1
|
Zhu X, Liu G, Peng Y, Zhang L, Wang X, Chen L, Zheng Y, Xiang X, Qiao R, Lin X. Causal correlations between inflammatory proteins and heart failure: A two-sample Mendelian randomization analysis. ESC Heart Fail 2025; 12:1374-1385. [PMID: 39501838 PMCID: PMC11911586 DOI: 10.1002/ehf2.15151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 03/18/2025] Open
Abstract
AIMS Inflammation plays a critical role in both the development and progression of heart failure (HF), which is a leading cause of morbidity and mortality worldwide. However, the causality between specific inflammation-related proteins and HF risk remains unclear. This study aims to investigate the genetically supported causality between inflammatory proteins and HF using a two-sample Mendelian randomization (MR) analysis. METHODS AND RESULTS We utilized genome-wide association study (GWAS) data of 91 inflammation-related proteins as exposures from the SCALLOP Consortium (14,824 participants), alongside outcome GWAS summary statistics from FinnGen (29,218 cases/381,838 controls) and HERMES (47,309 cases/930,014 controls) for HF, to conduct a two-sample MR analysis. For each inflammatory protein, instrumental variables (IVs) were chosen following the three foundational assumptions of the MR analysis, requiring a minimum of three qualifying single nucleotide polymorphisms (SNPs) each with a P < 5e-8. Associations between inflammatory proteins and HF were assessed through inverse-variance weighted (IVW), MR-Egger regression, weighted median and weighted mode analysis. The reliability and validity of the results were evaluated by examining heterogeneity, horizontal pleiotropy, leave-one-out analysis, meta-analysis and reverse MR analysis. Heterogeneity refers to the variation in results across different genetic variants. Horizontal pleiotropy occurs when a genetic variant influences multiple traits through different biological pathways. Addressing both heterogeneity and horizontal pleiotropy is crucial for ensuring the reliability and interpretability of MR results. Our analysis identified associations between three inflammatory proteins and HF risk. Matrix metalloproteinase-1 (MMP-1) (OR, 1.09; 95% CI, 1.00-1.18; P = 0.04) and TNF-beta (OR, 1.05; 95% CI, 1.01-1.09; P = 0.01) were positively associated with HF risk in FinnGen. In contrast, urokinase-type plasminogen activator (uPA) was inversely associated with HF risk in both FinnGen (OR, 0.85; 95% CI, 0.78-0.92; P = 3.27e-5) and HERMES (OR, 0.93; 95% CI, 0.87-0.99; P = 0.03). No evidence of heterogeneity and horizontal pleiotropy was observed in the MR analysis, indicating the robustness of our findings. A meta-analysis further supported this association, indicating a reduced risk (OR, 0.89; 95% CI, 0.81-0.98; P = 0.02). No reverse causality was found between HF and these three inflammatory proteins (P > 0.05 for all). CONCLUSIONS This study provides genetically supported evidence of the causal association of specific inflammatory proteins with HF risk. The positive association of MMP-1 and TNF-beta with HF suggests their roles in disease pathogenesis, whereas the inverse association of the uPA indicates its potential protective effect. Our findings highlight the potential of targeting specific inflammatory pathways as a therapeutic strategy for HF.
Collapse
Affiliation(s)
- Xian‐Guan Zhu
- Department of CardiologyAnqing Municipal HospitalAnqingChina
| | - Gui‐Qin Liu
- Department of CardiologyAnqing Municipal HospitalAnqingChina
- Department of CardiologyHospital of Anhui Medical UniversityHefeiChina
| | - Ya‐Ping Peng
- Department of CardiologyAnqing Municipal HospitalAnqingChina
- Graduate SchoolWannan Medical CollegeWuhuChina
| | - Li‐Ling Zhang
- Department of CardiologyAnqing Municipal HospitalAnqingChina
| | - Xian‐Jin Wang
- Department of CardiologyAnqing Municipal HospitalAnqingChina
| | | | - Yuan‐Xi Zheng
- Department of CardiologyAnqing Municipal HospitalAnqingChina
| | - Xue‐Jun Xiang
- Department of CardiologyAnqing Municipal HospitalAnqingChina
| | - Rui Qiao
- Department of CardiologyAnqing Municipal HospitalAnqingChina
| | - Xian‐He Lin
- Department of CardiologyHospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
2
|
Kehusmaa A, Tuomisto A, Sirniö P, Karjalainen H, Kastinen M, Tapiainen VV, Äijälä VK, Tervahartiala T, Sorsa T, Rintala J, Meriläinen S, Saarnio J, Rautio T, Mäkinen MJ, Väyrynen JP. Associations of serum and tissue TIMP1 with host response and survival in colorectal cancer. Sci Rep 2025; 15:1440. [PMID: 39789100 PMCID: PMC11717928 DOI: 10.1038/s41598-025-85549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) is a multifaceted, cytokine-like bioactive molecule whose levels are elevated in a wide range of inflammatory diseases and are associated with prognosis. Additionally, TIMP1 may play a role in driving systemic inflammation. TIMP1 immunohistochemistry and TIMP1 serum concentrations were analyzed in a cohort of 776 colorectal cancer patients. TIMP1 histoscore by cell type (tumor cell, other) was quantified using digital image analysis. Serum TIMP1 levels were evaluated for correlations with tumor TIMP1 expression, and their associations with tumor characteristics, inflammation, and prognosis were investigated. High serum TIMP1 concentrations associated with shorter overall survival (multivariable HR 1.85, 95% CI 1.30-2.65). Serum TIMP1 levels positively correlated with markers of systemic inflammation and tumor necrosis percentage but not with TIMP1 expression in tumor tissue. High TIMP1 intensity in tumor stroma associated with longer cancer-specific and overall survival in univariable analysis but not in multivariable models. T cell densities in tumor tissue positively correlated with tumor stromal TIMP1 expression and negatively with tumor epithelial TIMP1 expression. Serum TIMP1 levels show promise as a prognostic marker for colorectal cancer and correlate with systemic inflammatory markers, but do not correlate with TIMP1 expression in tumor tissue.
Collapse
Affiliation(s)
- Akseli Kehusmaa
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Anne Tuomisto
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Päivi Sirniö
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Henna Karjalainen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Meeri Kastinen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Vilja V Tapiainen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Ville K Äijälä
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, Institute of Dentistry, Helsinki University Central Hospital, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Institute of Dentistry, Helsinki University Central Hospital, Helsinki, Finland
- Department of Oral Diseases, Karolinska Institutet, Huddinge, Sweden
| | - Jukka Rintala
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Sanna Meriläinen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Juha Saarnio
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Tero Rautio
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Markus J Mäkinen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Juha P Väyrynen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland.
| |
Collapse
|
3
|
Tseng CH, Huang WM, Chang HC, Yu WC, Cheng HM, Chiang CE, Chen CH, Sung SH. Tissue inhibitor of metalloproteinase (TIMP)-1 predicts failure of recovery of ejection fraction in acute heart failure with reduced ejection fraction. Open Heart 2024; 11:e002770. [PMID: 39322629 PMCID: PMC11426010 DOI: 10.1136/openhrt-2024-002770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/24/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Heart failure (HF) with improved ejection fraction (HFimpEF) is a recently identified phenotype of HF, which had better cardiovascular outcomes compared with persistent HF with reduced ejection fraction (HFrEF). The present study aimed to investigate the predictive value of tissue inhibitor of metalloproteinase (TIMP)-1 and matrix metalloproteinases-9 (MMP-9) in the recovery of left ventricular ejection fraction (LVEF). METHODS Subjects who presented with acute decompensated HF and reduced LVEF of ≤40% were eligible for this study. HFimpEF was defined by a follow-up LVEF >40% and a ≥10% improvement in LVEF. Overnight fasting N-terminal pro-brain natriuretic peptide (NT-proBNP), MMP-9 and TIMP-1 were measured within 24 hours before discharge. The study participants were followed for up to 5 years. RESULTS Among a total of 91 participants (70.1±16.2 years, baseline LVEF 28.9±7.6%), 19 (20.8%) of them had HFimpEF and 72 (79.2%) had persistent HFrEF at 6 months. The receiver operating characteristic curve analyses showed the area under curve measures for TIMP-1, MMP-9 and NT-proBNP in the prediction of HFimpEF were 0.69, 0.52 and 0.65, respectively. TIMP-1 was negatively correlated with HFimpEF as continuous variables (OR per 1-SD and 95% CI 0.99 (0.98 to 1.00)) and categorical variables (cut-off value 200.68 ng/mL, OR and 95% CI 0.16 (0.05 to 0.54)) after adjustment of confounding factors. During a mean follow-up duration 34.8 months, patients with HFimpEF will have better long-term survival than those with persistent HFrEF. CONCLUSIONS In subjects with decompensated HFrEF, TIMP-1, but not MMP-9 was associated with the reverse remodelling in LVEF. In addition, patients with HFimpEF would have better long-term survival.
