Hawani Salikin
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Lee Chee Keong
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Noraini Philip
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Nurhaida Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Aceh, Indonesia
| | - Siti Aisyah Daud
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Syarifah Ab Rashid
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia.
| |
Collapse
|
2
|
Lu F, Chao J, Zhao X, Betchem G, Ding Y, Yang X, Li Y, Ma H. Enhancing protease activity of Bacillus subtilis using UV-laser random mutagenesis and high-throughput screening. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Effect of low power lasers on prokaryotic and eukaryotic cells under different stress condition: a review of the literature. Lasers Med Sci 2021; 36:1139-1150. [PMID: 33387079 DOI: 10.1007/s10103-020-03196-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Radiations emitted by low power radiation sources have been applied for therapeutic proposals due to their capacity of inactivating bacteria and cancer cells in photodynamic therapy and stimulating tissue cells in photobiomodulation. Exposure to these radiations could increase cell proliferation in bacterial cultures under stressful conditions. Cells in infected or not infected tissue injuries are also under stressful conditions and photobiomodulation-induced regenerative effect on tissue injuries could be related to effects on stressed cells. The understanding of the effects on cells under stressful conditions could render therapies based on photobiomodulation more efficient as well as expand them. Thus, the objective of this review was to update the studies reporting photobiomodulation on prokaryotic and eukaryotic cells under stress conditions. Exposure to radiations emitted by low power radiation sources could induce adaptive responses enabling cells to survive in stressful conditions, such as those experienced by bacteria in their host and by eukaryotic cells in injured tissues. Adaptive responses could be the basis for clinical photobiomodulation applications, either considering their contraindication for treatment of infected injuries or indication for treatment of injuries, inflammatory process resolution, or tissue regeneration.
Collapse
|
4
|
Mohamed MS, Elshaghabee FM, Alharbi SA, El-Hussein A. The Prospective Beneficial Effects of Red Laser Exposure on Lactocaseibacillus casei Fermentation of Skim Milk. BIOLOGY 2020; 9:biology9090256. [PMID: 32878056 PMCID: PMC7565532 DOI: 10.3390/biology9090256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Probiotic lactic acid bacteria are crucial producers of fermented dairy products that are popular functional foods in many countries. The health benefits of probiotic bacteria are mainly attributed to their effective bioactive metabolites. The quality of fermented milk is mainly dependent on the bacterial strain used in the fermentation process. In this study, an innovative technique is used in order to enhance the activities of the probiotic bacteria, quality of fermented milk, and consequently the whole fermentation process. Red laser dosages, at the wavelength of 632.7 nm, were applied to the type strain Lacticaseibacillus casei NRRL-B-1922 before the fermentation of skim milk. The results revealed that the scavenging of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical and total antioxidant capacity were significantly increased from 21% in untreated control to 56% after bacterial laser irradiation of 12 J/cm2 dosage for 40 min. The antioxidant activity was found to be increased as the red laser dosage increased in a dose-response relationship. Additionally, the lactose fermentation in skim milk medium of 43.22 mg/mL initial concentration into organic acids was enhanced after L. casei irradiation and recorded 23.15 mg/mL compared to control group 28.35 mg/mL without bacterial pre-treatment. These results are correlated with increase of the β-Galactosidase activity, where the L. casei that has been exposed to 40 min of red laser exhibited the higher activity of a 0.37 unit/mL relative to the control 0.25 unit/mL. The assessment of this fermented milk after L. casei laser exposure for 10, 20, and 40 min indicates multiple biological effects, including assimilation of cholesterol as well as proteolytic and antibacterial activity. Our data on the exposure of L. casei to laser beam suggest promising application of red laser in the fermentation process of skim milk.
Collapse
Affiliation(s)
- Mahmoud S.M. Mohamed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
- Correspondence: (M.S.M.M.); (A.E.-H.)
| | | | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia;
| | - Ahmed El-Hussein
- The National Institute of Laser Enhanced Science, Cairo University, Giza 12613, Egypt
- Correspondence: (M.S.M.M.); (A.E.-H.)
| |
Collapse
|
5
|
Vorobyeva OV, Samoylova TA, Yusupov VI. Effects of Photobiomodulation on Daphnia magna Straus and their Sensitivity to Toxicant. Photochem Photobiol 2020; 96:1116-1123. [PMID: 32119122 DOI: 10.1111/php.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/16/2020] [Indexed: 11/28/2022]
Abstract
This paper deals with the effect of photobiomodulation (PBM) on Daphnia magna S. and their sensitivity to cadmium sulfate, a known high toxic pollutant. In a first series of experiments, the effect of different He-Ne laser fluences irradiation (range 0.9-4300 mJ cm-2 ) on the fertility of both parent and filial generations (F1-F3) of the crustacean was studied. It was found that PBM in some cases significantly influenced the fertility of both irradiated crustaceans and their nonirradiated offspring. By selecting two fluences (9 ± 2 mJ cm-2 reducing fertility and 4.3 ± 0.9 J cm-2 increasing it), the effect of these on toxicity of cadmium sulfate was evaluated. These experiments have shown that prior irradiation with low-intensity light of a helium-neon laser with 632.8 nm wavelength can change the sensitivity of aquatic organisms to toxin cadmium sulfate. The degree and direction of changes depend on the toxicant concentration and the irradiation dose.
