1
|
Jiang L, Sun X, Deng J, Hu Y, Xu Q. Different Roles of Stem/Progenitor Cells in Vascular Remodeling. Antioxid Redox Signal 2021; 35:192-203. [PMID: 33107320 DOI: 10.1089/ars.2020.8199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significance: Since the discovery of vascular stem cells, there has been considerable advancement in comprehending the nature and functions of these cells. Due to their differentiation potential to repair endothelial cells and to participate in lesion formation during vascular remodeling, it is crucial to elucidate vascular stem cell behaviors and the mechanisms underlying this process, which could provide new chances for the design of clinical therapeutic application of stem cells. Recent Advances: Over the past decades, major progress has been made on progenitor/vascular stem cells in the field of cardiovascular research. Vascular stem cells are mostly latent in their niches and can be bioactivated in response to damage and get involved in endothelial repair and smooth muscle cell aggregation to generate neointima. Accumulating evidence has been shown recently, using genetic lineage tracing mouse models, to particularly provide solutions to the nature of vascular stem cells and to monitor both cell migration and the process of differentiation during physiological angiogenesis and in vascular diseases. Critical Issues: This article reviews and summarizes the current research progress of vascular stem cells in this field and highlights future prospects for stem cell research in regenerative medicine. Future Directions: Despite recent advances and achievements of stem cells in cardiovascular research, the nature and cell fate of vascular stem cells remain elusive. Further comprehensive studies using new techniques including genetic cell lineage tracing and single-cell RNA sequencing are essential to fully illuminate the role of stem cells in vascular development and diseases. Antioxid. Redox Signal. 35, 192-203.
Collapse
Affiliation(s)
- Liujun Jiang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaolei Sun
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiacheng Deng
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanhua Hu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Sakihama H, Lee GR, Chin BY, Csizmadia E, Gallo D, Qi Y, Gagliani N, Wang H, Bach FH, Otterbein LE. Carbon Monoxide Suppresses Neointima Formation in Transplant Arteriosclerosis by Inhibiting Vascular Progenitor Cell Differentiation. Arterioscler Thromb Vasc Biol 2021; 41:1915-1927. [PMID: 33853347 PMCID: PMC8159904 DOI: 10.1161/atvbaha.120.315558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/pathology
- Aorta, Thoracic/transplantation
- Arteriosclerosis/enzymology
- Arteriosclerosis/genetics
- Arteriosclerosis/pathology
- Arteriosclerosis/prevention & control
- Bone Marrow Transplantation
- Carbon Monoxide/pharmacology
- Cell Differentiation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Heme Oxygenase-1/genetics
- Heme Oxygenase-1/metabolism
- Kinetics
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Stem Cells/drug effects
- Stem Cells/enzymology
- Stem Cells/pathology
- Transplantation Chimera
- Vascular Remodeling/drug effects
- Mice
Collapse
Affiliation(s)
- Hideyasu Sakihama
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215
- Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ghee Rye Lee
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215
| | | | - Eva Csizmadia
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215
| | - David Gallo
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215
| | - Yilin Qi
- Agios Pharmaceuticals, Cambridge, MA
| | - Nicola Gagliani
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg Germany
| | - Hongjun Wang
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215
| | - Fritz H. Bach
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215
| | - Leo E. Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215
| |
Collapse
|
3
|
Lin FY, Lin YW, Shih CM, Lin SJ, Tung YT, Li CY, Chen YH, Lin CY, Tsai YT, Huang CY. A Novel Relative High-Density Lipoprotein Index to Predict the Structural Changes in High-Density Lipoprotein and Its Ability to Inhibit Endothelial-Mesenchymal Transition. Int J Mol Sci 2021; 22:ijms22105210. [PMID: 34069162 PMCID: PMC8157136 DOI: 10.3390/ijms22105210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Therapeutic elevation of high-density lipoprotein (HDL) is thought to minimize atherogenesis in subjects with dyslipidemia. However, this is not the case in clinical practice. The function of HDL is not determined by its concentration in the plasma but by its specific structural components. We previously identified an index for the prediction of HDL functionality, relative HDL (rHDL) index, and preliminarily explored that dysfunctional HDL (rHDL index value > 2) failed to rescue the damage to endothelial progenitor cells (EPCs). To confirm the effectiveness of the rHDL index for predicting HDL functions, here we evaluated the effects of HDL from patients with different rHDL index values on the endothelial–mesenchymal transition (EndoMT) of EPCs. We also analyzed the lipid species in HDL with different rHDL index values and investigated the structural differences that affect HDL functions. The results indicate that HDL from healthy adults and subjects with an rHDL index value < 2 protected transforming growth factor (TGF)-β1-stimulated EndoMT by modulating Smad2/3 and Snail activation. HDL from subjects with an rHDL index value > 2 failed to restore the functionality of TGF-β1-treated EPCs. Lipidomic analysis demonstrated that HDL with different rHDL index values may differ in the composition of triglycerides, phosphatidylcholine, and phosphatidylinositol. In conclusion, we confirmed the applicability of the rHDL index value to predict HDL function and found structural differences that may affect the function of HDL, which warrants further in-depth studies.
Collapse
Affiliation(s)
- Feng-Yen Lin
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan; (F.-Y.L.); (C.-M.S.); (S.-J.L.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Yi-Wen Lin
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
| | - Chun-Ming Shih
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan; (F.-Y.L.); (C.-M.S.); (S.-J.L.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Shing-Jong Lin
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan; (F.-Y.L.); (C.-M.S.); (S.-J.L.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 238, Taiwan;
| | - Chi-Yuan Li
- Department of Anesthesiology and Graduate Institute of Clinical Medical Science, China Medical University and Hospital, Taichung 406, Taiwan;
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 406, Taiwan;
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
| | - Cheng-Yen Lin
- Healthcare Information and Management Department, Ming Chuan University, Taoyuan 333, Taiwan;
| | - Yi-Ting Tsai
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan; (F.-Y.L.); (C.-M.S.); (S.-J.L.)
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan
- Correspondence: (Y.-T.T.); (C.-Y.H.)
| | - Chun-Yao Huang
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan; (F.-Y.L.); (C.-M.S.); (S.-J.L.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (Y.-T.T.); (C.-Y.H.)
| |
Collapse
|
4
|
Wu TC, Chen JS, Wang CH, Huang PH, Lin FY, Lin LY, Lin SJ, Chen JW. Activation of heme oxygenase-1 by Ginkgo biloba extract differentially modulates endothelial and smooth muscle-like progenitor cells for vascular repair. Sci Rep 2019; 9:17316. [PMID: 31754254 PMCID: PMC6872755 DOI: 10.1038/s41598-019-53818-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/17/2019] [Indexed: 01/09/2023] Open
Abstract
Vascular progenitors such as endothelial progenitor cells (EPCs) and smooth muscle-like progenitor cells (SMPCs) may play different roles in vascular repair. Ginkgo biloba extract (GBE) is an exogenous activator of heme oxygenase (HO)-1, which has been suggested to improve vascular repair; however, the detailed mechanisms have yet to be elucidated. This study aimed to investigate whether GBE can modulate different vascular progenitor cells by activating HO-1 for vascular repair. A bone marrow transplantation mouse model was used to evaluate the in vivo effects of GBE treatment on wire-injury induced neointimal hyperplasia, which is representative of impaired vascular repair. On day 14 of GBE treatment, the mice were subjected to wire injury of the femoral artery to identify vascular reendothelialization. Compared to the mice without treatment, neointimal hyperplasia was reduced in the mice that received GBE treatment for 28 days in a dose-dependent manner. Furthermore, GBE treatment increased bone marrow-derived EPCs, accelerated endothelial recovery, and reduced the number of SMPCs attached to vascular injury sites. The effects of GBE treatment on neointimal hyperplasia could be abolished by co-treatment with zinc protoporphyrin IX, an HO-1 inhibitor, suggesting the in vivo role of HO-1. In this in vitro study, treatment with GBE activated human early and late EPCs and suppressed SMPC migration. These effects were abolished by HO-1 siRNA and an HO-1 inhibitor. Furthermore, GBE induced the expression of HO-1 by activating PI3K/Akt/eNOS signaling in human late EPCs and via p38 pathways in SMPCs, suggesting that GBE can induce HO-1 in vitro through different molecular mechanisms in different vascular progenitor cells. Accordingly, GBE could activate early and late EPCs, suppress the migration of SMPCs, and improve in vivo vascular repair after mechanical injury by activating HO-1, suggesting the potential role of pharmacological HO-1 activators, such as GBE, for vascular protection in atherosclerotic diseases.