Collapse
Affiliation(s)
- Chih-Hsueh Tseng
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Wei-Ming Huang
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medicine, Kinmen Hospital, Ministry of Health and Welfare, Jinhu, Taiwan
| | - Hao-Chih Chang
- Department of Internal Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medicine, Taipei Veterans General Hospital Taoyuan Branch, Taoyuan, Taiwan
| | - Wen-Chung Yu
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hao-Min Cheng
- Department of Internal Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chern-En Chiang
- Department of Internal Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- General Clinical Research Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Huan Chen
- Department of Internal Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hsien Sung
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Nevarez-Mejia J, Pickering H, Sosa RA, Valenzuela NM, Fishbein GA, Baldwin WM, Fairchild RL, Reed EF. Spatial multiomics of arterial regions from cardiac allograft vasculopathy rejected grafts reveal novel insights into the pathogenesis of chronic antibody-mediated rejection. Am J Transplant 2024; 24:1146-1160. [PMID: 38219867 PMCID: PMC11239797 DOI: 10.1016/j.ajt.2024.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Cardiac allograft vasculopathy (CAV) causes late graft failure and mortality after heart transplantation. Donor-specific antibodies (DSAs) lead to chronic endothelial cell injury, inflammation, and arterial intimal thickening. In this study, GeoMx digital spatial profiling was used to analyze arterial areas of interest (AOIs) from CAV+DSA+ rejected cardiac allografts (N = 3; 22 AOIs total). AOIs were categorized based on CAV neointimal thickening and underwent whole transcriptome and protein profiling. By comparing our transcriptomic data with that of healthy control vessels of rapid autopsy myocardial tissue, we pinpointed specific pathways and transcripts indicative of heightened inflammatory profiles in CAV lesions. Moreover, we identified protein and transcriptomic signatures distinguishing CAV lesions exhibiting low and high neointimal lesions. AOIs with low neointima showed increased markers for activated inflammatory infiltrates, endothelial cell activation transcripts, and gene modules involved in metalloproteinase activation and TP53 regulation of caspases. Inflammatory and apoptotic proteins correlated with inflammatory modules in low neointima AOIs. High neointima AOIs exhibited elevated TGFβ-regulated transcripts and modules enriched for platelet activation/aggregation. Proteins associated with growth factors/survival correlated with modules enriched for proliferation/repair in high neointima AOIs. Our findings reveal novel insight into immunological mechanisms mediating CAV pathogenesis.
Collapse
Affiliation(s)
- Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Rebecca A Sosa
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - William M Baldwin
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
5
|
Dresler SR, Pinto BI, Salanga MC, Propper CR, Berry SR, Kellar RS. Arsenic Impairs Wound Healing Processes in Dermal Fibroblasts and Mice. Int J Mol Sci 2024; 25:2161. [PMID: 38396835 PMCID: PMC10888720 DOI: 10.3390/ijms25042161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Inorganic arsenic (NaAsO2) is a naturally occurring metalloid found in water resources globally and in the United States at concentrations exceeding the U.S. Environmental Protection Agency Maximum Contamination Level of 10 ppb. While exposure to arsenic has been linked to cancer, cardiovascular disease, and skin lesions, the impact of arsenic exposure on wound healing is not fully understood. Cultured dermal fibroblasts exposed to NaAsO2 displayed reduced migration (scratch closure), proliferation, and viability with a lowest observable effect level (LOEL) of 10 µM NaAsO2 following 24 h exposure. An enrichment of Matrix Metalloproteinase 1 (MMP1) transcripts was observed at a LOEL of 1 µM NaAsO2 and 24 h exposure. In vivo, C57BL/6 mice were exposed to 10 µM NaAsO2 in their drinking water for eight weeks, then subjected to two full thickness dorsal wounds. Wounds were evaluated for closure after 6 days. Female mice displayed a significant reduction in wound closure and higher erythema levels, while males showed no effects. Gene expression analysis from skin excised from the wound site revealed significant enrichment in Arsenic 3-Methyltransferase (As3mt) and Estrogen Receptor 2 (Esr2) mRNA in the skin of female mice. These results indicate that arsenic at environmentally relevant concentrations may negatively impact wound healing processes in a sex-specific manner.
Collapse
Affiliation(s)
- Sara R. Dresler
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Bronson I. Pinto
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Matthew C. Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Catherine R. Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Savannah R. Berry
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Robert S. Kellar
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
- Center for Materials Interfaces in Research & Applications, ¡MIRA!, Flagstaff, AZ 86011, USA
| |
Collapse
|
6
|
George SA, Kiss A, Trampel KA, Obaid SN, Tang L, Efimov IR, Efimova T. Anthracycline cardiotoxicity is exacerbated by global p38β genetic ablation in a sexually dimorphic manner but unaltered by cardiomyocyte-specific p38α loss. Am J Physiol Heart Circ Physiol 2023; 325:H983-H997. [PMID: 37624097 PMCID: PMC11932538 DOI: 10.1152/ajpheart.00458.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
Severe cardiotoxic effects limit the efficacy of doxorubicin (DOX) as a chemotherapeutic agent. Activation of intracellular stress signaling networks, including p38 mitogen-activated protein kinase (MAPK), has been implicated in DOX-induced cardiotoxicity (DIC). However, the roles of the individual p38 isoforms in DIC remain incompletely elucidated. We recently reported that global p38δ deletion protected female but not male mice from DIC, whereas global p38γ deletion did not significantly modulate it. Here we studied the in vivo roles of p38α and p38β in acute DIC. Male and female mice with cardiomyocyte-specific deletion of p38α or global deletion of p38β and their wild-type counterparts were injected with DOX. Survival and health were tracked for 10 days postinjection. Cardiac function was assessed by echocardiography and electrocardiography and fibrosis by Picrosirius red staining. Expression and activation of signaling proteins and inflammatory markers were measured by Western blot, phosphorylation array, and chemokine/cytokine array. Global p38β deletion significantly aggravated DIC and worsened cardiac electrical and mechanical function deterioration in female mice. Mechanistically, DIC in p38β-null female mice correlated with increased autophagy, sustained hyperactivation of proapoptotic JNK signaling, as well as remodeling of a myocardial inflammatory environment. In contrast, cardiomyocyte-specific deletion of p38α improved survival of DOX30-treated male mice 5 days posttreatment but did not influence cardiac function in DOX-treated male or female mice. Our data highlight the sex- and isoform-specific roles of p38α and p38β MAPKs in DOX-induced cardiac injury and suggest a novel in vivo function of p38β in protecting female mice from DIC.NEW & NOTEWORTHY We show that p38α and p38β have distinct in vivo functions in a murine model of acute DIC. Specifically, although conditional cardiomyocyte-specific p38α deletion exhibited mild cardioprotective effects in male mice, p38β deletion exacerbated the DOX cardiotoxicity in female mice. Our findings caution against employing pyridinyl imidazole inhibitors that target both p38α and p38β isoforms as a cardioprotective strategy against DIC. Such an approach could have undesirable sex-dependent effects, including attenuating p38β-dependent cardioprotection in females.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
| | - Alexi Kiss
- Department of Anatomy and Cell Biology, George Washington University, Washington, District of Columbia, United States
- George Washington Cancer Center, Washington, District of Columbia, United States
| | - Katy Anne Trampel
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
| | - Sofian N Obaid
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
| | - Lichao Tang
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - Igor R Efimov
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
- George Washington Cancer Center, Washington, District of Columbia, United States
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
- Department of Anatomy and Cell Biology, George Washington University, Washington, District of Columbia, United States
- George Washington Cancer Center, Washington, District of Columbia, United States
| |
Collapse
|
7
|
Duggal NM, Lei I, Wu X, Aaronson KD, Pagani FD, Lam HYK, Tang PC. Mitral regurgitation severity at left ventricular assist device implantation is associated with distinct myocardial transcriptomic signatures. J Thorac Cardiovasc Surg 2023; 166:141-152.e1. [PMID: 34689984 PMCID: PMC11217920 DOI: 10.1016/j.jtcvs.2021.08.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/24/2021] [Accepted: 08/24/2021] [Indexed: 01/29/2023]
Abstract
OBJECTIVES We examined for differences in pre-left ventricular assist device (LVAD) implantation myocardial transcriptome signatures among patients with different degrees of mitral regurgitation (MR). METHODS Between January 2018 and October 2019, we collected left ventricular (LV) cores during durable LVAD implantation (n = 72). A retrospective chart review was performed. Total RNA was isolated from LV cores and used to construct cDNA sequence libraries. The libraries were sequenced with the NovaSeq system, and data were quantified using Kallisto. Gene Set Enrichment Analysis (GSEA) and Gene Ontology analyses were performed, with a false discovery rate <0.05 considered significant. RESULTS Comparing patients with preoperative mild or less MR (n = 30) and those with moderate-severe MR (n = 42), the moderate-severe MR group weighted less (P = .004) and had more tricuspid valve repairs (P = .043), without differences in demographics or comorbidities. We then compared both groups with a group of human donor hearts without heart failure (n = 8). Compared with the donor hearts, there were 3985 differentially expressed genes (DEGs) for mild or less MR and 4587 DEGs for moderate-severe MR. Specifically altered genes included 448 DEGs for specific for mild or less MR and 1050 DEGs for moderate-severe MR. On GSEA, common regulated genes showed increased immune gene expression and reduced expression of contraction and energetic genes. Of the 1050 genes specific for moderate-severe MR, there were additional up-regulated genes related to inflammation and reduced expression of genes related to cellular proliferation. CONCLUSIONS Patients undergoing durable LVAD implantation with moderate-severe MR had increased activation of genes related to inflammation and reduction of cellular proliferation genes. This may have important implications for myocardial recovery.
