1
|
Wang C, Shao S, Li N, Zhang Z, Zhang H, Liu B. Advances in Alzheimer's Disease-Associated Aβ Therapy Based on Peptide. Int J Mol Sci 2023; 24:13110. [PMID: 37685916 PMCID: PMC10487952 DOI: 10.3390/ijms241713110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) urgently needs innovative treatments due to the increasing aging population and lack of effective drugs and therapies. The amyloid fibrosis of AD-associated β-amyloid (Aβ) that could induce a series of cascades, such as oxidative stress and inflammation, is a critical factor in the progression of AD. Recently, peptide-based therapies for AD are expected to be great potential strategies for the high specificity to the targets, low toxicity, fast blood clearance, rapid cell and tissue permeability, and superior biochemical characteristics. Specifically, various chiral amino acids or peptide-modified interfaces draw much attention as effective manners to inhibit Aβ fibrillation. On the other hand, peptide-based inhibitors could be obtained through affinity screening such as phage display or by rational design based on the core sequence of Aβ fibrosis or by computer aided drug design based on the structure of Aβ. These peptide-based therapies can inhibit Aβ fibrillation and reduce cytotoxicity induced by Aβ aggregation and some have been shown to relieve cognition in AD model mice and reduce Aβ plaques in mice brains. This review summarizes the design method and characteristics of peptide inhibitors and their effect on the amyloid fibrosis of Aβ. We further describe some analysis methods for evaluating the inhibitory effect and point out the challenges in these areas, and possible directions for the design of AD drugs based on peptides, which lay the foundation for the development of new effective drugs in the future.
Collapse
Affiliation(s)
- Cunli Wang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
| | - Shuai Shao
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Na Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Zhengyao Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Sharari S, Vaikath NN, Tsakou M, Ghanem SS, Vekrellis K. Screening for Novel Inhibitors of Amyloid Beta Aggregation and Toxicity as Potential Drugs for Alzheimer's Disease. Int J Mol Sci 2023; 24:11326. [PMID: 37511086 PMCID: PMC10379574 DOI: 10.3390/ijms241411326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 07/30/2023] Open
Abstract
AD is the most common neurodegenerative disorder characterized by progressive memory impairment and cognitive deficits. The pathology of AD is still unclear; however, several studies have shown that the aggregation of the Aβ peptide in the CNS is an exclusively pathological process involved in AD. Currently, there is no proven medication to cure or prevent the disease progression. Nevertheless, various therapeutic approaches for AD show only relief of symptoms and mostly work on cognitive recovery. However, one of the promising approaches for therapeutic intervention is to use inhibitors for blocking the Aβ peptide aggregation process. Recently, herbal phenolic compounds have been shown to have a therapeutic property for treatment of AD due to their multifaceted action. In this study, we investigated the effectiveness of SA, Gn Rb1, and DMyr on inhibiting the aggregation and toxicity of Aβ40 and Aβ42 using different biochemical and cell-based assays. Our results showed that SA and DMyr inhibit Aβ40 and Aβ42 fibrillation, seeded aggregation, and toxicity. Gn Rb1 did not have any effect on the aggregation or toxicity induced by Aβ40 and Aβ42. Moreover, SA and DMyr were able to disaggregate the preformed fibrils. Overall, these compounds may be used alone or synergistically and could be considered as a lead for designing new compounds that could be used as effective treatment of AD and related disorders.
Collapse
Affiliation(s)
- Sanaa Sharari
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Nishant N Vaikath
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Magdalini Tsakou
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Simona S Ghanem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Kostas Vekrellis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Ehtewish H, Mesleh A, Ponirakis G, De la Fuente A, Parray A, Bensmail I, Abdesselem H, Ramadan M, Khan S, Chandran M, Ayadathil R, Elsotouhy A, Own A, Al Hamad H, Abdelalim EM, Decock J, Alajez NM, Albagha O, Thornalley PJ, Arredouani A, Malik RA, El-Agnaf OMA. Blood-Based Proteomic Profiling Identifies Potential Biomarker Candidates and Pathogenic Pathways in Dementia. Int J Mol Sci 2023; 24:8117. [PMID: 37175824 PMCID: PMC10179172 DOI: 10.3390/ijms24098117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Dementia is a progressive and debilitating neurological disease that affects millions of people worldwide. Identifying the minimally invasive biomarkers associated with dementia that could provide insights into the disease pathogenesis, improve early diagnosis, and facilitate the development of effective treatments is pressing. Proteomic studies have emerged as a promising approach for identifying the protein biomarkers associated with dementia. This pilot study aimed to investigate the plasma proteome profile and identify a panel of various protein biomarkers for dementia. We used a high-throughput proximity extension immunoassay to quantify 1090 proteins in 122 participants (22 with dementia, 64 with mild cognitive impairment (MCI), and 36 controls with normal cognitive function). Limma-based differential expression analysis reported the dysregulation of 61 proteins in the plasma of those with dementia compared with controls, and machine learning algorithms identified 17 stable diagnostic biomarkers that differentiated individuals with AUC = 0.98 ± 0.02. There was also the dysregulation of 153 plasma proteins in individuals with dementia compared with those with MCI, and machine learning algorithms identified 8 biomarkers that classified dementia from MCI with an AUC of 0.87 ± 0.07. Moreover, multiple proteins selected in both diagnostic panels such as NEFL, IL17D, WNT9A, and PGF were negatively correlated with cognitive performance, with a correlation coefficient (r2) ≤ -0.47. Gene Ontology (GO) and pathway analysis of dementia-associated proteins implicated immune response, vascular injury, and extracellular matrix organization pathways in dementia pathogenesis. In conclusion, the combination of high-throughput proteomics and machine learning enabled us to identify a blood-based protein signature capable of potentially differentiating dementia from MCI and cognitively normal controls. Further research is required to validate these biomarkers and investigate the potential underlying mechanisms for the development of dementia.
Collapse
Affiliation(s)
- Hanan Ehtewish
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Areej Mesleh
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Georgios Ponirakis
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation (QF), Doha P.O. Box 24144, Qatar
| | - Alberto De la Fuente
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Aijaz Parray
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Houari Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Marwan Ramadan
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Shafi Khan
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Mani Chandran
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Raheem Ayadathil
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Ahmed Elsotouhy
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
- Department of Clinical Radiology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Ahmed Own
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
- Neuroradiology Department, Hamad General Hospital, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Hanadi Al Hamad
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Essam M. Abdelalim
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Julie Decock
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Nehad M. Alajez
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Omar Albagha
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Paul J. Thornalley
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Abdelilah Arredouani
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Rayaz A. Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation (QF), Doha P.O. Box 24144, Qatar
| | - Omar M. A. El-Agnaf
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| |
Collapse
|
4
|
Dolai G, Giri RS, Mandal B. Versatility in Self-assembly and Morphology of Non-Coded Anthranilic acid and Phenylglycine based Dipeptide Stereoisomers. CrystEngComm 2022. [DOI: 10.1039/d2ce00158f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Beauty in the self-assembly patterns of isomeric dipeptides of Boc-Ant-L-Phg-OMe (1) bearing two rigid, unnatural amino acids (Ant: Anthranilic acid, Phg: Phenylglycine) is demonstrated. Additionally, self-assembly and morphological variation by...