Collapse
Affiliation(s)
- Tao-Cheng Wu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Shiong Chen
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chao-Hung Wang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Liang-Yu Lin
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Precision Medicine Research Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
5
|
Genetic lineage tracing analysis of c-kit + stem/progenitor cells revealed a contribution to vascular injury-induced neointimal lesions. J Mol Cell Cardiol 2018; 121:277-286. [PMID: 30053526 DOI: 10.1016/j.yjmcc.2018.07.252] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/23/2018] [Indexed: 11/23/2022]
Abstract
AIMS Accumulating evidence indicates the presence of vascular stem/progenitor cells that may play a role in endothelial repair and lesion formation in the injured artery, in which c-kit+ stem/progenitor cells have been reported to differentiate into endothelial and smooth muscle cells in vitro and in ischemic tissue. In this study, we investigated whether and how endogenous c-kit+ stem/progenitor cells contribute to vascular injury and neointima formation in vivo. METHODS AND RESULTS We created Kit-CreERxRosa26-RFP mice and performed genetic lineage tracing analysis of c-kit+ stem/progenitor cells in injury-induced neointima formation in vivo. We provide direct evidence that endogenous c-kit+ stem/progenitor cells minimally differentiate into endothelial or smooth muscle cells facilitating vascular repair, but predominantly generate monocytes/macrophages and granulocytes contributing to vascular immuno-inflammatory response to endothelial injury. Although c-kit+ cells reside in both bone marrow and vessel wall, bone marrow transplantation data indicate that bone marrow-derived c-kit+ cells are the main source for enhancing neointima formation. Furthermore, treatment of ACK2, a c-kit receptor antagonizer, attenuates neointimal hyperplasia after injury at least in part by depleting c-kit+ cells and their generated progeny. CONCLUSIONS c-kit+ stem/progenitor cells are not a main source for endothelial regeneration and smooth muscle accumulation of the large artery injury, but a plausible interventional approach to reduce vascular immuno-inflammatory response and subsequently to ameliorate vascular lesions.
Collapse
|
6
|
Zhou L, Xia J, Wang P, Jia R, Zheng J, Yao X, Chen Y, Dai Y, Yang B. Autologous Smooth Muscle Progenitor Cells Enhance Regeneration of Tissue-Engineered Bladder. Tissue Eng Part A 2018; 24:1066-1081. [PMID: 29327677 DOI: 10.1089/ten.tea.2017.0376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Liuhua Zhou
- Department of Urology and Andrology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiadong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengji Wang
- Department of Urology and Andrology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
- Department of Urology, Longkou People Hospital, Yantai, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junhua Zheng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yun Chen
- Department of Urology and Andrology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yutian Dai
- Department of Urology and Andrology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 629] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
8
|
Wils J, Favre J, Bellien J. Modulating putative endothelial progenitor cells for the treatment of endothelial dysfunction and cardiovascular complications in diabetes. Pharmacol Ther 2016; 170:98-115. [PMID: 27773788 DOI: 10.1016/j.pharmthera.2016.10.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetes induces a decrease in the number and function of different pro-angiogenic cell types generically designated as putative endothelial progenitor cells (EPC), which encompasses cells from myeloid origin that act in a paracrine fashion to promote angiogenesis and putative "true" EPC that contribute to endothelial replacement. This not only compromises neovasculogenesis in ischemic tissues but also impairs, at an early stage, the reendotheliziation process at sites of injury, contributing to the development of endothelial dysfunction and cardiovascular complications. Hyperglycemia, insulin resistance and dyslipidemia promote putative EPC dysregulation by affecting the SDF-1/CXCR-4 and NO pathways and the p53/SIRT1/p66Shc axis that contribute to their mobilization, migration, homing and vasculogenic properties. To optimize the clinical management of patients with hypoglycemic agents, statins and renin-angiotensin system inhibitors, which display pleiotropic effects on putative EPC, is a first step to improve their number and angiogenic potential but specific strategies are needed. Among them, mobilizing therapies based on G-CSF, erythropoietin or CXCR-4 antagonism have been developed to increase putative EPC number to treat ischemic diseases with or without prior cell isolation and transplantation. Growth factors, genetic and pharmacological strategies are also evaluated to improve ex vivo cultured EPC function before transplantation. Moreover, pharmacological agents increasing in vivo the bioavailability of NO and other endothelial factors demonstrated beneficial effects on neovascularization in diabetic ischemic models but their effects on endothelial dysfunction remain poorly evaluated. More experiments are warranted to develop orally available drugs and specific agents targeting p66Shc to reverse putative EPC dysfunction in the expected goal of preventing endothelial dysfunction and diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Julien Wils
- Department of Pharmacology, Rouen University Hospital, Rouen, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Julie Favre
- MITOVASC Institute, Angers, France; Centre National de la Recherche Scientifique (CNRS) UMR 6214, Angers, France; INSERM U1083, Angers, France; University of Angers, Angers, France
| | - Jérémy Bellien
- Department of Pharmacology, Rouen University Hospital, Rouen, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France.
| |
Collapse
|
9
|
McMahan ZH, Cottrell TR, Wigley FM, Antiochos B, Zambidis ET, Park TS, Halushka MK, Gutierrez-Alamillo L, Cimbro R, Rosen A, Casciola-Rosen L. Enrichment of Scleroderma Vascular Disease-Associated Autoantigens in Endothelial Lineage Cells. Arthritis Rheumatol 2016; 68:2540-9. [PMID: 27159521 PMCID: PMC5042822 DOI: 10.1002/art.39743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 04/28/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Scleroderma patients with autoantibodies to CENPs and/or interferon-inducible protein 16 (IFI-16) are at increased risk of severe vascular complications. This study was undertaken to determine whether these autoantigens are enriched in cells of the vasculature. METHODS Successive stages of embryoid bodies (EBs) as well as vascular progenitors were used to evaluate the expression of scleroderma autoantigens IFI-16 and CENP by immunoblotting. CD31 was included to mark early blood vessels. IFI-16 and CD31 expression were defined in paraffin-embedded skin sections from scleroderma patients and from healthy controls. IFI-16 expression was determined by flow cytometric analysis in circulating endothelial cells (CECs) and circulating hematopoietic progenitor cells. RESULTS Expression of CENP-A, IFI-16, and CD31 was enriched in EBs on days 10 and 12 of differentiation, and particularly in cultures enriched in vascular progenitors (IFI-16, CD31, and CENPs A and B). This pattern was distinct from that of comparator autoantigens. Immunohistochemical staining of paraffin-embedded skin sections showed enrichment of IFI-16 in CD31-positive vascular endothelial cells in biopsy specimens from scleroderma patients and normal controls. Flow cytometric analysis revealed IFI-16 expression in circulating hematopoietic progenitor cells but minimal expression in CECs. CONCLUSION Our findings indicate that expression of the scleroderma autoantigens IFI-16 and CENPs, which are associated with severe vascular disease, is increased in vascular progenitors and mature endothelial cells. High level, lineage-enriched expression of autoantigens may explain the striking association between clinical phenotypes and the immune targeting of specific autoantigens.
Collapse
Affiliation(s)
| | | | | | | | - Elias T Zambidis
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tea Soon Park
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marc K Halushka
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Raffaello Cimbro
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Antony Rosen
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
10
|
Freeman BM, Univers J, Fisher RK, Kirkpatrick SS, Klein FA, Freeman MB, Mountain DJH, Grandas OH. Testosterone replacement attenuates intimal hyperplasia development in an androgen deficient model of vascular injury. J Surg Res 2016; 207:53-62. [PMID: 27979488 DOI: 10.1016/j.jss.2016.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 07/04/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Androgen deficiency (AD) is associated with increased risk of vascular disease. Dysfunctional remodeling of the vessel wall and atypical proliferative potential of vascular smooth muscle cells (VSMCs) are fundamental processes in the development of intimal hyperplasia (IH). We have demonstrated an inverse relationship between dihydrotestosterone (DHT) levels, matrix metalloproteinase activity, and VSMC migration and proliferation in vitro. Here, we investigated the role of AD and testosterone (TST) replacement in IH development in an animal model of vascular injury to elucidate mechanisms modulated by AD that could be playing a role in the development of vascular pathogenesis. METHODS Aged orchiectomized male rats underwent TST supplementation via controlled release pellet (0.5-35 mg). Young adult and middle-age adult intact (MI) and orchiectomized placebo (Plac) groups served as controls. All groups underwent balloon angioplasty of the left common carotid at a 14-d post-TST. Carotid tissue was collected at a 14-d post-balloon angioplasty and subjected to morphologic and immunohistochemical analyses. Human male VSMCs were treated with DHT (0-3000 nM) for 24 h then subjected to quantitative PCR for gene expression analyses and costained for F-actin and G-actin for visualization of cytoskeletal organization. RESULTS I:M ratio was increased in Plac, subphysiological, low-physiological, and high pharmacologic level TST animals compared with MI controls but was decreased with high-physiological TST supplementation. Injury-induced expression of previously defined matrix metalloproteinase remodeling enzymes was not significantly affected by TST status. Urotensin (UTS) receptor (UTSR) staining was low in injured vessels of all young adult intact, MI, and Plac controls but was significantly upregulated in all groups receiving exogenous TST supplementation, irrespective of dose. In vitro DHT exposure increased the expression of UTSR in VSMCs in a dose-dependent manner. However, this did not correlate with any change in proliferative markers. F:G actin staining revealed that DHT-induced cytoskeletal organization in a dose-dependent manner. CONCLUSIONS AD increased IH development in response to vascular injury, whereas physiological TST replacement attenuated this effect. AD-induced IH occurs independent of matrix remodeling mechanisms known to be heavily involved in vascular dysfunction, and AD alone does not affect the UTS and/or UTSR mechanism. Exogenous TST and/or DHT increases UTSR pathway signaling in vitro and in vivo. This modulation correlates to a shift in cytoskeletal organization and may exacerbate vasoconstrictive pathogenesis. While physiological TST replacement attenuates AD-modulated IH development, its UTS-mediated effect on vasotone may prove deleterious to overall vascular function.
