1
|
Steel TR, Stjärnhage J, Riisom M, Bloomfield HO, Herbert CD, Jamieson SMF, Astin JW, Söhnel T, Hartinger CG. The Chemistry of Anticancer Mononuclear and N-Bridged Dinuclear 8-Aminoquinoline Half-sandwich Metal Complexes. Chemistry 2025; 31:e202404366. [PMID: 40130746 PMCID: PMC12015398 DOI: 10.1002/chem.202404366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Indexed: 03/26/2025]
Abstract
Piano-stool complexes of ruthenium and other platinum group metals have shown promising preclinical results as anticancer agents, often with alternative modes of action to traditional platinum-based compounds. Quinoline is considered a privileged structure in medicinal chemistry and many complexes with potent anticancer activity have been reported. To assess the effect of incorporating bidentate 8-aminoquinoline-η2N-1,N-8 (AQH) ligands in half-sandwich piano-stool metal complexes of the general formula [M(L)(AQH)Cl]+, the respective Ru, Os (L=η6-p-cymene), Rh and Ir (L=η5-pentamethylcyclopentadienyl) complexes were prepared. Deprotonation of AQH during the reaction gave dinuclear [M(L)(AQ)]2 2+ complexes with the deprotonated μ-κ1N-8-aminoquinolinato-η2N-1,N-8 (AQ) ligands acting as bridges between the metal centers. Conversion of the mononuclear Ru, Rh and Ir compounds to the dimetallic analogues was facilitated under basic conditions and improved for the Ru derivative by the addition of AgNO3 to abstract the chlorido ligand. In in vitro anticancer activity studies, the dimetallic complexes were in general more potent than mononuclear analogues. The higher activity of the dimetallic compounds can be explained by higher uptake into cancer cells, as demonstrated for the respective Ru complexes, while zebrafish embryo studies demonstrated low toxicity, irrespective of the number of metal centers in the complexes.
Collapse
Affiliation(s)
- Tasha R. Steel
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Julia Stjärnhage
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Mie Riisom
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Hugh O. Bloomfield
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Caitlin D. Herbert
- Department of Molecular Medicine and PathologyFaculty of Medical and Health SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research CentreUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Jonathan W. Astin
- Department of Molecular Medicine and PathologyFaculty of Medical and Health SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Tilo Söhnel
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
- MacDiarmid Institute for Advanced Materials and NanotechnologyVictoria University of Wellington, PO Box 600Wellington6140New Zealand
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| |
Collapse
|
2
|
Mendez-Arriaga JM. Platinum Group Metals against Parasites: State of the Art and Future Perspectives. Med Chem 2025; 21:2-10. [PMID: 39916434 DOI: 10.2174/0115734064324855240806052735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 05/08/2025]
Abstract
BACKGROUND Globally, parasitic diseases are considered among the neglected diseases. Clinically, several drugs are used in treatment, however due to drug resistance and multidrug resistance and the low investment in new research lines, there has been a failure in the treatment of parasitic illnesses. OBJECTIVES The present mini-review is a comprehensive review of the use of platinum group metals as biological agents. It aims to establish the actual state of the art of these metal elements in the antiparasitic activity-specific area and define the future possibilities of action. METHODS The review comprises more than 100 research works done in this field. The differences between platinum group metals chemistry and their use as metal complexes with biological activity have been discussed. RESULTS This review highlighted the platinum group metal's potential as an antiparasitic agent for different diseases. CONCLUSION The review will be helpful for the researchers involved in targeted drugs for parasitic disease therapy.
Collapse
Affiliation(s)
- Jose Manuel Mendez-Arriaga
- Departamento De Biología y Geología, Física Y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain
| |
Collapse
|
3
|
Bai F, Deng Y, Li L, Lv M, Razzokov J, Xu Q, Xu Z, Chen Z, Chen G, Chen Z. Advancements and challenges in brain cancer therapeutics. EXPLORATION (BEIJING, CHINA) 2024; 4:20230177. [PMID: 39713205 PMCID: PMC11655316 DOI: 10.1002/exp.20230177] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 12/24/2024]
Abstract
Treating brain tumors requires a nuanced understanding of the brain, a vital and delicate organ. Location, size, tumor type, and surrounding tissue health are crucial in developing treatment plans. This review comprehensively summarizes various treatment options that are available or could be potentially available for brain tumors, including physical therapies (radiotherapy, ablation therapy, photodynamic therapy, tumor-treating field therapy, and cold atmospheric plasma therapy) and non-physical therapies (surgical resection, chemotherapy, targeted therapy, and immunotherapy). Mechanisms of action, potential side effects, indications, and latest developments, as well as their limitations, are highlighted. Furthermore, the requirements for personalized, multi-modal treatment approaches in this rapidly evolving field are discussed, emphasizing the balance between efficacy and patient safety.
Collapse
Affiliation(s)
- Fan Bai
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Advanced Therapeutic CenterNational Innovation Center for Advanced Medical DevicesShenzhenChina
| | - Yueyang Deng
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Rosalind & Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - Long Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesShenzhenGuangdongP. R. China
| | - Ming Lv
- Department of Medical EngineeringMedical Supplies Center of Chinese PLA General HospitalBeijingChina
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied ResearchNational Research University TIIAMETashkentUzbekistan
- Laboratory of Experimental BiophysicsCentre for Advanced TechnologiesTashkentUzbekistan
- Department of Biomedical EngineeringTashkent State Technical UniversityTashkentUzbekistan
| | - Qingnan Xu
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhen Xu
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhaowei Chen
- Institute of Food Safety and Environment MonitoringMOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhouChina
| | - Guojun Chen
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Rosalind & Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - Zhitong Chen
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Advanced Therapeutic CenterNational Innovation Center for Advanced Medical DevicesShenzhenChina
- University of Chinese Academy of SciencesShenzhenGuangdongP. R. China
- Key Laboratory of Biomedical Imaging Science and SystemChinese Academy of SciencesShenzhenChina
| |
Collapse
|
4
|
Mitrović M, Djukić MB, Vukić M, Nikolić I, Radovanović MD, Luković J, Filipović IP, Matić S, Marković T, Klisurić OR, Popović S, Matović ZD, Ristić MS. Search for new biologically active compounds: in vitro studies of antitumor and antimicrobial activity of dirhodium(II,II) paddlewheel complexes. Dalton Trans 2024; 53:9330-9349. [PMID: 38747564 DOI: 10.1039/d4dt01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Four neutral Rh1-Rh4 complexes of the general formula [Rh2(CH3COO)4L2], where L is an N-alkylimidazole ligand, were synthesized and characterized using various spectroscopic techniques, and in the case of Rh4 the crystal structure was confirmed. Investigation of the interactions of these complexes with HSA by fluorescence spectroscopy revealed that the binding constants Kb are moderately strong (∼104 M-1), and site-marker competition experiments showed that the complexes bind to Heme site III (subdomain IB). Competitive binding studies for CT DNA using EB and HOE showed that the complexes bind to the minor groove, which was also confirmed by viscosity experiments. Molecular docking confirmed the experimental data for HSA and CT DNA. Antimicrobial tests showed that the Rh2-Rh4 complexes exerted a strong inhibitory effect on G+ bacteria B. cereus and G- bacteria V. parahaemolyticus as well as on the yeast C. tropicalis, which showed a higher sensitivity compared to fluconazole. The cytotoxic activity of Rh1-Rh4 complexes tested on three cancer cell lines (HeLa, HCT116 and MDA-MB-231) and on healthy MRC-5 cells showed that all investigated complexes elicited more efficient cytotoxicity on all tested tumor cells than on control cells. Investigation of the mechanism of action revealed that the Rh1-Rh4 complexes inhibit cell proliferation via different mechanisms of action, namely apoptosis (increase in expression of the pro-apoptotic Bax protein and caspase-3 protein in HeLa and HCT116 cells; changes in mitochondrial potential and mitochondrial damage; release of cytochrome c from the mitochondria; cell cycle arrest in G2/M phase in both HeLa and HCT116 cells together with a decrease in the expression of cyclin A and cyclin B) and autophagy (reduction in the expression of the protein p62 in HeLa and HCT116 cells).