Collapse
Affiliation(s)
- Olga V Vorobyeva
- Lomonosov Moscow State University, Moscow, Russia.,VNIRO Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
| | - Tatyana A Samoylova
- VNIRO Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
| | - Vladimir I Yusupov
- Institute of Photon Technologies, FSRC "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
da Fonseca Iwahara LK, de Paoli F, da Fonseca ADS. Low-Power Red and Infrared Laser Effects on Cells Deficient in DNA Repair. J Lasers Med Sci 2019; 10:157-162. [PMID: 31749939 DOI: 10.15171/jlms.2019.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: Low-level lasers are successfully used to prevent and treat diseases in soft oral and bone tissues, particularly diseases in oral cavity caused by chemotherapy and radiotherapy in oncology. However, controversy exists as to whether these lasers induce molecular side effects, mainly on DNA. The aim of this work was to assess the effects of low-power lasers on mutant Escherichia coli cells in DNA repair. Methods: Escherichia coli wild type cultures as well as those lacking recombination DNA repair (recA -) and la SOS responses (lexA -) irradiated with lasers at different energy densities, powers, and emission modes for cell viability and morphology assessment were used in this study. Results: Laser irradiation: (i) did not affect cell viability of non-mutant and lexA - cells but decreased viability in recA - cultures; (ii) altered morphology of wild type and lexA, depending on the energy density, power, emission mode, and wavelength. Conclusion: Results show that low-level lasers have lethal effects on both recombination DNA repair and SOS response bacterial cells but do not induce morphological modifications in these cells.
Collapse
Affiliation(s)
- Lucas Kiyoshi da Fonseca Iwahara
- Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro, Avenida Pasteur, 296, Urca, Rio de Janeiro, 22290240, Brazil
| | - Flavia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, São Pedro, Juiz de Fora, Minas Gerais, 36036900, Brazil
| | - Adenilson de Souza da Fonseca
- Laboratório de Biofotônica, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, fundos, 4º andar, Vila Isabel, Rio de Janeiro, 20551030, Brazil.,Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil.,Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro, 25964004, Brazil
| |
Collapse
|
7
|
Kim HS, Kim YJ, Kim SJ, Kang DS, Lee TR, Shin DW, Kim HJ, Seo YR. Transcriptomic analysis of human dermal fibroblast cells reveals potential mechanisms underlying the protective effects of visible red light against damage from ultraviolet B light. J Dermatol Sci 2019; 94:276-283. [PMID: 30956030 DOI: 10.1016/j.jdermsci.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Ultraviolet B (UVB) radiation is a major cause of skin photodamage, including the damage associated with photodermatoses, aging, and cancer. Although many studies have shown that red light has photoprotective effects on skin, the mechanisms underlying these effects are still poorly understood. OBJECTIVE The aim of this study was to identify the photoprotective effects of visible red light against UVB-induced skin damage in normal human dermal fibroblast cells using a transcriptomic approach. METHODS Next-generation sequencing-based transcriptomic analyses were used to profile transcriptomic alterations and identify genes that are differentially expressed by visible red light and by UVB exposure. To understand the biological networks among identified genes, a literature-based biological pathway analysis was performed. Quantitative real-time polymerase chain reaction assays were used for mRNA-level validation of selected key genes. RESULTS We observed that visible red light contributes to skin cell protection against UVB by modulating gene expression that enhances the adaptive response to redox and inflammatory balancing and by upregulating genes involved in DNA excision repair processes. We also identified that several key genes in the red light-induced biological network were differentially regulated. CONCLUSIONS Visible red light enhanced the UVB-protective effects in normal human skin cells via the transcriptomic modulation of genes involved in cell-protective processes. Our findings from this next-generation sequencing analysis may lead to a better understanding of the cytoprotective effects of visible red light and provide direction for further molecular or mechanistic studies.
Collapse
Affiliation(s)
- Hyun Soo Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Yeo Jin Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Su Ji Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Doo Seok Kang
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Dong Wook Shin
- College of Biomedical & Health Science, Konkuk University, Chungju, 27478, Korea.