Collapse
Affiliation(s)
- Brian M Freeman
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Junior Univers
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Richard K Fisher
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Stacy S Kirkpatrick
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Frederick A Klein
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Michael B Freeman
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Deidra J H Mountain
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Oscar H Grandas
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee.
| |
Collapse
|
11
|
Affiliation(s)
- Paul M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong
| |
Collapse
|
12
|
Li N, Cheng W, Huang T, Yuan J, Wang X, Song M. Vascular Adventitia Calcification and Its Underlying Mechanism. PLoS One 2015; 10:e0132506. [PMID: 26148272 PMCID: PMC4492877 DOI: 10.1371/journal.pone.0132506] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/15/2015] [Indexed: 01/18/2023] Open
Abstract
Previous research on vascular calcification has mainly focused on the vascular intima and media. However, we show here that vascular calcification may also occur in the adventitia. The purpose of this work is to help elucidate the pathogenic mechanisms underlying vascular calcification. The calcified lesions were examined by Von Kossa staining in ApoE−/− mice which were fed high fat diets (HFD) for 48 weeks and human subjects aged 60 years and older that had died of coronary heart disease, heart failure or acute renal failure. Explant cultured fibroblasts and smooth muscle cells (SMCs)were obtained from rat adventitia and media, respectively. After calcification induction, cells were collected for Alizarin Red S staining. Calcified lesions were observed in the aorta adventitia and coronary artery adventitia of ApoE-/-mice, as well as in the aorta adventitia of human subjects examined. Explant culture of fibroblasts, the primary cell type comprising the adventitia, was successfully induced for calcification after incubation with TGF-β1 (20 ng/ml) + mineralization media for 4 days, and the phenotype conversion vascular adventitia fibroblasts into myofibroblasts was identified. Culture of SMCs, which comprise only a small percentage of all cells in the adventitia, in calcifying medium for 14 days resulted in significant calcification.Vascular calcification can occur in the adventitia. Adventitia calcification may arise from the fibroblasts which were transformed into myofibroblasts or smooth muscle cells.
Collapse
MESH Headings
- Adventitia/metabolism
- Adventitia/pathology
- Aged
- Aged, 80 and over
- Animals
- Aorta/metabolism
- Aorta/pathology
- Apolipoproteins E/deficiency
- Cells, Cultured
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Female
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Humans
- Male
- Mice
- Mice, Knockout
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats
- Rats, Sprague-Dawley
- Transforming Growth Factor beta1/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Na Li
- Department of Health Care, China-Japan Friendship Hospital, Ministry of Health, Beijing, China
| | - Wenli Cheng
- Center for Cardiovascular Diseases, China-Japan Friendship Hospital, Ministry of Health, Beijing, China
- * E-mail:
| | - Tiequn Huang
- Department of Health Care, China-Japan Friendship Hospital, Ministry of Health, Beijing, China
| | - Jie Yuan
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xi Wang
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Meiyue Song
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Wang G, Jacquet L, Karamariti E, Xu Q. Origin and differentiation of vascular smooth muscle cells. J Physiol 2015; 593:3013-30. [PMID: 25952975 PMCID: PMC4532522 DOI: 10.1113/jp270033] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/19/2015] [Indexed: 12/18/2022] Open
Abstract
Vascular smooth muscle cells (SMCs), a major structural component of the vessel wall, not only play a key role in maintaining vascular structure but also perform various functions. During embryogenesis, SMC recruitment from their progenitors is an important step in the formation of the embryonic vascular system. SMCs in the arterial wall are mostly quiescent but can display a contractile phenotype in adults. Under pathophysiological conditions, i.e. vascular remodelling after endothelial dysfunction or damage, contractile SMCs found in the media switch to a secretory type, which will facilitate their ability to migrate to the intima and proliferate to contribute to neointimal lesions. However, recent evidence suggests that the mobilization and recruitment of abundant stem/progenitor cells present in the vessel wall are largely responsible for SMC accumulation in the intima during vascular remodelling such as neointimal hyperplasia and arteriosclerosis. Therefore, understanding the regulatory mechanisms that control SMC differentiation from vascular progenitors is essential for exploring therapeutic targets for potential clinical applications. In this article, we review the origin and differentiation of SMCs from stem/progenitor cells during cardiovascular development and in the adult, highlighting the environmental cues and signalling pathways that control phenotypic modulation within the vasculature.
![]()
Collapse
Affiliation(s)
- Gang Wang
- Department of Emergency Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Laureen Jacquet
- Cardiovascular Division, King's College London BHF Centre, London, UK
| | - Eirini Karamariti
- Cardiovascular Division, King's College London BHF Centre, London, UK
| | - Qingbo Xu
- Cardiovascular Division, King's College London BHF Centre, London, UK
| |
Collapse
|
14
|
Smiljanic K, Obradovic M, Jovanovic A, Djordjevic J, Dobutovic B, Jevremovic D, Marche P, Isenovic ER. Thrombin stimulates VSMC proliferation through an EGFR-dependent pathway: involvement of MMP-2. Mol Cell Biochem 2014; 396:147-60. [PMID: 25047892 DOI: 10.1007/s11010-014-2151-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/11/2014] [Indexed: 01/23/2023]
Abstract
In this study, the role of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK1/2), heparin-binding EGF-like growth factor (HB-EGF), general metalloproteinases, matrix metalloproteinases-2 (MMP-2) in mediating the mitogenic action of thrombin in rat vascular smooth muscle cells (VSMC) was investigated. The incubation of rat VSMC with thrombin (1 U/ml) for 5 min resulted in significant (p < 0.001) increase of ERK1/2 phosphorylation by 8.7 ± 0.9-fold, EGFR phosphorylation by 8.5 ± 1.3-fold (p < 0.001) and DNA synthesis by 3.6 ± 0.4-fold (p < 0.001). Separate 30-min pretreatments with EGFR tyrosine kinase irreversible inhibitor, 10 µM PD169540 (PD), and 20 µM anti-HB-EGF antibody significantly reduced thrombin-stimulated EGFR and ERK1/2 phosphorylation by 81, 72 % and by 48 and 61 %, respectively. Furthermore, the same pretreatments with PD or anti-HB-EGF antibody reduced thrombin-induced VSMC proliferation by 44 and 45 %, respectively. In addition, 30-min pretreatments with 10 µM specific MMP-2 inhibitor significantly reduced thrombin-stimulated phosphorylation of both EGFR and ERK1/2 by 25 %. Moreover, the same pretreatment with MMP-2 inhibitor reduced thrombin-induced VSMC proliferation by 45 %. These results show that the thrombin-induced DNA synthesis correlates with the level of ERK1/2 activation rather than EGFR activation. These results further suggest that thrombin acts through EGFR and ERK 1/2 signaling pathways involving MMP-2 to upregulate proliferation of VSMC.
Collapse
Affiliation(s)
- Katarina Smiljanic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia,
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pizarro S, García-Lucio J, Peinado VI, Tura-Ceide O, Díez M, Blanco I, Sitges M, Petriz J, Torralba Y, Marín P, Roca J, Barberà JA. Circulating progenitor cells and vascular dysfunction in chronic obstructive pulmonary disease. PLoS One 2014; 9:e106163. [PMID: 25171153 PMCID: PMC4149524 DOI: 10.1371/journal.pone.0106163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/28/2014] [Indexed: 01/22/2023] Open
Abstract
Background In chronic obstructive pulmonary disease (COPD), decreased progenitor cells and impairment of systemic vascular function have been suggested to confer higher cardiovascular risk. The origin of these changes and their relationship with alterations in the pulmonary circulation are unknown. Objectives To investigate whether changes in the number of circulating hematopoietic progenitor cells are associated with pulmonary hypertension or changes in endothelial function. Methods 62 COPD patients and 35 controls (18 non-smokers and 17 smokers) without cardiovascular risk factors other than cigarette smoking were studied. The number of circulating progenitors was measured as CD45+CD34+CD133+ labeled cells by flow cytometry. Endothelial function was assessed by flow-mediated dilation. Markers of inflammation and angiogenesis were also measured in all subjects. Results Compared with controls, the number of circulating progenitor cells was reduced in COPD patients. Progenitor cells did not differ between control smokers and non-smokers. COPD patients with pulmonary hypertension showed greater number of progenitor cells than those without pulmonary hypertension. Systemic endothelial function was worse in both control smokers and COPD patients. Interleukin-6, fibrinogen, high sensitivity C-reactive protein, vascular endothelial growth factor and tumor necrosis factor were increased in COPD. In COPD patients, the number of circulating progenitor cells was inversely related to the flow-mediated dilation of systemic arteries. Conclusions Pulmonary and systemic vascular impairment in COPD is associated with cigarette smoking but not with the reduced number of circulating hematopoietic progenitors. The latter appears to be a consequence of the disease itself not related to smoking habit.
