1
|
Tong X, Gao Y, Su Z. Interaction of CTCF and CTCFL in genome regulation through chromatin architecture during the spermatogenesis and carcinogenesis. PeerJ 2024; 12:e18240. [PMID: 39430552 PMCID: PMC11488495 DOI: 10.7717/peerj.18240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
The zinc finger protein CTCF is ubiquitously expressed and is integral to the regulation of chromatin architecture through its interaction with cohesin. Conversely, CTCFL expression is predominantly restricted to the adult male testis but is aberrantly expressed in certain cancers. Despite their distinct expression patterns, the cooperative and competitive mechanisms by which CTCF and CTCFL regulate target gene expression in spermatocytes and cancer cells remain inadequately understood. In this review, we comprehensively examine the literature on the divergent amino acid sequences, target sites, expression profiles and functions of CTCF and CTCFL in normal tissues and cancers. We further elucidate the mechanisms by which CTCFL competitively or cooperatively binds to CTCF target sites during spermatogenesis and carcinogenesis to modulate chromatin architecture. We mainly focus on the role of CTCFL in testicular and cancer development, highlighting its interaction with CTCF at CTCF binding sites to regulate target genes. In the testis, CTCF and CTCFL cooperate to regulate the expression of testis-specific genes, essential for proper germ cell progression. In cancers, CTCFL overexpression competes with CTCF for DNA binding, leading to aberrant gene expression, a more relaxed chromatin state, and altered chromatin loops. By uncovering the roles of CTCF and CTCFL in spermatogenesis and carcinogenesis, we can better understand the implications of aberrant CTCFL expression in altering chromatin loops and its contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Xin Tong
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yang Gao
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
2
|
Pugacheva EM, Bhatt DN, Rivero-Hinojosa S, Tajmul M, Fedida L, Price E, Ji Y, Loukinov D, Strunnikov AV, Ren B, Lobanenkov VV. BORIS/CTCFL epigenetically reprograms clustered CTCF binding sites into alternative transcriptional start sites. Genome Biol 2024; 25:40. [PMID: 38297316 PMCID: PMC10832218 DOI: 10.1186/s13059-024-03175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Pervasive usage of alternative promoters leads to the deregulation of gene expression in carcinogenesis and may drive the emergence of new genes in spermatogenesis. However, little is known regarding the mechanisms underpinning the activation of alternative promoters. RESULTS Here we describe how alternative cancer-testis-specific transcription is activated. We show that intergenic and intronic CTCF binding sites, which are transcriptionally inert in normal somatic cells, could be epigenetically reprogrammed into active de novo promoters in germ and cancer cells. BORIS/CTCFL, the testis-specific paralog of the ubiquitously expressed CTCF, triggers the epigenetic reprogramming of CTCF sites into units of active transcription. BORIS binding initiates the recruitment of the chromatin remodeling factor, SRCAP, followed by the replacement of H2A histone with H2A.Z, resulting in a more relaxed chromatin state in the nucleosomes flanking the CTCF binding sites. The relaxation of chromatin around CTCF binding sites facilitates the recruitment of multiple additional transcription factors, thereby activating transcription from a given binding site. We demonstrate that the epigenetically reprogrammed CTCF binding sites can drive the expression of cancer-testis genes, long noncoding RNAs, retro-pseudogenes, and dormant transposable elements. CONCLUSIONS Thus, BORIS functions as a transcription factor that epigenetically reprograms clustered CTCF binding sites into transcriptional start sites, promoting transcription from alternative promoters in both germ cells and cancer cells.
Collapse
Affiliation(s)
- Elena M Pugacheva
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Dharmendra Nath Bhatt
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel Rivero-Hinojosa
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Md Tajmul
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liron Fedida
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emma Price
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yon Ji
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dmitri Loukinov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexander V Strunnikov
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530, China
| | - Bing Ren
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, Center for Epigenomics, Moores Cancer Center and Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, CA, 92093-0653, USA
| | - Victor V Lobanenkov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Bose S, Saha S, Goswami H, Shanmugam G, Sarkar K. Involvement of CCCTC-binding factor in epigenetic regulation of cancer. Mol Biol Rep 2023; 50:10383-10398. [PMID: 37840067 DOI: 10.1007/s11033-023-08879-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
A major global health burden continues to be borne by the complex and multifaceted disease of cancer. Epigenetic changes, which are essential for the emergence and spread of cancer, have drawn a huge amount of attention recently. The CCCTC-binding factor (CTCF), which takes part in a wide range of cellular processes including genomic imprinting, X chromosome inactivation, 3D chromatin architecture, local modifications of histone, and RNA polymerase II-mediated gene transcription, stands out among the diverse array of epigenetic regulators. CTCF not only functions as an architectural protein but also modulates DNA methylation and histone modifications. Epigenetic regulation of cancer has already been the focus of plenty of studies. Understanding the role of CTCF in the cancer epigenetic landscape may lead to the development of novel targeted therapeutic strategies for cancer. CTCF has already earned its status as a tumor suppressor gene by acting like a homeostatic regulator of genome integrity and function. Moreover, CTCF has a direct effect on many important transcriptional regulators that control the cell cycle, apoptosis, senescence, and differentiation. As we learn more about CTCF-mediated epigenetic modifications and transcriptional regulations, the possibility of utilizing CTCF as a diagnostic marker and therapeutic target for cancer will also increase. Thus, the current review intends to promote personalized and precision-based therapeutics for cancer patients by shedding light on the complex interplay between CTCF and epigenetic processes.
Collapse
Affiliation(s)
- Sayani Bose
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Srawsta Saha
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Harsita Goswami
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Price E, Fedida LM, Pugacheva EM, Ji YJ, Loukinov D, Lobanenkov VV. An updated catalog of CTCF variants associated with neurodevelopmental disorder phenotypes. Front Mol Neurosci 2023; 16:1185796. [PMID: 37324587 PMCID: PMC10264798 DOI: 10.3389/fnmol.2023.1185796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction CTCF-related disorder (CRD) is a neurodevelopmental disorder (NDD) caused by monoallelic pathogenic variants in CTCF. The first CTCF variants in CRD cases were documented in 2013. To date, 76 CTCF variants have been further described in the literature. In recent years, due to the increased application of next-generation sequencing (NGS), growing numbers of CTCF variants are being identified, and multiple genotype-phenotype databases cataloging such variants are emerging. Methods In this study, we aimed to expand the genotypic spectrum of CRD, by cataloging NDD phenotypes associated with reported CTCF variants. Here, we systematically reviewed all known CTCF variants reported in case studies and large-scale exome sequencing cohorts. We also conducted a meta-analysis using public variant data from genotype-phenotype databases to identify additional CTCF variants, which we then curated and annotated. Results From this combined approach, we report an additional 86 CTCF variants associated with NDD phenotypes that have not yet been described in the literature. Furthermore, we describe and explain inconsistencies in the quality of reported variants, which impairs the reuse of data for research of NDDs and other pathologies. Discussion From this integrated analysis, we provide a comprehensive and annotated catalog of all currently known CTCF mutations associated with NDD phenotypes, to aid diagnostic applications, as well as translational and basic research.
Collapse
|
5
|
Akhtar MS, Akhter N, Talat A, Alharbi RA, Sindi AA, Klufah F, Alyahyawi HE, Alruwetei A, Ahmad A, Zamzami MA, Deo SVS, Husain SA, Badi OA, Khan MJ. Association of mutation and expression of the brother of the regulator of imprinted sites (BORIS) gene with breast cancer progression. Oncotarget 2023; 14:528-541. [PMID: 37235839 PMCID: PMC10219660 DOI: 10.18632/oncotarget.28442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION The BORIS, 11 zinc-finger transcription factors, is a member of the cancer-testis antigen (CTA) family. It is mapped to chromosome number 20q13.2 and this region is genetically linked to the early onset of breast cancer. The current study analyzed the correlation between BORIS mutations and the expression of the protein in breast cancer cases. MATERIALS AND METHODS A population-based study including a total of 155 breast cancer tissue samples and an equal number of normal adjacent tissues from Indian female breast cancer patients was carried out. Mutations of the BORIS gene were detected by polymerase chain reaction-single standard confirmation polymorphisms (PCR-SSCP) and automated DNA sequencing and by immunohistochemistry for BORIS protein expression were performed. The observed findings were correlated with several clinicopathological parameters to find out the clinical relevance of associations. RESULTS Of all the cases 16.12% (25/155) showed mutations in the BORIS gene. The observed mutations present on codon 329 are missense, leading to Val> Ile (G>A) change on exon 5 of the BORIS gene. A significant association was observed between mutations of the BORIS gene and some clinicopathological features like nodal status (p = 0.013), estrogen receptor (ER) expression (p = 0.008), progesterone receptor (PR) expression (p = 0.039), clinical stage (p = 0.010) and menopausal status (p = 0.023). The protein expression analysis showed 20.64% (32/155) samples showing low or no expression (+), 34.19% (53/155) with moderate expression (++), and 45.17% (70/155) showing high expression (+++) of BORIS protein. A significant association was observed between the expression of BORIS protein and clinicopathological features like clinical stage (p = 0.013), nodal status (p = 0.049), ER expression (p = 0.039), and PR expression (p = 0.027). When mutation and protein expression were correlated in combination with clinicopathological parameters a significant association was observed in the category of high (+++) level of BORIS protein expression (p = 0.017). CONCLUSION The BORIS mutations and high protein expression occur frequently in carcinoma of the breast suggesting their association with the onset and progression of breast carcinoma. Further, the BORIS has the potential to be used as a biomarker.
Collapse
Affiliation(s)
- Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Naseem Akhter
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Arshi Talat
- Department of Orthodontics and Dentofacial Orthopedics, ITS Dental College, Hospital and Research Centre, Greater Noida, Delhi-NCR, India
| | - Raed A. Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Abdulmajeed A.A. Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Faisal Klufah
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Hanan E. Alyahyawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Abdulmohsen Alruwetei
- Department of Medical Laboratory, College of Applied Medical Sciences, Qassim University, Qassim, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A. Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - SVS Deo
- Department of Surgical Oncology, BRA- IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Syed Akhtar Husain
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Osama A. Badi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
6
|
Moscona R, Janssen SM, Elchebly M, Papadakis AI, Rubin E, Spatz A. BORIS/CTCFL-mediated chromatin accessibility alterations promote a pro-invasive transcriptional signature in melanoma cells. Pigment Cell Melanoma Res 2023; 36:299-313. [PMID: 37082838 DOI: 10.1111/pcmr.13089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
Melanoma is the deadliest form of skin cancer, due to its tendency to metastasize early. Brother of regulator of imprinted sites (BORIS), also known as CCCTC binding factor-like (CTCFL), is a transcription regulator that becomes ectopically expressed in melanoma. We recently showed that BORIS contributes to melanoma phenotype switching by altering the gene expression program of melanoma cells from an intermediate melanocytic state toward a more mesenchymal-like state. However, the mechanism underlying this transcriptional switch remains unclear. Here, ATAC-seq was used to study BORIS-mediated chromatin accessibility alterations in melanoma cells harboring an intermediate melanocytic state. The gene set that gained promoter accessibility, following ectopic BORIS expression, showed enrichment for biological processes associated with melanoma invasion, while promoters of genes associated with proliferation showed reduced accessibility. Integration of ATAC-seq and RNA-seq data demonstrated that increased chromatin accessibility was associated with transcriptional upregulation of genes involved in tumor progression processes, and the aberrant activation of oncogenic transcription factors, while reduced chromatin accessibility and downregulated genes were associated with repressed activity of tumor suppressors and proliferation factors. Together, these findings indicate that BORIS mediates transcriptional reprogramming in melanoma cells by altering chromatin accessibility and gene expression, shifting the cellular transcription landscape of melanoma cells toward a mesenchymal-like genetic signature.