| | - Hyoung-June Kim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| |
Collapse
|
8
|
Hamblin MR, Huang YY, Heiskanen V. Non-mammalian Hosts and Photobiomodulation: Do All Life-forms Respond to Light? Photochem Photobiol 2019; 95:126-139. [PMID: 29882348 PMCID: PMC6286699 DOI: 10.1111/php.12951] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Photobiomodulation (PBM), also known as low-level laser (light) therapy, was discovered over 50 years ago, but only recently has it been making progress toward wide acceptance. PBM originally used red and near-infrared (NIR) lasers, but now other wavelengths and non-coherent light-emitting diodes (LEDs) are being explored. The almost complete lack of side effects makes the conduction of controlled clinical trials relatively easy. Laboratory research has mainly concentrated on mammalian cells (normal or cancer) in culture, and small rodents (mice and rats) as models of different diseases. A sizeable body of work was carried out in the 1970s and 1980s in Russia looking at various bacterial and fungal cells. The present review covers some of these studies and a recent number of papers that have applied PBM to so-called "model organisms." These models include flies (Drosophila), worms (Caenorhabditis elegans), fish (zebrafish) and caterpillars (Galleria). Much knowledge about the genomics and proteomics, and many reagents for these organisms already exist. They are inexpensive to work with and have lower regulatory barriers compared to vertebrate animals. Other researchers have studied different models (snails, sea urchins, Paramecium, toads, frogs and chickens). Plants may respond to NIR light differently from visible light (photosynthesis and photomorphogenesis) but PBM in plants has not been much studied. Veterinarians routinely use PBM to treat non-mammalian patients. The conclusion is that red or NIR light does indeed have significant biologic effects conserved over many different kingdoms, and perhaps it is true that "all life-forms respond to light."
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | | |
Collapse
|
9
|
Trajano LADSN, Sergio LPDS, Stumbo AC, Mencalha AL, Fonseca ADSD. Low power lasers on genomic stability. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:186-197. [DOI: 10.1016/j.jphotobiol.2018.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/02/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
|
10
|
Gwynne PJ, Gallagher MP. Light as a Broad-Spectrum Antimicrobial. Front Microbiol 2018; 9:119. [PMID: 29456527 PMCID: PMC5801316 DOI: 10.3389/fmicb.2018.00119] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/18/2018] [Indexed: 01/05/2023] Open
Abstract
Antimicrobial resistance is a significant and growing concern. To continue to treat even simple infections, there is a pressing need for new alternative and complementary approaches to antimicrobial therapy. One possible addition to the current range of treatments is the use of narrow-wavelength light as an antimicrobial, which has been shown to eliminate a range of common pathogens. Much progress has already been made with blue light but the potential of other regions of the electromagnetic spectrum is largely unexplored. In order that the approach can be fully and most effectively realized, further research is also required into the effects of energy dose, the harmful and beneficial impacts of light on eukaryotic tissues, and the role of oxygen in eliciting microbial toxicity. These and other topics are discussed within this perspective.
Collapse
Affiliation(s)
- Peter J Gwynne
- School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
11
|
Kim YJ, Kim HJ, Kim HL, Kim HJ, Kim HS, Lee TR, Shin DW, Seo YR. A Protective Mechanism of Visible Red Light in Normal Human Dermal Fibroblasts: Enhancement of GADD45A-Mediated DNA Repair Activity. J Invest Dermatol 2016; 137:466-474. [PMID: 27729279 DOI: 10.1016/j.jid.2016.07.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 07/16/2016] [Accepted: 07/21/2016] [Indexed: 01/21/2023]
Abstract
The phototherapeutic effects of visible red light on skin have been extensively investigated, but the underlying biological mechanisms remain poorly understood. We aimed to elucidate the protective mechanism of visible red light in terms of DNA repair of UV-induced oxidative damage in normal human dermal fibroblasts. The protective effect of visible red light on UV-induced DNA damage was identified by several assays in both two-dimensional and three-dimensional cell culture systems. With regard to the protective mechanism of visible red light, our data showed alterations in base excision repair mediated by growth arrest and DNA damage inducible, alpha (GADD45A). We also observed an enhancement of the physical activity of GADD45A and apurinic/apyrimidinic endonuclease 1 (APE1) by visible red light. Moreover, UV-induced DNA damages were diminished by visible red light in an APE1-dependent manner. On the basis of the decrease in GADD45A-APE1 interaction in the activating transcription factor-2 (ATF2)-knockdown system, we suggest a role for ATF2 modulation in GADD45A-mediated DNA repair upon visible red light exposure. Thus, the enhancement of GADD45A-mediated base excision repair modulated by ATF2 might be a potential protective mechanism of visible red light.
Collapse
Affiliation(s)
- Yeo Jin Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyoung-June Kim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hye Lim Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyo Jeong Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyun Soo Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
12
|
Barboza LL, Campos VMA, Magalhães LAG, Paoli F, Fonseca AS. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures. ACTA ACUST UNITED AC 2015; 48:945-52. [PMID: 26445339 PMCID: PMC4617122 DOI: 10.1590/1414-431x20154460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 06/09/2015] [Indexed: 11/22/2022]
Abstract
Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm2) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols.