Collapse
Affiliation(s)
- Neal M Duggal
- Department of Anesthesiology, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Ienglam Lei
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Xiaoting Wu
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Keith D Aaronson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Francis D Pagani
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | | | - Paul C Tang
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich.
| |
Collapse
|
8
|
Fan S, Xiao G, Ni J, Zhao Y, Du H, Liang Y, Lv M, He S, Fan G, Zhu Y. Guanxinning injection ameliorates cardiac remodeling in HF mouse and 3D heart spheroid models via p38/FOS/MMP1-mediated inhibition of myocardial hypertrophy and fibrosis. Biomed Pharmacother 2023; 162:114642. [PMID: 37027988 DOI: 10.1016/j.biopha.2023.114642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Heart failure (HF) is a cardiovascular disease with high morbidity and mortality. Guanxinning injection (GXNI) is clinically used for the treatment of coronary heart disease, but its therapeutic efficacy and potential mechanism for HF are poorly understood. This study aimed to evaluate the therapeutic potential of GXNI on HF, with a special focus on its role in myocardial remodeling. METHODS 3D cardiac organoids and transverse aortic constriction (TAC) mouse models were established and utilized. Heart function and pathology were evaluated by echocardiography, hemodynamic examination, tail-cuff blood pressure and histopathology. Key targets and pathways regulated by GXNI in HF mouse heart were revealed via RNA-seq and network pharmacology analysis, and were verified by RT-PCR, Western blot, immunohistochemistry and immunofluorescence. RESULTS GXNI significantly inhibited cardiac hypertrophy and cells death. It protected mitochondrial function in cardiac hypertrophic organoids and markedly improved cardiac function in HF mice. Analysis of GXNI-regulated genes in HF mouse hearts revealed that IL-17A signaling in fibroblasts and the corresponding p38/c-Fos/Mmp1 pathway prominently mediated cardiac. Altered expressions of c-Fos, p38 and Mmp1 by GXNI in heart tissues and in cardiac organoids were validated by RT-PCR, WB, IHC, and IF. H&E and Masson staining confirmed that GXNI substantially ameliorated myocardial hypertrophy and fibrosis in HF mice and in 3D organoids. CONCLUSION GXNI inhibited cardiac fibrosis and hypertrophy mainly via down-regulating p38/c-Fos/Mmp1 pathway, thereby ameliorating cardiac remodeling in HF mice. Findings in this study provide a new strategy for the clinical application of GXNI in the treatment of heart failure.
Collapse
Affiliation(s)
- Siwen Fan
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Jingyu Ni
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yuhan Zhao
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Hongying Du
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Yingran Liang
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Ming Lv
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Guanwei Fan
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China.
| |
Collapse
|
9
|
Meenakshi-Siddharthan DV, Livia C, Peterson TE, Stalboerger P, Attia ZI, Clavell AL, Friedman PA, Kapa S, Noseworthy PA, Schafer MJ, Stulak JM, Behfar A, Boilson BA. Artificial Intelligence-Derived Electrocardiogram Assessment of Cardiac Age and Molecular Markers of Senescence in Heart Failure. Mayo Clin Proc 2023; 98:372-385. [PMID: 36868745 DOI: 10.1016/j.mayocp.2022.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/27/2022] [Accepted: 10/12/2022] [Indexed: 03/05/2023]
Abstract
OBJECTIVE To ascertain whether heart failure (HF) itself is a senescent phenomenon independent of age, and how this is reflected at a molecular level in the circulating progenitor cell niche, and at a substrate level using a novel electrocardiogram (ECG)-based artificial intelligence platform. PATIENTS AND METHODS Between October 14, 2016, and October 29, 2020, CD34+ progenitor cells were analyzed by flow cytometry and isolated by magnetic-activated cell sorting from patients of similar age with New York Heart Association functional classes IV (n = 17) and I-II (n = 10) heart failure with reduced ejection fraction and healthy controls (n = 10). CD34+ cellular senescence was quantitated by human telomerase reverse transcriptase expression and telomerase expression by quantitative polymerase chain reaction, and senescence-associated secretory phenotype (SASP) protein expression assayed in plasma. An ECG-based artificial intelligence (AI) algorithm was used to determine cardiac age and difference from chronological age (AI ECG age gap). RESULTS CD34+ counts and telomerase expression were significantly reduced and AI ECG age gap and SASP expression increased in all HF groups compared with healthy controls. Expression of SASP protein was closely associated with telomerase activity and severity of HF phenotype and inflammation. Telomerase activity was more closely associated with CD34+ cell counts and AI ECG age gap. CONCLUSION We conclude from this pilot study that HF may promote a senescent phenotype independent of chronological age. We show for the first time that the AI ECG in HF shows a phenotype of cardiac aging beyond chronological age, and appears to be associated with cellular and molecular evidence of senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering; Robert and Arlene Kogod Center on Aging
| | | | - Atta Behfar
- Van Cleve Cardiac Regeneration Program; Department of Cardiovascular Diseases
| | | |
Collapse
|
10
|
Mantri M, Hinchman MM, McKellar DW, Wang MFZ, Cross ST, Parker JSL, De Vlaminck I. Spatiotemporal transcriptomics reveals pathogenesis of viral myocarditis. NATURE CARDIOVASCULAR RESEARCH 2022; 1:946-960. [PMID: 36970396 PMCID: PMC10035375 DOI: 10.1038/s44161-022-00138-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022]
Abstract
A significant fraction of sudden death in children and young adults is due to viral myocarditis, an inflammatory disease of the heart. In this study, by using integrated single-cell and spatial transcriptomics, we created a high-resolution, spatially resolved transcriptome map of reovirus-induced myocarditis in neonatal mouse hearts. We assayed hearts collected at three timepoints after infection and studied the temporal, spatial and cellular heterogeneity of host-virus interactions. We further assayed the intestine, the primary site of reovirus infection, to establish a full chronology of molecular events that ultimately lead to myocarditis. We found that inflamed endothelial cells recruit cytotoxic T cells and undergo pyroptosis in the myocarditic tissue. Analyses of spatially restricted gene expression in myocarditic regions and the border zone identified immune-mediated cell-type-specific injury and stress responses. Overall, we observed a complex network of cellular phenotypes and spatially restricted cell-cell interactions associated with reovirus-induced myocarditis in neonatal mice.
Collapse
Affiliation(s)
- Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Meleana M Hinchman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - David W McKellar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Michael F Z Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Shaun T Cross
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Cornell Institute for Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA
| | - John S L Parker
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
- Cornell Institute for Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA.