Collapse
MESH Headings
- AC133 Antigen
- Aged
- Antigens, CD/metabolism
- Antigens, CD34/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Female
- Glycoproteins/metabolism
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Leukocyte Common Antigens/metabolism
- Male
- Middle Aged
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/physiopathology
- Peptides/metabolism
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Smoking
Collapse
Affiliation(s)
- Sandra Pizarro
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jéssica García-Lucio
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Víctor I. Peinado
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Marta Díez
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Marta Sitges
- Department of Cardiology, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jordi Petriz
- Department of Cytometry, Institut de Recerca, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Yolanda Torralba
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Pedro Marín
- Department of Cryopreservervation, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Josep Roca
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- * E-mail:
| |
Collapse
|
16
|
Esfahani DR, Viswanathan V, Alaraj A. Nanoparticles and stem cells - has targeted therapy for aneurysms finally arrived? Neurol Res 2014; 37:269-77. [PMID: 25082670 DOI: 10.1179/1743132814y.0000000435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Until recently, endovascular management of intracranial aneurysms has focused on mechanical and hemodynamic aspects: characterizing aneurysm morphology by angiogram, mechanical obstruction by detachable coils, and flow diversion with endovascular stents. Although now common practice, these interventions only ward off aneurysm rupture. The source of the problem, disease of the vessel wall itself, remains. New imaging technology and treatment modalities, however, are offering great promise to the field. In this review, we outline several new developments in the recent literature and pose potential adaptations toward cerebral aneurysms using them. The incidence, presentation, and contemporary endovascular treatment for aneurysms are first reviewed to lay the groundwork for new adaptations. Nanoparticles, including ultrasmall supraparagmenetic iron oxide particles (USPIOs), are next explored as a novel mechanism of predicting aneurysm wall instability and as an agent themselves for aneurysm occlusion. Cellular transplant grafts, bone marrow-derived stem cells (BM-MSCs), and endothelial progenitor cells (EPCs) are then investigated, with the role of cellular differentiation, chemokine secretion, and integration into the injured vascular wall receiving particular emphasis. Several promising translational papers are next discussed, with review of multiple studies that show benefit in aneurysm treatment and endovascular stenting using these agents as adjuncts. We next adapt these research findings into several potential applications we feel may be promising directions for the aspiring researcher. These new treatments may one day strengthen the arsenal of the endovascular neurosurgeon.
Collapse
|
17
|
Bone mesenchymal stem cells contributed to the neointimal formation after arterial injury. PLoS One 2013; 8:e82743. [PMID: 24349351 PMCID: PMC3857273 DOI: 10.1371/journal.pone.0082743] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/28/2013] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Recent findings suggest that in response to repair-to-injury bone marrow mesenchymal stem cells (BMSCs) participate in the process of angiogenesis. It is unclear what role BMSCs play in the structure of the vessel wall. In present study, we aimed to determine whether BMSCs had the capacity of endothelial cells (ECs). METHODS BMSCs were separated and cultured. FACS and RT-PCR analysis confirmed the gene expression phenotype. The capacity of migration and adhesion and the ultrastructure of BMSCs were examined. The effect of BMSCs transplantation on the vascular repair was investigated in a murine carotid artery-injured model. RESULTS BMSCs could express some markers and form the tube-like structure. The migration and adhesion capacity of BMSCs increased significantly after stimulated. In addition, BMSCs had the intact cell junction. In vivo the local transfer of BMSCs differentiated into neo-endothelial cells in the injury model for carotid artery and contributed to the vascular remodeling. CONCLUSION These results showed that BMSCs could contribute to neointimal formation for vascular lesion and might be associated with the differentiation into ECs, which indicated the important therapeutic implications for vascular diseases.
Collapse
|
18
|
Koizumi G, Kumai T, Egawa S, Yatomi K, Hayashi T, Oda G, Ohba K, Iwai S, Watanabe M, Matsumoto N, Oguchi K. Gene expression in the vascular wall of the aortic arch in spontaneously hypertensive hyperlipidemic model rats using DNA microarray analysis. Life Sci 2013; 93:495-502. [PMID: 23994198 DOI: 10.1016/j.lfs.2013.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 07/31/2013] [Accepted: 08/16/2013] [Indexed: 01/11/2023]
Abstract
AIMS In recent years, there has been an increase in patients with arteriosclerosis and the risk of lifestyle-related diseases. However, the pathogenesis and medication of atherosclerosis have not been elucidated. We developed a rat model of lifestyle-related diseases by feeding a high-fat diet and 30% sucrose solution (HFDS) to spontaneously hypertensive hyperlipidemic rats (SHHR) and reported that this model is a useful model of early atherosclerosis. In order to elucidate the pathogenesis of early atherosclerosis, we searched for atherosclerosis-related genes by microarray analysis using the aortic arch rat model of lifestyle-related diseases. MAIN METHODS Four-month-old male Sprague-Dawley rats and SHHR were each divided into two normal diet (ND) groups and two HFDS groups. After a four-month treatment, the expression of mRNA in the aortic arch was detected using the oligo DNA microarray one-color method and quantified using real-time PCR. KEY FINDINGS In this study, we detected 39 genes in microarray analysis. Esm1, Retnlb Mkks, and Grem2 showed particularly marked changes in gene expression in the SHHR-HFDS group. Compared with the SD-ND group, the SHHR-HFDS group had an increase in Mkks gene expression of about 26-fold and an approximately 22-fold increase in the expression of Grem2. Similarly, the expression of Esm1 increased by about 12-fold and that of Retnlg by about 10-fold as shown by quantitative real-time PCR. SIGNIFICANCE This study suggested that these four genes might be important in early atherosclerosis development.
Collapse
Affiliation(s)
- Go Koizumi
- Department of Pharmacology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Pharmacogenomics, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Aoba-ku, Yokohama, Kanagawa 227-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
It is well known that the altered blood flow is related to vascular diseases, including atherosclerosis, restenosis, and arteriosclerosis, which preferentially located at areas with the disturbed blood flow, suggesting that altered biomechanical stress may exert their effect on the vascular disease. Recent evidence indicated the presence of abundant stem/progenitor cells in the vessel wall, in which laminar shear stress can stimulate these cells to differentiate towards endothelial lineage, while cyclic strain results in smooth muscle differentiation. In line with this, it was evidenced that altered biomechanical stress in stented vessels may lead to 'wrong' direction of vascular stem cell differentiation resulting in restenosis. However, the underlying mechanisms are not well understood. In this article, we will give an overview of the effect of the local flow pattern on stem/progenitor cell differentiation and the possible mechanism on how the blood flow influences stem cell behaviours in the development of vascular diseases.
Collapse
Affiliation(s)
- Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, China
| | | | | | | |
Collapse
|
20
|
Schuler G, Adams V, Goto Y. Role of exercise in the prevention of cardiovascular disease: results, mechanisms, and new perspectives. Eur Heart J 2013; 34:1790-9. [PMID: 23569199 DOI: 10.1093/eurheartj/eht111] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
On an empirical basis, exercise has been regarded as a fundamental pre-requisite for human well-being and physical integrity since classical times. Only in the last decades, however, scientific evidence has accumulated proving its role in the prevention and treatment of multiple chronic diseases beyond any reasonable doubt. Few treatment strategies in medicine have been tested so rigorously in large cohorts of patients as regular physical exercise. With the advent of molecular biology, the underlying mechanisms, such as NO bioavailability and mobilization of progenitor cells, could be identified. This enhances our understanding of this therapeutic tool. Unfortunately, the low compliance rate of the patients is the major drawback of the intervention exercise training (ET). The objective of this manuscript is to summarize the current knowledge with respect to ET on cardiovascular disease (CVD) and the molecular changes elicited by ET. Finally, we will critically assess reasons why ET as therapeutic option is not as effective at the population level in preventing CVD and what we may change in the future to make ET the most effective intervention to fight the development of CVD.
Collapse
Affiliation(s)
- Gerhard Schuler
- University Leipzig-Heart Center Leipzig, Strümpellstrasse 39, 4289 Leipzig, Germany.
| | | | | |
Collapse
|
21
|
Tsai TN, Kirton JP, Campagnolo P, Zhang L, Xiao Q, Zhang Z, Wang W, Hu Y, Xu Q. Contribution of stem cells to neointimal formation of decellularized vessel grafts in a novel mouse model. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:362-73. [PMID: 22613026 DOI: 10.1016/j.ajpath.2012.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 03/20/2012] [Accepted: 03/27/2012] [Indexed: 11/19/2022]
Abstract
Artificial vessel grafts are often used for the treatment of occluded blood vessels, but neointimal lesions commonly occur. To both elucidate and quantify which cell types contribute to the developing neointima, we established a novel mouse model of restenosis by grafting a decellularized vessel to the carotid artery. Typically, the graft developed neointimal lesions after 2 weeks, resulting in lumen closure within 4 weeks. Immunohistochemical staining revealed the presence of endothelial and smooth muscle cells, monocytes, and stem/progenitor cells at 2 weeks after implantation. Explanted cultures of neointimal tissues displayed heterogeneous outgrowth in stem cell medium. These lesional cells expressed a panel of stem/progenitor markers, including c-kit, stem cell antigen-1 (Sca-1), and CD34. Furthermore, these cells showed clonogenic and multilineage differentiation capacities. Isolated Sca-1(+) cells were able to differentiate into endothelial and smooth muscle cells in response to vascular endothelial growth factor (VEGF) or platelet-derived growth factor (PDGF)-BB stimulation in vitro. In vivo, local application of VEGF to the adventitial side of the decellularized vessel increased re-endothelialization and reduced neointimal formation in samples at 4 weeks after implantation. A population of stem/progenitor cells exists within developing neointima, which displays the ability to differentiate into both endothelial and smooth muscle cells and can contribute to restenosis. Our findings also indicate that drugs or cytokines that direct cell differentiation toward an endothelial lineage may be effective tools in the prevention or delay of restenosis.