Collapse
|
5
|
曲 良, 黄 佳, 范 明, 郝 雨, 严 金. [Effects of stachyine on apoptosis in an Aβ 25-35-induced PC12 cell model of Alzheimer's disease]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1023-1028. [PMID: 32895169 PMCID: PMC7386225 DOI: 10.12122/j.issn.1673-4254.2020.07.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effects of stachydrine (STA) on apoptosis of Aβ25-35-induced PC12 cells mimicking Alzheimer's disease and explore the mechanisms. METHODS The differential genes of STA were analyzed based on GSE85871 data, and the target genes of STA were identified using STITCH database. PC12 cells were treated with Aβ25-35 to establish a cell model of Alzheimer's disease, and the changes in cell viability and cell cycle in response to STA treatment were assessed using MTT assay and flow cytometry, respectively. RT-PCR and Western blotting were used to detect the relevant gene or protein expressions in the treated cells. RESULTS GSE85871 data showed 37 up-regulated genes and 48 down-regulated genes in cells following treatment with STA. Analysis of the data from the STITCH database indicated that RPS8 and EED were the target genes of STA. Treatment of PC12 cells with Aβ25-35 significantly lowered the cell viability (P < 0.05) and the expressions of RPS8 and EED at both the mRNA and protein levels (P < 0.05), and obviously inhibited the expression of apoptosis-related proteins Bcl-2 and p53 (P < 0.05). STA treatment of the cells significantly reversed the effect of Aβ25-35 and induced cell cycle arrest in G2/M phase, causing also significantly increases in the expression levels of RPS8, EED, Bcl-2 and p53 (P < 0.05). CONCLUSIONS STA plays an important role in inhibiting the apoptosis of PC12 cells induced by Aβ25-35 possibly by regulating RPS8 and EED expression to promote the expressions of Bcl-2 and p53.
Collapse
Affiliation(s)
- 良超 曲
- 南昌大学第一附属医院麻醉科,江西 南昌 330006Department of Anesthesia, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - 佳佳 黄
- 南昌大学医学院,江西 南昌 330006Medical School of Nanchang University, Nanchang 330006, China
| | - 明达 范
- 南昌大学医学院,江西 南昌 330006Medical School of Nanchang University, Nanchang 330006, China
| | - 雨辰 郝
- 南昌大学医学院,江西 南昌 330006Medical School of Nanchang University, Nanchang 330006, China
| | - 金秀 严
- 南昌大学第一附属医院麻醉科,江西 南昌 330006Department of Anesthesia, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
6
|
Vitamin D2 suppresses amyloid-β 25-35 induced microglial activation in BV2 cells by blocking the NF-κB inflammatory signaling pathway. Life Sci 2016; 161:37-44. [PMID: 27477351 DOI: 10.1016/j.lfs.2016.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 11/20/2022]
Abstract
AIMS Present emerging world is emphasizing the implication of vitamin D deficiency associated with development of inflammation and neurodegenerative disorder like Alzheimer's disease (AD). The chief neuropathological hallmark of AD is aggregation of amyloid-beta (Aβ) peptides surrounding microglial cells in human brain. Microglial activation plays a key role in inflammatory response and neuronal injury. Naturally abundant vitamin D2 (VD2) exhibiting anti-inflammatory activities are yet to explore more. This study has investigated the inhibitory effect of VD2 on inflammatory activities of BV2 microglial cells. MAIN METHODS Cellular compatibility of VD2 and Aβ25-35 protein in treated BV2 microglial cells were measured by CCK-8 assay. Induction of iNOS, COX-2 and NF-κB signaling cascade were measured by western blotting, whereas pro-inflammatory cytokines were measured by ELISA. In addition, generation of ROS was detected by fluorescence intensity. KEY FINDINGS Morphological observations showed that Aβ25-35 induced BV2 cells stimulation noticeably got reduced in VD2 pre-treated group at 24h time period. Anti-inflammatory activities of VD2 was observed demonstrating the inhibition of up-regulated iNOS and COX-2 protein expression further confirmed by attenuating the activated microglia released pro-inflammatory cytokines IL-1β, IL-6, TNF- α and ROS, while blocking the phosphorylation of NF-κB p65 in nucleus by preventing IκB-α degradation and phosphorylation in cytosol. SIGNIFICANCE The present study revealed that VD2 blocked the phosphorylation of NF-κB inflammatory signaling pathway in Aβ25-35 induced activated BV2 microglial cells by suppressing ROS generation and inflammatory cytokines. Our finding suggests that vitamin D2 has therapeutic potential against inflammation and Alzheimer's disease.
Collapse
|
7
|
Accardo A, Shalabaeva V, Di Cola E, Burghammer M, Krahne R, Riekel C, Dante S. Superhydrophobic Surfaces Boost Fibril Self-Assembly of Amyloid β Peptides. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20875-20884. [PMID: 26306595 DOI: 10.1021/acsami.5b06219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Amyloid β (Aβ) peptides are the main constituents of Alzheimer's amyloid plaques in the brain. Here we report how the unique microfluidic flows exerted by droplets sitting on superhydrophobic surfaces can influence the aggregation mechanisms of several Aβ fragments by boosting their fibril self-assembly. Aβ(25-35), Aβ(1-40), and Aβ(12-28) were dried both on flat hydrophilic surfaces (contact angle (CA) = 37.3°) and on nanostructured superhydrophobic ones (CA = 175.8°). By embedding nanoroughened surfaces on top of highly X-ray transparent Si3N4 membranes, it was possible to probe the solid residues by raster-scan synchrotron radiation X-ray microdiffraction (μXRD). As compared to residues obtained on flat Si3N4 membranes, a general enhancement of fibrillar material was detected for all Aβ fragments dried on superhydrophobic surfaces, with a particular emphasis on the shorter ones. Indeed, both Aβ(25-35) and Aβ(12-28) showed a marked crystalline cross-β phase with varying fiber textures. The homogeneous evaporation rate provided by these nanostructured supports, and the possibility to use transparent membranes, can open a wide range of in situ X-ray and spectroscopic characterizations of amyloidal peptides involved in neurodegenerative diseases and for the fabrication of amyloid-based nanodevices.
Collapse
Affiliation(s)
- Angelo Accardo
- Istituto Italiano di Tecnologia , Via Morego 30, Genova 16163, Italy
| | | | - Emanuela Di Cola
- The European Synchrotron, CS40220 , 38043 Cedex 9 Grenoble, France
| | - Manfred Burghammer
- The European Synchrotron, CS40220 , 38043 Cedex 9 Grenoble, France
- Department of Analytical Chemistry, Ghent University , Krijgslaan 281, Ghent 9000, Belgium
| | - Roman Krahne
- Istituto Italiano di Tecnologia , Via Morego 30, Genova 16163, Italy
| | - Christian Riekel
- The European Synchrotron, CS40220 , 38043 Cedex 9 Grenoble, France
| | - Silvia Dante
- Istituto Italiano di Tecnologia , Via Morego 30, Genova 16163, Italy
| |
Collapse
|
8
|
Kar S, Tai Y. Marked difference in self-assembly, morphology, and cell viability of positional isomeric dipeptides generated by reversal of sequence. SOFT MATTER 2015; 11:1345-1351. [PMID: 25574757 DOI: 10.1039/c4sm02537g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study two positional isomeric dipeptides Boc-m-ABA-Aib-OMe () and Boc-Aib-m-ABA-OMe () synthesized by reversal of the positions of two rigid amino acids (m-ABA: m-aminobenzoic acid, Aib: α-aminoisobutyric acid) showed marked difference in morphology under the same environmental conditions. Investigation of single crystal structures reveals the difference in crystal packing and higher order self-assembly pattern for both the isomeric peptides, which might be the responsible factor for their different morphological patterns. Moreover, these isomeric dipeptides have produced different cellular viability effects towards normal bone cells. These two peptides would have utilities in the model study of isomeric peptides/proteins, where morphological difference under identical conditions brings changes in their individual bio-activities and where the reversal of sequence causes different cellular viability and generates health hazard.