Collapse
Affiliation(s)
- Roy Moscona
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Sanne Marlijn Janssen
- Lady Davis Institute, Montréal, Quebec, Canada
- Department of Pathology, McGill University, Montréal, Quebec, Canada
| | | | | | - Eitan Rubin
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alan Spatz
- Lady Davis Institute, Montréal, Quebec, Canada
- Department of Pathology, McGill University, Montréal, Quebec, Canada
- Division of Pathology, Department of Laboratory Medicine, McGill University Health Center, Montréal, Quebec, Canada
- Department of Oncology, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
7
|
Zhou S, Li L, Zhang M, Qin Y, Li B. The function of brother of the regulator of imprinted sites in cancer development. Cancer Gene Ther 2023; 30:236-244. [PMID: 36376421 DOI: 10.1038/s41417-022-00556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022]
Abstract
As Douglas Hanahan and Robert Weinberg compiled, there are nine hallmarks of cancer that are conducive to cancer cell development and survival. Previous studies showed that brother of the regulator of imprinted sites (BORIS) might promote cancer progression through these aspects. The competition between BORIS and CCCTC-binding factor (CTCF), which is crucial in the formation of chromatin loops, affects the normal function of CTCF and leads to neoplasia and deformity. In addition, BORIS belongs to the cancer-testis antigen families, which are potential targets in cancer diagnosis and treatment. Herein, we discuss the function and mechanisms of BORIS, especially in cancer development.
Collapse
Affiliation(s)
- Siqi Zhou
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Bo Li
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
8
|
Dotts AJ, Reiman D, Yin P, Kujawa S, Grobman WA, Dai Y, Bulun SE. In Vivo Genome-Wide PGR Binding in Pregnant Human Myometrium Identifies Potential Regulators of Labor. Reprod Sci 2023; 30:544-559. [PMID: 35732928 PMCID: PMC9988762 DOI: 10.1007/s43032-022-01002-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/03/2022] [Indexed: 12/22/2022]
Abstract
The alterations in myometrial biology during labor are not well understood. The myometrium is the contractile portion of the uterus and contributes to labor, a process that may be regulated by the steroid hormone progesterone. Thus, human myometrial tissues from term pregnant in-active-labor (TIL) and term pregnant not-in-labor (TNIL) subjects were used for genome-wide analyses to elucidate potential future preventive or therapeutic targets involved in the regulation of labor. Using myometrial tissues directly subjected to RNA sequencing (RNA-seq), progesterone receptor (PGR) chromatin immunoprecipitation sequencing (ChIP-seq), and histone modification ChIP-seq, we profiled genome-wide changes associated with gene expression in myometrial smooth muscle tissue in vivo. In TIL myometrium, PGR predominantly occupied promoter regions, including the classical progesterone response element, whereas it bound mainly to intergenic regions in TNIL myometrial tissue. Differential binding analysis uncovered over 1700 differential PGR-bound sites between TIL and TNIL, with 1361 sites gained and 428 lost in labor. Functional analysis identified multiple pathways involved in cAMP-mediated signaling enriched in labor. A three-way integration of the data for ChIP-seq, RNA-seq, and active histone marks uncovered the following genes associated with PGR binding, transcriptional activation, and altered mRNA levels: ATP11A, CBX7, and TNS1. In vitro studies showed that ATP11A, CBX7, and TNS1 are progesterone responsive. We speculate that these genes may contribute to the contractile phenotype of the myometrium during various stages of labor. In conclusion, we provide novel labor-associated genome-wide events and PGR-target genes that can serve as targets for future mechanistic studies.
Collapse
Affiliation(s)
- Ariel J Dotts
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Derek Reiman
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ping Yin
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Stacy Kujawa
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - William A Grobman
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Yang Dai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Serdar E Bulun
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
9
|
Zuo BW, Yao WX, Fang MD, Ren J, Tu LL, Fan RJ, Zhang YM. Boris knockout eliminates AOM/DSS-induced in situ colorectal cancer by suppressing DNA damage repair and inflammation. Cancer Sci 2023; 114:1972-1985. [PMID: 36692143 PMCID: PMC10154901 DOI: 10.1111/cas.15732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The Brother of Regulator of Imprinted Sites (BORIS, gene symbol CTCFL) has previously been shown to promote colorectal cancer cell proliferation, inhibit cancer cell apoptosis, and resist chemotherapy. However, it is unknown whether Boris plays a role in the progression of in situ colorectal cancer. Here Boris knockout (KO) mice were constructed. The function loss of the cloned Boris mutation that was retained in KO mice was verified by testing its activities in colorectal cell lines compared with the Boris wild-type gene. Boris knockout reduced the incidence and severity of azoxymethane/dextran sulfate-sodium (AOM/DSS)-induced colon cancer. The importance of Boris is emphasized in the progression of in situ colorectal cancer. Boris knockout significantly promoted the phosphorylation of γH2AX and the DNA damage in colorectal cancer tissues and suppressed Wnt and MAPK pathways that are responsible for the callback of DNA damage repair. This indicates the strong inhibition of colorectal cancer in Boris KO mice. By considering that the DSS-promoted inflammation contributes to tumorigenesis, Boris KO mice were also studied in DSS-induced colitis. Our data showed that Boris knockout alleviated DSS-induced colitis and that Boris knockdown inhibited the NF-κB signaling pathway in RAW264.7 cells. Therefore Boris knockout eliminates colorectal cancer generation by inhibiting DNA damage repair in cancer cells and relieving inflammation in macrophages. Our findings demonstrate the importance of Boris in the development of in situ colorectal cancer and provide evidence for the feasibility of colorectal cancer therapy on Boris.
Collapse
Affiliation(s)
- Bo-Wen Zuo
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Wan-Xin Yao
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Meng-Die Fang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Juan Ren
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Ling-Lan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Run-Jie Fan
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yan-Mei Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
10
|
Boschiero C, Gao Y, Baldwin RL, Ma L, Li CJ, Liu GE. Butyrate Induces Modifications of the CTCF-Binding Landscape in Cattle Cells. Biomolecules 2022; 12:biom12091177. [PMID: 36139015 PMCID: PMC9496099 DOI: 10.3390/biom12091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Butyrate is produced in the rumen from microbial fermentation and is related to several functions, including cell differentiation and proliferation. Butyrate supplementation in calves can accelerate rumen development. DNA-protein interactions, such as the CCCTC-binding factor (CTCF), play essential roles in chromatin organization and gene expression regulation. Although CTCF-binding sites have been identified recently in cattle, a deeper characterization, including differentially CTCF-binding sites (DCBS), is vital for a better understanding of butyrate’s role in the chromatin landscape. This study aimed to identify CTCF-binding regions and DCBS under a butyrate-induced condition using ChIP-seq in bovine cells; 61,915 CTCF peaks were identified in the butyrate and 51,347 in the control. From these regions, 2265 DCBS were obtained for the butyrate vs. control comparison, comprising ~90% of induced sites. Most of the butyrate DCBS were in distal intergenic regions, showing a potential role as insulators. Gene ontology enrichment showed crucial terms for the induced DCBS, mainly related to cellular proliferation, cell adhesion, and growth regulation. Interestingly, the ECM-receptor interaction pathway was observed for the induced DCBS. Motif enrichment analysis further identified transcription factors, including CTCF, BORIS, TGIF2, and ZIC3. When DCBS was integrated with RNA-seq data, putative genes were identified for the repressed DCBS, including GATA4. Our study revealed promising candidate genes in bovine cells by a butyrate-induced condition that might be related to the regulation of rumen development, such as integrins, keratins, and collagens. These results provide a better understanding of the function of butyrate in cattle rumen development and chromatin landscape regulation.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| |
Collapse
|
11
|
Bai R, Yuan C. Kita-Kyushu Lung Cancer Antigen-1 (KK-LC-1): A Promising Cancer Testis Antigen. Aging Dis 2022; 13:1267-1277. [PMID: 35855340 PMCID: PMC9286905 DOI: 10.14336/ad.2021.1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer has always been a huge problem in the field of human health, and its early diagnosis and treatment are the key to solving this problem. Cancer testis antigens (CTAs) are a family of multifunctional proteins that are specifically expressed in male spermatozoa and tumor cells but not in healthy somatic cells. Studies have found that CTAs are involved in the occurrence and development of tumors, and some CTAs trigger immunogenicity, which suggests a possibility of tumor immunotherapy. The differential expression and function of CTAs in normal tissues and tumor cells can promote the screening of tumor markers and the development of new immunotherapies. This article introduces the expression of Kita-Kyushu lung cancer antigen-1 (KK-LC-1), a new member of the CTA family, in different types of tumors and its role in immunotherapy.
Collapse
Affiliation(s)
- Rui Bai
- 1Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng Yuan
- 2Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Deng S, Feng Y, Pauklin S. 3D chromatin architecture and transcription regulation in cancer. J Hematol Oncol 2022; 15:49. [PMID: 35509102 PMCID: PMC9069733 DOI: 10.1186/s13045-022-01271-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 12/18/2022] Open
Abstract
Chromatin has distinct three-dimensional (3D) architectures important in key biological processes, such as cell cycle, replication, differentiation, and transcription regulation. In turn, aberrant 3D structures play a vital role in developing abnormalities and diseases such as cancer. This review discusses key 3D chromatin structures (topologically associating domain, lamina-associated domain, and enhancer-promoter interactions) and corresponding structural protein elements mediating 3D chromatin interactions [CCCTC-binding factor, polycomb group protein, cohesin, and Brother of the Regulator of Imprinted Sites (BORIS) protein] with a highlight of their associations with cancer. We also summarise the recent development of technologies and bioinformatics approaches to study the 3D chromatin interactions in gene expression regulation, including crosslinking and proximity ligation methods in the bulk cell population (ChIA-PET and HiChIP) or single-molecule resolution (ChIA-drop), and methods other than proximity ligation, such as GAM, SPRITE, and super-resolution microscopy techniques.