Collapse
Affiliation(s)
- Marina Mitrović
- University of Kragujevac, Faculty of Medical Sciences, Department of Medical Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Maja B Djukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Milena Vukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Ivana Nikolić
- University of Kragujevac, Faculty of Medical Sciences, Department of Medical Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Marko D Radovanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jovan Luković
- University of Kragujevac, Faculty of Medical Sciences, Department of Medical Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Ignjat P Filipović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Sanja Matić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Tijana Marković
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Olivera R Klisurić
- University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Suzana Popović
- University of Kragujevac, Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Zoran D Matović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Marija S Ristić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
5
|
Margariti A, Papakonstantinou VD, Stamatakis GM, Demopoulos CA, Machalia C, Emmanouilidou E, Schnakenburg G, Nika MC, Thomaidis NS, Philippopoulos AI. First-Row Transition Metal Complexes Incorporating the 2-(2'-pyridyl)quinoxaline Ligand (pqx), as Potent Inflammatory Mediators: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin. Molecules 2023; 28:6899. [PMID: 37836742 PMCID: PMC10574351 DOI: 10.3390/molecules28196899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory mediators constitute a recently coined term in the field of metal-based complexes with antiplatelet activities. Our strategy targets Platelet-Activating Factor (PAF) and its receptor, which is the most potent lipid mediator of inflammation. Thus, the antiplatelet (anti-PAF) potency of any substance could be exerted by inhibiting the PAF-induced aggregation in washed rabbit platelets (WRPs), which internationally is a well-accepted methodology. Herein, a series of mononuclear (mer-[Cr(pqx)Cl3(H2O]) (1), [Co(pqx)Cl2(DMF)] (2) (DMF = N,N'-dimethyl formamide), [Cu(pqx)Cl2(DMSO)] (3) (DMSO = dimethyl sulfoxide), [Zn(pqx)Cl2] (4)) and dinuclear complexes ([Mn(pqx)(H2O)2Cl2]2 (5), [Fe(pqx)Cl2]2 (6) and [Ni(pqx)Cl2]2 (7)) incorporating the 2-(2'-pyridyl)quinoxaline ligand (pqx), were biologically evaluated as inhibitors of the PAF- and thrombin-induced aggregation in washed rabbit platelets (WRPs). The molecular structure of the five-co-ordinate analog (3) has been elucidated by single-crystal X-ray diffraction revealing a trigonal bipyramidal geometry. All complexes are potent inhibitors of the PAF-induced aggregation in WRPs in the micromolar range. Complex (6) displayed a remarkable in vitro dual inhibition against PAF and thrombin, with IC50 values of 1.79 μM and 0.46 μM, respectively. Within the series, complex (5) was less effective (IC50 = 39 μM) while complex (1) was almost 12-fold more potent against PAF, as opposed to thrombin-induced aggregation. The biological behavior of complexes 1, 6 and 7 on PAF's basic metabolic enzymatic pathways reveals that they affect key biosynthetic and catabolic enzymes of PAF underlying the anti-inflammatory properties of the relevant complexes. The in vitro cytotoxic activities of all complexes in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) are described via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results reveal that complex 3 is the most potent within the series.
Collapse
Affiliation(s)
- Antigoni Margariti
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Vasiliki D. Papakonstantinou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.D.P.); (G.M.S.); (C.A.D.); (C.M.); (E.E.)
| | - George M. Stamatakis
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.D.P.); (G.M.S.); (C.A.D.); (C.M.); (E.E.)
| | - Constantinos A. Demopoulos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.D.P.); (G.M.S.); (C.A.D.); (C.M.); (E.E.)
| | - Christina Machalia
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.D.P.); (G.M.S.); (C.A.D.); (C.M.); (E.E.)
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.D.P.); (G.M.S.); (C.A.D.); (C.M.); (E.E.)
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany;
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (M.-C.N.); (N.S.T.)
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (M.-C.N.); (N.S.T.)
| | - Athanassios I. Philippopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| |
Collapse
|
6
|
Cytotoxicity Evaluation of Unmodified Paddlewheel Dirhodium(II,II)-Acetate/-Formamidinate Complexes and Their Axially Modified Low-Valent Metallodendrimers. Molecules 2023; 28:molecules28062671. [PMID: 36985643 PMCID: PMC10055960 DOI: 10.3390/molecules28062671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Two diphenyl formamidine ligands, four dirhodium(II,II) complexes, and three axially modified low-valent dirhodium(II,II) metallodendrimers were synthesized and evaluated as anticancer agents against the A2780, A2780cis, and OVCAR-3 human ovarian cancer cell lines. The dirhodium(II,II) complexes show moderate cytotoxic activity in the tested tumor cell lines, with acetate and methyl-substituted formamidinate compounds displaying increased cytotoxicity that is relative to cisplatin in the A2780cis cisplatin resistant cell line. Additionally, methyl- and fluoro-substituted formamidinate complexes showed comparable and increased cytotoxic activity in the OVCAR-3 cell line when compared to cisplatin. The low-valent metallodendrimers show some activity, but a general decrease in cytotoxicity was observed when compared to the precursor complexes in all but one case, which is where the more active acetate-derived metallodendrimer showed a lower IC50 value in the OVCAR-3 cell line in comparison with the dirhodium(II,II) tetraacetate.
Collapse
|
7
|
|
8
|
One-dimensional bimetallic PdRh alloy mesoporous nanotubes constructed for ultra-sensitive detection of carbamate pesticide. Anal Biochem 2022; 652:114726. [PMID: 35588856 DOI: 10.1016/j.ab.2022.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/24/2022]
Abstract
Bimetallic nanomaterials with various dimensions have been successfully explored in electrochemical biosensor to detect the carbamate pesticide. One-dimensional bimetallic nanomaterials with mesoporous, which possess bigger electrochemical active area, more catalytic active sites and faster electron transmission efficiency, may have excellent performance in electrochemical biosensor, but have been rarely reported. In order to confirm this hypothesis, one-dimensional PdRh alloy mesoporous nanotubes were prepared and applied as a platform for carbamate pesticide electrochemical detection. Upon optimum conditions, the constructed AChE sensor showed an ultrahigh sensitivity (0.279 μA/nM), a wide linear range (9.44 × 10-8 - 0.944 mg/L) and a low detection limit (9.44 × 10-8 mg/L) for carbaryl. And the biosensor exhibited outstanding anti-interference ability, precision and stability. Moreover, the actual sample detection of the biosensor has been demonstrated with a satisfactory recovery (94.01%-102.80%). The remarkable property may attribute to the integrated advantages of one-dimensional mesoporous structure and bimetallic alloy.