Collapse
Affiliation(s)
- Sudeshna Kar
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Taipei-106, Taiwan.
| | | |
Collapse
|
9
|
Labbé JF, Lefèvre T, Guay-Bégin AA, Auger M. Structure and membrane interactions of the β-amyloid fragment 25-35 as viewed using spectroscopic approaches. Phys Chem Chem Phys 2013; 15:7228-39. [PMID: 23572139 DOI: 10.1039/c3cp44623a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The β-amyloid fragment peptide 25-35 (Aβ(25-35)) is recognized as the cytotoxic sequence of the parent peptide Aβ. However, it remains unclear whether its neurotoxicity originates from its fibrillar form, how it interacts with lipid membranes, and whether cholesterol modulates these interactions. These questions have been addressed at a molecular level using various microscopic and spectroscopic techniques. The data show that Aβ(25-35) forms protofilaments at pH 7.4 at a concentration of 5 mM in the absence and presence of DMPC/DMPG model membranes. The peptide adopts a predominant aggregated β-sheet conformation under these conditions. However, as the peptide concentration decreases, the β-sheet structure tends to disappear for the benefit of β-turns, suggesting that the peptide association is reversible. The β-sheet structure formed by Aβ(25-35) appears to be atypical and characterized by the absence of intermolecular dipolar coupling and by a parallel strand configuration. The data show that Aβ(25-35)-phospholipid interactions are characterized by an increase in the conformational order of the lipid acyl chains and a change in the fluidity/elasticity of the bilayers. Concomitantly, the peptide seems to lose a few β-sheet structures, which suggests that the interactions between Aβ(25-35) and DMPC/DMPG membranes are partly driven by peptide concentration. Interactions indeed seem to occur when part of the peptides is not involved in protofilaments and increase as the proportion of the free peptide species increases. The interactions are very similar in the presence of cholesterol, except that the concentration effect of Aβ(25-35) is cancelled, suggesting that Chol limits the penetration of the peptide inside the bilayers.
Collapse
Affiliation(s)
- Jean-François Labbé
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Université Laval, Québec, Québec, Canada
| | | | | | | |
Collapse
|
10
|
Chen DL, Zhang P, Lin L, Shuai O, Zhang HM, Liu SH, Wang JY. Protective effect of Bajijiasu against β-amyloid-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 2013; 33:837-50. [PMID: 23812758 PMCID: PMC11497914 DOI: 10.1007/s10571-013-9950-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/07/2013] [Indexed: 02/06/2023]
Abstract
Beta-amyloid peptide (Aβ), a major protein component of senile plaques associated with Alzheimer's disease (AD), is also directly neurotoxic. Mitigation of Aβ-induced neurotoxicity is thus a possible therapeutic approach to delay or prevent onset and progression of AD. This study evaluated the protective effect of Bajijiasu (β- D-fructofuranosyl (2-2) β- D-fructofuranosyl), a dimeric fructose isolated from the Chinese herb Radix Morinda officinalis, on Aβ-induced neurotoxicity in pheochromocytoma (PC12) cells. Bajijiasu alone had no endogenous neurotoxicity up to 200 μM. Brief pretreatment with 10-40 μM Bajijiasu (2 h) significantly reversed the reduction in cell viability induced by subsequent 24 h exposure to Aβ25-35 (21 μM) as measured by MTT and LDH assays, and reduced Aβ25-35-induced apoptosis as indicated by reduced annexin V-EGFP staining. Bajijiasu also decreased the accumulation of intracellular reactive oxygen species and the lipid peroxidation product malondialdehyde in PC12 cells, upregulated expression of glutathione reductase and superoxide dismutase, prevented depolarization of the mitochondrial membrane potential (Ψm), and blocked Aβ25-35-induced increases in [Ca(2+)] i . Furthermore, Bajijiasu reversed Aβ25-35-induced changes in the expression levels of p21, CDK4, E2F1, Bax, NF-κB p65, and caspase-3. Bajijiasu is neuroprotective against Aβ25-35-induced neurotoxicity in PC12 cells, likely by protecting against oxidative stress and ensuing apoptosis.
Collapse
Affiliation(s)
- Di-Ling Chen
- Southern Institute of Pharmaceutical Research, South China Normal University, Guangzhou, People’s Republic of China
| | - Peng Zhang
- College of Chinese Materia Medical, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Li Lin
- College of Chinese Materia Medical, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Ou Shuai
- College of Chinese Materia Medical, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - He-Ming Zhang
- Southern Institute of Pharmaceutical Research, South China Normal University, Guangzhou, People’s Republic of China
| | - Song-Hao Liu
- Southern Institute of Pharmaceutical Research, South China Normal University, Guangzhou, People’s Republic of China
| | - Jin-Yu Wang
- College of Chinese Materia Medical, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
11
|
Liaw C, Tung CW, Ho SY. Prediction and analysis of antibody amyloidogenesis from sequences. PLoS One 2013; 8:e53235. [PMID: 23308169 PMCID: PMC3538782 DOI: 10.1371/journal.pone.0053235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 11/27/2012] [Indexed: 11/23/2022] Open
Abstract
Antibody amyloidogenesis is the aggregation of soluble proteins into amyloid fibrils that is one of major causes of the failures of humanized antibodies. The prediction and prevention of antibody amyloidogenesis are helpful for restoring and enhancing therapeutic effects. Due to a large number of possible germlines, the existing method is not practical to predict sequences of novel germlines, which establishes individual models for each known germline. This study proposes a first automatic and across-germline prediction method (named AbAmyloid) capable of predicting antibody amyloidogenesis from sequences. Since the amyloidogenesis is determined by a whole sequence of an antibody rather than germline-dependent properties such as mutated residues, this study assess three types of germline-independent sequence features (amino acid composition, dipeptide composition and physicochemical properties). AbAmyloid using a Random Forests classifier with dipeptide composition performs well on a data set of 12 germlines. The within- and across-germline prediction accuracies are 83.10% and 83.33% using Jackknife tests, respectively, and the novel-germline prediction accuracy using a leave-one-germline-out test is 72.22%. A thorough analysis of sequence features is conducted to identify informative properties for further providing insights to antibody amyloidogenesis. Some identified informative physicochemical properties are amphiphilicity, hydrophobicity, reverse turn, helical structure, isoelectric point, net charge, mutability, coil, turn, linker, nuclear protein, etc. Additionally, the numbers of ubiquitylation sites in amyloidogenic and non-amyloidogenic antibodies are found to be significantly different. It reveals that antibodies less likely to be ubiquitylated tend to be amyloidogenic. The method AbAmyloid capable of automatically predicting antibody amyloidogenesis of novel germlines is implemented as a publicly available web server at http://iclab.life.nctu.edu.tw/abamyloid.
Collapse
Affiliation(s)
- Chyn Liaw
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chun-Wei Tung
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
12
|
Funke SA, Willbold D. Peptides for therapy and diagnosis of Alzheimer's disease. Curr Pharm Des 2012; 18:755-67. [PMID: 22236121 PMCID: PMC3426787 DOI: 10.2174/138161212799277752] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/09/2011] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with devastating effects. The greatest risk factor to develop AD is age. Today, only symptomatic therapies are available. Additionally, AD can be diagnosed with certainty only post mortem, whereas the diagnosis "probable AD" can be established earliest when severe clinical symptoms appear. Specific neuropathological changes like neurofibrillary tangles and amyloid plaques define AD. Amyloid plaques are mainly composed of the amyloid-βpeptide (Aβ). Several lines of evidence suggest that the progressive concentration and subsequent aggregation and accumulation of Aβ play a fundamental role in the disease progress. Therefore, substances which bind to Aβ and influence aggregation thereof are of great interest. An enormous number of organic substances for therapeutic purposes are described. This review focuses on peptides developed for diagnosis and therapy of AD and discusses the pre- and disadvantages of peptide drugs.