Collapse
Affiliation(s)
- Siwei Deng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Siim Pauklin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
13
|
CTCFL regulates the PI3K-Akt pathway and it is a target for personalized ovarian cancer therapy. NPJ Syst Biol Appl 2022; 8:5. [PMID: 35132075 PMCID: PMC8821627 DOI: 10.1038/s41540-022-00214-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSC) is the most lethal gynecologic malignancy due to the lack of reliable biomarkers, effective treatment, and chemoresistance. Improving the diagnosis and the development of targeted therapies is still needed. The molecular pathomechanisms driving HGSC progression are not fully understood though crucial for effective diagnosis and identification of novel targeted therapy options. The oncogene CTCFL (BORIS), the paralog of CTCF, is a transcriptional factor highly expressed in ovarian cancer (but in rarely any other tissue in females) with cancer-specific characteristics and therapeutic potential. In this work, we seek to understand the regulatory functions of CTCFL to unravel new target genes with clinical relevance. We used in vitro models to evaluate the transcriptional changes due to the presence of CTCFL, followed by a selection of gene candidates using de novo network enrichment analysis. The resulting mechanistic candidates were further assessed regarding their prognostic potential and druggability. We show that CTCFL-driven genes are involved in cytoplasmic membrane functions; in particular, the PI3K-Akt initiators EGFR1 and VEGFA, as well as ITGB3 and ITGB6 are potential drug targets. Finally, we identified the CTCFL targets ACTBL2, MALT1 and PCDH7 as mechanistic biomarkers to predict survival in HGSC. Finally, we elucidated the value of CTCFL in combination with its targets as a prognostic marker profile for HGSC progression and as putative drug targets.
Collapse
|
14
|
Cao M, Wang L, Xu D, Bi X, Guo S, Xu Z, Chen L, Zheng D, Li P, Xu J, Zheng S, Wang H, Wang B, Lu J, Li K. The synergistic interaction landscape of chromatin regulators reveals their epigenetic regulation mechanisms across five cancer cell lines. Comput Struct Biotechnol J 2022; 20:5028-5039. [PMID: 36187922 PMCID: PMC9483781 DOI: 10.1016/j.csbj.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022] Open
|
15
|
Suprabasin: Role in human cancers and other diseases. Mol Biol Rep 2021; 49:1453-1461. [PMID: 34775572 DOI: 10.1007/s11033-021-06897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
Suprabasin (SBSN), a gene with unknown function located in q13 region of chromosome 19, was first found to be expressed in the basal layer of the stratified epithelium in mouse and human tissues and was thought to be a potential precursor of keratinized capsules. However, in recent years, significant progress has been made in the study of SBSN in a variety of human diseases. One common theme appears to be the effect of SBSN on tumor progression, such as invasion, metastasis and resistance. However, the function and mechanism of action of SBSN is still elusive. In this study, we reviewed the literature on SBSN in the PubMed database to identify the basic characteristics, biological functions, and roles of SBSN in cancer and other diseases. In particular, we focused on the potential mechanisms of SBSN activity, to improve our understanding of the complex function of this protein and provide a theoretical basis for further research on the role of SBSN in cancer and other diseases.
Collapse
|
16
|
Rivero-Hinojosa S, Pugacheva EM, Kang S, Méndez-Catalá CF, Kovalchuk AL, Strunnikov AV, Loukinov D, Lee JT, Lobanenkov VV. The combined action of CTCF and its testis-specific paralog BORIS is essential for spermatogenesis. Nat Commun 2021; 12:3846. [PMID: 34158481 PMCID: PMC8219828 DOI: 10.1038/s41467-021-24140-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
CTCF is a key organizer of the 3D genome. Its specialized paralog, BORIS, heterodimerizes with CTCF but is expressed only in male germ cells and in cancer states. Unexpectedly, BORIS-null mice have only minimal germ cell defects. To understand the CTCF-BORIS relationship, mouse models with varied CTCF and BORIS levels were generated. Whereas Ctcf+/+Boris+/+, Ctcf+/-Boris+/+, and Ctcf+/+Boris-/- males are fertile, Ctcf+/-Boris-/- (Compound Mutant; CM) males are sterile. Testes with combined depletion of both CTCF and BORIS show reduced size, defective meiotic recombination, increased apoptosis, and malformed spermatozoa. Although CM germ cells exhibit only 25% of CTCF WT expression, chromatin binding of CTCF is preferentially lost from CTCF-BORIS heterodimeric sites. Furthermore, CM testes lose the expression of a large number of spermatogenesis genes and gain the expression of developmentally inappropriate genes that are "toxic" to fertility. Thus, a combined action of CTCF and BORIS is required to both repress pre-meiotic genes and activate post-meiotic genes for a complete spermatogenesis program.
Collapse
Affiliation(s)
- Samuel Rivero-Hinojosa
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA.
| | - Elena M Pugacheva
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Sungyun Kang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Claudia Fabiola Méndez-Catalá
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Genetics and Molecular Oncology, Building A4, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, State of Mexico, Mexico
| | - Alexander L Kovalchuk
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexander V Strunnikov
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, Guangzhou, China
| | - Dmitri Loukinov
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Victor V Lobanenkov
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Sati L, Soygur B, Goksu E, Bassorgun CI, McGrath J. CTCFL expression is associated with cerebral vascular abnormalities. Tissue Cell 2021; 72:101528. [PMID: 33756271 DOI: 10.1016/j.tice.2021.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/06/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
CTCFL is expressed in testis, oocytes and embryonic stem cells, and is aberrantly expressed in malignant cells, and is classified as a cancer-testis gene. We have previously shown by using a tetracycline-inducible Ctcfl transgene that inappropriate expression of Ctcfl negatively impacts fetal development and causes early postnatal lethality in the mouse. The affected pups displayed severe vascular abnormalities and localized hemorrhages in the brain evocative of cerebral cavernous malformations (CCM) and arteriovenous malformations (AVM) in humans. Thus, we aim to analyze; a) the presence of CCM-related proteins CCM1/KRIT1, CCM2/malcavernin and CCM3/PDCD10 in Ctcfl transgenic animals and, b) whether there is CTCFL expression in human CCM and AVM tissues. Ctcfl transgenic animals exhibited increased CD31 expression in vascular areas of the dermis and periadnexal regions but no difference was observed for vWF and α-SMA expressions. CCM-related proteins CCM1/KRIT1, CCM2/malcavernin and CCM3/PDCD10 were aberrantly expressed in coronal sections of the head in transgenic animals. We also observed CTCFL expression in human CCMs and AVMs. The induced expression of CTCFL resulting in vascular brain malformations in mice combined with the presence of CTCFL in human vascular malformations provide new insights into the role of this gene in vascular development in humans.
Collapse
Affiliation(s)
- Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey.
| | - Bikem Soygur
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey; Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Ethem Goksu
- Department of Neurosurgery, Akdeniz University School of Medicine, Antalya, Turkey
| | | | - James McGrath
- Departments of Genetics and Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
18
|
Amjadi-Moheb F, Paniri A, Akhavan-Niaki H. Insights into the Links between MYC and 3D Chromatin Structure and Epigenetics Regulation: Implications for Cancer Therapy. Cancer Res 2021; 81:1925-1936. [PMID: 33472888 DOI: 10.1158/0008-5472.can-20-3613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
MYC is embedded in the transcriptional oasis of the 8q24 gene desert. A plethora of genomic elements has roles in MYC aberrant expression in cancer development by interacting with transcription factors and epigenetics regulators as well as altering the structure of chromatin at the MYC locus and tissue-specific long-range enhancer-promoter contacts. Furthermore, MYC is a master regulator of several human cancers by modulating the transcription of numerous cancer-related genes through epigenetic mechanisms. This review provides a comprehensive overview of the three-dimensional genomic organization around MYC and the role of epigenetic machinery in transcription and function of MYC as well as discusses various epigenetic-targeted therapeutic strategies in MYC-driven cancers.
Collapse
Affiliation(s)
- Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Alireza Paniri
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
19
|
Wu X, Lu M, Yun D, Gao S, Chen S, Hu L, Wu Y, Wang X, Duan E, Cheng CY, Sun F. Single cell ATAC-Seq reveals cell type-specific transcriptional regulation and unique chromatin accessibility in human spermatogenesis. Hum Mol Genet 2021; 31:321-333. [PMID: 33438010 DOI: 10.1093/hmg/ddab006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
During human spermatogenesis, germ cells undergo dynamic changes in chromatin organization/re-packaging and in transcriptomes. In order to better understand the underlying mechanism(s), scATAC-Seq of 5376 testicular cells from 3 normal men were performed. Data were analyzed in parallel with the scRNA-Seq data of human testicular cells. Ten germ cell types associated with spermatogenesis and 6 testicular somatic cell types were identified, along with 142 024 peaks located in promoter, genebody and CpG Island. We had examined chromatin accessibility of all chromosomes, with chromosomes 19 and 17 emerged as the leading chromosomes that displayed high chromatin accessibility. In accessible chromatin regions, transcription factor (TF)-binding sites were identified and specific motifs with high frequencies at different spermatogenesis stages were detected, including CTCF, BORIS, NFY, DMRT6, EN1, ISL1 and GLI3. Two most notable observations were noted. First, TLE3 was specifically expressed in differentiating spermatogonia. Second, PFN4 was found to be involved in actin cytoskeletal organization during meiosis. More important, unique regions upstream of PFN4 and TLE3 were shown to display high accessibility, illustrating their significance in supporting human spermatogenesis.