Collapse
MESH Headings
- Animals
- Antigens, Ly/metabolism
- Blood Vessel Prosthesis
- Blood Vessel Prosthesis Implantation/methods
- Carotid Stenosis/pathology
- Carotid Stenosis/physiopathology
- Carotid Stenosis/prevention & control
- Carotid Stenosis/surgery
- Cell Differentiation
- Cells, Cultured
- Colony-Forming Units Assay
- Disease Models, Animal
- Endothelium, Vascular/pathology
- Graft Occlusion, Vascular/pathology
- Graft Occlusion, Vascular/prevention & control
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Smooth, Vascular/pathology
- Neointima/pathology
- Neointima/prevention & control
- Stem Cells/pathology
- Stem Cells/physiology
- Tissue Scaffolds
- Transplantation Chimera
- Vascular Endothelial Growth Factor A/therapeutic use
Collapse
Affiliation(s)
- Tsung-Neng Tsai
- Cardiovascular Division, King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Roux N, Brakenhielm E, Freguin-Bouillant C, Lallemand F, Henry JP, Boyer O, Thuillez C, Plissonnier D. Progenitor cell mobilizing treatments prevent experimental transplant arteriosclerosis. J Surg Res 2011; 176:657-65. [PMID: 22341036 DOI: 10.1016/j.jss.2011.11.1014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/07/2011] [Accepted: 11/18/2011] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Vascular rejection after organ transplantation is characterized by an arterial occlusive lesion, resulting from intimal proliferation occurring in response to arterial wall immune aggression. Our hypothesis is that an early endothelial repair may prevent vascular graft rejection. The aim of the current study was to compare different pharmacologic progenitor cell mobilizing treatments for their protective effects against vascular rejection. METHODS AND RESULTS Aortic transplants were made from balb/c donor to C57Bl/6 recipient mice. Three different mobilizing pharmacologic agents were used: low molecular weight fucoidan (LMWF), simvastatin, and AMD3100. The circulating levels of progenitor cells were found to be increased by all three treatments, as determined by flow cytometry. For each treatment, the design was: treated allografts, nontreated allografts, treated isografts, and nontreated isografts. After 21 d, morphometric and immunohistochemical analyses were performed. We found that the three treatments significantly reduced intimal proliferation, compared with nontreated allografts. This was associated with intimal re-endothelialization of the grafts. Further, in chimeric mice that had previously received GFP-transgenic bone marrow transplantation, GFP-positive cells were found in the vascular allograft intima, indicating that re-endothelialization was, at least partly, due to the recruitment of bone marrow-derived, presumably endothelial progenitor circulating cells. CONCLUSIONS In this aortic allograft model, three different mobilizing treatments were found to partially prevent vascular transplant rejection. Bone marrow-derived progenitor cells mobilized by the three treatments may play a direct role in the endothelial repair process and in the suppression of intimal proliferation.
Collapse
Affiliation(s)
- Nicolas Roux
- Inserm U644, Institute for Biomedical Research, Rouen University, Rouen, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Moebius-Winkler S, Schuler G, Adams V. Endothelial progenitor cells and exercise-induced redox regulation. Antioxid Redox Signal 2011; 15:997-1011. [PMID: 21091077 DOI: 10.1089/ars.2010.3734] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Endothelial progenitor cells (EPCs) are thought to participate in endothelial cell regeneration and neovascularization in either a direct or an indirect way. The number of circulating EPCs is influenced by many factors like disease status, medication, age, and fitness level and is an independent predictor of disease progression and cardiovascular events. Experimental as well as clinical studies during the last 10 years clearly demonstrated that physical exercise training has a beneficial effect on endothelial function, which is a clear predictive value for cardiovascular mortality. Over the last years mainly clinical studies provided solid evidence for an exercise training induced mobilization of EPCs from the bone marrow, thereby possibly influencing the regeneration of the endothelial cell layer. This review will discuss the mechanisms how exercise induces mobilization of EPCs from the bone marrow with a focus on the influence on the redox balance.
Collapse
Affiliation(s)
- Sven Moebius-Winkler
- Department of Internal Medicine/Cardiology, University Leipzig-Heart Center, Leipzig, Germany
| | | | | |
Collapse
|
24
|
Abstract
Accumulating evidence indicates that the mobilization and recruitment of circulating or tissue-resident progenitor cells that give rise to endothelial cells (ECs) and smooth muscle cells (SMCs) can participate in atherosclerosis, neointima hyperplasia after arterial injury, and transplant arteriosclerosis. It is believed that endothelial progenitor cells do exist and can repair and rejuvenate the arteries under physiologic conditions; however, they may also contribute to lesion formation by influencing plaque stability in advanced atherosclerotic plaque under specific pathologic conditions. At the same time, smooth muscle progenitors, despite their capacity to expedite lesion formation during restenosis, may serve to promote atherosclerotic plaque stabilization by producing extracellular matrix proteins. This profound evidence provides support to the hypothesis that both endothelial and smooth muscle progenitors may act as a double-edged sword in the pathogenesis of arteriosclerosis. Therefore, the understanding of the regulatory networks that control endothelial and smooth muscle progenitor differentiation is undoubtedly fundamental both for basic research and for improving current therapeutic avenues for atherosclerosis. We update the progress in progenitor cell study related to the development of arteriosclerosis, focusing specifically on the role of progenitor cells in lesion formation and discuss the controversial issues that regard the origins, frequency, and impact of the progenitors in the disease.
Collapse
Affiliation(s)
- Paola Campagnolo
- Cardiovascular Division, King's College London BHF Centre, London, England
| | | | | |
Collapse
|
25
|
Freguin-Bouilland C, Alkhatib B, David N, Lallemand F, Bessou JP, Boyer O, Thuillez C, Plissonnier D. Syngeneic Bone Marrow Cell Therapy Prevents Intimal Proliferation in Allogeneic Vascular Transplantation. J Surg Res 2011; 168:143-8. [DOI: 10.1016/j.jss.2009.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 09/03/2009] [Accepted: 10/13/2009] [Indexed: 11/29/2022]
|
26
|
Cerrito MG, Scagliarini A, Froio A, Liloia A, Busnelli M, Giovannoni R, Otterbein LE, Mainetti L, Villa M, Bach FH, Leone BE, Biasi GM, Lavitrano M. Heme Oxygenase-1 Inhibition Prevents Intimal Hyperplasia Enhancing Nitric Oxide-Dependent Apoptosis of Vascular Smooth Muscle Cells. Biol Pharm Bull 2011; 34:1204-14. [DOI: 10.1248/bpb.34.1204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Alberto Froio
- Vascular Surgery Unit, Department of Surgical Sciences, University of Milano-Bicocca
| | - Angela Liloia
- Vascular Surgery Unit, Department of Surgical Sciences, University of Milano-Bicocca
| | - Marco Busnelli
- Molecular Medicine Laboratory, University of Milano-Bicocca
| | | | | | - Lara Mainetti
- Molecular Medicine Laboratory, University of Milano-Bicocca
| | - Matteo Villa
- Molecular Medicine Laboratory, University of Milano-Bicocca
| | - Fritz Heintz Bach
- Immunobiology Research Center, Department of Surgery, Harvard Medical School
| | | | - Giorgio Maria Biasi
- Vascular Surgery Unit, Department of Surgical Sciences, University of Milano-Bicocca
| | | |
Collapse
|
27
|
Sata M, Fukuda D. Chronic inflammation and atherosclerosis : A critical role for renin angiotensin system that is activated by lifestyle-related diseases. Inflamm Regen 2011. [DOI: 10.2492/inflammregen.31.245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
28
|
Abstract
Although it is clear that inadequate perfusion underlies most of the organ dysfunction accounting for hypertension-related adverse outcomes, our understanding of the pathophysiologic mechanisms is still evolving. The most important approaches to improving vascular health include reducing injury to the vessel wall and enhancing mechanisms to repair/restore vessel wall function. The main factors responsible for repairing cardiovascular function include vascular progenitor cells and angiogenesis. The purpose of this article is to bring together recent findings indicating that limitations in vascular progenitor cell function seen in hypertension underlie the increased risks for coronary artery disease and other vascular-related adverse outcomes. Improved understanding of systems for vascular repair holds promise for new therapeutic applications in the future, although this subject will not be dealt with in this article. We will focus on a pivotal defense mechanism - bone marrow-derived progenitor cells and their roles in hypertension.
Collapse
Affiliation(s)
- Ki E Park
- Division of Cardiovascular Medicine, University of Florida College of Medicine, 1600 SW Archer Rd, PO Box 100277, Gainesville, FL 32610-0277, USA
| | | |
Collapse
|
29
|
Díez M, Musri MM, Ferrer E, Barberà JA, Peinado VI. Endothelial progenitor cells undergo an endothelial-to-mesenchymal transition-like process mediated by TGFβRI. Cardiovasc Res 2010; 88:502-11. [DOI: 10.1093/cvr/cvq236] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
30
|
Geng YJ, Yang YJ, Casscells SW, Willerson JT. Vascular stem cells: a new concept in the pathogenesis of atherosclerosis and interventions for coronary heart disease. Future Cardiol 2010; 2:585-92. [PMID: 19804196 DOI: 10.2217/14796678.2.5.585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vascular stem cells are undifferentiated, oligopotent progenitor cells that are capable of giving rise to mature, functional cells in the vascular wall. Several types of vascular progenitor cells have been identified and characterized from embryonic and adult tissues, including progenitors with the potential to differentiate into endothelial and smooth muscle cells. The progenitors for endothelial and smooth muscle cells reside in atherosclerotic or restenotic lesions and circulate in the bloodstream. These stem cells may malfunction under the influence of the risk factors for atherosclerosis, as well as by medical interventions. The biological activities of these stem cells contribute to the regeneration, repair and remodeling of arterial walls injured by atherosclerosis. Hypercholesterolemia, inflammation, mechanical stress and genetic defects may interact in regulating the vascular stem cell response to atherogenic stimulation. Stem cell production, potency, growth and differentiation may decline as people age. Clarifying the cellular and molecular pathways that govern stem cell growth, differentiation and apoptosis should help clinical scientists to understand the pathogenesis of atherosclerosis and to develop novel therapeutic strategies for coronary heart disease. Recent clinical trials demonstrate encouraging outcomes of stem cell therapies.