Collapse
Affiliation(s)
| | - Dieter Willbold
- Forschungszentrum Jülich, ICS-6, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Inouye H, Gleason KA, Zhang D, Decatur SM, Kirschner DA. Differential effects of Phe19 and Phe20 on fibril formation by amyloidogenic peptide A beta 16-22 (Ac-KLVFFAE-NH2). Proteins 2010; 78:2306-21. [PMID: 20544966 DOI: 10.1002/prot.22743] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The sequence KLVFFAE (A beta 16-22) in Alzheimer's beta-amyloid is thought to be a core beta-structure that could act as a template for folding other parts of the polypeptide or molecules into fibrillar assemblies rich in beta-sheet. To elucidate the mechanism of the initial folding process, we undertook combined X-ray fiber/powder diffraction and infrared (IR) spectroscopy to analyze lyophilized A beta 16-22 and solubilized/dried peptide containing nitrile probes at F19 and/or F20. Solubilized/dried wild-type (WT) A beta 16-22 and the peptide containing cyanophenylalanine at F19 (19CN) or at F20 (20CN) gave fiber patterns consistent with slab-like beta-crystallites that were cylindrically averaged around the axis parallel to the polypeptide chain direction. The WT and 19CN assemblies showed 30-A period arrays arising from the stacking of the slabs along the peptide chain direction, whereas the 20CN assemblies lacked any such stacking. The electron density projection along the peptide chain direction indicated similar side-chain dispositions for WT and 20CN, but not for 19CN. These X-ray results and modeling imply that in the assembly of WT A beta 16-22 the F19 side chain is localized within the intersheet space and is involved in hydrophobic contact with amino acids across the intersheet space, whereas the F20 side chain localized near the slab surface is less important for the intersheet interaction, but involved in slab stacking. IR observations for the same peptides in dilute solution showed a greater degree of hydrogen bonding for the nitrile groups in 20CN than in 19CN, supporting this interpretation.
Collapse
Affiliation(s)
- Hideyo Inouye
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | |
Collapse
|
14
|
Dutta A, Chattopadhyay D, Pramanik A. Self-assembling tripeptide as organogelator: the role of aromatic π-stacking interactions in gel formation. Supramol Chem 2010. [DOI: 10.1080/10610270903254142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Arpita Dutta
- a Department of Chemistry , University of Calcutta , 92, A.P.C. Road, Kolkata, 700009, India
| | - Dipankar Chattopadhyay
- b Department of Polymer Science and Technology , University of Calcutta , 92, A.P.C. Road, Kolkata, 700009, India
| | - Animesh Pramanik
- a Department of Chemistry , University of Calcutta , 92, A.P.C. Road, Kolkata, 700009, India
| |
Collapse
|
15
|
Thakur G, Micic M, Leblanc RM. Surface chemistry of Alzheimer's disease: a Langmuir monolayer approach. Colloids Surf B Biointerfaces 2009; 74:436-56. [PMID: 19726167 DOI: 10.1016/j.colsurfb.2009.07.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 12/14/2022]
Abstract
Amyloid beta (1-40) and (1-42) peptides are the major constituents of hallmark senile plaques found in Alzheimer's disease (AD) patients. Study of aggregation of Abeta (1-40) and (1-42) peptides and the truncated Abeta fragments could lead towards the mechanism of AD. Langmuir monolayer approach is one of the excellent methods to investigate the mechanism and origin of AD. Particularly, to study the steps involved in the formation and assembly of beta-sheet structures leading to formation of amyloid fibrils. Surface pressure- and surface potential-area isotherms provide information regarding the nature of short-range and long-range interactions between the molecules especially the lipids and the Abeta peptides. Spectroscopic methods like IRRAS, PM-IRRAS, FTIR-ATR, and GIXD at the air-water interface provide insight into the structural characterization, and orientation of the molecules in the Langmuir monolayer.
Collapse
Affiliation(s)
- Garima Thakur
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, United States
| | | | | |
Collapse
|
16
|
Hashimoto M, Shahdat HM, Katakura M, Tanabe Y, Gamoh S, Miwa K, Shimada T, Shido O. Effects of docosahexaenoic acid on in vitro amyloid beta peptide 25–35 fibrillation. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:289-96. [DOI: 10.1016/j.bbalip.2009.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/22/2008] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
|
17
|
Pérez de Vega MJ, Baeza JL, García-López MT, Vila-Perelló M, Jiménez-Castells C, Simón AM, Frechilla D, del Río J, Gutiérrez-Gallego R, Andreu D, González-Muñiz R. Synthesis and biological properties of β-turned Aβ31–35 constrained analogues. Bioorg Med Chem Lett 2008; 18:2078-82. [DOI: 10.1016/j.bmcl.2008.01.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
|
18
|
Dutt A, Dutta A, Mondal R, Spencer EC, Howard JA, Pramanik A. Studies of β-turn opening with model peptides containing non-coded α-amino isobutyric acid. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.07.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Luo X, Inouye H, Gross AAR, Hidalgo MM, Sharma D, Lee D, Avila RL, Salmona M, Kirschner DA. Cytoplasmic domain of zebrafish myelin protein zero: adhesive role depends on beta-conformation. Biophys J 2007; 93:3515-28. [PMID: 17693467 PMCID: PMC2072062 DOI: 10.1529/biophysj.107.112771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Solution spectroscopy studies on the cytoplasmic domain of human myelin protein zero (P0) (hP0-cyt) suggest that H-bonding between beta-strands from apposed molecules is likely responsible for the tight cytoplasmic apposition in compact myelin. As a follow-up to these findings, in the current study we used circular dichroism and x-ray diffraction to analyze the same type of model membranes previously used for hP0-cyt to investigate the molecular mechanism underlying the zebrafish cytoplasmic apposition. This space is significantly narrower in teleosts compared with that in higher vertebrates, and can be accounted for in part by the much shorter cytoplasmic domain in the zebrafish protein (zP0-cyt). Circular dichroism measurements on zP0-cyt showed similar structural characteristics to those of hP0-cyt, i.e., the protein underwent a beta-->alpha structural transition at lipid/protein (L/P) molar ratios >50, and adopted a beta-conformation at lower L/P molar ratios. X-ray diffraction was carried out on lipid vesicle solutions with zP0-cyt before and after dehydration to study the effect of protein on membrane lipid packing. Solution diffraction revealed the electron-density profile of a single membrane bilayer. Diffraction patterns of dried samples suggested a multilamellar structure with the beta-folded P0-cyt located at the intermembrane space. Our findings support the idea that the adhesive role of P0 at the cytoplasmic apposition in compact myelin depends on the cytoplasmic domain of P0 being in the beta-conformation.
Collapse
Affiliation(s)
- XiaoYang Luo
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jahnke E, Millerioux AS, Severin N, Rabe JP, Frauenrath H. Functional, Hierarchically Structured Poly(diacetylene)s via Supramolecular Self-Assembly. Macromol Biosci 2007; 7:136-43. [PMID: 17295400 DOI: 10.1002/mabi.200600226] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The supramolecular self-assembly of macromonomers may serve as a first step to prepare well-defined, highly functionalized, hierarchically structured, conjugated polymers. Functional diacetylene macromonomers equipped with an oligopeptide segment designed to promote self-assembly into parallel beta-sheet type structures and a polydisperse, aliphatic coil segment to prevent global ordering give rise to supramolecular polymers with a tubular double-helical quarternary structure in organic solution. These supramolecular polymers may then be converted into the corresponding poly(diacetylene)s by UV irradiation under retention of their hierarchical structure.