Collapse
Affiliation(s)
- L L Barboza
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, RJ, BR
| | - V M A Campos
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, RJ, BR
| | - L A G Magalhães
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, RJ, BR
| | - F Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, BR
| | - A S Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, RJ, BR
| |
Collapse
|
13
|
Canuto KS, Sergio LPS, Guimarães OR, Geller M, Paoli F, Fonseca AS. Low-level red laser therapy alters effects of ultraviolet C radiation on Escherichia coli cells. ACTA ACUST UNITED AC 2015; 48:939-44. [PMID: 26445338 PMCID: PMC4617121 DOI: 10.1590/1414-431x20154459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 04/23/2015] [Indexed: 11/29/2022]
Abstract
Low-level lasers are used at low power densities and doses according to clinical
protocols supplied with laser devices or based on professional practice. Although use
of these lasers is increasing in many countries, the molecular mechanisms involved in
effects of low-level lasers, mainly on DNA, are controversial. In this study, we
evaluated the effects of low-level red lasers on survival, filamentation, and
morphology of Escherichia colicells that were exposed to ultraviolet
C (UVC) radiation. Exponential and stationary wild-type and
uvrA-deficientE. coli cells were exposed to a
low-level red laser and in sequence to UVC radiation. Bacterial survival was
evaluated to determine the laser protection factor (ratio between the number of
viable cells after exposure to the red laser and UVC and the number of viable cells
after exposure to UVC). Bacterial filaments were counted to obtain the percentage of
filamentation. Area-perimeter ratios were calculated for evaluation of cellular
morphology. Experiments were carried out in duplicate and the results are reported as
the means of three independent assays. Pre-exposure to a red laser protected
wild-type and uvrA-deficient E. coli cells against
the lethal effect of UVC radiation, and increased the percentage of filamentation and
the area-perimeter ratio, depending on UVC fluence and physiological conditions in
the cells. Therapeutic, low-level red laser radiation can induce DNA lesions at a
sub-lethal level. Consequences to cells and tissues should be considered when
clinical protocols based on this laser are carried out.
Collapse
Affiliation(s)
- K S Canuto
- Centro de Ciências da Saúde, Centro Universitário Serra dos =rgãos, Teresópolis, RJ, BR
| | - L P S Sergio
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ, BR
| | - O R Guimarães
- Centro de Ciências da Saúde, Centro Universitário Serra dos =rgãos, Teresópolis, RJ, BR
| | - M Geller
- Centro de Ciências da Saúde, Centro Universitário Serra dos =rgãos, Teresópolis, RJ, BR
| | - F Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, BR
| | - A S Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ, BR
| |
Collapse
|
14
|
Fonseca AS, Campos VMA, Magalhães LAG, Paoli F. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers. ACTA ACUST UNITED AC 2015; 48:929-38. [PMID: 26445337 PMCID: PMC4617120 DOI: 10.1590/1414-431x20154457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/17/2015] [Indexed: 02/02/2023]
Abstract
Low-intensity lasers are used for prevention and management of oral mucositis induced
by anticancer therapy, but the effectiveness of treatment depends on the genetic
characteristics of affected cells. This study evaluated the survival and induction of
filamentation of Escherichia coli cells deficient in the nucleotide
excision repair pathway, and the action of T4endonuclease V on plasmid DNA
exposed to low-intensity red and near-infrared laser light. Cultures of wild-type
(strain AB1157) E. coli and strain AB1886 (deficient in uvrA
protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various
fluences, powers and emission modes to study bacterial survival and filamentation.
Also, plasmid DNA was exposed to laser light to study DNA lesions produced in
vitro by T4endonuclease V. Low-intensity
lasers:i) had no effect on survival of wild-type E.
coli but decreased the survival of uvrA protein-deficient
cells,ii) induced bacterial filamentation, iii)
did not alter the electrophoretic profile of plasmids in agarose gels,
andiv) did not alter the electrophoretic profile of plasmids
incubated with T4 endonuclease V. These results increase our understanding
of the effects of laser light on cells with various genetic characteristics, such as
xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in
patients with mucositis treated by low-intensity lasers.
Collapse
Affiliation(s)
- A S Fonseca
- Laboratório de Ciências Radiológicas, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, RJ, BR
| | - V M A Campos
- Laboratório de Ciências Radiológicas, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, RJ, BR
| | - L A G Magalhães
- Laboratório de Ciências Radiológicas, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, RJ, BR
| | - F Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, BR
| |
Collapse
|
15
|
Sergio LPDS, Silva APAD, Amorim PF, Campos VMA, Magalhães LAG, de Paoli F, de Souza da Fonseca A. DNA damage in blood cells exposed to low-level lasers. Lasers Surg Med 2015; 47:361-8. [PMID: 25740459 DOI: 10.1002/lsm.22344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE In regenerative medicine, there are increasing applications of low-level lasers in therapeutic protocols for treatment of diseases in soft and in bone tissues. However, there are doubts about effects on DNA, and an adequate dosimetry could improve the safety of clinical applications of these lasers. This work aimed to evaluate DNA damage in peripheral blood cells of Wistar rats induced by low-level red and infrared lasers at different fluences, powers, and emission modes according to therapeutic protocols. MATERIAL AND METHODS Peripheral blood samples were exposed to lasers and DNA damage was accessed by comet assay. In other experiments, DNA damage was accessed in blood cells by modified comet assay using formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III enzymes. RESULTS Data show that exposure to low-level red and infrared lasers induce DNA damage depending on fluence, power and emission mode, which are targeted by Fpg and endonuclease III. CONCLUSION Oxidative DNA damage should be considered for therapeutic efficacy and patient safety in clinical applications based on low-level red and infrared lasers.