Collapse
Affiliation(s)
- Yong-Jian Geng
- Center for Cardiovascular Biology & Atherosclerosis Research, Department of Internal Medicine, School of Medicine, University of Texas Health Science Center at Houston & the Laboratory of Heart Failure & Stem Cell Research, Texas Heart Institute, Houston, TX, USA.
| | | | | | | |
Collapse
|
31
|
Isenovic ER, Kedees MH, Haidara MA, Trpkovic A, Mikhailidis DP, Marche P. Involvement of ERK1/2 kinase in insulin-and thrombin-stimulated vascular smooth muscle cell proliferation. Angiology 2010; 61:357-364. [PMID: 20304866 DOI: 10.1177/0003319709358693] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is well recognized that the proliferation of vascular smooth muscle cells (VSMCs) is a key event in the pathogenesis of various vascular diseases, including atherosclerosis and hypertension. We have previously shown that among extracellular signal-regulated protein kinases (ERKs), the 42- and 44-kDa isoforms (ERK1/2) participate in the cellular mitogenic machinery triggered by several VSMCs activators, including insulin (INS) and thrombin (Thr). However, understanding of the intracellular signal transduction pathways involved is incomplete. This review considers the recent findings in INS and Thr signaling mechanisms that modulate the proliferation of VSMCs with particular emphasis on the ERK1/2 signaling pathway, an important mediator of VSMCs hypertrophy and vascular disease. Moreover, because the ERK1/2 pathway have been acknowledged as an important mediator of VSMCs hypertrophy, ERK1/2 is identified as a key target for novel therapeutic interventions to minimize irreversible tissue damage associated with hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Esma R Isenovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory for Molecular Genetics and Radiobiology, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
32
|
Yu J, Li Y, Li M, Qu Z, Ruan Q. Oxidized low density lipoprotein-induced transdifferentiation of bone marrow-derived smooth muscle-like cells into foam-like cells in vitro. Int J Exp Pathol 2010; 91:24-33. [PMID: 20096071 DOI: 10.1111/j.1365-2613.2009.00693.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Oxidized-low density lipoprotein (ox-LDL) is believed to contribute to atherogenesis in part by being taken up into smooth muscle cells (SMC) via specific scavenger receptors; however, it is not clear whether ox-LDL receptor(s) are expressed in bone marrow-derived smooth muscle-like cells (SMLCs) and whether they play a role in the process of SMLC development. Therefore, we examined the ox-LDL-induced transdifferentiation of SMLCs that is mediated by lectin-like ox-LDL receptor-1 (LOX-1). Smooth muscle progenitor cells (SMPCs) from bone marrow mesenchymal stem cells (BMSCs) were isolated using a tissue-specific promoter sorting method with a mouse SM22_ promoter (_480 bp)/green fluorescent protein recombinant plasmid. The SMPCs were myocardin+CD105+KDR+CD45(-)CD34(-), but did not express SMC-specific markers alpha-smooth muscle actin (alpha-SMA), SM22, smooth muscle myosin heavy chain (SM-MHC) and smoothelin. After long-term culture with platelet-derived growth factor-BB (PDGF-BB), SMPCs expressed alpha-SMA, SM22 and SM-MHC and differentiated into SMLCs. When SMLCs were incubated with different concentrations of ox-LDL, LOX-1 expression on the surface of SMLCs gradually increased with the increase of the ox-LDL concentration, but myocardin and SMC-specific marker genes decreased, accordingly. Furthermore, receptor-mediated endocytosis was enhanced and lipid droplets accumulated in the cytoplasm of SMLCs. A subpopulation of myocardin+CD105+KDR+CD45(-)CD34(-) SMPCs exist in BMSCs that can differentiate into SMLCs under induction with PDGF-BB. Moreover, LOX-1 contributes to the ox-LDL-induced transdifferentiation of bone marrow-derived SMLCs into foam-like cells.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | |
Collapse
|
33
|
Sata M, Fukuda D. Crucial role of renin-angiotensin system in the pathogenesis of atherosclerosis. THE JOURNAL OF MEDICAL INVESTIGATION 2010; 57:12-25. [DOI: 10.2152/jmi.57.12] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Masataka Sata
- Department of Cardiovascular Medicine, Institute of Health Bioscience, the University of Tokushima Graduate School
| | - Daiju Fukuda
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
| |
Collapse
|
34
|
Li M, Yu J, Li Y, Li D, Yan D, Qu Z, Ruan Q. CXCR4 positive bone mesenchymal stem cells migrate to human endothelial cell stimulated by ox-LDL via SDF-1alpha/CXCR4 signaling axis. Exp Mol Pathol 2009; 88:250-5. [PMID: 20025867 DOI: 10.1016/j.yexmp.2009.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/01/2009] [Accepted: 12/01/2009] [Indexed: 01/10/2023]
Abstract
BACKGROUND Bone mesenchymal stem cells (BMSCs) are attractive candidates for cell based therapies to cardiovascular disease such as infarction and atherosclerosis; however, the mechanisms responsible for stem cell chemotaxis and homing remain unknown. Chemokine stromal cell-derived factor 1 (SDF-1alpha) is involved in the process of atherogenesis. This study was aimed at investigating whether the SDF-1alpha of human umbilical vein endothelial cells (HUVECs) plays a role in migration of BM-derived CXCR4(+)(receptor for SDF-1alpha) stem cells. METHODS HUVECs were cultured from human umbilical cords and was treated with ox-LDL. The mRNA and protein expression of SDF-1alpha was detected in HUVECs. CXCR4(+)BMSCs from bone marrow were isolated and were tested by migration and adhesion assays. RESULTS It was found that ox-LDL induced HUVECs to increase the mRNA and protein expression of SDF-1alpha. Ox-LDL increased the migratory and adhesion response of CXCR4(+)BMSCs. When the neutralizing SDF-1alpha antibody abrogated the secreted SDF-1alpha, the migration and adhesion response of CXCR4(+)BMSCs markedly decreased. CONCLUSIONS Our data indicated that the endothelial cells (ECs) stimulated by ox-LDL could increase the BMSCs migratory response via SDF-1alpha/CXCR4 signaling axis. These findings provide a new paradigm for biological effects of ox-LDL and have implications for novel stem cell therapeutic strategies for atherosclerosis.
Collapse
Affiliation(s)
- Mincai Li
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
Pal SN, Rush C, Parr A, Van Campenhout A, Golledge J. Osteocalcin positive mononuclear cells are associated with the severity of aortic calcification. Atherosclerosis 2009; 210:88-93. [PMID: 20004897 DOI: 10.1016/j.atherosclerosis.2009.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/09/2009] [Accepted: 11/01/2009] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To assess the association of circulating bone marrow-derived osteo-progenitors with vascular calcification in mouse models and patients with peripheral artery disease. METHODS We estimated the percentage of circulating mononuclear cells expressing osteocalcin in 2 mouse models of aortic calcification developed in osteoprotegerin-deficient mice (OPG(-/-)) using flow cytometry. Aortic calcification was assessed in mice principally by a bioassay of harvested aortas. In patients with peripheral artery disease osteocalcin-positive cells (estimated by flow cytometry) were related to aortic calcification volume assessed from computed tomography. RESULTS The amount of extractable aortic calcium was increased in both mouse models used in comparison to controls. The percentage of circulating mononuclear cells expressing osteocalcin was correlated to the amount of extractable aortic calcium in male (r=0.525, p=0.02) and female OPG(-/-) (r=0.564, p=0.02) mice and also in animals in which calcification was accelerated using calcitriol (r=0.64, p=0.01). Patients with more severe aortic calcification had a greater percentage of circulating OCN(+) MNCs (median 4.07%, IQR 3.76-4.39, n=12) than those with less severe aortic calcification (median 3.10%, IQR 2.32-3.60, n=11, p=0.05). CONCLUSIONS This study demonstrates that aortic calcification can be robustly quantified in 2 mouse models. In these models and patients with peripheral artery disease circulating osteocalcin positive mononuclear cells are associated with the severity of aortic calcification.
Collapse
Affiliation(s)
- Shripad N Pal
- The Vascular Biology Unit, Department of Surgery, School of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | | | | | | | | |
Collapse
|
36
|
Avogaro A, Fadini GP. Role of endothelial progenitor cells in diabetes mellitus. Expert Rev Endocrinol Metab 2009; 4:575-589. [PMID: 30780783 DOI: 10.1586/eem.09.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endothelial progenitor cells (EPCs) are bone marrow-derived cells involved in endothelial healing and angiogenesis. EPCs are considered an integrated component of the cardiovascular system, which promotes vascular health. Derangement of EPC biology in diabetes has been hailed as a novel concept in the pathogenesis of micro- and macro-vascular complications. Additionally, EPCs are considered to be disease biomarkers, as they provide an index of cardiovascular risk. The mechanisms leading to EPC dysfunction in diabetes may include defective mobilization from bone marrow to peripheral blood and reduced half-life. Hyperglycemia is considered the major determinant of microvascular complications, while other mechanisms concur to increase the risk of cardiovascular disease in diabetic patients. EPCs may represent a novel pathophysiological connection to understand development and progression of diabetic complications.