Collapse
Affiliation(s)
- Eike Jahnke
- ETH Zurich, Department of Materials, Wolfgang-Pauli-Strasse 10, HCI H515, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Baumketner A, Shea JE. The Structure of the Alzheimer Amyloid β 10-35 Peptide Probed through Replica-Exchange Molecular Dynamics Simulations in Explicit Solvent. J Mol Biol 2007; 366:275-85. [PMID: 17166516 DOI: 10.1016/j.jmb.2006.11.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 10/29/2006] [Accepted: 11/03/2006] [Indexed: 11/28/2022]
Abstract
The conformational states sampled by the Alzheimer amyloid beta (10-35) (Abeta 10-35) peptide were probed using replica-exchange molecular dynamics (REMD) simulations in explicit solvent. The Abeta 10-35 peptide is a fragment of the full-length Abeta 40/42 peptide that possesses many of the amyloidogenic properties of its full-length counterpart. Under physiological temperature and pressure, our simulations reveal that the Abeta 10-35 peptide does not possess a single unique folded state. Rather, this peptide exists as a mixture of collapsed globular states that remain in rapid dynamic equilibrium with each other. This conformational ensemble is dominated by random coil and bend structures with insignificant presence of an alpha-helical or beta-sheet structure. The 3D structure of Abeta 10-35 is seen to be defined by a salt bridge formed between the side-chains of K28 and D23. This salt bridge is also observed in Abeta fibrils and our simulations suggest that monomeric conformations of Abeta 10-35 contain pre-folded structural motifs that promote rapid aggregation of this peptide.
Collapse
Affiliation(s)
- Andrij Baumketner
- Department of Physics and Optical Science, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | | |
Collapse
|
22
|
Ji X, Naistat D, Li C, Orbulesco J, Leblanc RM. An alternative approach to amyloid fibrils morphology: CdSe/ZnS quantum dots labelled beta-amyloid peptide fragments Abeta (31-35), Abeta (1-40) and Abeta (1-42). Colloids Surf B Biointerfaces 2006; 50:104-11. [PMID: 16766161 DOI: 10.1016/j.colsurfb.2006.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/09/2006] [Accepted: 02/12/2006] [Indexed: 11/20/2022]
Abstract
Abeta (31-35) peptide and control peptides as well as full length Abeta (1-40) and Abeta (1-42) peptides were labelled with luminescent CdSe/ZnS quantum dots (QDs) to observe the morphology of amyloid fibers. A comparison was made between QDs and an organic dye, namely Dansyl group, which showed that the QDs present a much better contrast for imaging than the organic dye.
Collapse
Affiliation(s)
- Xiaojun Ji
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Room 315, Coral Gables, FL 33124, USA.
| | | | | | | | | |
Collapse
|
23
|
Röhrig UF, Laio A, Tantalo N, Parrinello M, Petronzio R. Stability and structure of oligomers of the Alzheimer peptide Abeta16-22: from the dimer to the 32-mer. Biophys J 2006; 91:3217-29. [PMID: 16920832 PMCID: PMC1614475 DOI: 10.1529/biophysj.106.088542] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases are associated with amyloid fibrils formed by different polypeptides. We probe the structure and stability of oligomers of different sizes of the fragment Abeta(16-22) of the Alzheimer beta-amyloid peptide using atomic-detail molecular dynamics simulations with explicit solvent. We find that only large oligomers form a stable beta-sheet aggregate, the minimum nucleus size being of the order of 8-16 peptides. This effect is attributed to better hydrophobic contacts and a better shielding of backbone-backbone hydrogen bonds from the solvent in bigger assemblies. Moreover, the observed stability of beta-sheet aggregates with a different number of layers can be explained on the basis of their solvent-accessible surface area. Depending on the stacking interface between the sheets, we observe straight or twisted structures, which could be linked to the experimentally observed polymorphism of amyloid fibrils. To compare our 32-mer structure to experimental data, we calculate its x-ray diffraction pattern. Good agreement is found between experimentally and theoretically determined reflections, suggesting that our model indeed closely resembles the structures found in vitro.
Collapse
Affiliation(s)
- Ute F Röhrig
- Centro Studi e Ricerche Enrico Fermi, Compendio Viminale, Rome, Italy.
| | | | | | | | | |
Collapse
|
24
|
Jahnke E, Lieberwirth I, Severin N, Rabe JP, Frauenrath H. Topochemical Polymerization in Supramolecular Polymers of Oligopeptide-Functionalized Diacetylenes. Angew Chem Int Ed Engl 2006; 45:5383-6. [PMID: 16856199 DOI: 10.1002/anie.200600610] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eike Jahnke
- ETH Zürich, Departement Materialien, Wolfgang-Pauli-Strasse 10, HCI H515, 8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Jahnke E, Lieberwirth I, Severin N, Rabe JP, Frauenrath H. Topochemische Polymerisation in supramolekularen Polymeren aus Diacetylenen mit Oligopeptid-Substituenten. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600610] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Yan P, Hu X, Song H, Yin K, Bateman RJ, Cirrito JR, Xiao Q, Hsu FF, Turk JW, Xu J, Hsu CY, Holtzman DM, Lee JM. Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ. J Biol Chem 2006; 281:24566-74. [PMID: 16787929 DOI: 10.1074/jbc.m602440200] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pathological hallmark of Alzheimer disease is the senile plaque principally composed of tightly aggregated amyloid-beta fibrils (fAbeta), which are thought to be resistant to degradation and clearance. In this study, we explored whether proteases capable of degrading soluble Abeta (sAbeta) could degrade fAbeta as well. We demonstrate that matrix metalloproteinase-9 (MMP-9) can degrade fAbeta and that this ability is not shared by other sAbeta-degrading enzymes examined, including endothelin-converting enzyme, insulin-degrading enzyme, and neprilysin. fAbeta was decreased in samples incubated with MMP-9 compared with other proteases, assessed using thioflavin-T. Furthermore, fAbeta breakdown with MMP-9 but not with other proteases was demonstrated by transmission electron microscopy. Proteolytic digests of purified fAbeta were analyzed with matrix-assisted laser desorption ionization time-of-flight mass spectrometry to identify sites of Abeta that are cleaved during its degradation. Only MMP-9 digests contained fragments (Abeta(1-20) and Abeta(1-30)) from fAbeta(1-42) substrate; the corresponding cleavage sites are thought to be important for beta-pleated sheet formation. To determine whether MMP-9 can degrade plaques formed in vivo, fresh brain slices from aged APP/PS1 mice were incubated with proteases. MMP-9 digestion resulted in a decrease in thioflavin-S (ThS) staining. Consistent with a role for endogenous MMP-9 in this process in vivo, MMP-9 immunoreactivity was detected in astrocytes surrounding amyloid plaques in the brains of aged APP/PS1 and APPsw mice, and increased MMP activity was selectively observed in compact ThS-positive plaques. These findings suggest that MMP-9 can degrade fAbeta and may contribute to ongoing clearance of plaques from amyloid-laden brains.