Collapse
Affiliation(s)
- Luiz Philippe da Silva Sergio
- Laboratório, de Ciências, Radiológicas, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, 20550900, Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
de Souza da Fonseca A, Mencalha AL, Araújo de Campos VM, Ferreira Machado SC, de Freitas Peregrino AA, Geller M, de Paoli F. DNA repair gene expression in biological tissues exposed to low-intensity infrared laser. Lasers Med Sci 2012; 28:1077-84. [PMID: 22941447 DOI: 10.1007/s10103-012-1191-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/20/2012] [Indexed: 12/21/2022]
Abstract
Special properties of laser light have led to its usefulness in many applications in therapy. Excitation of endogenous chromophores in biotissues and generation of free radicals could be involved in its biological effects. DNA lesions induced by free radicals are repaired by base excision repair pathway. In this work, we evaluated the expression of APE1 and OGG1 genes related to repair of DNA lesions induced by free radicals. Skin and muscle tissues of Wistar rats were exposed to low-intensity infrared laser at different fluences and frequencies. After laser exposition of 1 and 24 h, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of APE1 and OGG1 gene expression by quantitative polymerase chain reaction. Data obtained show that laser radiation alters the expression of APE1 and OGG1 mRNA differently in skin and muscle tissues of Wistar rats depending of the fluence, frequency, and time after exposure. Our study suggests that low-intensity infrared laser affects expression of genes involved in repair of DNA lesions by base excision repair pathway.
Collapse
Affiliation(s)
- Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro 20550900, Brazil.
| | | | | | | | | | | | | |
Collapse
|
17
|
Liu Y, Xue ZL, Zheng ZM, Gong GH, Wang P, Nie GJ. He-Ne laser irradiation of folate-producing Candida utilis and optimization of culture conditions under submerged fermentation. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0514-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
da Silva Marciano R, da Silva Sergio LP, Polignano GAC, Presta GA, Guimarães OR, Geller M, de Paoli S, de Paoli F, da Fonseca ADS. Laser for treatment of aphthous ulcers on bacteria cultures and DNA. Photochem Photobiol Sci 2012; 11:1476-83. [PMID: 22766761 DOI: 10.1039/c2pp25027f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Low-intensity red lasers are proposed for treatment of oral aphthous ulcers based on biostimulative effects. However, effects of low-intensity lasers at fluences used in clinical protocols on DNA are controversial. The aim of this work was to evaluate the effects of low-intensity red laser on survival and induction of filamentation of Escherichia coli cells, and induction of DNA lesions in bacterial plasmids. Escherichia coli cultures were exposed to laser (660 nm, 100 mW, 25 and 45 J cm(-2)) to study bacterial survival and filamentation. Also, bacterial plasmids were exposed to laser to study DNA lesions by electrophoretic profile and action of DNA repair enzymes. Data indicate that low-intensity red laser: (i) had no effect on survival of E. coli wild type, exonuclease III and formamidopyrimidine DNA glycosylase/MutM protein but decreased the survival of endonuclease III deficient cultures; (ii) induced bacterial filamentation, (iii) there was no alteration in the electrophoretic profile of plasmids in agarose gels, (iv) there was no alteration in the electrophoretic profile of plasmids incubated with formamidopyrimidine DNA glycosylase/MutM protein and endonuclease III enzymes, but it altered the electrophoretic profile of plasmids incubated with exonuclease III. Low-intensity red laser at therapeutic fluences has an effect on the survival of E. coli endonuclease III deficient cells, induces bacterial filamentation in E. coli cultures and DNA lesions targeted by exonuclease III.
Collapse
Affiliation(s)
- Roberta da Silva Marciano
- Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Alto, Teresópolis, Rio de Janeiro, 25964004, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Low-level infrared laser effect on plasmid DNA. Lasers Med Sci 2011; 27:121-30. [PMID: 21556926 DOI: 10.1007/s10103-011-0905-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 01/18/2011] [Indexed: 12/31/2022]
Abstract
Low-level laser therapy is used in the treatment of many diseases based on its biostimulative effect. However, the photobiological basis for its mechanism of action and adverse effects are not well understood. The aim of this study, using experimental models, was to evaluate the effects of laser on bacterial plasmids in alkaline agarose gel electrophoresis and Escherichia coli cultures. The electrophoretic profile of bacterial plasmids in alkaline agarose gels were used for studying lesions in DNA exposed to infrared laser. Transformation efficiency and survival of Escherichia coli AB1157 (wild-type), BH20 (fpg/mutM(-)), BW9091 (xth(-)), and DH5αF'Iq (recA(-)) cells harboring pBSK plasmids were used as experimental models to assess the effect of laser on plasmid DNA outside and inside of cells. Data indicate low-level laser: (1) altered the electrophoretic profile of plasmids in alkaline gels at 2,500-Hz pulsed-emission mode but did not alter at continuous wave, 2.5- and 250-Hz pulsed-emission mode; (2) altered the transformation efficiency of plasmids in wild-type and fpg/mutM(-) E. coli cells; (3) altered the survival fpg/mutM(-), xthA(-) and recA(-) E. coli cultures harboring pBSK plasmids. Low-level infrared laser with therapeutic fluencies at high frequency in pulsed-emission modes have effects on bacterial plasmids. Infrared laser action can differently affect the survival of plasmids in E. coli cells proficient and deficient in DNA repair mechanisms, therefore, laser therapy protocol should take into account fluencies, frequencies and wavelength of laser, as well as tissue conditions and genetic characteristics of cells before beginning treatment.