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
- Cornell Institute for Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
11
|
Liang B, Liang Y, Gu N. Pharmacological mechanisms of sodium-glucose co-transporter 2 inhibitors in heart failure with preserved ejection fraction. BMC Cardiovasc Disord 2022; 22:261. [PMID: 35689186 PMCID: PMC9188076 DOI: 10.1186/s12872-022-02693-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND More and more evidence indicates sodium-glucose co-transporter 2 inhibitors (SGLT2is) may display clinical benefits for heart failure with preserved ejection fraction (HFpEF). However, the mechanisms of the action remain unclear. METHODS A systematic pharmacology-based strategy was applied for predicting the potential molecular mechanisms of SGLT2is in HFpEF. The potential targets of SGLT2is and HFpEF were contained from diverse databases. After networks were constructed, Metascape was applied to functional enrichment. Moreover, the key findings were validated through molecular docking. RESULTS We obtained 487 SGLT2is related targets and 1505 HFpEF related targets. The networks showed the complex relationship of HFpEF-target-HFpEF. The results of functional enrichment analysis suggested that several biological processes, including muscle system process, inflammatory response, vasculature development, heart development, regulation of MAPK cascade, positive regulation of ion transport, negative regulation of cell population proliferation, cellular response to nitrogen compound, apoptotic signaling pathway, multicellular organismal homeostasis, response to oxidative stress, regulation of cell adhesion, positive regulation of cell death, response to growth factor, and cellular response to lipid, and signaling pathways, such as cardiomyopathy, cAMP signaling pathway, cytokine-cytokine receptor interaction, apoptosis, MAPK signaling pathway, HIF-1 signaling pathway, calcium signaling pathway, and NF-kappa B signaling pathway. Finally, we validated the interactions and combinations of SGLT2is and core targets. CONCLUSION SGLT2is play the potential role of anti-HFpEF through the direct or indirect synergy of multiple targets and pathways. Our study promotes the explanation of the molecular mechanisms of SGLT2is in HFpEF.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Liang
- Southwest Medical University, Luzhou, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
12
|
Phyo SA, Uchida K, Chen CY, Caporizzo MA, Bedi K, Griffin J, Margulies K, Prosser BL. Transcriptional, Post-Transcriptional, and Post-Translational Mechanisms Rewrite the Tubulin Code During Cardiac Hypertrophy and Failure. Front Cell Dev Biol 2022; 10:837486. [PMID: 35433678 PMCID: PMC9010559 DOI: 10.3389/fcell.2022.837486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 01/03/2023] Open
Abstract
A proliferated and post-translationally modified microtubule network underlies cellular growth in cardiac hypertrophy and contributes to contractile dysfunction in heart failure. Yet how the heart achieves this modified network is poorly understood. Determining how the "tubulin code"-the permutations of tubulin isoforms and post-translational modifications-is rewritten upon cardiac stress may provide new targets to modulate cardiac remodeling. Further, while tubulin can autoregulate its own expression, it is unknown if autoregulation is operant in the heart or tuned in response to stress. Here we use heart failure patient samples and murine models of cardiac remodeling to interrogate transcriptional, autoregulatory, and post-translational mechanisms that contribute to microtubule network remodeling at different stages of heart disease. We find that autoregulation is operant across tubulin isoforms in the heart and leads to an apparent disconnect in tubulin mRNA and protein levels in heart failure. We also find that within 4 h of a hypertrophic stimulus and prior to cardiac growth, microtubule detyrosination is rapidly induced to help stabilize the network. This occurs concomitant with rapid transcriptional and autoregulatory activation of specific tubulin isoforms and microtubule motors. Upon continued hypertrophic stimulation, there is an increase in post-translationally modified microtubule tracks and anterograde motors to support cardiac growth, while total tubulin content increases through progressive transcriptional and autoregulatory induction of tubulin isoforms. Our work provides a new model for how the tubulin code is rapidly rewritten to establish a proliferated, stable microtubule network that drives cardiac remodeling, and provides the first evidence of tunable tubulin autoregulation during pathological progression.
Collapse
Affiliation(s)
- Sai Aung Phyo
- Department of Genetics and Epigenetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.,Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Keita Uchida
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Christina Yingxian Chen
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Matthew A Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Kenneth Bedi
- Department of Medicine, Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Joanna Griffin
- Department of Medicine, Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Kenneth Margulies
- Department of Medicine, Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
13
|
Niazy N, Mrozek L, Barth M, Immohr MB, Kalampokas N, Saeed D, Aubin H, Sugimura Y, Westenfeld R, Boeken U, Lichtenberg A, Akhyari P. Altered mRNA Expression of Interleukin-1 Receptors in Myocardial Tissue of Patients with Left Ventricular Assist Device Support. J Clin Med 2021; 10:jcm10214856. [PMID: 34768376 PMCID: PMC8584390 DOI: 10.3390/jcm10214856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Serum levels of cytokines interleukin 1 beta ( IL-1β) and interleukin 33 (IL-33) are highly abnormal in heart failure and remain elevated after mechanical circulatory support (MCS). However, local cytokine signaling induction remains elusive. Left (LV) and right ventricular (RV) myocardial tissue specimens of end-stage heart failure (HF) patients without (n = 24) and with MCS (n = 39; 594 ± 57 days) were analyzed for cytokine mRNA expression level of IL-1B, interleukin 1 receptor 1/2 (IL-1R1/2), interleukin 1 receptor-like 1 (IL-1RL1), IL-33 and interleukin-1 receptor accessory protein (IL-1RaP). MCS patients showed significantly elevated IL-1B expression levels (LV: 2.0 fold, p = 0.0058; RV: 3.3 fold, p < 0.0001). Moreover, IL-1R1, IL-1RaP and IL-33 expression levels strongly correlated with each other. IL-1RL1 and IL-1R2 expression levels were significantly higher in RV myocardial tissue (RV/LV ratio IL-1R2 HF: 4.400 ± 1.359; MCS: 4.657 ± 0.655; IL-1RL1 HF: 3.697 ± 0.876; MCS: 4.529 ± 0.5839). In addition, IL1-RaP and IL-33 RV expression levels were significantly elevated in MCS. Furthermore, IL-33 expression correlates with C-reactive protein (CRP) plasma levels in HF, but not in MCS patients. Increased expression of IL-1B and altered correlation patterns of IL-1 receptors indicate enhanced IL-1β signaling in MCS patients. Correlation of IL-1 receptor expression with IL-33 may hint towards a link between both pathways. Moreover, diverging expression in LV and RV suggests specific regulation of local cytokine signaling.
Collapse
Affiliation(s)
- Naima Niazy
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| | - Linus Mrozek
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| | - Mareike Barth
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| | - Moritz Benjamin Immohr
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| | - Nikolaos Kalampokas
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| | - Diyar Saeed
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
- Department of Cardiac Surgery, Leipzig Heart Center, 04289 Leipzig, Germany
| | - Hug Aubin
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| | - Yukiharu Sugimura
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| | - Ralf Westenfeld
- Department of Cardiology, Pneumology and Angiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Udo Boeken
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
- Correspondence: ; Tel.: +49-(0)211-81-17925
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| |
Collapse
|
14
|
Jarrar YB, Jarrar Q, Abaalkhail SJ, Moh'd Kalloush H, Naser W, Zihlif M, Al Shhab M, El Madani A, Jamous Y, Lee SJ. Molecular toxicological alterations in the mouse hearts induced by sub-chronic thiazolidinedione drugs administration. Fundam Clin Pharmacol 2021; 36:143-149. [PMID: 33969534 DOI: 10.1111/fcp.12694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Thiazolidinediones are well-known anti-diabetic drugs. However, they are not widely used due to their cardiotoxic effects. Therefore, in this study, we aimed to determine the molecular toxicological alterations induced in the mouse hearts after thiazolidinedione administration. Balb/c mice received doses clinically equivalent to those given to humans of the most commonly used thiazolidinediones, pioglitazone, and rosiglitazone for 30 days. After that, RNA samples were isolated from the hearts. The mRNA expression of cytochrome (cyp) p450 genes that synthesize the cardiotoxic 20-hydroxyeicosatetraenoic acid (20-HETE) in addition to 92 cardiotoxicity biomarker genes were analyzed using quantitative polymerase chain reaction array technique. The analysis demonstrated that thiazolidinediones caused a significant upregulation (p < 0.5) of the mRNA expression of cyp1a1, cyp4a12, itpr1, ccl7, ccr1, and b2 m genes. In addition, thiazolidinediones caused a significant (p < 0.05) downregulation of the mRNA expression of adra2a, bsn, col15a1, fosl1, Il6, bpifa1, plau, and reg3b genes. The most affected gene was itpr1 gene, which was upregulated by pioglitazone and rosiglitazone by sevenfold and 3.5-fold, respectively. In addition, pioglitazone caused significant upregulation of (p < 0.05) hamp, ppbp, psma2, sik1, timp1, and ucp1 genes, which were not affected significantly (p > 0.05) by rosiglitazone administration. In conclusion, this study showed that thiazolidinediones induce toxicological molecular alterations in the mouse hearts, such as the induction of cyp450s that synthesize 20-HETE, chemokine activation, inflammatory responses, blood clotting, and oxidative stress. These findings may help us understand the mechanism of cardiotoxicity involved in thiazolidinedione administration.