Collapse
|
9
|
Ferraro MG, Piccolo M, Misso G, Santamaria R, Irace C. Bioactivity and Development of Small Non-Platinum Metal-Based Chemotherapeutics. Pharmaceutics 2022; 14:pharmaceutics14050954. [PMID: 35631543 PMCID: PMC9147010 DOI: 10.3390/pharmaceutics14050954] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Countless expectations converge in the multidisciplinary endeavour for the search and development of effective and safe drugs in fighting cancer. Although they still embody a minority of the pharmacological agents currently in clinical use, metal-based complexes have great yet unexplored potential, which probably hides forthcoming anticancer drugs. Following the historical success of cisplatin and congeners, but also taking advantage of conventional chemotherapy limitations that emerged with applications in the clinic, the design and development of non-platinum metal-based chemotherapeutics, either as drugs or prodrugs, represents a rapidly evolving field wherein candidate compounds can be fine-tuned to access interactions with druggable biological targets. Moving in this direction, over the last few decades platinum family metals, e.g., ruthenium and palladium, have been largely proposed. Indeed, transition metals and molecular platforms where they originate are endowed with unique chemical and biological features based on, but not limited to, redox activity and coordination geometries, as well as ligand selection (including their inherent reactivity and bioactivity). Herein, current applications and progress in metal-based chemoth are reviewed. Converging on the recent literature, new attractive chemotherapeutics based on transition metals other than platinum—and their bioactivity and mechanisms of action—are examined and discussed. A special focus is committed to anticancer agents based on ruthenium, palladium, rhodium, and iridium, but also to gold derivatives, for which more experimental data are nowadays available. Next to platinum-based agents, ruthenium-based candidate drugs were the first to reach the stage of clinical evaluation in humans, opening new scenarios for the development of alternative chemotherapeutic options to treat cancer.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Gabriella Misso
- Department of Precision Medicine, School of Medicine and Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (G.M.); (C.I.)
| | - Rita Santamaria
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
- Correspondence: (G.M.); (C.I.)
| |
Collapse
|
10
|
Tyagi K, Dixit T, Venkatesh V. Recent advances in catalytic anticancer drugs: Mechanistic investigations and future prospects. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
A comparative DFT study of some N-based aromatic ligand metal complexes as anticancer agents and analysis of their mode of interaction with DNA base pair. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Sharma S. A, N. V, Kar B, Das U, Paira P. Target-specific mononuclear and binuclear rhenium( i) tricarbonyl complexes as upcoming anticancer drugs. RSC Adv 2022; 12:20264-20295. [PMID: 35919594 PMCID: PMC9281374 DOI: 10.1039/d2ra03434d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Metal complexes have gradually been attracting interest from researchers worldwide as potential cancer therapeutics. Driven by the many side effects of the popular platinum-based anticancer drug cisplatin, the tireless endeavours of researchers have afforded strategies for the design of appropriate metal complexes with minimal side effects compared to cisplatin and its congeners to limit the unrestricted propagation of cancer. In this regard, transition metal complexes, especially rhenium-based complexes are being identified and highlighted as promising cancer theranostics, which are endowed with the ability to detect and annihilate cancer cells in the body. This is attributed the amazing photophysical properties of rhenium complexes together with their ability to selectively attack different organelles in cancer cells. Therefore, this review presents the properties of different rhenium-based complexes to highlight their recent advances as anticancer agents based on their cytotoxicity results. In this review, rhenium-based complexes are highlighted as promising cancer theranostics, which are endowed with the ability to detect and annihilate cancer cells in the body.![]()
Collapse
Affiliation(s)
- Ajay Sharma S.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Vaibhavi N.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
13
|
Smith CB, Days LC, Alajroush DR, Faye K, Khodour Y, Beebe SJ, Holder AA. Photodynamic Therapy of Inorganic Complexes for the Treatment of Cancer †. Photochem Photobiol 2021; 98:17-41. [PMID: 34121188 DOI: 10.1111/php.13467] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy (PDT) is a medicinal tool that uses a photosensitizer and a light source to treat several conditions, including cancer. PDT uses reactive oxygen species such as cytotoxic singlet oxygen (1 O2 ) to induce cell death in cancer cells. Chemotherapy has historically utilized the cytotoxic effects of many metals, especially transition metal complexes. However, chemotherapy is a systemic treatment so all cells in a patient's body are exposed to the same cytotoxic effects. Transition metal complexes have also shown high cytotoxicity as PDT agents. PDT is a potential localized method for treating several cancer types by using inorganic complexes as photosensitizing agents. This review covers several in vitro and in vivo studies, as well as clinical trials that reported on the anticancer properties of inorganic pharmaceuticals used in PDT against different types of cancer.
Collapse
Affiliation(s)
- Chloe B Smith
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Lindsay C Days
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Duaa R Alajroush
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Khadija Faye
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Yara Khodour
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Stephen J Beebe
- Frank Reidy Research Centre for Bioelectrics, Old Dominion University, Norfolk, VA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| |
Collapse
|
14
|
Zhu M, Ji X, Wang S, Zhou Y, Bao H, Li S, Gao E, Wu S, Wang J, Chen Q, Xu J, Zhu X. Crystal structure, DNA binding, cytotoxicity and anticancer ability of Zn(II) complex constructed by 2-(1,2,4)triazol-1-yl-isonicotinic acid. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
|
16
|
Kalampalidis A, Peppas A, Schnakenburg G, Papakyriakou A, Tsoupras A, Zabetakis I, Philippopoulos AI. Antithrombotic and antiplatelet activity of an organometallic rhodium(I) complex incorporating a substituted thieno‐[2,3‐
d
]‐pyrimidine ligand: Synthesis, structural characterization, and molecular docking calculations. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alexandros Kalampalidis
- Laboratory of Inorganic Chemistry, Department of Chemistry National and Kapodistrian University of Athens Athens Greece
| | - Anastasios Peppas
- Laboratory of Inorganic Chemistry, Department of Chemistry National and Kapodistrian University of Athens Athens Greece
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie Rheinische Friedrich‐Wilhelms‐Universität Bonn Bonn Germany
| | - Athanasios Papakyriakou
- Institute of Biosciences & Applications National Centre for Scientific Research “Demokritos” Athens Greece
| | - Alexandros Tsoupras
- Department of Biological Sciences University of Limerick Limerick Ireland
- Health Research Institute University of Limerick Limerick Ireland
- Bernal Institute University of Limerick Limerick Ireland
| | - Ioannis Zabetakis
- Department of Biological Sciences University of Limerick Limerick Ireland
- Health Research Institute University of Limerick Limerick Ireland
| | - Athanassios I. Philippopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
17
|