Collapse
|
20
|
Fonseca AS, Moreira TO, Paixão DL, Farias FM, Guimarães OR, de Paoli S, Geller M, de Paoli F. Effect of laser therapy on DNA damage. Lasers Surg Med 2010; 42:481-8. [PMID: 20662024 DOI: 10.1002/lsm.20921] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVE Whereas the biostimulative effect on tissues using low intensity laser therapy for treating many diseases has been described, the photobiological basis and adverse effects are not well understood. The aim of this study, using experimental models, is to observe the combined effect of physical damage (laser) and a chemical agent (hydrogen peroxide) on Escherichia coli cultures and bacterial plasmids. MATERIALS AND METHODS Survival of E. coli AB1157 (wild type) and BW9091 (xth(-)) cultures were used as an experimental model to assess the effect of agents on DNA, also agarose gel electrophoretic profile of bacterial plasmids for studying single and double strand breaks in DNA exposed to laser irradiation and in DNA pre-exposed to laser and subsequently incubated with hydrogen peroxide. RESULTS Data indicate low intensity laser: (i) did not alter the survival of E. coli cultures, (ii) pre-exposure had a protective effect against lethal action of hydrogen peroxide on E. coli cultures, and (iii) did not alter the electrophoretic profile and action of hydrogen peroxide on plasmids. This suggests that low intensity therapeutic red laser doses at different emission modes induces sub-lethal effects on E. coli wild type and exonuclease III mutant cultures inducing protective mechanisms against lethal action of hydrogen peroxide. Laser action on bacterial plasmids is related to lesions other than single or double DNA strands breaks. CONCLUSIONS This study shows a protective effect or DNA repair mechanism induction by pre-exposure to low intensity red laser on the lethal action of oxidant agents and, therefore, laser therapy protocol should consider fluencies, wavelength and tissue conditions before beginning treatment.
Collapse
Affiliation(s)
- Adenilson S Fonseca
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro 20211040, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Karu TI. Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 2010; 62:607-10. [PMID: 20681024 DOI: 10.1002/iub.359] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This article reviews the current knowledge in photobiology and photomedicine about the influence of monochromatic, quasimonochromatic, and bread-band radiation of red-to-near infrared (IR-A) part on solar spectrum upon mammalian cells and human skin. The role of cytochrome c oxidase as the photoacceptor and photosignal transducer is underlined and its photosensitivity at certain circumstances is discussed. The role of ATP as a critical signaling molecule is discussed.
Collapse
Affiliation(s)
- Tiina I Karu
- Laboratory of Laser Biology and Medicine, Institute of Laser and Information Technologies, Russian Academy of Sciences, Troitsk, Moscow Region, Russian Federation.
| |
Collapse
|
22
|
Lu W, Fan J, Wen J, Xia Z, Caiyin Q. Kinetic analysis and modeling of daptomycin batch fermentation by Streptomyces roseosporus. Appl Biochem Biotechnol 2010; 163:453-62. [PMID: 20809103 DOI: 10.1007/s12010-010-9053-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 07/26/2010] [Indexed: 11/30/2022]
Abstract
In this study, Streptomyces roseosporus was subjected to helium-neon (He-Ne) laser (632.8 nm) irradiation to improve the production ability of extracellular antibiotic daptomycin. Under the optimum irradiation dosage of 18 mW for 22 min, a stable positive mutant strain S. roseosporus LC-54 was obtained. The maximum A21978C (daptomycin is a semisynthetic antimicrobial substance derived from the A21978C complex) yield of this mutant strain was 296 mg/l, which was 146% higher than that of the wild strain. The mutant strain grew more quickly and utilized carbohydrate sources more efficiently than the wild strain. The batch culture kinetics was investigated in a 7 l bioreactor. The logistic equation for growth, the Luedeking-Piret equation for daptomycin production, and Luedeking-Piret-like equations for carbon substrate consumption were established. This model appeared to provide a reasonable description for each parameter during the growth phase and fitted fairly well with the experiment data.