Collapse
Affiliation(s)
| | - Qais Jarrar
- Department of Pharmaceutical Science, Al-Isra'a University, Amman, Jordan
| | - Sara J Abaalkhail
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | | | - Wisam Naser
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Malek Zihlif
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Mohammad Al Shhab
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Abdulla El Madani
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Yahya Jamous
- Nanotechnology Centre, King AbdulAziz City of Science and Technology, Riyadh, Saudi Arabia
| | - Su-Jun Lee
- Department of Pharmacology, College of Medicine, Inje University, Busan, South Korea
| |
Collapse
|
15
|
Barbosa J, Faria J, Garcez F, Leal S, Afonso LP, Nascimento AV, Moreira R, Pereira FC, Queirós O, Carvalho F, Dinis-Oliveira RJ. Repeated Administration of Clinically Relevant Doses of the Prescription Opioids Tramadol and Tapentadol Causes Lung, Cardiac, and Brain Toxicity in Wistar Rats. Pharmaceuticals (Basel) 2021; 14:ph14020097. [PMID: 33513867 PMCID: PMC7912343 DOI: 10.3390/ph14020097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022] Open
Abstract
Tramadol and tapentadol, two structurally related synthetic opioid analgesics, are widely prescribed due to the enhanced therapeutic profiles resulting from the synergistic combination between μ-opioid receptor (MOR) activation and monoamine reuptake inhibition. However, the number of adverse reactions has been growing along with their increasing use and misuse. The potential toxicological mechanisms for these drugs are not completely understood, especially for tapentadol, owing to its shorter market history. Therefore, in the present study, we aimed to comparatively assess the putative lung, cardiac, and brain cortex toxicological damage elicited by the repeated exposure to therapeutic doses of both prescription opioids. To this purpose, male Wistar rats were intraperitoneally injected with single daily doses of 10, 25, and 50 mg/kg tramadol or tapentadol, corresponding to a standard analgesic dose, an intermediate dose, and the maximum recommended daily dose, respectively, for 14 consecutive days. Such treatment was found to lead mainly to lipid peroxidation and inflammation in lung and brain cortex tissues, as shown through augmented thiobarbituric acid reactive substances (TBARS), as well as to increased serum inflammation biomarkers, such as C reactive protein (CRP) and tumor necrosis factor-α (TNF-α). Cardiomyocyte integrity was also shown to be affected, since both opioids incremented serum lactate dehydrogenase (LDH) and α-hydroxybutyrate dehydrogenase (α-HBDH) activities, while tapentadol was associated with increased serum creatine kinase muscle brain (CK-MB) isoform activity. In turn, the analysis of metabolic parameters in brain cortex tissue revealed increased lactate concentration upon exposure to both drugs, as well as augmented LDH and creatine kinase (CK) activities following tapentadol treatment. In addition, pneumo- and cardiotoxicity biomarkers were quantified at the gene level, while neurotoxicity biomarkers were quantified both at the gene and protein levels; changes in their expression correlate with the oxidative stress, inflammatory, metabolic, and histopathological changes that were detected. Hematoxylin and eosin (H & E) staining revealed several histopathological alterations, including alveolar collapse and destruction in lung sections, inflammatory infiltrates, altered cardiomyocytes and loss of striation in heart sections, degenerated neurons, and accumulation of glial and microglial cells in brain cortex sections. In turn, Masson's trichrome staining confirmed fibrous tissue deposition in cardiac tissue. Taken as a whole, these results show that the repeated administration of both prescription opioids extends the dose range for which toxicological injury is observed to lower therapeutic doses. They also reinforce previous assumptions that tramadol and tapentadol are not devoid of toxicological risk even at clinical doses.
Collapse
Affiliation(s)
- Joana Barbosa
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (J.B.); (R.J.D.-O.); Tel.: +351-224-157-216 (J.B.); +351-224-157-216 (R.J.D.-O.)
| | - Juliana Faria
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Fernanda Garcez
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Sandra Leal
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal;
| | - Ana Vanessa Nascimento
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Roxana Moreira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Frederico C. Pereira
- Institute of Pharmacology and Experimental Therapeutics/iCBR, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal;
| | - Odília Queirós
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Ricardo Jorge Dinis-Oliveira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (J.B.); (R.J.D.-O.); Tel.: +351-224-157-216 (J.B.); +351-224-157-216 (R.J.D.-O.)
| |
Collapse
|
16
|
Yang P, Yang Y, Sun P, Tian Y, Gao F, Wang C, Zong T, Li M, Zhang Y, Yu T, Jiang Z. βII spectrin (SPTBN1): biological function and clinical potential in cancer and other diseases. Int J Biol Sci 2021; 17:32-49. [PMID: 33390831 PMCID: PMC7757025 DOI: 10.7150/ijbs.52375] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
βII spectrin, the most common isoform of non-erythrocyte spectrin, is a cytoskeleton protein present in all nucleated cells. Interestingly, βII spectrin is essential for the development of various organs such as nerve, epithelium, inner ear, liver and heart. The functions of βII spectrin include not only establishing and maintaining the cell structure but also regulating a variety of cellular functions, such as cell apoptosis, cell adhesion, cell spreading and cell cycle regulation. Notably, βII spectrin dysfunction is associated with embryonic lethality and the DNA damage response. More recently, the detection of altered βII spectrin expression in tumors indicated that βII spectrin might be involved in the development and progression of cancer. Its mutations and disorders could result in developmental disabilities and various diseases. The versatile roles of βII spectrin in disease have been examined in an increasing number of studies; nonetheless, the exact mechanisms of βII spectrin are still poorly understood. Thus, we summarize the structural features and biological roles of βII spectrin and discuss its molecular mechanisms and functions in development, homeostasis, regeneration and differentiation. This review highlight the potential effects of βII spectrin dysfunction in cancer and other diseases, outstanding questions for the future investigation of therapeutic targets. The investigation of the regulatory mechanism of βII spectrin signal inactivation and recovery may bring hope for future therapy of related diseases.
Collapse
Affiliation(s)
- Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Pin Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Fang Gao
- Department of Physical Medicine and Rehabiliation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chen Wang
- Department of Physical Medicine and Rehabiliation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
17
|
Zhao W, Ammous F, Ratliff S, Liu J, Yu M, Mosley TH, Kardia SLR, Smith JA. Education and Lifestyle Factors Are Associated with DNA Methylation Clocks in Older African Americans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173141. [PMID: 31466396 PMCID: PMC6747433 DOI: 10.3390/ijerph16173141] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/06/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation (DNAm) clocks are important biomarkers of cellular aging and are associated with a variety of age-related chronic diseases and all-cause mortality. Examining the relationship between education and lifestyle risk factors for age-related diseases and multiple DNAm clocks can increase the understanding of how risk factors contribute to aging at the cellular level. This study explored the association between education or lifestyle risk factors for age-related diseases and the acceleration of four DNAm clocks, including intrinsic (IEAA) and extrinsic epigenetic age acceleration (EEAA), PhenoAge acceleration (PhenoAA), and GrimAge acceleration (GrimAA) in the African American participants of the Genetic Epidemiology Network of Arteriopathy. We performed both cross-sectional and longitudinal analyses. In cross-sectional analyses, gender, education, BMI, smoking, and alcohol consumption were all independently associated with GrimAA, whereas only some of them were associated with other clocks. The effect of smoking and education on GrimAA varied by gender. Longitudinal analyses suggest that age and BMI continued to increase GrimAA, and that age and current smoking continued to increase PhenoAA after controlling DNAm clocks at baseline. In conclusion, education and common lifestyle risk factors were associated with multiple DNAm clocks. However, the association with each risk factor varied by clock, which suggests that different clocks may capture adverse effects from different environmental stimuli.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiaxuan Liu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Miao Yu
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS 39126, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
18
|
Relationship of polymorphisms in the tissue inhibitor of metalloproteinase (TIMP)-1 and -2 genes with chronic heart failure. Sci Rep 2018; 8:9446. [PMID: 29930267 PMCID: PMC6013444 DOI: 10.1038/s41598-018-27857-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/12/2018] [Indexed: 11/26/2022] Open
Abstract
Dysregulated expression of tissue inhibitors of matrix metalloproteinases (TIMPs) is associated with systolic dysfunction and worsening heart failure (HF). However, no study has assessed the relationship between TIMP polymorphisms and chronic HF. In this study, 300 HF outpatients with reduced left ventricular ejection fraction and 304 healthy blood donors were genotyped for the 372 T > C polymorphism (Phe124Phe; rs4898) in the TIMP-1 gene and the −418 G > C polymorphism (rs8179090) in the TIMP-2 gene to investigate whether these polymorphisms are associated with HF susceptibility and prognosis. The genotype and allele frequencies of the 372 T > C polymorphism in HF patients were not significantly different from those observed among healthy subjects, and the C allele of the −418 G > C polymorphism was very rare in our population (frequency < 1%). After a median follow-up duration of 5.5 years, 121 patients (40.3%) died (67 of them from HF). Survival analysis did not show statistically significant differences in all-cause death and HF-related death between patients with and without the T allele (P > 0.05 for all comparisons). Thus, our findings do not support the hypothesis that the 372 T > C (Phe124Phe) polymorphism in the TIMP-1 gene and the −418 G > C polymorphism in the TIMP-2 gene are associated with HF susceptibility and prognosis in Southern Brazilians.