Collapse
Affiliation(s)
- Xiaolong Wu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Mujun Lu
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Damin Yun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Sheng Gao
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Shitao Chen
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Longfei Hu
- Singleron Biotechnologies Ltd., 211 Pubin Road, Nanjing, Jiangsu, China
| | - Yunhao Wu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaorong Wang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
20
|
VonHandorf A, Zablon HA, Biesiada J, Zhang X, Medvedovic M, Puga A. Hexavalent chromium promotes differential binding of CTCF to its cognate sites in Euchromatin. Epigenetics 2021; 16:1361-1376. [PMID: 33319643 DOI: 10.1080/15592294.2020.1864168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hexavalent chromium compounds are well-established respiratory carcinogens to which humans are commonly exposed in industrial and occupational settings. In addition, natural and anthropogenic sources of these compounds contribute to the exposure of global populations through multiple routes, including dermal, ingestion and inhalation that elevate the risk of cancer by largely unresolved mechanisms. Cr(VI) has genotoxic properties that include ternary adduct formation with DNA, increases in DNA damage, mostly by double-strand break formation, and altered transcriptional responses. Our previous work using ATAC-seq showed that CTCF motifs were enriched in Cr(VI)-dependent differentially accessible chromatin, suggesting that CTCF, a key transcription factor responsible for the regulation of the transcriptome, might be a chromium target. To test this hypothesis, we investigated the effect of Cr(VI) treatment on the binding of CTCF to its cognate sites and ensuing changes in transcription-related histone modifications. Differentially bound CTCF sites were enriched by Cr(VI) treatment within transcription-related regions, specifically transcription start sites and upstream genic regions. Functional annotation of the affected genes highlighted biological processes previously associated with Cr(VI) exposure. Notably, we found that differentially bound CTCF sites proximal to the promoters of this subset of genes were frequently associated with the active histone marks H3K27ac, H3K4me3, and H3K36me3, in agreement with the concept that Cr(VI) targets CTCF in euchromatic regions of the genome. Our results support the conclusion that Cr(VI) treatment promotes the differential binding of CTCF to its cognate sites in genes near transcription-active boundaries, targeting these genes for dysregulation.
Collapse
Affiliation(s)
- Andrew VonHandorf
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hesbon A Zablon
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jacek Biesiada
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
21
|
Kerschner JL, Paranjapye A, Yin S, Skander DL, Bebek G, Leir SH, Harris A. A functional genomics approach to investigate the differentiation of iPSCs into lung epithelium at air-liquid interface. J Cell Mol Med 2020; 24:9853-9870. [PMID: 32692488 PMCID: PMC7520342 DOI: 10.1111/jcmm.15568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/02/2020] [Accepted: 06/13/2020] [Indexed: 01/24/2023] Open
Abstract
The availability of robust protocols to differentiate induced pluripotent stem cells (iPSCs) into many human cell lineages has transformed research into the origins of human disease. The efficacy of differentiating iPSCs into specific cellular models is influenced by many factors including both intrinsic and extrinsic features. Among the most challenging models is the generation of human bronchial epithelium at air‐liquid interface (HBE‐ALI), which is the gold standard for many studies of respiratory diseases including cystic fibrosis. Here, we perform open chromatin mapping by ATAC‐seq and transcriptomics by RNA‐seq in parallel, to define the functional genomics of key stages of the iPSC to HBE‐ALI differentiation. Within open chromatin peaks, the overrepresented motifs include the architectural protein CTCF at all stages, while motifs for the FOXA pioneer and GATA factor families are seen more often at early stages, and those regulating key airway epithelial functions, such as EHF, are limited to later stages. The RNA‐seq data illustrate dynamic pathways during the iPSC to HBE‐ALI differentiation, and also the marked functional divergence of different iPSC lines at the ALI stages of differentiation. Moreover, a comparison of iPSC‐derived and lung donor‐derived HBE‐ALI cultures reveals substantial differences between these models.
Collapse
Affiliation(s)
- Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Shiyi Yin
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Dannielle L Skander
- Systems Biology and Bioinformatics Graduate Program, Case Western Reserve University, Cleveland, OH, USA
| | - Gurkan Bebek
- Systems Biology and Bioinformatics Graduate Program, Case Western Reserve University, Cleveland, OH, USA.,Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA.,Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Electrical Engineering and Computer Science Department, Case Western Reserve University, Cleveland, OH, USA
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
22
|
Lin SR, Mokgautsi N, Liu YN. Ras and Wnt Interaction Contribute in Prostate Cancer Bone Metastasis. Molecules 2020; 25:E2380. [PMID: 32443915 PMCID: PMC7287876 DOI: 10.3390/molecules25102380] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent and malignant cancer types in men, which causes more than three-hundred thousand cancer death each year. At late stage of PCa progression, bone marrow is the most often metastatic site that constitutes almost 70% of metastatic cases of the PCa population. However, the characteristic for the osteo-philic property of PCa is still puzzling. Recent studies reported that the Wnt and Ras signaling pathways are pivotal in bone metastasis and that take parts in different cytological changes, but their crosstalk is not well studied. In this review, we focused on interactions between the Wnt and Ras signaling pathways during each stage of bone metastasis and present the fate of those interactions. This review contributes insights that can guide other researchers by unveiling more details with regard to bone metastasis and might also help in finding potential therapeutic regimens for preventing PCa bone metastasis.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Graduate Institute of Cancer Biology and Drug Discovery, Collage of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| | - Ntlotlang Mokgautsi
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, Collage of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| |
Collapse
|
23
|
Nishana M, Ha C, Rodriguez-Hernaez J, Ranjbaran A, Chio E, Nora EP, Badri SB, Kloetgen A, Bruneau BG, Tsirigos A, Skok JA. Defining the relative and combined contribution of CTCF and CTCFL to genomic regulation. Genome Biol 2020; 21:108. [PMID: 32393311 PMCID: PMC7212617 DOI: 10.1186/s13059-020-02024-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ubiquitously expressed CTCF is involved in numerous cellular functions, such as organizing chromatin into TAD structures. In contrast, its paralog, CTCFL, is normally only present in the testis. However, it is also aberrantly expressed in many cancers. While it is known that shared and unique zinc finger sequences in CTCF and CTCFL enable CTCFL to bind competitively to a subset of CTCF binding sites as well as its own unique locations, the impact of CTCFL on chromosome organization and gene expression has not been comprehensively analyzed in the context of CTCF function. Using an inducible complementation system, we analyze the impact of expressing CTCFL and CTCF-CTCFL chimeric proteins in the presence or absence of endogenous CTCF to clarify the relative and combined contribution of CTCF and CTCFL to chromosome organization and transcription. RESULTS We demonstrate that the N terminus of CTCF interacts with cohesin which explains the requirement for convergent CTCF binding sites in loop formation. By analyzing CTCF and CTCFL binding in tandem, we identify phenotypically distinct sites with respect to motifs, targeting to promoter/intronic intergenic regions and chromatin folding. Finally, we reveal that the N, C, and zinc finger terminal domains play unique roles in targeting each paralog to distinct binding sites to regulate transcription, chromatin looping, and insulation. CONCLUSION This study clarifies the unique and combined contribution of CTCF and CTCFL to chromosome organization and transcription, with direct implications for understanding how their co-expression deregulates transcription in cancer.
Collapse
Affiliation(s)
| | - Caryn Ha
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | | | - Ali Ranjbaran
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Erica Chio
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Elphege P Nora
- Gladstone Institutes, San Francisco, CA, 94158, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, 94158, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA, 94158, USA
| | - Sana B Badri
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Andreas Kloetgen
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, 10016, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, 94158, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, 94158, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA, 94158, USA.,Department of Pediatrics, University of California, San Francisco, CA, 94158, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA.,Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, 10016, USA
| | - Jane A Skok
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA. .,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
24
|
Akhtar MS, Akhter N, Najm MZ, Deo SVS, Shukla NK, Almalki SSR, Alharbi RA, Sindi AAA, Alruwetei A, Ahmad A, Husain SA. Association of mutation and low expression of the CTCF gene with breast cancer progression. Saudi Pharm J 2020; 28:607-614. [PMID: 32435142 PMCID: PMC7229322 DOI: 10.1016/j.jsps.2020.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/29/2020] [Indexed: 12/15/2022] Open
Abstract
Background CTCF encodes 11-zinc finger protein which is implicated in multiple tumors including the carcinoma of the breast. The Present study investigates the association of CTCF mutations and their expression in breast cancer cases. Methods A total of 155 breast cancer and an equal number of adjacent normal tissue samples from 155 breast cancer patients were examined for CTCF mutation(s) by PCR-SSCP and automated DNA sequencing. Immunohistochemistry (IHC) method was used to analyze CTCF expression. Molecular findings were statistically analyzed with various clinicopathological features to identify associations of clinical relevance. Results Of the total, 16.1% (25/155) cases exhibited mutation in the CTCF gene. Missense mutations Gln > His (G > T) in exon 1 and silent mutations Ser > Ser (C > T) in exon 4 of CTCF gene were analyzed. A significant association was observed between CTCF mutations and some clinicopathological parameters namely menopausal status (p = 0.02) tumor stage (p = 0.03) nodal status (p = 0.03) and ER expression (p = 0.04). Protein expression analysis showed 42.58% samples having low or no expression (+), 38.0% with moderate (++) expression and 19.35% having high (+++) expression for CTCF. A significant association was found between CTCF protein expression and clinicopathological parameters include histological grade (p = 0.04), tumor stage (p = 0.04), nodal status (p = 0.03) and ER status (p = 0.04). Conclusions The data suggest that CTCF mutations leading to its inactivation significantly contribute to the progression of breast cancer.
Collapse
Affiliation(s)
- Md Salman Akhtar
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.,Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Naseem Akhter
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.,Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | | | - S V S Deo
- Department of Surgical Oncology, DR. BRA-IRCH, AIIMS, New Delhi 110029, India
| | - N K Shukla
- Department of Surgical Oncology, DR. BRA-IRCH, AIIMS, New Delhi 110029, India
| | | | - Raed A Alharbi
- Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | | | - Abdulmohsen Alruwetei
- Department of Medical Laboratory, College of Applied Medical Sciences, Qassim University, Qassim, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Akhtar Husain
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
25
|
Debaugny RE, Skok JA. CTCF and CTCFL in cancer. Curr Opin Genet Dev 2020; 61:44-52. [PMID: 32334335 PMCID: PMC7893514 DOI: 10.1016/j.gde.2020.02.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/11/2020] [Accepted: 02/22/2020] [Indexed: 12/28/2022]
Abstract
CTCF plays a key role in organizing chromatin into TAD structures but it can also function as a transcription factor. CTCFL (CTCF-like), the paralog of CTCF, is normally transiently expressed in pre-meiotic male germ cells together with ubiquitously expressed CTCF. It plays a unique role in spermatogenesis by regulating expression of testis-specific genes. Genetic alterations in CTCF and its paralog CTCFL have both been found in numerous cancers, but it remains unknown to what extent CTCFL deregulates transcription on its own or by opposing CTCF. Here, we discuss some of the potential mechanisms by which these two proteins could alter gene regulation and contribute to oncogenic transcriptional programs.