Zahan R, Ahmed S, Sharmin T, Halim MA, Rahi MS, Sheikh MC, Miyatake R, Zangrando E, Naz T, Islam MA, Reza MA. Synthesis of bis[benzyl‐
N′
‐hydrazinecarbodithioato‐
κ
2
N′
,
S
]nickel(II) complex as a novel lead molecule for cancer treatment. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ronok Zahan
- Department of Pharmacy University of Rajshahi Rajshahi 6205 Bangladesh
- Institute of Biological Sciences University of Rajshahi Rajshahi 6205 Bangladesh
| | - Sinthyia Ahmed
- Department of Computer‐aided Drug Design The Red‐Green Research Centre Dhaka 1215 Bangladesh
| | - Tahmida Sharmin
- Department of Pharmacy University of Rajshahi Rajshahi 6205 Bangladesh
| | - Mohammad A. Halim
- Department of Computer‐aided Drug Design The Red‐Green Research Centre Dhaka 1215 Bangladesh
- Department of Physical Sciences University of Arkansas‐Fort Smith Fort Smith AR 72913 USA
| | - Md. Sifat Rahi
- Department of Genetic Engineering and Biotechnology University of Rajshahi Rajshahi 6205 Bangladesh
- Department of Genetic Engineering and Biotechnology Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Md. Chanmiya Sheikh
- Department of Applied Science, Faculty of Science Okayama University of Science 1‐1 Riomachi, Kita‐ku Okayama City 700‐0005 Japan
| | - Ryuta Miyatake
- Department of Applied Chemistry, Faculty of Engineering University of Toyama 3190 Gofuku Toyama 930‐8555 Japan
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences Via L. Giorgieri 1 Trieste 34127 Italy
| | - Tarannum Naz
- Department of Pharmacy University of Rajshahi Rajshahi 6205 Bangladesh
| | | | - Md Abu Reza
- Department of Genetic Engineering and Biotechnology University of Rajshahi Rajshahi 6205 Bangladesh
| |
Collapse
|
18
|
Machuca A, Garcia‐Calvo E, Anunciação DS, Luque‐Garcia JL. Rhodium Nanoparticles as a Novel Photosensitizing Agent in Photodynamic Therapy against Cancer. Chemistry 2020; 26:7685-7691. [DOI: 10.1002/chem.202001112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Andres Machuca
- Department of Analytical ChemistryFaculty of Chemical SciencesComplutense University of Madrid Av. Complutense s/n 28040 Madrid Spain
| | - Estefania Garcia‐Calvo
- Department of Analytical ChemistryFaculty of Chemical SciencesComplutense University of Madrid Av. Complutense s/n 28040 Madrid Spain
| | - Daniela S. Anunciação
- Institute of Chemistry and BiotechnologyFederal University of Alagoas Campus A. C. Simões 57072-900 Maceió-AL Brazil
| | - Jose L. Luque‐Garcia
- Department of Analytical ChemistryFaculty of Chemical SciencesComplutense University of Madrid Av. Complutense s/n 28040 Madrid Spain
| |
Collapse
|
19
|
Synthesis, characterization and cytotoxic activity of binuclear copper(II)-complexes with some S-isoalkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-isopropyl derivative of thiosalicylic acid. J Inorg Biochem 2020; 208:111078. [PMID: 32442761 DOI: 10.1016/j.jinorgbio.2020.111078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 11/22/2022]
Abstract
Isoalkyl (isoalkyl = isopropyl-(L1), isobutyl-(L2) and isoamyl-(L3)) derivatives of thiosalicylic acid (TSA) were prepared by alkylation of TSA with corresponding isoalkyl-chlorides in the alkaline water-ethanol solution. The new free copper(II)-complexes with corresponding S-isoalkyl derivatives of TSA (C1-copper(II)-complex with S-isopropyl derivative of thiosalicylic acid, C2-copper(II)-complex with S-isobutyl derivative of thiosalicylic acid and C3-copper(II)-complex with S-isoamyl derivative of thiosalicylic acid) have been synthesized by direct reaction of copper(II)-nitrate with ligand precursor and then characterized by microanalysis, infrared spectra (IR) and EPR (electron paramagnetic resonance) spectra. The spectroscopically predicted structure of the obtained binuclear copper(II)-complex with S-isopropyl derivative of thiosalicylic acid was confirmed by X-ray analysis. Single crystals suitable for X-ray measurements were obtained by slow crystallization from a water solution. Newly synthesized precursors S-isoalkyl derivatives of thiosalicylic acid and corresponding copper(II)-complexes moderately reduced viability of human and murine lung cancer cells, they showed similar cytotoxic effect on human colorectal cancer cells as cisplatin and lower cytotoxic effect than cisplatin toward normal fibroblasts, evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) colorimetric technique. All new complexes exhibited apoptotic effect toward lung cancer cells, stronger than cisplatin, whereas only C3 induced significant apoptosis of colorectal cancer cells. Complex C1 showed significant antiproliferative effect against murine lung cancer cells, LLC1, while C2 reduced expression of Ki67 in human colorectal cancer cells. All tested complexes induced cell cycle arrest of HCT116 cells in G2/M phase.
Collapse
|
20
|
Precious metal N-heterocyclic carbene-carbaboranyl complexes: Cytotoxic and selective compounds for the treatment of cancer. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Wang J, Nie JJ, Guo P, Yan Z, Yu B, Bu W. Rhodium(I) Complex-Based Polymeric Nanomicelles in Water Exhibiting Coexistent Near-Infrared Phosphorescence Imaging and Anticancer Activity in Vivo. J Am Chem Soc 2020; 142:2709-2714. [DOI: 10.1021/jacs.9b11013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jing-Jun Nie
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pingxia Guo
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zihao Yan
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
22
|
Abstract
Platinum-group (PG) complexes have been used as antibacterial and anticancer agents since the discovery of cisplatin. The science world still requires improvement on these complexes because of multidrug and antineoplastic resistances. This review observes discoverers and history of these platinum-group metals (PGMs), as well as their beneficial applications. The focus of this study was biological applications of PGMs in relation to human health. Sandwich and half-sandwich PGM coordination compounds and their metal nanoparticles give improved results for biological activities by enhancing efficient delivery of both antibacterial and anticancer drugs, as well as luminescent bioimaging (biomarkers) for biological identifications.
Collapse
|
23
|
Ravi C, Vuradi RK, Avudoddi S, Ramchander M, Satyanarayana S. Induction of Apoptosis in SKOV3 and DNA Binding by Cobalt(III) Polypyridyl Complexes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019040095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Brunskill V, Enriquez Garcia A, Jalilehvand F, Gelfand BS, Wu M. Reaction of dirhodium(II) tetraacetate with S-methyl- L-cysteine. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1651845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | | | | | | | - Mengya Wu
- Department of Chemistry, University of Calgary, Calgary, Canada
| |
Collapse
|
25
|
Liang J, Levina A, Jia J, Kappen P, Glover C, Johannessen B, Lay PA. Reactivity and Transformation of Antimetastatic and Cytotoxic Rhodium(III)–Dimethyl Sulfoxide Complexes in Biological Fluids: An XAS Speciation Study. Inorg Chem 2019; 58:4880-4893. [DOI: 10.1021/acs.inorgchem.8b03477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jun Liang
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Junteng Jia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter Kappen
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Chris Glover
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Bernt Johannessen
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
26
|
Khan TM, Gul NS, Lu X, Kumar R, Choudhary MI, Liang H, Chen ZF. Rhodium(iii) complexes with isoquinoline derivatives as potential anticancer agents: in vitro and in vivo activity studies. Dalton Trans 2019; 48:11469-11479. [DOI: 10.1039/c9dt01951k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two rhodium complexes Rh1 and Rh2 with isoquinoline derivatives were synthesized and characterized.