Collapse
|
19
|
El Hajj EC, El Hajj MC, Ninh VK, Gardner JD. Inhibitor of lysyl oxidase improves cardiac function and the collagen/MMP profile in response to volume overload. Am J Physiol Heart Circ Physiol 2018; 315:H463-H473. [PMID: 29775412 DOI: 10.1152/ajpheart.00086.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cardiac extracellular matrix is a complex architectural network that serves many functions, including providing structural and biochemical support to surrounding cells and regulating intercellular signaling pathways. Cardiac function is directly affected by extracellular matrix (ECM) composition, and alterations of the ECM contribute to the progression of heart failure. Initially, collagen deposition is an adaptive response that aims to preserve tissue integrity and maintain normal ventricular function. However, the synergistic effects of proinflammatory and profibrotic responses induce a vicious cycle, which causes excess activation of myofibroblasts, significantly increasing collagen deposition and accumulation in the matrix. Furthermore, excess synthesis and activation of the enzyme lysyl oxidase (LOX) during disease increases collagen cross-linking, which significantly increases collagen resistance to degradation by matrix metalloproteinases (MMPs). In the present study, the aortocaval fistula model of volume overload (VO) was used to determine whether LOX inhibition could prevent adverse changes in the ECM and subsequent cardiac dysfunction. The major findings from this study were that LOX inhibition 1) prevented VO-induced increases in left ventricular wall stress; 2) partially attenuated VO-induced ventricular hypertrophy; 3) completely blocked the increases in fibrotic proteins, including collagens, MMPs, and their tissue inhibitors; and 4) prevented the VO-induced decline in cardiac function. It remains unclear whether a direct interaction between LOX and MMPs exists; however, our experiments suggest a potential link between the two because LOX inhibition completely attenuated VO-induced increases in MMPs. Overall, our study demonstrated key cardioprotective effects of LOX inhibition against adverse cardiac remodeling due to chronic VO. NEW & NOTEWORTHY Although the primary role of lysyl oxidase (LOX) is to cross-link collagens, we found that elevated LOX during cardiac disease plays a key role in the progression of heart failure. Here, we show that inhibition of LOX in volume-overloaded rats prevented the development of cardiac dysfunction and improved ventricular collagen and matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles.
Collapse
Affiliation(s)
- Elia C El Hajj
- Department of Physiology, LSU Health Sciences Center , New Orleans, Louisiana
| | - Milad C El Hajj
- Department of Physiology, LSU Health Sciences Center , New Orleans, Louisiana
| | - Van K Ninh
- Department of Physiology, LSU Health Sciences Center , New Orleans, Louisiana
| | - Jason D Gardner
- Department of Physiology, LSU Health Sciences Center , New Orleans, Louisiana
| |
Collapse
|
20
|
Chen TH, Chen MR, Chen TY, Wu TC, Liu SW, Hsu CH, Liou GG, Kao YY, Dong GC, Chu PH, Liao JW, Lin KMC. Cardiac fibrosis in mouse expressing DsRed tetramers involves chronic autophagy and proteasome degradation insufficiency. Oncotarget 2018; 7:54274-54289. [PMID: 27494843 PMCID: PMC5342341 DOI: 10.18632/oncotarget.11026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/22/2016] [Indexed: 11/25/2022] Open
Abstract
Proteinopathy in the heart which often manifests excessive misfolded/aggregated proteins in cardiac myocytes can result in severe fibrosis and heart failure. Here we developed a mouse model, which transgenically express tetrameric DsRed, a red fluorescent protein (RFP), in an attempt to mimic the pathological mechanisms ofcardiac fibrosis. Whilst DsRed is expressed and forms aggregation in most mouse organs, certain pathological defects are specifically recapitulated in cardiac muscle cells including mitochondria damages, aggresome-like residual bodies, excessive ubiquitinated proteins, and the induction of autophagy. The proteinopathy and cellular injuries caused by DsRed aggregates may be due to impaired or overburdened ubiquitin-proteasome system and autophagy-lysosome systems. We further identified that DsRed can be ubiquitinated and associated with MuRF1, a muscle-specific E3 ligase. Concomitantly, an activation of NF-κB signaling and a strong TIMP1 induction were noted, suggesting that RFP-induced fibrosis was augmented by a skewed balance between TIMP1 and MMPs. Taken together, our study highlights the molecular consequences of uncontrolled protein aggregation leading to congestive heart failure, and provides novel insights into fibrosis formation that can be exploited for improved therapy.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Mei-Ru Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Tzu-Yin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Tzu-Chin Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shan-Wen Liu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan.,Institute of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Han Hsu
- Institute of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Gan-Guang Liou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Yu-Ying Kao
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Guo-Chung Dong
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Pao-Hsien Chu
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Kurt Ming-Chao Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| |
Collapse
|
21
|
Rau CD, Romay MC, Tuteryan M, Wang JJC, Santolini M, Ren S, Karma A, Weiss JN, Wang Y, Lusis AJ. Systems Genetics Approach Identifies Gene Pathways and Adamts2 as Drivers of Isoproterenol-Induced Cardiac Hypertrophy and Cardiomyopathy in Mice. Cell Syst 2017; 4:121-128.e4. [PMID: 27866946 PMCID: PMC5338604 DOI: 10.1016/j.cels.2016.10.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
We previously reported a genetic analysis of heart failure traits in a population of inbred mouse strains treated with isoproterenol to mimic catecholamine-driven cardiac hypertrophy. Here, we apply a co-expression network algorithm, wMICA, to perform a systems-level analysis of left ventricular transcriptomes from these mice. We describe the features of the overall network but focus on a module identified in treated hearts that is strongly related to cardiac hypertrophy and pathological remodeling. Using the causal modeling algorithm NEO, we identified the gene Adamts2 as a putative regulator of this module and validated the predictive value of NEO using small interfering RNA-mediated knockdown in neonatal rat ventricular myocytes. Adamts2 silencing regulated the expression of the genes residing within the module and impaired isoproterenol-induced cellular hypertrophy. Our results provide a view of higher order interactions in heart failure with potential for diagnostic and therapeutic insights.
Collapse
Affiliation(s)
- Christoph D Rau
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Departments of Anesthesiology, Physiology, and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Milagros C Romay
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mary Tuteryan
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jessica J-C Wang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marc Santolini
- Center for Interdisciplinary Research on Complex Systems, Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Shuxun Ren
- Departments of Anesthesiology, Physiology, and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alain Karma
- Center for Interdisciplinary Research on Complex Systems, Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - James N Weiss
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yibin Wang
- Departments of Anesthesiology, Physiology, and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aldons J Lusis
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Abstract
Cardiac stress can induce morphological, structural and functional changes of the heart, referred to as cardiac remodeling. Myocardial infarction or sustained overload as a result of pathological causes such as hypertension or valve insufficiency may result in progressive remodeling and finally lead to heart failure (HF). Whereas pathological and physiological (exercise, pregnancy) overload both stimulate cardiomyocyte growth (hypertrophy), only pathological remodeling is characterized by increased deposition of extracellular matrix proteins, termed fibrosis, and loss of cardiomyocytes by necrosis, apoptosis and/or phagocytosis. HF is strongly associated with age, and cardiomyocyte loss and fibrosis are typical signs of the aging heart. Fibrosis results in stiffening of the heart, conductivity problems and reduced oxygen diffusion, and is associated with diminished ventricular function and arrhythmias. As a consequence, the workload of cardiomyocytes in the fibrotic heart is further augmented, whereas the physiological environment is becoming less favorable. This causes additional cardiomyocyte death and replacement of lost cardiomyocytes by fibrotic material, generating a vicious cycle of further decline of cardiac function. Breaking this fibrosis-cell death axis could halt further pathological and age-related cardiac regression and potentially reverse remodeling. In this review, we will describe the interaction between cardiac fibrosis, cardiomyocyte hypertrophy and cell death, and discuss potential strategies for tackling progressive cardiac remodeling and HF.