Collapse
Affiliation(s)
- Roxanne E Debaugny
- Dept. of Pathology, New York University Langone Health, New York, NY 10016, USA
| | - Jane A Skok
- Dept. of Pathology, New York University Langone Health, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
26
|
Pugacheva EM, Kubo N, Loukinov D, Tajmul M, Kang S, Kovalchuk AL, Strunnikov AV, Zentner GE, Ren B, Lobanenkov VV. CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention. Proc Natl Acad Sci U S A 2020; 117:2020-2031. [PMID: 31937660 PMCID: PMC6995019 DOI: 10.1073/pnas.1911708117] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The DNA-binding protein CCCTC-binding factor (CTCF) and the cohesin complex function together to shape chromatin architecture in mammalian cells, but the molecular details of this process remain unclear. Here, we demonstrate that a 79-aa region within the CTCF N terminus is essential for cohesin positioning at CTCF binding sites and chromatin loop formation. However, the N terminus of CTCF fused to artificial zinc fingers was not sufficient to redirect cohesin to non-CTCF binding sites, indicating a lack of an autonomously functioning domain in CTCF responsible for cohesin positioning. BORIS (CTCFL), a germline-specific paralog of CTCF, was unable to anchor cohesin to CTCF DNA binding sites. Furthermore, CTCF-BORIS chimeric constructs provided evidence that, besides the N terminus of CTCF, the first two CTCF zinc fingers, and likely the 3D geometry of CTCF-DNA complexes, are also involved in cohesin retention. Based on this knowledge, we were able to convert BORIS into CTCF with respect to cohesin positioning, thus providing additional molecular details of the ability of CTCF to retain cohesin. Taken together, our data provide insight into the process by which DNA-bound CTCF constrains cohesin movement to shape spatiotemporal genome organization.
Collapse
Affiliation(s)
- Elena M Pugacheva
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| | - Naoki Kubo
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093
| | - Dmitri Loukinov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Md Tajmul
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sungyun Kang
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Alexander L Kovalchuk
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexander V Strunnikov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Science Park, 510530 Guangzhou, China
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, IN 47405
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University-Purdue University, Indianapolis, IN 46202
| | - Bing Ren
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA 92093-0653
- Moores Cancer Center and Institute of Genomic Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093-0653
| | - Victor V Lobanenkov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
27
|
Höflmayer D, Steinhoff A, Hube-Magg C, Kluth M, Simon R, Burandt E, Tsourlakis MC, Minner S, Sauter G, Büscheck F, Wilczak W, Steurer S, Huland H, Graefen M, Haese A, Heinzer H, Schlomm T, Jacobsen F, Hinsch A, Poos AM, Oswald M, Rippe K, König R, Schroeder C. Expression of CCCTC-binding factor (CTCF) is linked to poor prognosis in prostate cancer. Mol Oncol 2019; 14:129-138. [PMID: 31736271 DOI: 10.1002/1878-0261.12597] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 01/06/2023] Open
Abstract
The chromatin-organizing factor CCCTC-binding factor (CTCF) is involved in transcriptional regulation, DNA-loop formation, and telomere maintenance. To evaluate the clinical impact of CTCF in prostate cancer, we analyzed CTCF expression by immunohistochemistry on a tissue microarray containing 17 747 prostate cancers. Normal prostate tissue showed negative to low CTCF expression, while in prostate cancers, CTCF expression was seen in 7726 of our 12 555 (61.5%) tumors and was considered low in 44.6% and high in 17% of cancers. Particularly, high CTCF expression was significantly associated with the presence of the transmembrane protease, serine 2:ETS-related gene fusion: Only 10% of ERG-negative cancers, but 30% of ERG-positive cancers had high-level CTCF expression (P < 0.0001). CTCF expression was significantly associated with advanced pathological tumor stage, high Gleason grade (P < 0.0001 each), nodal metastasis (P = 0.0122), and early biochemical recurrence (P < 0.0001). Multivariable modeling revealed that the prognostic impact of CTCF was independent from established presurgical parameters such as clinical stage and Gleason grade of the biopsy. Comparison with key molecular alterations showed strong associations with the expression of the Ki-67 proliferation marker and presence of phosphatase and tensin homolog deletions (P < 0.0001 each). The results of our study identify CTCF expression as a candidate biomarker for prognosis assessment in prostate cancer.
Collapse
Affiliation(s)
- Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Amélie Steinhoff
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Alexandra M Poos
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany.,Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Faculty of Biosciences, Heidelberg University, Germany.,Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Marcus Oswald
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany.,Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Rainer König
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany.,Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Cornelia Schroeder
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
28
|
Sharma P, Ghanghas P, Kaushal N, Kaur J, Kaur P. Epigenetics and oxidative stress: A twin-edged sword in spermatogenesis. Andrologia 2019; 51:e13432. [PMID: 31583745 DOI: 10.1111/and.13432] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/16/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Spermatogenesis is a series of complex events involving a delicate balance between cell proliferation and cell differentiation. Aggregation of chromatins and epigenetic modifications play a vital role in spermatogenesis via regulation of molecular pathways to maintain testicular homeostasis. These epigenetic mechanisms consist of histone modification, chromatin remodelling, DNA methylation and miRNA, etc., which reportedly are critical players in spermatogenesis. One such mechanism involves regulation of oxidative stress in the male reproductive system. The fact that testicular cells contain plenty of unsaturated fatty acids and undergo division at a high rate makes spermatogenic cells highly susceptible to oxidative insult leading to deleterious effect on spermatozoa, which may culminate in infertility in men. Although the correlation between ROS-mediated oxidative stress and epigenetic alterations has been indicated, research in this regard is still in infancy. Further, the fact that environmental and life style factors are critical determinants of spermatogenic potential indicates the importance of epigenetic regulation of key molecular events in spermatogenesis. Therefore, the current review aims to discuss the ROS-induced epigenetic deregulation of the molecular mechanism(s) involved in spermatogenesis.
Collapse
Affiliation(s)
- Parul Sharma
- University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Preety Ghanghas
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Jaspreet Kaur
- University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Parminder Kaur
- University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| |
Collapse
|
29
|
BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells. Nature 2019; 572:676-680. [PMID: 31391581 DOI: 10.1038/s41586-019-1472-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/11/2019] [Indexed: 11/09/2022]
Abstract
The CCCTC-binding factor (CTCF), which anchors DNA loops that organize the genome into structural domains, has a central role in gene control by facilitating or constraining interactions between genes and their regulatory elements1,2. In cancer cells, the disruption of CTCF binding at specific loci by somatic mutation3,4 or DNA hypermethylation5 results in the loss of loop anchors and consequent activation of oncogenes. By contrast, the germ-cell-specific paralogue of CTCF, BORIS (brother of the regulator of imprinted sites, also known as CTCFL)6, is overexpressed in several cancers7-9, but its contributions to the malignant phenotype remain unclear. Here we show that aberrant upregulation of BORIS promotes chromatin interactions in ALK-mutated, MYCN-amplified neuroblastoma10 cells that develop resistance to ALK inhibition. These cells are reprogrammed to a distinct phenotypic state during the acquisition of resistance, a process defined by the initial loss of MYCN expression followed by subsequent overexpression of BORIS and a concomitant switch in cellular dependence from MYCN to BORIS. The resultant BORIS-regulated alterations in chromatin looping lead to the formation of super-enhancers that drive the ectopic expression of a subset of proneural transcription factors that ultimately define the resistance phenotype. These results identify a previously unrecognized role of BORIS-to promote regulatory chromatin interactions that support specific cancer phenotypes.
Collapse
|
30
|
Chen F, Yuan H, Wu W, Chen S, Yang Q, Wang J, Zhang Q, Gui B, Fan X, Chen R, Shen Y. Three additional de novo CTCF mutations in Chinese patients help to define an emerging neurodevelopmental disorder. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:218-225. [PMID: 30893510 DOI: 10.1002/ajmg.c.31698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 01/24/2023]
Abstract
CCCTC-binding factor (CTCF) is an important regulator for global genomic organization and gene expression. CTCF gene had been implicated in a novel disorder characterized by intellectual disability, feeding difficulty, developmental delay and microcephaly. So far, four patients have been reported with de novo CTCF mutations. We reported three additional Chinese patients with de novo variants in CTCF. The new evidence helped to establish the clinical validity between CTCF and the emerging disorder. We described the consistent phenotypes shared by all patients and revealed additional clinical features such as delayed or abnormal teeth development and a unique pattern of the eyebrow that may help to define a potential recognizable neurodevelopmental disorder. We also reported the first CTCF patient treated with recombinant human growth hormone. Follow-up and more case studies will further our understanding to the clinical presentations of this novel disorder and the prognosis of patients with this disorder.
Collapse
Affiliation(s)
- Fei Chen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Haiming Yuan
- Department of Medical Genetics, Dongguan Maternal and Child Health Care Hospital, Dongguan, China
| | - Wenyong Wu
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, Fuzhou, China
| | - Shaoke Chen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qi Yang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jin Wang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Baohen Gui
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xin Fan
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ruimin Chen
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, Fuzhou, China
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Darbandi M, Darbandi S, Agarwal A, Baskaran S, Dutta S, Sengupta P, Khorram Khorshid HR, Esteves S, Gilany K, Hedayati M, Nobakht F, Akhondi MM, Lakpour N, Sadeghi MR. Reactive oxygen species-induced alterations in H19-Igf2 methylation patterns, seminal plasma metabolites, and semen quality. J Assist Reprod Genet 2019; 36:241-253. [PMID: 30382470 PMCID: PMC6420547 DOI: 10.1007/s10815-018-1350-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/17/2018] [Indexed: 12/28/2022] Open
Abstract
PURPOSE This study was conducted in order to investigate the effects of reactive oxygen species (ROS) levels on the seminal plasma (SP) metabolite milieu and sperm dysfunction. METHODS Semen specimens of 151 normozoospermic men were analyzed for ROS by chemiluminescence and classified according to seminal ROS levels [in relative light units (RLU)/s/106 sperm]: group 1 (n = 39): low (ROS < 20), group 2 (n = 38): mild (20 ≤ ROS < 40), group 3 (n = 31): moderate (40 ≤ ROS < 60), and group 4 (n = 43): high (ROS ≥ 60). A comprehensive analysis of SP and semen parameters, including conventional semen characteristics, measurement of total antioxidant capacity (TAC), sperm DNA fragmentation index (DFI), chromatin maturation index (CMI), H19-Igf2 methylation status, and untargeted seminal metabolic profiling using nuclear magnetic resonance spectroscopy (1H-NMR), was carried out. RESULT(S) The methylation status of H19 and Igf2 was significantly different in specimens with high ROS (P < 0.005). Metabolic fingerprinting of these SP samples showed upregulation of trimethylamine N-oxide (P < 0.001) and downregulations of tryptophan (P < 0.05) and tyrosine/tyrosol (P < 0.01). High ROS significantly reduced total sperm motility (P < 0.05), sperm concentration (P < 0.001), and seminal TAC (P < 0.001) but increased CMI and DFI (P < 0.005). ROS levels have a positive correlation with Igf2 methylation (r = 0.19, P < 0.05), DFI (r = 0.40, P < 0.001), CMI (r = 0.39, P < 0.001), and trimethylamine N-oxide (r = 0.45, P < 0.05) and a negative correlation with H19 methylation (r = - 0.20, P < 0.05), tryptophan (r = - 0.45, P < 0.05), sperm motility (r = - 0.20, P < 0.05), sperm viability (r = - 0.23, P < 0.01), and sperm concentration (r = - 0.30, P < 0.001). CONCLUSION(S) Results showed significant correlation between ROS levels and H19-Igf2 gene methylation as well as semen parameters. These findings are critical to identify idiopathic male infertility and its management through assisted reproduction technology (ART).