Collapse
Affiliation(s)
- Wenyu Lu
- Department of Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
Sahu K, Mohanty SK, Gupta PK. He-Ne laser (632.8 nm) pre-irradiation gives protection against DNA damage induced by a near-infrared trapping beam. JOURNAL OF BIOPHOTONICS 2009; 2:140-144. [PMID: 19343694 DOI: 10.1002/jbio.200810041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report the results of a study carried out to investigate the effect of He-Ne laser (632.8 nm) pre-irradiation on DNA damage induced by continuous wave 1064 nm trapping beam exposure in MCF-7 cells. A significant decrease in % tail DNA (p < 0.05) was observed in MCF-7 cells pre-exposed to He-Ne laser beam. The dependence of the induced protection against 1064 nm trapping beam irradiation induced DNA damage on the time interval between the two irradiations as well as the He-Ne laser pre-irradiation parameters is presented.
Collapse
Affiliation(s)
- Khageswar Sahu
- Laser Biomedical Applications and Instrumentation Division, Raja Ramanna Centre for Advanced Technology, Indore-452013, India.
| | | | | |
Collapse
|
24
|
Caiyin Q, Zhang S, Wang H, Jia X, Yang J, Wen J. Efficacy of He-Ne Laser Irradiation on the Improvement of Biodesulfurizing Activity of Gordonia sp. WQ-01. J Biomed Nanotechnol 2008. [DOI: 10.1166/jbn.2008.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Cellular Damage in Diabetic Wounded Fibroblast Cells following Phototherapy at 632.8, 830, and 1064 nm. ACTA ACUST UNITED AC 2007. [DOI: 10.1155/2007/80536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objective. This study aimed to establish if laser irradiation induces cellular and genetic damage. Background. Phototherapy has been shown to induce wound healing in diabetic wounds, however little information is known regarding light-induced damage. Methods. Diabetic wounded fibroblasts were irradiated with 5 or 16 J/cm2 at 632.8, 830, and 1064 nm. Damage was assessed by measuring membrane and DNA damages. Cellular migration was determined by microscopy. Results. Cells irradiated with 5 J/cm2 at 632.8 and 830 nm showed a significant decrease in DNA damage while all cells irradiated with a fluence of 16 J/cm2 showed an increase in membrane and DNA damages. Conclusion. This study showed that the comet assay and LDH release were sensitive enough to pick up changes in laser-irradiated cells. This study also showed that cellular and genetic damage inflicted on diabetic wounded cells was dependent on dose and wavelength and that cells are able to recover and respond.
Collapse
|
26
|
Jiang Y, Wen J, Jia X, Caiyin Q, Hu Z. Mutation of Candida tropicalis by irradiation with a He-Ne laser to increase its ability to degrade phenol. Appl Environ Microbiol 2007; 73:226-31. [PMID: 17085704 PMCID: PMC1797104 DOI: 10.1128/aem.00677-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 10/27/2006] [Indexed: 11/20/2022] Open
Abstract
Candida tropicalis isolated from acclimated activated sludge was used in this study. Cell suspensions with 5 x 10(7) cells ml(-1) were irradiated by using a He-Ne laser. After mutagenesis, the irradiated cell suspension was diluted and plated on yeast extract-peptone-dextrose (YEPD) medium. Plates with approximately 20 individual colonies were selected, and all individual colonies were harvested for phenol biodegradation. The phenol biodegradation stabilities for 70 phenol biodegradation-positive mutants, mutant strains CTM 1 to 70, ranked according to their original phenol biodegradation potentials, were tested continuously during transfers. Finally, mutant strain CTM 2, which degraded 2,600 mg liter(-1) phenol within 70.5 h, was obtained on the basis of its capacity and hereditary stability for phenol biodegradation. The phenol hydroxylase gene sequences were cloned in wild and mutant strains. The results showed that four amino acids were mutated by irradiation with a laser. In order to compare the activity of phenol hydroxylase in wild and mutant strains, their genes were expressed in Escherichia coli BL21(DE3) and enzyme activities were spectrophotometrically determined. It was clear that the activity of phenol hydroxylase was promoted after irradiation with a He-Ne laser. In addition, the cell growth and intrinsic phenol biodegradation kinetics of mutant strain CTM 2 in batch cultures were also described by Haldane's kinetic equation with a wide range of initial phenol concentrations from 0 to 2,600 mg liter(-1). The specific growth and degradation rates further demonstrated that the CTM 2 mutant strain possessed a higher capacity to resist phenol toxicity than wild C. tropicalis did.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 92 Wei Jin Road, Tianjin 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Jiang Y, Wen J, Caiyin Q, Lin L, Hu Z. Mutant AFM 2 of Alcaligenes faecalis for phenol biodegradation using He-Ne laser irradiation. CHEMOSPHERE 2006; 65:1236-41. [PMID: 16730779 DOI: 10.1016/j.chemosphere.2006.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2005] [Revised: 04/05/2006] [Accepted: 04/06/2006] [Indexed: 05/09/2023]
Abstract