Collapse
Affiliation(s)
- A Piek
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - R A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - H H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands.
| |
Collapse
|
23
|
Extracellular matrix-mediated cellular communication in the heart. J Mol Cell Cardiol 2016; 91:228-37. [PMID: 26778458 DOI: 10.1016/j.yjmcc.2016.01.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 01/13/2023]
Abstract
The extracellular matrix (ECM) is a complex and dynamic scaffold that maintains tissue structure and dynamics. However, the view of the ECM as an inert architectural support has been increasingly challenged. The ECM is a vibrant meshwork, a crucial organizer of cellular microenvironments. It plays a direct role in cellular interactions regulating cell growth, survival, spreading, proliferation, differentiation and migration through the intricate relationship among cellular and acellular tissue components. This complex interrelationship preserves cardiac function during homeostasis; however it is also responsible for pathologic remodeling following myocardial injury. Therefore, enhancing our understanding of this cross-talk may provide mechanistic insights into the pathogenesis of heart failure and suggest new approaches to novel, targeted pharmacologic therapies. This review explores the implications of ECM-cell interactions in myocardial cell behavior and cardiac function at baseline and following myocardial injury.
Collapse
|
24
|
Abstract
Heart failure is a complex multifaceted syndrome occurring as a result of impaired cardiac function. Understanding the neurohormonal, inflammatory and molecular pathways involved in the pathophysiology of this syndrome has led to the development of effective and widely used pharmacological treatments. Despite this, mortality and hospitalization rates associated with this condition remain high. The natural course of this illness is usually progressive, often leading inexorably to end stage heart failure, for which orthotopic heart transplant is a treatment option but one with limited resource. In the past decade, mechanical circulatory support has emerged as a potential therapy for certain patients with advanced heart failure. This article reviews the published data regarding biomarkers in the setting of mechanical circulatory support, and highlights areas of ongoing work and potential future areas of interest.
Collapse
Affiliation(s)
- Joanne Simpson
- Institute of Cardiovascular & Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | | | | |
Collapse
|
25
|
Vikholm P, Schiller P, Hellgren L. A modified Glenn shunt reduces venous congestion during acute right ventricular failure due to pulmonary banding: a randomized experimental study. Interact Cardiovasc Thorac Surg 2014; 18:418-25. [PMID: 24396048 DOI: 10.1093/icvts/ivt547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Right ventricular failure after left ventricular assist device implantation is a serious complication with high rates of mortality and morbidity. It has been demonstrated in experimental settings that volume exclusion of the right ventricle with a modified Glenn shunt can improve haemodynamics during ischaemic right ventricular failure. However, the concept of a modified Glenn shunt is dependent on a normal pulmonary vascular resistance, which can limit its use in some patients. The aim of this study was to explore the effects of volume exclusion with a modified Glenn shunt during right ventricular failure due to pulmonary banding, and to study the alterations in genetic expression in the right ventricle due to pressure and volume overload. METHODS Experimental right ventricular failure was induced in pigs (n = 11) through 2 h of pulmonary banding. The pigs were randomized to either treatment with a modified Glenn shunt and pulmonary banding (n = 6) or solely pulmonary banding (n = 5) as a control group. Haemodynamic measurements, blood samples and right ventricular biopsies for genetic analysis were sampled at baseline, at right ventricular failure (i.e. 2 h of pulmonary banding) and 1 h post-right ventricular failure in both groups. RESULTS Right atrial pressure increased from 10 mmHg (9.0-12) to 18 mmHg (16-22) (P < 0.01) and the right ventricular pressure from 31 mmHg (26-35) to 57 mmHg (49-61) (P < 0.01) after pulmonary banding. Subsequent treatment with the modified Glenn shunt resulted in a decrease in right atrial pressure to 13 mmHg (11-14) (P = 0.03). In the control group, right atrial pressure was unchanged at 19 mmHg (16-20) (P = 0.18). At right heart failure, there was an up-regulation of genes associated with heart failure, inflammation, angiogenesis, negative regulation of cell death and proliferation. CONCLUSIONS Volume exclusion with a modified Glenn shunt during right ventricular failure reduced venous congestion compared with the control group. The state of right heart failure was verified through genetic expressional changes.
Collapse
Affiliation(s)
- Per Vikholm
- Department of Cardiothoracic Surgery, Uppsala University Hospital, Uppsala, Sweden
| | | | | |
Collapse
|
26
|
Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo. Toxicol Appl Pharmacol 2014; 274:302-12. [DOI: 10.1016/j.taap.2013.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/04/2013] [Accepted: 11/15/2013] [Indexed: 11/22/2022]
|
27
|
Abstract
Heart failure is associated with remodeling that consists of adverse cellular, structural, and functional changes in the myocardium. Until recently, this was thought to be unidirectional, progressive, and irreversible. However, irreversibility has been shown to be incorrect because complete or partial reversal can occur that can be marked after myocardial unloading with a left ventricular assist device (LVAD). Patients with chronic advanced heart failure can show near-normalization of nearly all structural abnormalities of the myocardium or reverse remodeling after LVAD support. However, reverse remodeling does not always equate with clinical recovery. The molecular changes occurring after LVAD support are reviewed, both those demonstrated with LVAD unloading alone in patients bridged to transplantation and those occurring in the myocardium of patients who have recovered enough myocardial function to have the device removed. Reverse remodeling may be attributable to a reversal of the pathological mechanisms that occur in remodeling or the generation of new pathways. A reduction in cell size occurs after LVAD unloading, which does not necessarily correlate with improved cardiac function. However, some of the changes in both the cardiac myocyte and the matrix after LVAD support are specific to myocardial recovery. In the myocyte, increases in the cytoskeletal proteins and improvements in the Ca²⁺ handling pathway seem to be specifically associated with myocardial recovery. Changes in the matrix are complex, but excessive scarring appears to limit the ability for recovery, and the degree of fibrosis in the myocardium at the time of implantation may predict the ability to recover.
Collapse
Affiliation(s)
- Emma J Birks
- Department of Cardiovascular Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
28
|
|
29
|
Moore L, Fan D, Basu R, Kandalam V, Kassiri Z. Tissue inhibitor of metalloproteinases (TIMPs) in heart failure. Heart Fail Rev 2013; 17:693-706. [PMID: 21717224 DOI: 10.1007/s10741-011-9266-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Remodeling of the myocardium and the extracellular matrix (ECM) occurs in heart failure irrespective of its initial cause. The ECM serves as a scaffold to provide structural support as well as housing a number of cytokines and growth factors. Hence, disruption of the ECM will result in structural instability as well as activation of a number of signaling pathways that could lead to fibrosis, hypertrophy, and apoptosis. The ECM is a dynamic entity that undergoes constant turnover, and the integrity of its network structure is maintained by a balance in the function of matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). In heart disease, levels of MMPs and TIMPs are altered resulting in an imbalance between these two families of proteins. In this review, we will discuss the structure, function, and regulation of TIMPs, their MMP-independent functions, and their role in heart failure. We will review the knowledge that we have gained from clinical studies and animal models on the contribution of TIMPs in the development and progression of heart disease. We will further discuss how ECM molecules and regulatory genes can be used as biomarkers of disease in heart failure patients.