Collapse
Affiliation(s)
- Mahsa Darbandi
- Department of Embryology and Andrology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1936773493, Iran
| | - Sara Darbandi
- Department of Embryology and Andrology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1936773493, Iran
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sulagna Dutta
- Faculty of Dentistry, MAHSA University, 42610, Selangor, Malaysia
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MAHSA University, 42610, Selangor, Malaysia
| | - Hamid Reza Khorram Khorshid
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 1985713834, Iran
| | - Sandro Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas, 13075-460, Brazil
| | - Kambiz Gilany
- Department of Embryology and Andrology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1936773493, Iran
| | - Mehdi Hedayati
- Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University for Medical Sciences, Tehran, 1985717413, Iran
| | - Fatemeh Nobakht
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Nishabur, 9314634814, Iran
| | - Mohammad Mehdi Akhondi
- Monoclonal Antibody Research Center, Avicenna Research Institute (ARI), ACECR, Shahid Beheshti University, Evin, Tehran, 1936773493, Iran
| | - Niknam Lakpour
- Department of Embryology and Andrology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1936773493, Iran
| | - Mohammad Reza Sadeghi
- Monoclonal Antibody Research Center, Avicenna Research Institute (ARI), ACECR, Shahid Beheshti University, Evin, Tehran, 1936773493, Iran.
| |
Collapse
|
32
|
Soltanian S, Dehghani H. BORIS: a key regulator of cancer stemness. Cancer Cell Int 2018; 18:154. [PMID: 30323717 PMCID: PMC6173857 DOI: 10.1186/s12935-018-0650-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
BORIS (CTCFL) is a DNA binding protein which is involved in tumorigenesis. Although, there are different opinions on the level of gene expression and function of BORIS in normal and cancer tissues, the results of many studies have classified BORIS as a protein belonging to cancer/testis (CT) genes, which are identified as a group of genes that are expressed normally in testis, and abnormally in various types of cancers. In testis, BORIS induces the expression of some male germ cell/testis specific genes, and plays crucial roles during spermatogenesis and production of sperm. In tumorigenesis, the role of BORIS in the expression induction of some CT genes and oncogenes, as well as increasing proliferation/viability of cancer cells has been demonstrated in many researches. In addition to cancer cells, some believe that BORIS is also expressed in normal conditions and plays a universal function in cell division and regulation of genes. The following is a comprehensive review on contradictory views on the expression pattern and biological function of BORIS in normal, as well as cancer cells/tissues, and presents some evidence that support the expression of BORIS in cancer stem cells (CSCs) and advanced stage/poorer differentiation grade of cancers. Boris is involved in the regulation of CSC cellular and molecular features such as self-renewal, chemo-resistance, tumorigenicity, sphere-forming ability, and migration capacity. Finally, the role of BORIS in regulating two important signaling pathways including Wnt/β-catenin and Notch in CSCs, and its ability in recruiting transcription factors or chromatin-remodeling proteins to induce tumorigenesis is discussed.
Collapse
Affiliation(s)
- Sara Soltanian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91775-1793 Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
33
|
DiSpirito JR, Zemmour D, Ramanan D, Cho J, Zilionis R, Klein A, Benoist C, Mathis D. Molecular diversification of regulatory T cells in nonlymphoid tissues. Sci Immunol 2018; 3:eaat5861. [PMID: 30217811 PMCID: PMC6219455 DOI: 10.1126/sciimmunol.aat5861] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Abstract
Foxp3+CD4+ regulatory T cells (Tregs) accumulate in certain nonlymphoid tissues, where they control diverse aspects of organ homeostasis. Populations of tissue Tregs, as they have been termed, have transcriptomes distinct from those of their counterparts in lymphoid organs and other nonlymphoid tissues. We examined the diversification of Tregs in visceral adipose tissue, skeletal muscle, and the colon vis-à-vis lymphoid organs from the same individuals. The unique transcriptomes of the various tissue Treg populations resulted from layering of tissue-restricted open chromatin regions over regions already open in the spleen, the latter tagged by super-enhancers and particular histone marks. The binding motifs for a small number of transcription factor (TF) families were repeatedly enriched within the accessible chromatin stretches of Tregs in the three nonlymphoid tissues. However, a bioinformatically and experimentally validated transcriptional network, constructed by integrating chromatin accessibility and single-cell transcriptomic data, predicted reliance on different TF family members in the different tissues. The network analysis also revealed that tissue-restricted and broadly acting TFs were integrated into feed-forward loops to enforce tissue-specific gene expression in nonlymphoid-tissue Tregs. Overall, this study provides a framework for understanding the epigenetic dynamics of T cells operating in nonlymphoid tissues, which should inform strategies for specifically targeting them.
Collapse
Affiliation(s)
- Joanna R. DiSpirito
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston MA 02115, USA
| | - David Zemmour
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston MA 02115, USA
| | - Deepshika Ramanan
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston MA 02115, USA
| | - Jun Cho
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston MA 02115, USA
| | - Rapolas Zilionis
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Institute of Biotechnology, Vilnius University, Vilnius, LT 10257, Lithuania
| | - Allon Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston MA 02115, USA
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston MA 02115, USA
| |
Collapse
|
34
|
Abstract
CTCF, Zinc-finger protein, has been identified as a multifunctional transcription factor that regulates gene expression through various mechanisms, including recruitment of other co-activators and binding to promoter regions of target genes. Furthermore, it has been proposed to be an insulator protein that contributes to the establishment of functional three-dimensional chromatin structures. It can disrupt transcription through blocking the connection between an enhancer and a promoter. Previous studies revealed that the onset of various diseases, including breast cancer, could be attributed to the aberrant expression of CTCF itself or one or more of its target genes. In this review, we will describe molecular dysfunction involving CTCF that induces tumorigenesis and summarize the functional roles of CTCF in breast cancer.
Collapse
Affiliation(s)
- Sumin Oh
- Laboratory of Biomedical Genomics, Department of Biological Science, and Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Korea
| | - Chaeun Oh
- Laboratory of Biomedical Genomics, Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Kyung Hyun Yoo
- Laboratory of Biomedical Genomics, Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
35
|
Zhao X, Li D, Huang D, Song H, Mei H, Fang E, Wang X, Yang F, Zheng L, Huang K, Tong Q. Retracted: Risk-Associated Long Noncoding RNA FOXD3-AS1 Inhibits Neuroblastoma Progression by Repressing PARP1-Mediated Activation of CTCF. Mol Ther 2018; 26:755-773. [PMID: 29398485 PMCID: PMC5910666 DOI: 10.1016/j.ymthe.2017.12.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial tumor in childhood. Recent studies have implicated the emerging roles of long noncoding RNAs (lncRNAs) in tumorigenesis and aggressiveness. However, the functions and targets of risk-associated lncRNAs in NB progression still remain to be determined. Herein, through mining of public microarray datasets, we identify lncRNA forkhead box D3 antisense RNA 1 (FOXD3-AS1) as an independent prognostic marker for favorable outcome of NB patients. FOXD3-AS1 is downregulated in NB tissues and cell lines, and ectopic expression of FOXD3-AS1 induces neuronal differentiation and decreases the aggressiveness of NB cells in vitro and in vivo. Mechanistically, as a nuclear lncRNA, FOXD3-AS1 interacts with poly(ADP-ribose) polymerase 1 (PARP1) to inhibit the poly(ADP-ribosyl)ation and activation of CCCTC-binding factor (CTCF), resulting in derepressed expression of downstream tumor-suppressive genes. Rescue experiments indicate that FOXD3-AS1 harbors tumor-suppressive properties by inhibiting the oncogenic roles of PARP1 or CTCF and plays crucial roles in all-trans-retinoic-acid-mediated therapeutic effects on NB. Administration of FOXD3-AS1 construct or siRNAs against PARP1 or CTCF reduces the tumor growth and prolongs the survival of nude mice. These findings suggest that as a risk-associated lncRNA, FOXD3-AS1 inhibits the progression of NB through repressing PARP1-mediated CTCF activation.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Dandan Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China; Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China.
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China; Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
36
|
Zhao J, Wang Y, Liang Q, Xu Y, Sang J. MAGEA1 inhibits the expression of BORIS via increased promoter methylation. J Cell Sci 2018; 132:jcs.218628. [DOI: 10.1242/jcs.218628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
Melanoma-associated antigen A1 (MAGEA1) and BORIS are members of the cancer testis antigens (CTA) family. Their functions and expression regulation mechanisms are not fully understood. In this study, we revealed new functions and regulatory mechanisms of MAGEA1 and BORIS in breast cancer cells, which were investigated in parental and genetically manipulated breast cancer cells via gene overexpression or siRNA interference-mediated down-regulation. We identified the interaction between MAGEA1 and CTCF, which was required for the binding of MAGEA1 to BORIS promoter and critical for the recruitment of DNMT3a. A protein complex containing MAGEA1, CTCF and DNMT3a will be formed before or after the conjunction with BORIS promoter. The binding of this complex to the BORIS promoter accounts for the hypermethylation and repression of BORIS expression, which results in cell death in the breast cancer cell lines tested. Multiple approaches are employed, including co-IP, GST-pull down, co-localization, cell death analyses using the Annexin V-FITC/PI double staining and caspase3 activation assays, ChIP and bisulfite sequencing PCR assays for methylation. These results have implications in the development of strategies in CTA-based immune therapeutics.