He-Ne laser technology was utilized in this study to investigate the response of Alcaligenes faecalis to laser stimulation. The irradiation experiments were conducted by the adjustment of the output power from 5 to 25 mW and the exposure time from 5 to 25 min. The results showed that the survival rate changed regularly with the variety of irradiation dose, and high positive mutation frequency was determined by both the energy density and the output power. The mutant strain AFM 2 was obtained. Phenol biodegradation assay demonstrated that AFM 2 possessed a more prominent phenol-degrading potential than its parent strain, which presumably attributed to the improvements of phenol hydroxylase and catechol 1,2-dioxygenase activities. The phenol of 2000 mgl(-1) was completely degraded by AFM 2 within 85.5h at 30 degrees C. In addition, the cell growth and phenol degradation kinetics of the mutant strain AFM 2 and its parent strain in batch cultures were also investigated at the wide initial phenol concentration ranging from 0 to 2000 mgl(-1) by Haldane model. The results of these experiments further demonstrated that the mutant strain AFM 2 possessed a higher capacity to resist phenol.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | | | | | | | | |
Collapse
|
28
|
Jia X, Wen J, Sun Z, Caiyin Q, Xie S. Modeling of DBT biodegradation behaviors by resting cells of Gordonia sp. WQ-01 and its mutant in oil–water dispersions. Chem Eng Sci 2006. [DOI: 10.1016/j.ces.2005.10.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI. Absorption measurements of a cell monolayer relevant to phototherapy: Reduction of cytochrome c oxidase under near IR radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2005; 81:98-106. [PMID: 16125966 DOI: 10.1016/j.jphotobiol.2005.07.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
Phototherapy uses monochromatic light in the optical region of 600-1000 nm to treat in a non-destructive and non-thermal fashion various soft-tissue and neurological conditions. This kind of treatment is based on the ability of light red-to-near IR to alter cellular metabolism as a result of its being absorbed by cytochrome c oxidase. To further investigate the involvement of cytochrome c oxidase as a photoacceptor in the alteration of the cellular metabolism, we have aimed our study at, first, recording the absorption spectra of HeLa-cell monolayers in various oxygenation conditions (using fast multichannel recording), secondly, investigating the changes caused in these absorption spectra by radiation at 830 nm (the radiation wavelength often used in phototherapy), and thirdly, comparing between the absorption and action spectra recorded. The absorption measurements have revealed that the 710- to 790-nm spectral region is characteristic of a relatively reduced photoacceptor, while the 650- to 680-nm one characterizes a relatively oxidized photoacceptor. The ratio between the peak intensities at 760 and 665 nm is used to characterize the redox status of cytochrome c oxidase. By this criterion, the irradiation of the cellular monolayers with light at lambda=830 nm (D=6.3 x 10(3)J/m(2)) causes the reduction of the photoacceptor. A similarity is established between the peak positions at 616, 665, 760, 813, and 830 nm in the absorption spectra of the cellular monolayers and the action spectra of the long-term cellular responses (increase in the DNA synthesis rate and cell adhesion to a matrix).
Collapse
Affiliation(s)
- Tiina I Karu
- Institute of Laser and Information Technologies of Russian Academy of Sciences, Troitsk, Pionerskaya Street 2, Moscow Region 142190, Russian Federation.
| | | | | | | |
Collapse
|
30
|
Dantur KI, Pizarro RA. Effect of growth phase on the Escherichia coli response to ultraviolet-A radiation: influence of conditioned media, hydrogen peroxide and acetate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2004; 75:33-9. [PMID: 15246348 DOI: 10.1016/j.jphotobiol.2004.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 03/26/2004] [Accepted: 04/24/2004] [Indexed: 11/27/2022]
Abstract
The results reported herein indicate that the ultraviolet-A (UVA) radiation-induced effects in Escherichia coli depend on its growth phase. Stationary-phase cells recover faster from a sub-lethal UVA exposure and have a higher resistance to lethal effect of the radiation than exponential growing cells. Although pre-incubation in spent medium supernatant increased the resistance of log-phase cells to lethal UVA effects, this pre-treatment considerably prolonged the duration of the radioinduced sub-lethal growth delay. The aim of the present study was to investigate the effect exerted by the E. coli conditioned media and evaluate the influence of nutritional stress, hydrogen peroxide and acetate. Pre-incubated in conditioned medium, cells in exponential growth phase were irradiated and the induced effects were compared with those found when catalase, high culture densities and acetate were employed. Unexpectedly, the duration of the growth delay in cells submitted to these treatments was shortened in comparison with control cells incubated in conditioned medium with no modifications. Lengthening of the growth delay was mimicked when exponentially growing cells were incubated in fresh medium supplied with 5 microM H(2)O(2). The effects of spent medium on wild type and rpoS mutant strains were similar, indicating that this response is independent of RpoS controlled functions. We assumed that an oxidative component of the spent medium, probably H(2)O(2), could be involved in the observed phenomenon. This effect is specific of E. coli and independent of rpoS.
Collapse
Affiliation(s)
- Karina I Dantur
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650 General San Martín, Buenos Aires, Argentina
| | | |
Collapse
|