Collapse
Affiliation(s)
- Taj-Malook Khan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Noor Shad Gul
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Xing Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Rajesh Kumar
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Muhammad Iqbal Choudhary
- International Center for Chemical and Biological Sciences
- University of Karachi
- Karachi-74270
- Pakistan
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| |
Collapse
|
27
|
Wong DL, Stillman MJ. Metallothionein: An Aggressive Scavenger-The Metabolism of Rhodium(II) Tetraacetate (Rh 2(CH 3CO 2) 4). ACS OMEGA 2018; 3:16314-16327. [PMID: 31458267 PMCID: PMC6643557 DOI: 10.1021/acsomega.8b02161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/13/2018] [Indexed: 06/10/2023]
Abstract
Anthropogenic sources of xenobiotic metals with no physiological benefit are increasingly prevalent in the environment. The platinum group metals (Pd, Pt, Rh, Ru, Os, and Ir) are found in marine and plant species near urban sources, and are known to bioaccumulate, introducing these metals into the human food chain. Many of these metals are also being used in innovative cancer therapy, which leads to a direct source of exposure for humans. This paper aims to further our understanding of nontraditional metal metabolism via metallothionein, a protein involved in physiologically important metal homeostasis. The aggressive reaction of metallothionein and dirhodium(II) tetraacetate, a common synthetic catalyst known for its cytotoxicity, was studied in detail in vitro. Optical spectroscopic and equilibrium and time-dependent mass spectral data were used to define binding constants for this robust reaction, and molecular dynamics calculations were conducted to explain the observed results.
Collapse
Affiliation(s)
- Daisy L. Wong
- Department of Chemistry, The
University of Western Ontario, 1151 Richmond Street, N6A 5B7 London, Ontario, Canada
| | - Martin J. Stillman
- Department of Chemistry, The
University of Western Ontario, 1151 Richmond Street, N6A 5B7 London, Ontario, Canada
| |
Collapse
|
28
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Masternak J, Gilewska A, Kazimierczuk K, Khavryuchenko OV, Wietrzyk J, Trynda J, Barszcz B. Synthesis, physicochemical and theoretical studies on new rhodium and ruthenium dimers. Relationship between structure and cytotoxic activity. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.07.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Wong DL, Zhang A, Faponle AS, de Visser SP, Stillman MJ. Glutathione binding to dirhodium tetraacetate: a spectroscopic, mass spectral and computational study of an anti-tumour compound. Metallomics 2018; 9:501-516. [PMID: 28474044 DOI: 10.1039/c7mt00040e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glutathione (γ-l-glutamyl-l-cysteinyl-glycine) is a ubiquitous tripeptide found in all plants and animals. Glutathione has key roles as a metallochaperone and as a cellular thiol involved in metabolism. Little is known about how glutathione interacts with organometallic compounds in vivo. Here, we report the reactions of glutathione in vitro with dirhodium(ii) tetraacetate (tetrakis(μ-acetato)dirhodium(ii), Rh2(OAc)4), a compound with anti-tumour properties. Electrospray ionization mass spectrometry, UV-Visible absorption and circular dichroism spectroscopic methods were used to determine the stoichiometries and optical properties of the final conjugate. Computational analyses were used to predict the binding modes of glutathione to the Rh2(OAc)4, and report on the orbital assignments for the resulting products. We explored the competition by GSH for methionine-bound axial sites on Rh2(OAc)4 to investigate the use of weak thioether to protect its cellular-based anti-cancer activity. Our study highlights the important role that axial ligation would play in deactivating or significantly decreasing the efficacy of this bimetallic anti-tumor drug. The computational data explain the stability of the mono-adduct and the appearance of new absorption bands in the UV region including retention of the Rh-Rh single bond. Additionally, these data show that glutathione can effectively disable the potency of these metallo-drugs through orbital overlap of the entire Rh-Rh core as a result of the strong binding. Electronic absorption spectroscopy, mass spectrometry and computational analysis are a powerful combination in understanding possible chemical reactions in vivo and this information can be used to synthetically tune dirhodium complexes for use in the fight against cancer.
Collapse
Affiliation(s)
- Daisy L Wong
- Stillman Bioinorganic Group, Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.
| | | | | | | | | |
Collapse
|
31
|
Meiklejohn V, Depan D, Boudreaux SP, Murru S, Perkins RS, Fronczek FR, Srivastava RS. Ru( iii)–TMSO complexes containing azole-based ligands: synthesis and cytotoxicity study. NEW J CHEM 2018. [DOI: 10.1039/c7nj03267f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of mer-[RuCl3(S-TMSO)2(O-TMSO)] with azoles in dichloromethane produced the complexes mer-[RuCl3(S-TMSO)(pzH)2], mer-[RuCl3(S-TMSO)(O-TMSO)(pzH)], mer-[RuCl3(S-TMSO)(dmpzH)2], and mer-[RuCl3(S-TMSO)(O-TMSO)(dmpzH)].
Collapse
Affiliation(s)
| | - Dilip Depan
- Department of Chemical Engineering, University of Louisiana at Lafayette
- Lafayette
- USA
| | - Seth P. Boudreaux
- New Iberia Research Center, University of Louisiana at Lafayette
- Lafayette
- USA
| | - Siva Murru
- Department of Chemistry, University of Louisiana at Lafayette
- Lafayette
- USA
| | - Richard S. Perkins
- Department of Chemistry, University of Louisiana at Lafayette
- Lafayette
- USA
| | | | | |
Collapse
|
32
|
Modulation of fibronectin and laminin expression by Rhodium (II) citrate-coated maghemite nanoparticles in mice bearing breast tumor. Sci Rep 2017; 7:17904. [PMID: 29263369 PMCID: PMC5738373 DOI: 10.1038/s41598-017-18204-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022] Open
Abstract
Degradation of cellular matrix is one of the important processes related to the progression of breast cancer. Tumor cells have the ability to exhibit necessary conditions for growth and survival, promoting degradation processes of extracellular matrix proteins, such as laminin (LN) and fibronectin (FN). In this study, we evaluated whether treatments, based on free rhodium (II) citrate (Rh2(H2cit)4), maghemite nanoparticles coated with citrate (Magh-cit) and maghemite nanoparticles coated with rhodium (II) citrate (Magh-Rh2(H2cit)4), in murine metastatic breast carcinoma models can modulate the expression of laminin and fibronectin proteins. Synthesized nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and dynamic light scattering. The expression of FN and LN was assessed using immunohistochemistry and western blotting. The gene expression of FN1 and LAMA1 were evaluated using real-time PCR. The FN1 and LAMA1 transcripts from the Magh-Rh2(H2cit)4 treated group were 95% and 94%, respectively, lower than the control group. Significant reduction in tumor volume for animals treated with Magh-Rh2(H2cit)4 was observed, of about 83%. We witnessed statistically significant reductions of FN and LN expression following treatment with Magh-Rh2(H2cit)4. We have demonstrated that the antitumor effects of Magh-Rh2(H2cit)4 and Rh2(H2cit)4 regulate the expression of FN and LN in metastatic breast tumors.