Collapse
Affiliation(s)
- Jizhong Zhao
- Key Laboratory of Cell Proliferation and Regulation, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yueqing Wang
- Key Laboratory of Cell Proliferation and Regulation, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qianjin Liang
- Key Laboratory of Cell Proliferation and Regulation, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 1044 W. Walnut St. R4-W037, Indianapolis, IN 46202, USA
| | - Jianli Sang
- Key Laboratory of Cell Proliferation and Regulation, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
37
|
Abstract
CCCTC-binding factor (CTCF) is a conserved, essential regulator of chromatin architecture containing a unique array of 11 zinc fingers (ZFs). Gene duplication and sequence divergence during early amniote evolution generated the CTCF paralog Brother Of the Regulator of Imprinted Sites (BORIS), which has a DNA binding specificity identical to that of CTCF but divergent N- and C-termini. While healthy somatic tissues express only CTCF, CTCF and BORIS are normally co-expressed in meiotic and post-meiotic germ cells, and aberrant activation of BORIS occurs in tumors and some cancer cell lines. This has led to a model in which CTCF and BORIS compete for binding to some but not all genomic target sites; however, regulation of CTCF and BORIS genomic co-occupancy is not well understood. We recently addressed this issue, finding evidence for two major classes of CTCF target sequences, some of which contain single CTCF target sites (1xCTSes) and others containing two adjacent CTCF motifs (2xCTSes). The functional and chromatin structural features of 2xCTSes are distinct from those of 1xCTS-containing regions bound by a CTCF monomer. We suggest that these previously overlooked classes of CTCF binding regions may have different roles in regulating diverse chromatin-based phenomena, and may impact our understanding of heritable epigenetic regulation in cancer cells and normal germ cells.
Collapse
Affiliation(s)
- Victor V Lobanenkov
- a Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health , 5601 Fishers Ln, Rockville , MD , USA
| | - Gabriel E Zentner
- b Department of Biology , Indiana University , 915 E 3rd St, Bloomington , IN 47405 , USA
| |
Collapse
|
38
|
Hypomethylation of BORIS is a promising prognostic biomarker in hepatocellular carcinoma. Gene 2017; 629:29-34. [DOI: 10.1016/j.gene.2017.07.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/21/2017] [Accepted: 07/27/2017] [Indexed: 01/31/2023]
|
39
|
Ashapkin VV, Kutueva LI, Vanyushin BF. Aging as an Epigenetic Phenomenon. Curr Genomics 2017; 18:385-407. [PMID: 29081695 PMCID: PMC5635645 DOI: 10.2174/1389202918666170412112130] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/17/2016] [Accepted: 02/09/2016] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Hypermethylation of genes associated with promoter CpG islands, and hypomethylation of CpG poor genes, repeat sequences, transposable elements and intergenic genome sections occur during aging in mammals. Methylation levels of certain CpG sites display strict correlation to age and could be used as "epigenetic clock" to predict biological age. Multi-substrate deacetylases SIRT1 and SIRT6 affect aging via locus-specific modulations of chromatin structure and activity of multiple regulatory proteins involved in aging. Random errors in DNA methylation and other epigenetic marks during aging increase the transcriptional noise, and thus lead to enhanced phenotypic variation between cells of the same tissue. Such variation could cause progressive organ dysfunction observed in aged individuals. Multiple experimental data show that induction of NF-κB regulated gene sets occurs in various tissues of aged mammals. Upregulation of multiple miRNAs occurs at mid age leading to downregulation of enzymes and regulatory proteins involved in basic cellular functions, such as DNA repair, oxidative phosphorylation, intermediate metabolism, and others. CONCLUSION Strong evidence shows that all epigenetic systems contribute to the lifespan control in various organisms. Similar to other cell systems, epigenome is prone to gradual degradation due to the genome damage, stressful agents, and other aging factors. But unlike mutations and other kinds of the genome damage, age-related epigenetic changes could be fully or partially reversed to a "young" state.
Collapse
Affiliation(s)
- Vasily V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Lyudmila I Kutueva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris F Vanyushin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
40
|
Van Tongelen A, Loriot A, De Smet C. Oncogenic roles of DNA hypomethylation through the activation of cancer-germline genes. Cancer Lett 2017; 396:130-137. [DOI: 10.1016/j.canlet.2017.03.029] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/19/2022]
|
41
|
Zhao R, Chen K, Zhou J, He J, Liu J, Guan P, Li B, Qin Y. The prognostic role of BORIS and SOCS3 in human hepatocellular carcinoma. Medicine (Baltimore) 2017; 96:e6420. [PMID: 28328845 PMCID: PMC5371482 DOI: 10.1097/md.0000000000006420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brother of regulator of imprinted sites (BORIS) is a DNA-binding protein that is normally expressed in the testes. However, aberrant expression of BORIS is observed in various carcinomas, indicating a malignant role for this protein. Furthermore, abolishment or reduction of suppressor of cytokine signaling 3 (SOCS3) expression directed by promoter methylation is considered significant in hepatocellular carcinoma (HCC) carcinogenesis. This study aims to investigate BORIS and SOCS3 expression in HCC specimens and assess the prognostic significance of these proteins.BORIS and SOCS3 expression was examined using immunohistochemistry in HCC tissues, along with corresponding paracarcinomatous, cirrhosis, hepatitis, and normal liver tissues. The expression levels of these 2 proteins in HCC were evaluated for their association with clinicopathological parameters. Survival analysis was performed using Kaplan-Meier curves, the log-rank test, and multivariate Cox regression analysis.BORIS expression was significantly higher in HCC tissues than in normal liver tissues. In contrast, SOCS3 expression was dramatically lower in HCC tissues. BORIS expression was associated with tumor size, differentiation grade, satellite lesions, and recurrence while SOCS3 expression correlated with differentiation grade, vascular invasion, and recurrence. A significant negative correlation between BORIS and SOCS3 was observed. Patients with high BORIS expression and/or low SOCS3 expression had poorer postoperative survival. Patients with both these characteristics had the poorest prognostic outcome.BORIS and SOCS3 are promising as valuable indicators for predicting HCC prognosis.
Collapse
Affiliation(s)
- Rongce Zhao
- Department of Liver Surgery and Liver Transplantation Center
| | - Kefei Chen
- Department of Liver Surgery and Liver Transplantation Center
| | - Jing Zhou
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University
| | - Jingyang He
- Department of Biochemistry and Molecular Biology
| | - Jun Liu
- Department of Liver Surgery and Liver Transplantation Center
| | - Peng Guan
- Department of Forensic Pathology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Bo Li
- Department of Liver Surgery and Liver Transplantation Center
| | - Yang Qin
- Department of Biochemistry and Molecular Biology
| |
Collapse
|
42
|
Carcinoma of the colon and rectum with deregulation of insulin-like growth factor 2 signaling: clinical and molecular implications. J Gastroenterol 2016; 51:971-84. [PMID: 26984550 DOI: 10.1007/s00535-016-1181-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/02/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Loss of imprinting (LOI) of the insulin-like growth factor 2 (IGF2) is an early event in the development of colorectal cancer (CRC). Whether LOI of IGF2 denotes a molecular or clinical cancer subgroup is currently unknown. METHODS Tumor biopsies and paired normal mucosa from 399 patients with extensive clinical annotations were analyzed for LOI and IGF2 expression. LOI status in 140 informative cases was correlated with clinicopathologic parameters and outcome. RESULTS LOI was frequent in normal mucosa and tumors and occurred throughout the large intestine. LOI was unrelated to microsatellite instability, KRAS mutation status, stage, and survival. However, CRC with LOI showed increased IGF2 protein levels and activation of AKT1. Gene expression analysis of tumors with and without LOI and knockdown of IGF2 in cell lines revealed that IGF2 induced distinct sets of activated and repressed genes, including Wnt5a, CEACAM6, IGF2BP3, KPN2A, BRCA2, and CDK1. Inhibition of AKT1 in IGF2-stimulated cells showed that the downstream effects of IGF2 on cell proliferation and gene expression were strictly AKT1-dependent. CONCLUSIONS LOI of IGF2 is a frequent and early event in CRC that occurs both in the adenomatous polyposis coli (APC) gene-mutated and serrated route of carcinogenesis. LOI leads to overexpression of IGF2, activates IGF1R and AKT1, and is a powerful driver of cell proliferation. Moreover, our results suggest that IGF2 via AKT1 also contributes to non-canonical wnt signaling. Although LOI had no significant impact on major clinical parameters and outcome, its potential as a target for preventive and therapeutic interventions merits further investigation.
Collapse
|
43
|
Ding GL, Liu Y, Liu ME, Pan JX, Guo MX, Sheng JZ, Huang HF. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian J Androl 2016; 17:948-53. [PMID: 25814158 PMCID: PMC4814953 DOI: 10.4103/1008-682x.150844] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The effects of diabetes mellitus include long-term damages, dysfunctions, and failures of various organs. An important complication of diabetes is the disturbance in the male reproductive system. Glucose metabolism is an important event in spermatogenesis. Moreover, glucose metabolism is also important for maintaining basic cell activity, as well as specific functions, such as motility and fertilization ability in mature sperm. Diabetic disease and experimentally induced diabetes both demonstrated that either type 1 diabetes or type 2 diabetes could have detrimental effects on male fertility, especially on sperm quality, such as sperm motility, sperm DNA integrity, and ingredients of seminal plasma. Epigenetic modifications are essential during spermatogenesis. The epigenetic regulation represents chromatin modifications including DNA methylation, histone modifications, remodeling of nucleosomes and the higher-order chromatin reorganization and noncoding RNAs. If spermatogenesis is affected during the critical developmental window, embryonic gonadal development, and germline differentiation, environmentally-induced epigenetic modifications may become permanent in the germ line epigenome and have a potential impact on subsequent generations through epigenetic transgenerational inheritance. Diabetes may influence the epigenetic modification during sperm spermatogenesis and that these epigenetic dysregulation may be inherited through the male germ line and passed onto more than one generation, which in turn may increase the risk of diabetes in offspring.
Collapse
Affiliation(s)
| | | | | | | | | | | | - He-Feng Huang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030; The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou 310058, China
| |
Collapse
|
44
|
Kunert A, van Brakel M, van Steenbergen-Langeveld S, da Silva M, Coulie PG, Lamers C, Sleijfer S, Debets R. MAGE-C2-Specific TCRs Combined with Epigenetic Drug-Enhanced Antigenicity Yield Robust and Tumor-Selective T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2016; 197:2541-52. [PMID: 27489285 DOI: 10.4049/jimmunol.1502024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 07/03/2016] [Indexed: 01/22/2023]
Abstract
Adoptive T cell therapy has shown significant clinical success for patients with advanced melanoma and other tumors. Further development of T cell therapy requires improved strategies to select effective, yet nonself-reactive, TCRs. In this study, we isolated 10 TCR sequences against four MAGE-C2 (MC2) epitopes from melanoma patients who showed clinical responses following vaccination that were accompanied by significant frequencies of anti-MC2 CD8 T cells in blood and tumor without apparent side effects. We introduced these TCRs into T cells, pretreated tumor cells of different histological origins with the epigenetic drugs azacytidine and valproate, and tested tumor and self-reactivities of these TCRs. Pretreatment of tumor cells upregulated MC2 gene expression and enhanced recognition by T cells. In contrast, a panel of normal cell types did not express MC2 mRNA, and similar pretreatment did not result in recognition by MC2-directed T cells. Interestingly, the expression levels of MC2, but not those of CD80, CD86, or programmed death-ligand 1 or 2, correlated with T cell responsiveness. One of the tested TCRs consistently recognized pretreated MC2(+) cell lines from melanoma, head and neck, bladder, and triple-negative breast cancers but showed no response to MHC-eluted peptides or peptides highly similar to MC2. We conclude that targeting MC2 Ag, combined with epigenetic drug-enhanced antigenicity, allows for significant and tumor-selective T cell responses.