Collapse
Affiliation(s)
- Ping Yan
- Department of Neurology and the Hope Center for Neurological Disorders, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shemer I, Holmgren C, Min R, Fülöp L, Zilberter M, Sousa KM, Farkas T, Härtig W, Penke B, Burnashev N, Tanila H, Zilberter Y, Harkany T. Non-fibrillar β-amyloid abates spike-timing-dependent synaptic potentiation at excitatory synapses in layer 2/3 of the neocortex by targeting postsynaptic AMPA receptors. Eur J Neurosci 2006; 23:2035-47. [PMID: 16630051 DOI: 10.1111/j.1460-9568.2006.04733.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cognitive decline in Alzheimer's disease (AD) stems from the progressive dysfunction of synaptic connections within cortical neuronal microcircuits. Recently, soluble amyloid beta protein oligomers (Abeta(ol)s) have been identified as critical triggers for early synaptic disorganization. However, it remains unknown whether a deficit of Hebbian-related synaptic plasticity occurs during the early phase of AD. Therefore, we studied whether age-dependent Abeta accumulation affects the induction of spike-timing-dependent synaptic potentiation at excitatory synapses on neocortical layer 2/3 (L2/3) pyramidal cells in the APPswe/PS1dE9 transgenic mouse model of AD. Synaptic potentiation at excitatory synapses onto L2/3 pyramidal cells was significantly reduced at the onset of Abeta pathology and was virtually absent in mice with advanced Abeta burden. A decreased alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/N-methyl-D-aspartate (NMDA) receptor-mediated current ratio implicated postsynaptic mechanisms underlying Abeta synaptotoxicity. The integral role of Abeta(ol)s in these processes was verified by showing that pretreatment of cortical slices with Abeta((25-35)ol)s disrupted spike-timing-dependent synaptic potentiation at unitary connections between L2/3 pyramidal cells, and reduced the amplitude of miniature excitatory postsynaptic currents therein. A robust decrement of AMPA, but not NMDA, receptor-mediated currents in nucleated patches from L2/3 pyramidal cells confirmed that Abeta(ol)s perturb basal glutamatergic synaptic transmission by affecting postsynaptic AMPA receptors. Inhibition of AMPA receptor desensitization by cyclothiazide significantly increased the amplitude of excitatory postsynaptic potentials evoked by afferent stimulation, and rescued synaptic plasticity even in mice with pronounced Abeta pathology. We propose that soluble Abeta(ol)s trigger the diminution of synaptic plasticity in neocortical pyramidal cell networks during early stages of AD pathogenesis by preferentially targeting postsynaptic AMPA receptors.
Collapse
Affiliation(s)
- Isaac Shemer
- Department of Neuroscience, Retzius väg 8:A3-417, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sharma D, Shinchuk LM, Inouye H, Wetzel R, Kirschner DA. Polyglutamine homopolymers having 8-45 residues form slablike beta-crystallite assemblies. Proteins 2006; 61:398-411. [PMID: 16114051 DOI: 10.1002/prot.20602] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
At least nine inherited neurodegenerative diseases, including Huntington's, are caused by poly(L-glutamine) (polyGln, polyQ) expansions > 35-40 repeats in widely or ubiquitously expressed proteins. Except for their expansions, these proteins have no sequence homologies, and their functions mostly remain unknown. Although each disease is characterized by a distinct pathology specific to a subset of neuronal cells, the formation of neuronal intranuclear aggregates containing protein with an expanded polyQ is the hallmark and common feature to most polyQ disorders. The neurodegeneration is thought to be caused by a toxic gain of function that occurs at the protein level and depends on the length of the expansion: Longer repeats cause earlier age of onset and more severe symptoms. To address whether there is a structural difference between polyQ having < 40 versus > 40 residues, we undertook an X-ray fiber diffraction study of synthetic polyQ peptides having varying numbers of residues: Ac-Q8-NH2, D2Q15K2, K2Q28K2, and K2Q45K2. These particular lengths bracket both the range of normalcy (9-36 repeats) and the pathological (45 repeats), and therefore could be indicative of the structural changes expected in expanded polyQ domains. Contrary to expectations of different length-dependent morphologies, we accounted for all the X-ray patterns by slablike, beta-sheet structures, approximately 20 A thick in the beta-chain direction, all having similar monoclinic lattices. Moreover, the slab thickness indicates that K2Q45K2, rather than forming a water-filled nanotube, must form multiple reverse turns.
Collapse
Affiliation(s)
- Deepak Sharma
- Biology Department, Boston College, Chestnut Hill, Massachusetts, USA
| | | | | | | | | |
Collapse
|
29
|
Inouye H, Kirschner DA. X-Ray fiber and powder diffraction of PrP prion peptides. ADVANCES IN PROTEIN CHEMISTRY 2006; 73:181-215. [PMID: 17190614 DOI: 10.1016/s0065-3233(06)73006-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A conformational change from the alpha-helical, cellular form of prion to the beta-sheet, scrapie (infectious) form is the central event for prion replication. The folding mechanism underlying this conformational change has not yet been deciphered. Here, we review prion pathology and summarize X-ray fiber and powder diffraction studies on the N-terminal fragments of prion protein and on short sequences that initiate the beta-assembly for various fibrils, including poly(L-alanine) and poly(L-glutamine). We discuss how the quarter-staggered beta-sheet assembly (like in polyalanine) and polar-zipper beta-sheet formation (like in polyglutamine) may be involved in the formation of the scrapie form of prion.
Collapse
Affiliation(s)
- Hideyo Inouye
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | |
Collapse
|
30
|
Abstract
Amyloid fibrils are elongated, insoluble protein aggregates deposited in vivo in amyloid diseases, and amyloid-like fibrils are formed in vitro from soluble proteins. Both of these groups of fibrils, despite differences in the sequence and native structure of their component proteins, share common properties, including their core structure. Multiple models have been proposed for the common core structure, but in most cases, atomic-level structural details have yet to be determined. Here we review several structural models proposed for amyloid and amyloid-like fibrils and relate features of these models to the common fibril properties. We divide models into three classes: Refolding, Gain-of-Interaction, and Natively Disordered. The Refolding models propose structurally distinct native and fibrillar states and suggest that backbone interactions drive fibril formation. In contrast, the Gain-of-Interaction models propose a largely native-like structure for the protein in the fibril and highlight the importance of specific sequences in fibril formation. The Natively Disordered models have aspects in common with both Refolding and Gain-of-Interaction models. While each class of model suggests explanations for some of the common fibril properties, and some models, such as Gain-of-Interaction models with a cross-beta spine, fit a wider range of properties than others, no one class provides a complete explanation for all amyloid fibril behavior.
Collapse
Affiliation(s)
- Rebecca Nelson
- Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, USA
| | | |
Collapse
|
31
|
Tartaglia GG, Cavalli A, Pellarin R, Caflisch A. Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Sci 2005; 14:2723-34. [PMID: 16195556 PMCID: PMC2253302 DOI: 10.1110/ps.051471205] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The reliable identification of beta-aggregating stretches in protein sequences is essential for the development of therapeutic agents for Alzheimer's and Parkinson's diseases, as well as other pathological conditions associated with protein deposition. Here, a model based on physicochemical properties and computational design of beta-aggregating peptide sequences is shown to be able to predict the aggregation rate over a large set of natural polypeptide sequences. Furthermore, the model identifies aggregation-prone fragments within proteins and predicts the parallel or anti-parallel beta-sheet organization in fibrils. The model recognizes different beta-aggregating segments in mammalian and nonmammalian prion proteins, providing insights into the species barrier for the transmission of the prion disease.
Collapse
Affiliation(s)
- Gian Gaetano Tartaglia
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
32
|
Dutt A, Drew MGB, Pramanik A. beta-Sheet mediated self-assembly of dipeptides of omega-amino acids and remarkable fibrillation in the solid state. Org Biomol Chem 2005; 3:2250-4. [PMID: 16010358 DOI: 10.1039/b504112k] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single crystal X-ray diffraction studies show that the extended structure of dipeptide Boc-beta-Ala-m-ABA-OMe (m-ABA: meta-aminobenzoic acid) self-assembles in the solid state by intermolecular hydrogen bonding to create an infinite parallel beta-sheet structure. In dipeptide Boc-gamma-Abu-m-ABA-OMe (gamma-Abu: gamma-aminobutyric acid), two such parallel beta-sheets are further cross-linked by intermolecular hydrogen bonding through m-aminobenzoic acid moieties. SEM (scanning electron microscopy) studies reveal that both the peptides and form amyloid-like fibrils in the solid state. The fibrils are also found to be stained readily by Congo red, a characteristic feature of the amyloid fiber whose accumulation causes several fatal diseases such as Alzheimer's, prion-protein etc.