Collapse
|
33
|
Rhodium (II) complex with 2-benzoylpyridine, a novel potential chemotherapeutic drug, induces cell cycle arrest and apoptosis in HepG2 cells. Biometals 2017; 30:903-915. [PMID: 28993927 DOI: 10.1007/s10534-017-0056-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Rhodium (II) complex with 2-benzoylpyridine (Rh(L)2Cl2) is a new, synthetic, active metal-complex, which is produced by the reaction of 2-benzoylpyridine (L) with rhodium chloride hydrate (RhCl3·nH2O). The crystal structure was determined by X-ray diffraction which is mono-nuclear. In order to explore the biological properties of the novel complex, a series of studies were performed. The results showed that Rh(L)2Cl2 had the anti-tumor activity in HepG2 and other cell lines and has been shown to induce G1 cell cycle arrest and apoptosis in HepG2 cells. The anti-cancer effect of Rh(L)2Cl2 is regulated by increased expression of caspase-3 and PARP via the mitochondrial and the death receptor pathways. Bcl-2 family proteins might play an important role in the Rh(L)2Cl2-induced changes in these two pathways. Further studies indicated that Rh(L)2Cl2 increased the level of reactive oxygen species (ROS), but that Rh(L)2Cl2-induced apoptosis was ROS-independent. In conclusion, Rh(L)2Cl2 is a potential new anti-tumor drug, which induces HepG2 cell death via the mitochondrial and death receptor pathways and has no obvious toxicity to normal liver cell.
Collapse
|
34
|
Markham J, Liang J, Levina A, Mak R, Johannessen B, Kappen P, Glover CJ, Lai B, Vogt S, Lay PA. (Pentamethylcyclopentadienato)rhodium Complexes for Delivery of the Curcumin Anticancer Drug. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jack Markham
- School of Chemistry; The University of Sydney; 2006 NSW Australia
| | - Jun Liang
- School of Chemistry; The University of Sydney; 2006 NSW Australia
| | - Aviva Levina
- School of Chemistry; The University of Sydney; 2006 NSW Australia
| | - Rachel Mak
- School of Chemistry; The University of Sydney; 2006 NSW Australia
| | | | - Peter Kappen
- Australian Synchrotron; 800 Blackburn Rd 3168 Clayton VIC Australia
| | - Chris J. Glover
- Australian Synchrotron; 800 Blackburn Rd 3168 Clayton VIC Australia
| | - Barry Lai
- Advanced Photon Source, Building 401; Argonne National Laboratory; 9700 South Cass Ave 60439 Lemont IL USA
| | - Stefan Vogt
- Advanced Photon Source, Building 401; Argonne National Laboratory; 9700 South Cass Ave 60439 Lemont IL USA
| | - Peter A. Lay
- School of Chemistry; The University of Sydney; 2006 NSW Australia
| |
Collapse
|
35
|
Jeremić MS, Wadepohl H, Kojić VV, Jakimov DS, Jelić R, Popović S, Matović ZD, Comba P. Synthesis, structural analysis, solution equilibria and biological activity of rhodium(iii) complexes with a quinquedentate polyaminopolycarboxylate. RSC Adv 2017. [DOI: 10.1039/c6ra26199j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Two new Rh(iii)–ed3a complexes [Rh(ed3a)(OH2)]·H2O and Na[Rh(ed3a)Cl]·H2O have shown good antitumor activity, especially against HeLa cell line.
Collapse
Affiliation(s)
- Marija S. Jeremić
- University of Kragujevac
- Faculty of Science
- Department of Chemistry
- 34000 Kragujevac
- Serbia
| | - Hubert Wadepohl
- Universität Heidelberg, Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR)
- Heidelberg
- Germany
| | - Vesna V. Kojić
- Oncology Institute of Vojvodina
- Faculty of Medicine
- University of Novi Sad
- 21204 Sremska Kamenica
- Serbia
| | - Dimitar S. Jakimov
- Oncology Institute of Vojvodina
- Faculty of Medicine
- University of Novi Sad
- 21204 Sremska Kamenica
- Serbia
| | - Ratomir Jelić
- University of Kragujevac
- Faculty of Medical Sciences
- 34000 Kragujevac
- Serbia
| | - Suzana Popović
- University of Kragujevac
- Faculty of Medical Sciences
- 34000 Kragujevac
- Serbia
| | - Zoran D. Matović
- University of Kragujevac
- Faculty of Science
- Department of Chemistry
- 34000 Kragujevac
- Serbia
| | - Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR)
- Heidelberg
- Germany
| |
Collapse
|
36
|
Pruchnik H, Latocha M, Zielińska A, Pruchnik FP. Rhodium(III) and iridium(III) pentamethylcyclopentadienyl complexes with tris(2-carboxyethyl)phosphine, properties and cytostatic activity. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Thakor KP, Lunagariya MV, Patel MN. Acetyl pyridine-based palladium(II) compounds as an artificial metallonucleases. J Biomol Struct Dyn 2016; 35:2925-2937. [DOI: 10.1080/07391102.2016.1236748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Khyati P. Thakor
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388 120, India
| | - Miral V. Lunagariya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388 120, India
| | - Mohan N. Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388 120, India
| |
Collapse
|
38
|
Egorova KS, Ananikov VP. Welche Katalysatormetalle sind harmlos, welche giftig? Vergleich der Toxizitäten von Ni-, Cu-, Fe-, Pd-, Pt-, Rh- und Au-Salzen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603777] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ksenia S. Egorova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 Moscow 119991 Russland
| | - Valentine P. Ananikov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 Moscow 119991 Russland
- Department of Chemistry; Saint Petersburg State University; Stary Petergof 198504 Russland
| |
Collapse
|
39
|
Egorova KS, Ananikov VP. Which Metals are Green for Catalysis? Comparison of the Toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au Salts. Angew Chem Int Ed Engl 2016; 55:12150-62. [PMID: 27532248 DOI: 10.1002/anie.201603777] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 01/01/2023]
Abstract
Environmental profiles for the selected metals were compiled on the basis of available data on their biological activities. Analysis of the profiles suggests that the concept of toxic heavy metals and safe nontoxic alternatives based on lighter metals should be re-evaluated. Comparison of the toxicological data indicates that palladium, platinum, and gold compounds, often considered heavy and toxic, may in fact be not so dangerous, whereas complexes of nickel and copper, typically assumed to be green and sustainable alternatives, may possess significant toxicities, which is also greatly affected by the solubility in water and biological fluids. It appears that the development of new catalysts and novel applications should not rely on the existing assumptions concerning toxicity/nontoxicity. Overall, the available experimental data seem insufficient for accurate evaluation of biological activity of these metals and its modulation by the ligands. Without dedicated experimental measurements for particular metal/ligand frameworks, toxicity should not be used as a "selling point" when describing new catalysts.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia. .,Department of Chemistry, Saint Petersburg State University, Stary Petergof, 198504, Russia.