Collapse
Affiliation(s)
- Andre Kunert
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN Rotterdam, the Netherlands; and
| | - Mandy van Brakel
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN Rotterdam, the Netherlands; and
| | - Sabine van Steenbergen-Langeveld
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN Rotterdam, the Netherlands; and
| | - Marvin da Silva
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN Rotterdam, the Netherlands; and
| | - Pierre G Coulie
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Cor Lamers
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN Rotterdam, the Netherlands; and
| | - Stefan Sleijfer
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN Rotterdam, the Netherlands; and
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN Rotterdam, the Netherlands; and
| |
Collapse
|
45
|
El-Sharkawy NM, Radwan WM, Essa ES, Kandeel EZ, Abd El-Fattah EK, Kandil SH, Kamel AM. Increased expression of brother of the regulator of imprinted sites in peripheral blood neutrophils is associated with both benign and malignant breast lesions. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 92:355-360. [PMID: 27219508 DOI: 10.1002/cyto.b.21378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/29/2016] [Accepted: 04/12/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND BORIS, a paralog of the multifunctional CCCTC-binding factor (CTCF) gene is restricted to testis and normally not present in females. It is aberrantly activated in various human cancers including cancer breast. Using immunohistochemistry, western blot and/or RT-PCR, significantly higher levels of BORIS expression were reported in the neutrophils of cancer breast patients. We hypothesized that Flow Cytometry might be a better technique for objective quantitative evaluation of BORIS in neutrophils and we wanted to investigate if BORIS would discriminate between benign and malignant breast lesions. METHODS The study included 85 females; 52 breast cancer, 13 benign breast lesions and 20 age-matched healthy controls. BORIS expression in the neutrophils was detected by Flow Cytometry. RESULTS High level of BORIS was detected in all malignant (64.4 ± 16.6%) and benign cases (67 ± 12.3), mean florescent intensity ratio (MFIR) of 7.2 ± 4.1 and 7 ± 3.5, median 5.8 and 6.6%; and staining index (SI) 8.3 ± 3.9 and 8.2 ± 3.4, median 7.6 and 7.9 respectively vs.13.4 ± 11.5% MFI 1.8 ± 0.7, median1.6 and SI 2.6 ± 0.69, median 2.5 for the control. BORIS level was comparable in the malignant and benign group (P = 0.934) and significantly higher than control (P = 0.0001). There was no correlation between neutrophil BORIS expression and ER/PR status, HER-2/neu expression or tumor stage or size. CONCLUSIONS Increased BORIS expression in peripheral blood neutrophils is associated with both benign and malignant breast lesions; apparently, increased proliferation of breast tissue is the determining factor. This excludes BORIS as a tumor marker but it does not jeopardize its value as a potential therapeutic target. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
| | - Wafaa M Radwan
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebein ElKom, Menoufia, Egypt
| | - Enas S Essa
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebein ElKom, Menoufia, Egypt
| | - Eman Z Kandeel
- Clinical Pathology Department, NCI, Cairo University, Cairo, Egypt
| | | | - Samia H Kandil
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebein ElKom, Menoufia, Egypt
| | - Azza M Kamel
- Clinical Pathology Department, NCI, Cairo University, Cairo, Egypt
| |
Collapse
|
46
|
Wu H, Hauser R, Krawetz SA, Pilsner JR. Environmental Susceptibility of the Sperm Epigenome During Windows of Male Germ Cell Development. Curr Environ Health Rep 2016; 2:356-66. [PMID: 26362467 PMCID: PMC4623071 DOI: 10.1007/s40572-015-0067-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Male germ cells require multiple epigenetic reprogramming events during their lifespan to achieve reproductive capacity. An emerging body of compelling data demonstrates that environmental exposures can be embodied within the developing male germ cell as epigenetic marks. In turn, these epigenetic marks can impart information at fertilization to affect the trajectory of offspring health and development. While it is recognized that in utero epigenetic reprogramming of male germ cells is a particularly susceptible window to environmental exposures, other such windows exist during germ cell development. The objective of this review is to discuss epigenetic reprogramming events during male germ cell development and to provide supporting evidence from animal and human studies that during specific periods of development, germ cells are susceptible to environmentally induced epigenetic errors. Moving forward, the nascent field of sperm epigenetics research is likely to advance our understanding of paternal environmental determinants of offspring health and development.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 149 Goessmann, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Building I 14th Floor, 665 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Building I 14th Floor, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 East. Hancock, Detroit, MI, 48201, USA.
| | - J Richard Pilsner
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 149 Goessmann, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
47
|
TCR-engineered T cells to treat tumors: Seeing but not touching? Semin Immunol 2016; 28:10-21. [PMID: 26997556 DOI: 10.1016/j.smim.2016.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 12/17/2022]
Abstract
Adoptive transfer of T cells gene-engineered with T cell receptors (TCRs) has proven its feasibility and therapeutic potential in the treatment of malignant tumors. To ensure further clinical development of TCR gene therapy, it is necessary to accurately select TCRs that demonstrate antigen-selective responses that are restricted to tumor cells and, at the same time, include strategies that restore or enhance the entry, migration and local accumulation of T cells in tumor tissues. Here, we present the current standing of TCR-engineered T cell therapy, discuss and propose procedures to select TCRs as well as strategies to sensitize the tumor to T cell trafficking, and provide a rationale for combination therapies with TCR-engineered T cells.
Collapse
|
48
|
Jaiswal D, Trivedi S, Agrawal NK, Singh K. Association of the patterns of global DNA methylation and expression analysis of DNA methyltransferases in impaired spermatogenic patients. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2015. [DOI: 10.1016/j.apjr.2015.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
49
|
Schultz B, Yao X, Deng Y, Waner M, Spock C, Tom L, Persing J, Narayan D. A Common Polymorphism within the IGF2 Imprinting Control Region Is Associated with Parent of Origin Specific Effects in Infantile Hemangiomas. PLoS One 2015; 10:e0113168. [PMID: 26496499 PMCID: PMC4619854 DOI: 10.1371/journal.pone.0113168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 10/24/2014] [Indexed: 11/30/2022] Open
Abstract
Infantile hemangioma (IH) is the most common tumor of the pediatric age group, affecting up to 4% of newborns ranging from inconsequential blemishes, to highly aggressive tumors. Following well defined growth phases (proliferative, plateau involutional) IH usually regress into a fibro-fatty residuum. Despite the high prevalence of IH, little is known regarding the pathogenesis of disease. A reported six fold decrease in IGF2 expression (correlating with transformation of proliferative to involuted lesions) prompted us to study the IGF-2 axis further. We demonstrate that IGF2 expression in IH is strongly related to the expression of a cancer testes and suspected oncogene BORIS (paralog of CTCF), placing IH in the unique category of being the first known benign BORIS positive tumor. IGF2 expression was strongly and positively related to BORIS transcript expression. Furthermore, a stronger association was made when comparing BORIS levels against the expression of CTCF via either a percentage or difference between the two. A common C/T polymorphism at CTCF BS6 appeared to modify the correlation between CTCF/BORIS and IGF2 expression in a parent of origin specific manner. Moreover, these effects may have phenotypic consequences as tumor growth also correlates with the genotype at CTCF BS6. This may provide a framework for explaining the clinical variability seen in IH and suggests new insights regarding CTCF and BORIS related functionality in both normal and malignant states.
Collapse
Affiliation(s)
- Brent Schultz
- University of Washington, Division of Plastic Surgery, Seattle, WA, United States of America
| | - Xiaopan Yao
- Yale Center for Analytic Sciences at YSPH, New Haven, CT, United States of America
| | - Yanhong Deng
- Yale Center for Analytic Sciences at YSPH, New Haven, CT, United States of America
| | - Milton Waner
- Vascular Birthmark Institute, New York, NY, United States of America
| | | | - Laura Tom
- Division of Plastic Surgery, University of Washington, Seattle, WA, United States of America
| | - John Persing
- Yale Plastic and Reconstructive Surgery, New Haven, United States of America
| | - Deepak Narayan
- Yale Plastic and Reconstructive Surgery, New Haven, United States of America
- * E-mail:
| |
Collapse
|
50
|
Frequent disruption of chromodomain helicase DNA-binding protein 8 (CHD8) and functionally associated chromatin regulators in prostate cancer. Neoplasia 2015; 16:1018-27. [PMID: 25499215 PMCID: PMC4309256 DOI: 10.1016/j.neo.2014.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 11/22/2022] Open
Abstract
Abnormal expression and function of chromatin regulators results in the altered chromatin structure seen in cancer. The chromatin regulator CTCF, its cofactor CHD8, and antagonistic paralogue BORIS have wide-ranging effects on gene regulation. Their concurrent expression and regulation was examined in benign, localized, and metastatic prostate cancer (PCa) arrays with extended follow-up using an automated quantitative imaging system, VECTRA. Epithelial staining was quantified and compared against a range of clinicopathologic variables. CHD8 expression was decreased in HGPIN, localized, and metastatic PCa compared to benign (P < .001). CHD8 promoter hypermethylation, assessed by Quantitative Pyrosequencing, occurred in over 45% of primary cancers in this population as well as the TGCA database. Treatment of cell lines with the demethylating agent 5-Aza-2′-deoxycytidine reinduced expression. An interesting dichotomy for CHD8 was observed within primary cancers, with higher nuclear protein expression associated with adverse clinical outcomes including extracapsular extension (P = .007), presence of metastases (P = .025) and worse PSA-recurrence free survival (P = .048). CHD8 outperformed Gleason score and predicted biochemical failure within intermediate grade prostate cancers. The BORIS/CTCF expression ratio increased in localized (P = .03) and metastatic PCa (P = .006) and was associated with higher Gleason score (P = .02), increased tumor volume (P = .02) and positive margins (P = .04). Per cell heterogeneity of expression revealed all protein expression to be more heterogeneous in cancerous tissue (both P < .001), especially high grade (P < .01). In the first detailed analysis in cancer, a marked loss of CHD8 expression and increased BORIS/CTCF ratio indicate frequent disruption of CTCF and its effector genes in PCa.
Collapse
|