Collapse
Affiliation(s)
- Anita Dutt
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | | | | |
Collapse
|
33
|
Harris JR. The contribution of microscopy to the study of Alzheimer's disease, amyloid plaques and Abeta fibrillogenesis. Subcell Biochem 2005; 38:1-44. [PMID: 15709471 DOI: 10.1007/0-387-23226-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
A broad survey is presented in this chapter, dealing with the impact that microscopy has made to the study of Alzheimer's disease, amyloid plaques and amyloid-beta fibrillogenesis. This includes classical light microscopy and the modem immunolabelling and confocal microscopies, together with the contribution of transmission electron microscopy and atomic force microscopy. Whilst usefully standing alone, the individual microscopies often contribute most effectively when they are integrated with cellular, biophysical and molecular approaches.
Collapse
Affiliation(s)
- J Robin Harris
- Institute of Zoology, University of Mainz, D-55099 Mainz, Germany
| |
Collapse
|
34
|
Abstract
The fragment A beta(25-35) of the Alzheimer's amyloid beta-peptide, like its full-length peptide A beta(1-42), has shown neurotoxic activities in cultured cells. The conformational preference of this important peptide is examined here in solution, gel, and film states (obtained with organic and aqueous solvents) by vibrational circular dichroism spectroscopy for the first time. For comparative studies, vibrational absorption and electronic circular dichroism measurements were also carried out under identical conditions. The peptide was found to adopt beta-sheet and beta-turn structures, with their relative proportions changing in different environments.
Collapse
Affiliation(s)
- Ganesh Shanmugam
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
35
|
Beta-amyloid-derived pentapeptide RIIGLa inhibits Abeta(1-42) aggregation and toxicity. Biochem Biophys Res Commun 2004; 324:64-9. [PMID: 15464983 DOI: 10.1016/j.bbrc.2004.09.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Indexed: 12/20/2022]
Abstract
Pr-IIGL(a), a derivative of the tetrapeptide beta-amyloid 31-34 (Abeta(31-34)), exerts controversial effects: it is toxic in a neuroblastoma culture, but it protects glial cells from the cytotoxic action of Abeta(1-42). For an understanding of this phenomenon, a new pentapeptide, RIIGL(a) was synthetized, and both compounds were studied by different physicochemical and biological methods. Transmission electron microscopic (TEM) studies revealed that Pr-IIGL(a) forms fibrillar aggregates, whereas RIIGL(a) does not form fibrils. Congo red binding studies furnished the same results. Aggregated Pr-IIGL(a) acts as a cytotoxic agent in neuroblastoma cultures, but RIIGL(a) does not display inherent toxicity. RIIGL(a) co-incubated with Abeta(1-42) inhibits the formation of mature amyloid fibres (TEM studies) and reduces the cytotoxic effect of fibrillar Abeta(1-42). These results indicate that RIIGL(a) is an effective inhibitor of both the aggregation and the toxic effects of Abeta(1-42) and can serve as a lead compound for the design of novel neuroprotective peptidomimetics.
Collapse
|
36
|
Satheeshkumar KS, Murali J, Jayakumar R. Assemblages of prion fragments: novel model systems for understanding amyloid toxicity. J Struct Biol 2004; 148:176-93. [PMID: 15477098 DOI: 10.1016/j.jsb.2004.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 05/10/2004] [Indexed: 11/21/2022]
Abstract
We report the conformational and toxic properties of two novel fibril-forming prion amyloid sequences, GAVVGGLG (PrP(119-126)) and VVGGLGG (PrP(121-127)). The conformational preferences of these fragments were studied in differing microenvironments of TFE/water mixtures and SDS solution. Interestingly, with an increase in TFE concentration, PrP(119-126) showed a helical conformational propensity, whereas PrP(121-127) adopted a more random coil structure. In 5% SDS, PrP(119-126) showed more alpha-helical content than in TFE solution, and PrP(121-127) exhibited a predominantly random coil conformation. However, both peptides took a random coil conformation in water, and over time the random coil transformed into a beta-sheet structure with a significant percentage of helical conformation and beta-turn structure in PrP(119-126) and PrP(121-127), respectively, as observed with CD spectroscopy. The aged fibrils of PrP(119-126) were insoluble in SDS, and PrP(121-127) was extractable with SDS solution. These fibrils were characterized by transmission electron microscopy. Both PrP(119-126) and PrP(121-127) formed stable monolayer's consisting of multimeric assemblages at the air-water interface. Monomeric PrP(119-126) was more toxic to astrocytes than the control Abeta peptide; however, the fibrillar form of PrP(119-126) was less toxic to astrocytes. PrP(121-127) elicited moderate toxicity in both soluble and fibrillar forms on astrocytes. Furthermore, quenching experiments using acroyl-labeled PrP(119-126) and PrP(121-127) with eosin-labeled synaptosomal membrane revealed that these prion fragments bind to anion-exchange protein. The binding of PrP(119-126) and PrP(121-127) with a membrane microdomain (lipid raft) was also analyzed using pyrenated derivatives. We conclude that the formation of PrP(119-126) and PrP(121-127) fibrils is a concentration-dependent process that involves coil to sheet conversion with aging. PrP(119-126), the sequence with intrinsic helical propensity, is more toxic in monomer form, and the fibril formation in this case seems to be protective to cells. For PrP(121-127), the SDS-soluble fibrils are more cytotoxic, indicating that a higher order assemblage structure is required for cytotoxic activity of this peptide.
Collapse
MESH Headings
- Amyloid/chemistry
- Amyloid/toxicity
- Amyloid beta-Peptides/chemistry
- Animals
- Astrocytes/metabolism
- Chromatography, Gel
- Chromatography, Ion Exchange
- Circular Dichroism
- Disease Models, Animal
- Lipids/chemistry
- Membrane Microdomains
- Microscopy, Electron, Transmission
- Peptide Fragments/chemistry
- Peptides/chemistry
- Prions/chemistry
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Pyrenes/chemistry
- Rats
- Rats, Wistar
- Sodium Dodecyl Sulfate/chemistry
- Spectrometry, Fluorescence
- Spectroscopy, Fourier Transform Infrared
- Synaptosomes/metabolism
- Temperature
- Tetrazolium Salts/pharmacology
- Thiazoles/pharmacology
Collapse
Affiliation(s)
- K S Satheeshkumar
- Bioorganic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | | | | |
Collapse
|
37
|
Shanmugam G, Jayakumar R. Structural analysis of amyloid ? peptide fragment (25-35) in different microenvironments. Biopolymers 2004; 76:421-34. [PMID: 15468066 DOI: 10.1002/bip.20131] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Amyloid beta (Abeta) peptides are one of the classes of amphiphilic molecules that on dissolution in aqueous solvents undergo interesting conformational transitions. These conformational changes are known to be associated with their neuronal toxicity. The mechanism of structural transition involved in the monomeric Abeta to toxic assemblage is yet to be understood at the molecular level. Early results indicate that oriented molecular crowding has a profound effect on their assemblage formation. In this work, we have studied how different microenvironments affect the conformational transitions of one of the active amyloid beta-peptide fragments (Abeta(25-35)). Spectroscopic techniques such as CD and Fourier transform infrared spectroscopy were used. It was observed that a stored peptide concentrates on dissolution in methanol adopts a minor alpha-helical conformation along with unordered structures. On changing the methanol concentration in the solvated film form, the conformation switches to the antiparallel beta-sheet structure on the hydrophilic surface, whereas the peptide shows transition from a mixture of helix and unordered structure into predominantly a beta-sheet with minor contribution of helix structure on the hydrophobic surface. Our present investigations indicate that the conformations induced by the different surfaces dictate the gross conformational preference of the peptide concentrate.