| |
Collapse
|
40
|
Zou T, Zhang JJ, Cao B, Tong KC, Lok CN, Che CM. Deubiquitinases as Anticancer Targets of Gold Complexes. Isr J Chem 2016. [DOI: 10.1002/ijch.201600044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Taotao Zou
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong S.A.R.P.R. China
- HKU Shenzhen Institute of Research and Innovation; Shenzhen 518053 P.R. China
| | - Jing-Jing Zhang
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong S.A.R.P.R. China
| | - Bei Cao
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong S.A.R.P.R. China
| | - Ka-Chung Tong
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong S.A.R.P.R. China
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong S.A.R.P.R. China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong S.A.R.P.R. China
- HKU Shenzhen Institute of Research and Innovation; Shenzhen 518053 P.R. China
| |
Collapse
|
41
|
Zábojníková T, Cajzl R, Kljun J, Chval Z, Turel I, Burda JV. Interactions of the "piano-stool" [ruthenium(II)(η(6) -arene)(quinolone)Cl](+) complexes with water; DFT computational study. J Comput Chem 2016; 37:1766-80. [PMID: 27185047 DOI: 10.1002/jcc.24373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Full optimizations of stationary points along the reaction coordinate for the hydration of several quinolone Ru(II) half-sandwich complexes were performed in water environment using the B3PW91/6-31+G(d)/PCM/UAKS method. The role of diffuse functions (especially on oxygen) was found crucial for correct geometries along the reaction coordinate. Single-point (SP) calculations were performed at the B3LYP/6-311++G(2df,2pd)/DPCM/saled-UAKS level. In the first part, two possible reaction mechanisms-associative and dissociative were compared. It was found that the dissociative mechanism of the hydration process is kinetically slightly preferred. Another important conclusion concerns the reaction channels. It was found that substitution of chloride ligand (abbreviated in the text as dechlorination reaction) represents energetically and kinetically the most feasible pathway. In the second part the same hydration reaction was explored for reactivity comparison of the Ru(II)-complexes with several derivatives of nalidixic acid: cinoxacin, ofloxacin, and (thio)nalidixic acid. The hydration process is about four orders of magnitude faster in a basic solution compared to neutral/acidic environment with cinoxacin and nalidixic acid as the most reactive complexes in the former and latter environments, respectively. The explored hydration reaction is in all cases endergonic; nevertheless the endergonicity is substantially lower (by ∼6 kcal/mol) in basic environment. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tereza Zábojníková
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2, 121 16, Czech Republic
| | - Radim Cajzl
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2, 121 16, Czech Republic
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technologyn University of Ljubljana, Večna pot 113, Ljubljana, 1000, Slovenia
| | - Zdeněk Chval
- Department of Laboratory Methods and Information Systems, Faculty of Health and Social Studies, University of South Bohemia, J. Boreckého 27, České Budějovice, 370 11, Czech Republic
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technologyn University of Ljubljana, Večna pot 113, Ljubljana, 1000, Slovenia
| | - Jaroslav V Burda
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2, 121 16, Czech Republic
| |
Collapse
|
42
|
Nanostructured materials functionalized with metal complexes: In search of alternatives for administering anticancer metallodrugs. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.01.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Schmidlehner M, Flocke LS, Roller A, Hejl M, Jakupec MA, Kandioller W, Keppler BK. Cytotoxicity and preliminary mode of action studies of novel 2-aryl-4-thiopyrone-based organometallics. Dalton Trans 2016; 45:724-33. [DOI: 10.1039/c5dt02722e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organometallic 2-aryl-4-thiopyrone-based Ru(ii) and Rh(iii) complexes have been established and their potential as anticancer metallodrugs was investigated.
Collapse
Affiliation(s)
- Melanie Schmidlehner
- Institute of Inorganic Chemistry
- Faculty of Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| | - Lea S. Flocke
- Institute of Inorganic Chemistry
- Faculty of Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| | - Alexander Roller
- Institute of Inorganic Chemistry
- Faculty of Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| | - Michaela Hejl
- Institute of Inorganic Chemistry
- Faculty of Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| | - Michael A. Jakupec
- Institute of Inorganic Chemistry
- Faculty of Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry
- Faculty of Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry
- Faculty of Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| |
Collapse
|
44
|
Carneiro ML, Lopes CA, Miranda-Vilela AL, Joanitti GA, da Silva IC, Mortari MR, de Souza AR, Báo SN. Acute and subchronic toxicity of the antitumor agent rhodium (II) citrate in Balb/c mice after intraperitoneal administration. Toxicol Rep 2015; 2:1086-1100. [PMID: 28962450 PMCID: PMC5598461 DOI: 10.1016/j.toxrep.2015.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 12/26/2022] Open
Abstract
This study aimed to investigate potential acute and subchronic toxicity of rhodium (II) citrate in female Balb/c mice after intraperitoneal injections. In the acute test, independent groups received five doses; the highest dose (107.5 mg/kg) was equivalent to 33 times that used in our previous reports. The other doses were chosen as proportions of the highest, being 80.7 (75%), 53.8 (50%), 26.9 (25%) or 13.8 mg/kg (12.5%). Animals were monitored over 38 days and no severe signs of toxicity were observed, according to mortality, monitoring of adverse symptoms, hematological, biochemical and genotoxic parameters. We conclude that the median lethal dose (LD50) could be greater than 107.5 mg/kg. In the subchronic test, five doses of Rh2Cit (80, 60, 40, 20 or 10 mg/kg) were evaluated and injections were conducted on alternate days, totaling five applications per animal. Paclitaxel (57.5 mg/kg) and saline solution were controls. Clinical observations, histopathology of liver, lung and kidneys and effects on hematological, biochemistry and genotoxic records indicated that Rh2Cit induced no severe toxic effects, even at an accumulated dose up to 400 mg/kg.We suggest Rh2Cit has great potential as an antitumor drug without presenting acute and subchronic toxicity.
Collapse
Affiliation(s)
- Marcella L.B. Carneiro
- Faculty of Planaltina, University of Brasília (UnB), 73.345-010, Brazil
- Institute of Biological Sciences, Department of Cell Biology, University of Brasília (UnB), 70.910-900, Brazil
| | - Cláudio A.P. Lopes
- Institute of Biological Sciences, Department of Cell Biology, University of Brasília (UnB), 70.910-900, Brazil
| | - Ana L. Miranda-Vilela
- Institute of Biological Sciences, Department of Genetics and Morphology, University of Brasília (UnB), 70.910-900, Brazil
- Faculty of Medicine, Faciplac, Campus Gama/DF, 72460-000, Brazil
| | | | | | - Márcia R. Mortari
- Institute of Biological Sciences, Department of Physiological Sciences, University of Brasília (UnB), 70.910-900, Brazil
| | - Aparecido R. de Souza
- Institute of Chemistry, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74.001-970, Brazil
| | - Sônia N. Báo
- Institute of Biological Sciences, Department of Cell Biology, University of Brasília (UnB), 70.910-900, Brazil
- Corresponding author at: University of Brasilia, Institute of Biological Sciences, Brasília, Brazil.