Collapse
Affiliation(s)
- Angelo Avogaro
- a Dipartimento di Medicina Clinica e Sperimentale, Cattedra di Malattie del Metabolismo, Università di Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Gian Paolo Fadini
- b Dipartimento di Medicina clinica e Sperimentale, Cattedra di Malattie del Metabolismo, Università di Padova, Via Giustiniani 2, 35128 Padova, Italy.
| |
Collapse
|
37
|
Gabbasov ZA, Kozlov SG, Lyakishev AA, Saburova OS, Smirnov VA, Smirnov VN. Polymorphonuclear blood leukocytes and restenosis after intracoronary implantation of drug-eluting stents. Can J Physiol Pharmacol 2009; 87:130-6. [PMID: 19234576 DOI: 10.1139/y08-107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Peripheral blood contents of osteonectin-positive progenitor cells and polymorphonuclear granulocytes were examined by flow cytometry in 38 patients after myocardial revascularisation with drug-eluting stents. Repeat coronary angiography performed 6-12 months after stent implantation revealed in-stent restenosis in 15 patients and its absence in 23 patients. The plasma levels of osteonectin-positive progenitor cells, neutrophils, and basophils did not differ in patients with and without restenosis. Eosinophil blood levels in patients with and without restenosis were 262+/-68 and 124+/-67 cells/microL (mean+/-SD, p<0.001), respectively. Only one of 19 patients (5%) with eosinophil content lower than the distribution median for the entire group developed restenosis, whereas in the group with eosinophil contents higher than the median (n=19) restenosis occurred in 14 patients (74%, p<0.001). Our findings suggest that the frequency of restenoses after stenting is related to high peripheral blood eosinophil content.
Collapse
Affiliation(s)
- Zufar A Gabbasov
- Laboratory of Stem Cells and Department of Atherosclerosis, Institute of Experimental Cardiology, Cardiology Research Center, 3rd Cherepkovskaya Street, 15A, Moscow 121 552, Russia.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The endothelium can evoke relaxations (dilatations) of the underlying vascular smooth muscle, by releasing vasodilator substances. The best characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO). The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDHF-mediated responses). Endothelium-dependent relaxations involve both pertussis toxin-sensitive G(i) (e.g. responses to serotonin and thrombin) and pertussis toxin-insensitive G(q) (e.g. adenosine diphosphate and bradykinin) coupling proteins. The release of NO by the endothelial cell can be up-regulated (e.g. by oestrogens, exercise and dietary factors) and down-regulated (e.g. oxidative stress, smoking and oxidized low-density lipoproteins). It is reduced in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively loose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and causing endothelium-dependent hyperpolarizations), endothelial cells also can evoke contraction (constriction) of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factor (EDCF). Most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells. EDCF-mediated responses are exacerbated when the production of NO is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive patients.
Collapse
Affiliation(s)
- P M Vanhoutte
- Department of Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | | | | | | |
Collapse
|
39
|
Chan-Park MB, Shen JY, Cao Y, Xiong Y, Liu Y, Rayatpisheh S, Kang GCW, Greisler HP. Biomimetic control of vascular smooth muscle cell morphology and phenotype for functional tissue-engineered small-diameter blood vessels. J Biomed Mater Res A 2009; 88:1104-21. [PMID: 19097157 DOI: 10.1002/jbm.a.32318] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small-diameter blood vessel substitutes are urgently needed for patients requiring replacements of their coronary and below-the-knee vessels and for better arteriovenous dialysis shunts. Circulatory diseases, especially those arising from atherosclerosis, are the predominant cause of mortality and morbidity in the developed world. Current therapies include the use of autologous vessels or synthetic materials as vessel replacements. The limited availability of healthy vessels for use as bypass grafts and the failure of purely synthetic materials in small-diameter sites necessitate the development of a biological substitute. Tissue engineering is such an approach and has achieved promising results, but reconstruction of a functional vascular tunica media, with circumferentially oriented contractile smooth muscle cells (SMCs) and extracellular matrix, appropriate mechanical properties, and vasoactivity has yet to be demonstrated. This review focuses on strategies to effect the switch of SMC phenotype from synthetic to contractile, which is regarded as crucial for the engineering of a functional vascular media. The synthetic SMC phenotype is desired initially for cell proliferation and tissue remodeling, but the contractile phenotype is then necessary for sufficient vasoactivity and inhibition of neointima formation. The factors governing the switch to a more contractile phenotype with in vitro culture are reviewed.
Collapse
Affiliation(s)
- Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Gulati R, Simari RD. Defining the potential for cell therapy for vascular disease using animal models. Dis Model Mech 2009; 2:130-7. [PMID: 19259386 PMCID: PMC2650189 DOI: 10.1242/dmm.000562] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell-based therapeutics are currently being developed for a wide array of unmet medical needs. As obstructive vascular disease is the major cause of mortality in the world, cell-based strategies aimed at developing novel therapies or improving current therapies are currently under study. These studies are based on the evolving understanding of the biology of vascular progenitor cells, which has in turn led to the availability of well-defined sources of vascular cells for delivery. Crucial to the development of these approaches is the preclinical testing of cell delivery in animal models. This review highlights the crucial steps involved in the selection of cell sources and generation, delivery approaches, animal models to be used, and endpoints to be studied, in the context of cell delivery for vascular disease. Furthermore, the development of cell delivery to induce angiogenesis in ischemic limbs and to improve the response to large vessel injury will be discussed.
Collapse
Affiliation(s)
- Rajiv Gulati
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert D. Simari
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
41
|
Vascular progenitor cells and translational research: the role of endothelial and smooth muscle progenitor cells in endogenous arterial remodelling in the adult. Clin Sci (Lond) 2009; 116:283-99. [PMID: 19138170 DOI: 10.1042/cs20080001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There has been much recent research into the therapeutic use of stem and progenitor cells for various diseases. Alongside this, there has also been considerable interest in the normal roles that endogenous precursor cells may play in both physiological and pathological settings. In the present review, we focus on two types of progenitor cell which are of potential relevance to vascular homoeostasis, namely the EPC (endothelial progenitor cell) and the smooth muscle progenitor cell. We discuss evidence for their existence and sources in adults, and the various techniques currently used to identify these cells. We examine data obtained from studies using different methods of progenitor identification and relate these to each other, in order to provide a framework in which to interpret the literature in this area. We review evidence for the influence of these vascular progenitor cells upon vascular function and the development and progression of atherosclerosis.
Collapse
|
42
|
Abstract
Alterations in pulmonary vessel structure and function are highly prevalent in patients with COPD. Vascular abnormalities impair gas exchange and may result in pulmonary hypertension, which is one of the principal factors associated with reduced survival in COPD patients. Changes in pulmonary circulation have been identified at initial disease stages, providing new insight into their pathogenesis. Endothelial cell damage and dysfunction produced by the effects of cigarette smoke products or inflammatory elements is now considered to be the primary alteration that initiates the sequence of events resulting in pulmonary hypertension. Cellular and molecular mechanisms involved in this process are being extensively investigated. Progress in the understanding of the pathobiology of pulmonary hypertension associated with COPD may provide the basis for a new therapeutic approach addressed to correct the imbalance between endothelium-derived vasoactive agents. The safety and efficacy of endothelium-targeted therapy in COPD-associated pulmonary hypertension warrants further investigation in randomized clinical trials.
Collapse
Affiliation(s)
- Víctor I Peinado
- Department of Pulmonary Medicine, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Ciber de Enfermedades Respiratorias, Barcelona, Spain
| | - Sandra Pizarro
- Department of Pulmonary Medicine, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Ciber de Enfermedades Respiratorias, Barcelona, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Ciber de Enfermedades Respiratorias, Barcelona, Spain.
| |
Collapse
|
43
|
Tanaka K, Sata M. Contribution of circulating vascular progenitors in lesion formation and vascular healing: lessons from animal models. Curr Opin Lipidol 2008; 19:498-504. [PMID: 18769231 DOI: 10.1097/mol.0b013e32830dd566] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW It is a widely accepted view that vascular repair results from migration and proliferation of adjacent cells in animal models. On the contrary, accumulating evidence suggests that bone marrow can give rise to endothelial-like cells and smooth muscle like cells that potentially contribute to vascular healing, remodeling, and lesion formation under physiological and pathological conditions. The aim of this article is to review recent findings obtained from animal models of vascular diseases regarding bone marrow derived progenitor cells. RECENT FINDINGS Studies using chimeric animals revealed that bone marrow derived cells exist at the sites of vascular healing and lesion formation after injury. High-resolution histological analyses revealed that those bone marrow derived cells do express some markers for endothelial cells or smooth muscle cells. Peripheral mononuclear cells could differentiate into endothelial-like cells or smooth muscle like cells in vitro according to the culture conditions. SUMMARY Circulating progenitors significantly contribute to vascular repair and lesion formation. These findings provide the basis for the development of new therapeutic strategies that involve targeting the mobilization, homing, differentiation, and proliferation of bone marrow- derived vascular progenitor cells.