Collapse
Affiliation(s)
- Ganesh Shanmugam
- Bioorganic Laboratory, Central Leather Research Institute, Adyar, Chennai-600020, Tamilnadu, India
| | | |
Collapse
|
38
|
Li C, Orbulescu J, Sui G, Leblanc RM. Amyloid-like formation by self-assembly of peptidolipids in two dimensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:8641-8645. [PMID: 15379486 DOI: 10.1021/la0490339] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The accumulation of beta-amyloid peptide (Abeta) in the human brain is known to be the major cause that drives Alzheimer's disease pathogenesis. Abeta, a 39-42 amino acid peptide, is the cleavage product of amyloid precursor protein in the hydrophobic transmembrane region. The present study employs a two-dimensional (2D) approach. Two synthetic peptidolipids, C18-IIGLM-OH and C18-IIGLM-NH2, are selected based on the fragment 31-35 of Abeta which is recognized as one of the determining segments that induces formation of amyloid fibril plaques. The aliphatic hydrocarbon chain C18 is attached to the N-terminal of the fragment 31-35 to facilitate the 2D study at the air-water interface. The aggregation process is observed by two measurements: (1) surface pressure-area and surface dipole moment-area isotherms and (2) epifluorescence microscopy of the Langmuir films to investigate the topography of the amyloid-like formation.
Collapse
Affiliation(s)
- Changqing Li
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33124, USA
| | | | | | | |
Collapse
|
39
|
Molecular Dynamics Simulations on β Amyloid Peptide (25-35) in Aqueous Trifluoroethanol Solution. B KOREAN CHEM SOC 2004. [DOI: 10.5012/bkcs.2004.25.6.838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Self-assembly of β-turn forming synthetic tripeptides into supramolecular β-sheets and amyloid-like fibrils in the solid state. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.02.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Liu R, McAllister C, Lyubchenko Y, Sierks MR. Residues 17-20 and 30-35 of beta-amyloid play critical roles in aggregation. J Neurosci Res 2004; 75:162-171. [PMID: 14705137 DOI: 10.1002/jnr.10859] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We examined the effects of co-incubating nine different Abeta peptide fragments with full-length Abeta1-40 (Abeta40) on protein aggregation. Six fragments enhanced aggregation of Abeta40 (Abeta1-28, 12-28, 17-28, 10-20, 25-35 and 17-40), while three others did not (Abeta1-11, 1-16, and 20-29). All of the peptides that enhanced aggregation contained either residues 17-20 or 30-35, indicating the importance of these regions for promoting aggregation of full-length Abeta. Abeta25-35 in particular increased both the rate and extent of aggregation of Abeta40 considerably as indicated by fluorescence staining. Atomic force microscope imaging (AFM) indicates the increase in fluorescence staining with Abeta25-35 is primarily due to increased formation of oligomers and protofibrils rather than formation of large amyloid fibrils. AFM images of Abeta25-35 when incubated alone also indicate formation of aggregates and long thin filaments. The increase in formation of the small toxic oligomeric morphology of Abeta40, along with formation of Abeta25-35 oligomers and thin filaments, represent two different potential pathways for Abeta25-35 toxicity. The critical roles of residues 17-20 and 30-35 of Abeta provide further insight into mechanism that underlie the formation of toxic aggregates in Alzheimer Disease (AD) and suggest targets for the design of beta-sheet breakers to modulate the aggregation and inhibit toxicity of full-length Abeta.
Collapse
Affiliation(s)
- Ruitian Liu
- Department of Chemical and Materials Engineering, Arizona State University, Tempe, Arizona
| | - Chad McAllister
- Department of Microbiology, Arizona State University, Tempe, Arizona
| | - Yuri Lyubchenko
- Department of Microbiology, Arizona State University, Tempe, Arizona
| | - Michael R Sierks
- Department of Chemical and Materials Engineering, Arizona State University, Tempe, Arizona
| |
Collapse
|
42
|
Glutamate and amyloid beta-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J Neurosci 2003. [PMID: 14523099 DOI: 10.1523/jneurosci.23-26-08967.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Impairment of axonal transport leads to neurodegeneration and synapse loss. Glutamate and amyloid beta-protein (Abeta) have critical roles in the pathogenesis of Alzheimer's disease (AD). Here we show that both agents rapidly inhibit fast axonal transport in cultured rat hippocampal neurons. The effect of glutamate (100 microm), but not of Abeta25-35 (20 microm), was reversible, was mimicked by NMDA or AMPA, and was blocked by NMDA and AMPA antagonists and by removal of extracellular Ca2+. The effect of Abeta25-35 was progressive and irreversible, was prevented by the actin-depolymerizing agent latrunculin B, and was mimicked by the actin-polymerizing agent jasplakinolide. Abeta25-35 induced intracellular actin aggregation, which was prevented by latrunculin B. Abeta31-35 but not Abeta15-20 exerted effects similar to those of Abeta25-35. Full-length Abeta1-42 incubated for 7 d, which specifically contained 30-100 kDa molecular weight assemblies, also caused an inhibition of axonal transport associated with intracellular actin aggregation, whereas freshly dissolved Abeta1-40, incubated Abeta1-40, and fresh Abeta1-42 had no effect. These results suggest that glutamate inhibits axonal transport via activation of NMDA and AMPA receptors and Ca2+ influx, whereas Abeta exerts its inhibitory effect via actin polymerization and aggregation. The ability of Abeta to inhibit axonal transport seems to require active amino acid residues, which is probably present in the 31-35 sequence. Full-length Abeta may be effective when it represents a structure in which these active residues can access the cell membrane. Our results may provide insight into the early pathogenetic mechanisms of AD.
Collapse
|
43
|
Ganesh S, Prakash S, Jayakumar R. Spectroscopic investigation on gel-forming ?-sheet assemblage of peptide derivatives. Biopolymers 2003; 70:346-54. [PMID: 14579307 DOI: 10.1002/bip.10493] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The conformational studies of peptide derivatives A and B in a gel state were studied by using circular dichroism (CD), Fourier transformed infrared (FTIR), and fluorescence spectroscopic techniques. Birefringence and electron microscopic studies were carried out to characterize the morphological aspects of the fibrils in the gel. The FTIR spectra of the peptides show the absence of free NH in the gel state, implying that the intermolecular hydrogen-bond formation is the driving force for the aggregation. The CD spectrum of the peptide gels shows the presence of antiparallel and parallel beta-sheet conformation for peptide derivatives A and B, respectively. Electron microscopic studies (EM) of the peptide derivatives A and B reveal that peptide A formed rigid, rod-like structures without cross-linking and peptide B formed loose fibrils organized into highly noncovalently cross-linked mesh-like structural aggregates. Peptide A was much more soluble in alcoholic solvents than peptide B, and no birefringence was observed with Congo red (CR) staining in the temperature range of 0-80 degrees C. The spectroscopic studies indicate that peptide B consists of domains having a significant amount of beta-sheet structure and exhibiting golden yellow birefringence between 53 and 56 degrees C when stained with Congo red. On the other hand, peptide A gives no evidence of birefringence under polarized light. Fluorescence probe binding studies with pyrene in gel state with peptides A and B indicates the polarity in the interior of the aggregates. The data presented in the present work indicate that peptide B forms fibrils, which is similar to amyloid aggregates that are present in biological systems.
Collapse
Affiliation(s)
- S Ganesh
- Bioorganic Laboratory, Central Leather Research Institute, Adyar, Chennai-600 020, Tamilnadu, India
| | | | | |
Collapse
|