| |
Collapse
|
45
|
Trudu F, Amato F, Vaňhara P, Pivetta T, Peña-Méndez E, Havel J. Coordination compounds in cancer: Past, present and perspectives. J Appl Biomed 2015. [DOI: 10.1016/j.jab.2015.03.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
46
|
Aderibigbe BA. Polymeric Prodrugs Containing Metal-Based Anticancer Drugs. J Inorg Organomet Polym Mater 2015. [DOI: 10.1007/s10904-015-0220-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
47
|
Ma DL, Chan DSH, Leung CH. Group 9 organometallic compounds for therapeutic and bioanalytical applications. Acc Chem Res 2014; 47:3614-31. [PMID: 25369127 DOI: 10.1021/ar500310z] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONSPECTUS: Compared with organic small molecules, metal complexes offer several distinct advantages as therapeutic agents or biomolecular probes. Carbon atoms are typically limited to linear, trigonal planar, or tetrahedral geometries, with a maximum of two enantiomers being formed if four different substituents are attached to a single carbon. In contrast, an octahedral metal center with six different substituents can display up to 30 different stereoisomers. While platinum- and ruthenium-based anticancer agents have attracted significant attention in the realm of inorganic medicinal chemistry over the past few decades, group 9 complexes (i.e., iridium and rhodium) have garnered increased attention in therapeutic and bioanalytical applications due to their adjustable reactivity (from kinetically liable to substitutionally inert), high water solubility, stability to air and moisture, and relative ease of synthesis. In this Account, we describe our efforts in the development of group 9 organometallic compounds of general form [M(C(∧)N)2(N(∧)N)] (where M = Ir, Rh) as therapeutic agents against distinct biomolecular targets and as luminescent probes for the construction of oligonucleotide-based assays for a diverse range of analytes. Earlier studies by researchers had focused on organometallic iridium(III) and rhodium(III) half-sandwich complexes that show promising anticancer activity, although their precise mechanisms of action still remain unknown. More recently, kinetically-inert group 9 complexes have arisen as fascinating alternatives to organic small molecules for the specific targeting of enzyme activity. Research in our laboratory has shown that cyclometalated octahedral rhodium(III) complexes were active against Janus kinase 2 (JAK2) or NEDD8-activating enzyme (NAE) activity, or against NO production leading to antivasculogenic activity in cellulo. At the same time, recent interest in the development of small molecules as modulators of protein-protein interactions has stimulated our research group to investigate whether kinetically-inert metal complexes could also be used to target protein-protein interfaces relevant to the pathogenesis of certain diseases. We have recently discovered that cyclometalated octahedral iridium(III) and rhodium(III) complexes bearing C(∧)N ligands based on 2-phenylpyridine could function as modulators of protein-protein interactions, such as TNF-α, STAT3, and mTOR. One rhodium(III) complex antagonized STAT3 activity in vitro and in vivo and displayed potent antitumor activity in a mouse xenograft model of melanoma. Notably, these studies were among the first to demonstrate the direct inhibition of protein-protein interfaces by kinetically-inert group 9 metal complexes. Additionally, we have discovered that group 9 solvato complexes carrying 2-phenylpyridine coligands could function as inhibitors and probes of β-amyloid fibrillogenesis. Meanwhile, the rich photophysical properties of iridium complexes have made them popular tools for the design of luminescent labels and probes. Luminescent iridium(III) complexes benefit from a high quantum yield, responsive emissive properties, long-lived phosphorescence lifetimes, and large Stokes shift values. Over the past few years, our group has developed a number of kinetically-inert, organometallic iridium(III) complexes bearing various C(∧)N and N(∧)N ligands that are selective for G-quadruplex DNA, which is a DNA secondary structure formed from planar stacks of guanine tetrads stabilized by Hoogsteen hydrogen bonding. These complexes were then employed to develop G-quadruplex-based, label-free luminescence switch-on assays for nucleic acids, enzyme activity, small molecules, and metal ions.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Daniel Shiu-Hin Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine Institute
of Chinese Medical Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
48
|
Structural and theoretical studies on rhodium and iridium complexes with 5-nitrosopyrimidines. Effects on the proteolytic regulatory enzymes of the renin-angiotensin system in human tumoral brain cells. J Inorg Biochem 2014; 143:20-33. [PMID: 25474363 DOI: 10.1016/j.jinorgbio.2014.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 02/02/2023]
Abstract
The reactions of [RhCl(CO)(PPh3)2], [RhCl(CO)2]2 and [IrCl(CO)(PPh3)2] with different 5-nitrosopyrimidines afforded sixteen complexes which have been structurally characterized by elemental analysis, IR and NMR ((1)H and (13)C) spectral methods and luminescence spectroscopy. The crystal and molecular structures of [Rh(III)Cl(VIOH-1)2(PPh3)], [Rh(III)Cl(DVIOH-1)2(PPh3)] and [Rh(II)(DVIOH-1)2(PPh3)2] have been established from single crystal x-ray structure analyses. The three complexes are six-coordinated with both violurato ligands into an equatorial N5,O4-bidentate fashion, but with different mutually arrangements. Theoretical studies were driven on the molecular structure of [Rh(III)Cl(VIOH-1)2(PPh3)] to assess the nature of the metal-ligand interaction as well as the foundations of the cis-trans (3L-2L) isomerism. An assortment of density functional (SOGGA11-X, B1LYP, B3LYP, B3LYP-D3 and wB97XD) has been used, all of them leading to a similar description of the target system. Thus, a topological analysis of the electronic density within AIM scheme and the study of the Mulliken charges yield a metal-ligand link of ionic character. Likewise, it has been proved that the cis-trans isomerism is mainly founded on that metal-ligand interaction with the relativistic effects playing a significant role. Although most of the compounds showed low direct toxicity against the human cell lines NB69 (neuroblastoma) and U373-MG (astroglioma), they differently modify in several ways the renin-angiotensin system (RAS)-regulating proteolytic regulatory enzymes aminopeptidase A (APA), aminopeptidase N (APN) and insulin-regulated aminopeptidase (IRAP). Therefore, these complexes could exert antitumor activity against both brain tumor types, acting through the paracrine regulating system mediated by tissue RAS rather than exerting a direct cytotoxic effect on tumor cells.
Collapse
|
49
|
Gupta G, Murray BS, Dyson PJ, Therrien B. Highly cytotoxic trithiolato-bridged dinuclear Rh(III) and Ir(III) complexes. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2014.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
MONDAL SUBALA, RAY SUMON, CHATTOPADHYAY ANIMESH, NANDI DEBABRATA, SARKAR SAIN ROSHNI, GHOSH ALAKKUMAR. Mechanistic Aspects of Ligand Substitution on the Hydroxopentaaquarhodium(III) Ion in Aqueous Solution by Sulfur-Containing Bioactive Ligands. INT J CHEM KINET 2014. [DOI: 10.1002/kin.20873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- SUBALA MONDAL
- Department of Chemistry; The University of Burdwan; Golapbag Burdwan 713 104 India
| | - SUMON RAY
- Department of Chemistry; The University of Burdwan; Golapbag Burdwan 713 104 India
| | | | - DEBABRATA NANDI
- Department of Chemistry; The University of Burdwan; Golapbag Burdwan 713 104 India
| | - ROSHNI SARKAR SAIN
- Department of Chemistry; The University of Burdwan; Golapbag Burdwan 713 104 India
| | - ALAK KUMAR GHOSH
- Department of Chemistry; The University of Burdwan; Golapbag Burdwan 713 104 India
| |
Collapse
|