Collapse
Affiliation(s)
- Kimie Tanaka
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
44
|
Evans D, Lawford P, Gunn J, Walker D, Hose D, Smallwood R, Chopard B, Krafczyk M, Bernsdorf J, Hoekstra A. The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A: MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES 2008; 366:3343-60. [PMID: 18603527 DOI: 10.1098/rsta.2008.0081] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The inherent complexity of biomedical systems is well recognized; they are multiscale, multiscience systems, bridging a wide range of temporal and spatial scales. While the importance of multiscale modelling in this context is increasingly recognized, there is little underpinning literature on the methodology and generic description of the process. The COAST (complex autonoma simulation technique) project aims to address this by developing a multiscale, multiscience framework, coined
complex autonoma
(CxA), based on a hierarchical aggregation of coupled cellular automata (CA) and agent-based models (ABMs). The key tenet of COAST is that a multiscale system can be decomposed into
N
single-scale CA or ABMs that mutually interact across the scales. Decomposition is facilitated by building a scale separation map on which each single-scale system is represented according to its spatial and temporal characteristics. Processes having well-separated scales are thus easily identified as the components of the multiscale model. This paper focuses on methodology, introduces the concept of the CxA and demonstrates its use in the generation of a multiscale model of the physical and biological processes implicated in a challenging and clinically relevant problem, namely coronary artery in-stent restenosis.
Collapse
Affiliation(s)
- D.J.W Evans
- Academic Unit of Medical Physics, University of SheffieldSheffield S10 2TN, UK
| | - P.V Lawford
- Academic Unit of Medical Physics, University of SheffieldSheffield S10 2TN, UK
| | - J Gunn
- Cardiovascular Research Unit, University of SheffieldSheffield S10 2TN, UK
| | - D Walker
- Department of Computer Science, University of SheffieldSheffield S10 2TN, UK
| | - D.R Hose
- Academic Unit of Medical Physics, University of SheffieldSheffield S10 2TN, UK
| | - R.H Smallwood
- Department of Computer Science, University of SheffieldSheffield S10 2TN, UK
| | - B Chopard
- Computer Science Department, University of GenevaGeneva 1211, Switzerland
| | - M Krafczyk
- Institute for Computer Applications in Civil Engineering, Technical University of BraunschweigBraunschweig 38106, Germany
| | - J Bernsdorf
- NEC Laboratories Europe, NEC Europe Ltd.Sankt Augustin 53757, Germany
| | - A Hoekstra
- Computational Science, University of AmsterdamAmsterdam 1018, Netherlands
| |
Collapse
|
45
|
Santhanam AVR, d’Uscio LV, Peterson TE, Katusic ZS. Activation of endothelial nitric oxide synthase is critical for erythropoietin-induced mobilization of progenitor cells. Peptides 2008; 29:1451-5. [PMID: 18448202 PMCID: PMC2570495 DOI: 10.1016/j.peptides.2008.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 11/20/2022]
Abstract
The present study aimed to define the ability of erythropoietin (EPO) to mobilize hematopoietic stem cells (c-kit(+)/sca-1(+)/lin-1(-); KSL-cells) and hematopoietic progenitor cells (CD34(+) cells), including vascular endothelial growth factor receptor 2 expressing hematopoietic progenitor cells (CD34(+)/Flk-1(+) cells). We also sought to determine the role of endothelial nitric oxide synthase (eNOS) in EPO-induced mobilization. Wild type (WT) and eNOS(-/-) mice were injected bi-weekly with recombinant erythropoietin (EPO, 1000U/kg, s.c.) for 14 days. EPO increased the number of KSL, CD34(+), CD34(+)/Flk-1(+) cells in circulating blood of wild type mice. These effects of EPO were abolished in eNOS(-/-) mice. Our results demonstrate that, EPO stimulates mobilization of hematopoietic stem and progenitor cells. This effect of EPO is critically dependent on activation of eNOS.
Collapse
Affiliation(s)
| | | | | | - Zvonimir S Katusic
- Author for Correspondence: Dr. Zvonimir S. Katusic, Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, , Phone: 507-255-5156, Fax: 507-255-7300
| |
Collapse
|
46
|
Fadini GP. An underlying principle for the study of circulating progenitor cells in diabetes and its complications. Diabetologia 2008; 51:1091-4. [PMID: 18478199 DOI: 10.1007/s00125-008-1021-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- G P Fadini
- Department of Clinical and Experimental Medicine, University of Padua, Medical School, Via Giustiniani, 2, 35100, Padua, Italy.
| |
Collapse
|
47
|
Bobryshev YV, Killingsworth MC, Lord RSA. Spatial distribution of osteoblast-specific transcription factor Cbfa1 and bone formation in atherosclerotic arteries. Cell Tissue Res 2008; 333:225-35. [DOI: 10.1007/s00441-008-0637-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 05/05/2008] [Indexed: 01/03/2023]
|
48
|
Molecular MRI of hematopoietic stem-progenitor cells: in vivo monitoring of gene therapy and atherosclerosis. ACTA ACUST UNITED AC 2008; 5:396-404. [PMID: 18477983 DOI: 10.1038/ncpcardio1217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 02/22/2008] [Indexed: 11/09/2022]
Abstract
A characteristic feature of atherosclerotic cardiovascular disease is the diffuse involvement of arteries across the entire human body and the presence of multiple, simultaneous lesions. The diffuse nature of this disease creates a unique challenge for early diagnosis and effective treatment. We believe that recent progress in the field of molecular MRI has opened new avenues towards solving the problem. A new technology has been developed that uses molecular MRI to monitor the migration and homing of hematopoietic stem-progenitor cells to injured arteries and atherosclerosis. In this Review, we introduce several novel technical developments in the field of molecular MRI of atherosclerosis, including advanced techniques for magnetic labeling of stem-progenitor cells and molecular MRI of hematopoietic bone marrow cells migrating to injured arteries and homing to atherosclerotic plaques. In addition, we examine molecular MRI of vascular gene therapy mediated by stem-progenitor cells. These new techniques provide the basis for the further development of in vivo MRI techniques to monitor stem-cell-mediated vascular gene therapy for multiple and diffuse atherosclerotic cardiovascular lesions.
Collapse
|
49
|
Kalka C, Baumgartner I. Gene and stem cell therapy in peripheral arterial occlusive disease. Vasc Med 2008; 13:157-72. [DOI: 10.1177/1358863x08088616] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract Peripheral arterial occlusive disease (PAOD) is a manifestation of systemic atherosclerosis strongly associated with a high risk of cardiovascular morbidity and mortality. In a considerable proportion of patients with PAOD, revascularization either by endovascular means or by open surgery combined with best possible risk factor modification does not achieve limb salvage or relief of ischaemic rest pain. As a consequence, novel therapeutic strategies have been developed over the last two decades aiming to promote neovascularization and remodelling of collaterals. Gene and stem cell therapy are the main directions for clinical investigation concepts. For both, preclinical studies have shown promising results using a wide variety of genes encoding for growth factors and populations of adult stem cells, respectively. As a consequence, clinical trials have been performed applying gene and stem cell-based concepts. However, it has become apparent that a straightforward translation into humans is not possible. While several trials reported relief of symptoms and functional improvement, other trials did not confirm this early promise of efficacy. Ongoing clinical trials with an improved study design are needed to confirm the potential that gene and cell therapy may have and to prevent the gaps in our scientific knowledge that will jeopardize the establishment of angiogenic therapy as an additional medical treatment of PAOD. This review summarizes the experimental background and presents the current status of clinical applications and future perspectives of the therapeutic use of gene and cell therapy strategies for PAOD.
Collapse
Affiliation(s)
- C Kalka
- Division of Vascular Medicine, Swiss Cardiovascular Center, University Hospital of Bern, Switzerland
| | - Iris Baumgartner
- Division of Vascular Medicine, Swiss Cardiovascular Center, University Hospital of Bern, Switzerland
| |
Collapse
|
50
|
Ball SG, Shuttleworth CA, Kielty CM. Mesenchymal stem cells and neovascularization: role of platelet-derived growth factor receptors. J Cell Mol Med 2008; 11:1012-30. [PMID: 17979880 PMCID: PMC4401270 DOI: 10.1111/j.1582-4934.2007.00120.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There is now accumulating evidence that bone marrow-derived mesenchymal stem cells (MSCs) make an important contribution to postnatal vasculogenesis, especially during tissue ischaemia and tumour vascularization. Identifying mechanisms which regulate the role of MSCs in vasculogenesis is a key therapeutic objective, since while increased neovascularization can be advantageous during tissue ischaemia, it is deleterious during tumourigenesis. The potent angiogenic stimulant vascular endothelial growth factor (VEGF) is known to regulate MSC mobilization and recruitment to sites of neovascularization, as well as directing the differentiation of MSCs to a vascular cell fate. Despite the fact that MSCs did not express VEGF receptors, we have recently identified that VEGF-A can stimulate platelet-derived growth factor (PDGF) receptors, which regulates MSC migration and proliferation. This review focuses on the role of PDGF receptors in regulating the vascular cell fate of MSCs, with emphasis on the function of the novel VEGF-A/PDGF receptor signalling mechanism.
Collapse
Affiliation(s)
- Stephen G Ball
- UK Centre for Tissue Engineering, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | |
Collapse
|