Collapse
Affiliation(s)
- Linn Moore
- Department of Physiology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Heritage Medical Research Centre, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
30
|
Nishimura Y, Morikawa Y, Kondo C, Tonomura Y, Fukushima R, Torii M, Uehara T. Genomic biomarkers for cardiotoxicity in rats as a sensitive tool in preclinical studies. J Appl Toxicol 2013; 33:1120-30. [PMID: 23558518 DOI: 10.1002/jat.2867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/25/2013] [Accepted: 01/29/2013] [Indexed: 12/31/2022]
Abstract
The development of safer drugs is a high priority for pharmaceutical companies. Among the various toxicities caused by drugs, cardiotoxicity is an important issue because of its lethality. In addition, cardiovascular toxicity leads to the attrition of many drug candidates in both preclinical and clinical phases. Although histopathological and blood chemistry examinations are the current gold standards for detecting cardiotoxicity in preclinical studies, the large number of withdrawals from clinical studies owing to safety problems indicate that a more sensitive tool is required. We recently identified 32 genes that were candidate genomic biomarkers for cardiotoxicity in rats. Based on their functions, the present study focused on 8 of these 32 genes (Spp1, Fhl1, Timp1, Serpine1, Bcat1, Lmcd1, Rnd1 and Tgfb2). Diagnostic accuracy for the genes was determined by a receiver-operating characteristic (ROC) analysis using more cardiotoxic and non-cardiotoxic compounds. In addition, an optimized support vector machine (SVM) model that was composed of Spp1 and Timp1 was newly constructed. This new multi-gene model exhibited a much higher diagnostic accuracy than that observed for plasma cardiac troponin I (cTnI), which is one of the most useful plasma biomarkers for cardiotoxicity detection. Furthermore, we determined that this multi-gene model could predict potential cardiotoxicity in rats in the absence of any cardiac histopathological lesions or elevations of plasma cTnI. Overall, this multi-gene model exhibited advantages over classic tools commonly used for cardiotoxicity evaluations in rats. Our current results suggest that application of the model could potentially lead to the production of safer drugs.
Collapse
Affiliation(s)
- Yoko Nishimura
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka, 561-0825, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Gillberg L, Varsanyi M, Sjöström M, Lördal M, Lindholm J, Hellström PM. Nitric oxide pathway-related gene alterations in inflammatory bowel disease. Scand J Gastroenterol 2012; 47:1283-97. [PMID: 22900953 DOI: 10.3109/00365521.2012.706830] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To reveal specific gene activation in nitric oxide (NO)-related inflammation we studied differential gene expression in inflammatory bowel disease (IBD). METHODS Total RNA was isolated from 20 biopsies of inflamed mucosa from Crohn's disease (CD) and ulcerative colitis (UC) patients each as well as from six controls, labeled with (32)P-dCTP and hybridized to a human NO gene array. Significant genes were analyzed for functional gene interactions and heatmaps generated by hierarchical clustering. A selection of differentially expressed genes was further evaluated with immunohistochemical staining. RESULTS Significant gene expression differences were found for 19 genes in CD and 23 genes in UC compared to controls, both diseases with high expression of ICAM1 and IL-8. Correlation between microarray expression and corresponding protein expression was significant (r = 0.47, p = 0.002). Clustering analysis together with functional gene interaction analysis revealed clusters of coregulation and coexpression in CD and UC: transcripts involved in angiogenesis, inflammatory response mediated by the transcription factor hypoxia-inducible factor 1, and tissue fibrosis. Also, a fourth cluster with transcripts regulated by the transcription factor Sp1 was found in UC. CONCLUSIONS Expression analysis in CD and UC revealed disease-specific regulation of NO-related genes, which might be involved in perpetuating inflammatory disease activity in IBD.
Collapse
Affiliation(s)
- Linda Gillberg
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The myocardial interstitium is highly organized and orchestrated, whereby small disruptions in composition, spatial relationships, or content lead to altered myocardial systolic and/or diastolic performance. These changes in extracellular matrix structure and function are important in the progression to heart failure in pressure overload hypertrophy, dilated cardiomyopathy, and ischemic heart disease. The myocardial interstitium is not a passive entity, but rather a complex and dynamic microenvironment that represents an important structural and signaling system within the myocardium.
Collapse
|
33
|
Fuchs TC, Hewitt P. Preclinical perspective of urinary biomarkers for the detection of nephrotoxicity: what we know and what we need to know. Biomark Med 2012; 5:763-79. [PMID: 22103611 DOI: 10.2217/bmm.11.86] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The assessment of kidney damage is a challenge and must incorporate assessment of the functional capacity of the kidney, as well as a comprehensive understanding of the kidney's role. Multiple parameters have been used for many years to measure renal functionality to assess renal damage. It is astonishing that, beside histopathology, the most common traditional parameters are serum based. However, urine is also used to obtain additional information regarding the health status of the kidneys. Since 2008, several novel urinary protein biomarkers have been qualified by the US FDA and the European Medicines Agency in conjunction with the Predictive Safety Testing Consortium in a specially developed qualification process. Subsequently, the Pharmaceuticals and Medical Devices Agency accepted the qualification of these seven urinary biomarkers. This review will give an overview of the state-of-the-art detection based on urinary biomarkers, which will enhance toxicological research in the future. In addition, the qualification process that leads to acceptance of these biomarkers will be described because of its uniqueness and importance for the field of biomarker research.
Collapse
|
34
|
de Denus S, Lavoie J, Ducharme A, O'Meara E, Racine N, Sirois MG, Neagoe PE, Zhu L, Rouleau JL, White M. Differences in biomarkers in patients with heart failure with a reduced vs a preserved left ventricular ejection fraction. Can J Cardiol 2011; 28:62-8. [PMID: 22104539 DOI: 10.1016/j.cjca.2011.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 09/01/2011] [Accepted: 09/01/2011] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The differences in concentrations of biomarkers between heart failure (HF) patients with a preserved left ventricular ejection fraction (LVEF), or HF-PEF, and patients with HF with reduced LVEF (HF-REF) have yet to be defined. The objectives of this study were to compare the concentrations and correlation of biomarkers of inflammation, extracellular matrix (ECM) turnover and neurohormonal activation between these populations. METHODS We performed a cross-sectional study of 29 subjects with symptomatic HF-REF (LVEF = 25.6 ± 5.1%) and 29 subjects with symptomatic HF-PEF (LVEF = 63.3 ± 5.3%). Concentrations of N-terminal proB-type natriuretic peptide (NT-proBNP), high sensitivity C-reactive protein (hsCRP), procollagen type III amino-terminal peptide (PIIINP), matrix metalloproteinase (MMP)-2, MMP-9, and tissue inhibitor of MMP (TIMP)-1 were measured. RESULTS Although NT-proBNP and PIIINP concentrations were higher in patients with HF-REF compared with patients with HF-PEF (both P < 0.05), the only significant difference between the groups remaining after adjusting for possible confounding variables was NT-proBNP (P = 0.02). In patients with HF-REF, NT-proBNP correlated with PIIINP (P < 0.05), TIMP-1 (P < 0.05), and MMP-2 (P = 0.002), while PIIINP correlated with TIMP-1 (P < 0.05) and MMP-2 (P < 0.0001). In patients with a HF-PEF, only high sensitivity C-reactive protein correlated significantly with MMP-2 (P = 0.002). CONCLUSIONS Patients with HF-REF or HF-PEF presenting similar symptoms and functional limitations exhibit similar concentrations of biomarkers of ECM and inflammation. However, patients with HF-REF exhibit significantly higher NT-proBNP concentrations than patients with HF-PEF. The differences in the correlations observed between the biomarkers between these 2 populations suggest some heterogeneity and differences in the mechanisms related to the release or clearance of biomarkers in HF-REF vs HF-PEF.
Collapse
Affiliation(s)
- Simon de Denus
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Unloading the infarcted heart affect MMPs–TIMPs axis in a rat cardiac heterotopic transplantation model. Mol Biol Rep 2011; 39:277-83. [DOI: 10.1007/s11033-011-0736-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 04/23/2011] [Indexed: 11/25/2022]
|
36
|
|
37
|
Vo TKD, de Saint-Hubert M, Morrhaye G, Godard P, Geenen V, Martens HJ, Debacq-Chainiaux F, Swine C, Toussaint O. Transcriptomic biomarkers of the response of hospitalized geriatric patients admitted with heart failure. Comparison to hospitalized geriatric patients with infectious diseases or hip fracture. Mech Ageing Dev 2011; 132:131-9. [DOI: 10.1016/j.mad.2011.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/24/2010] [Accepted: 02/08/2011] [Indexed: 01/05/2023]
|
38
|
Caruso R, Caselli C, Boroni C, Campolo J, Milazzo F, Cabiati M, Russo C, Parolini M, Giannessi D, Frigerio M, Parodi O. Relationship Between Myocardial Redox State and Matrix Metalloproteinase Activity in Patients on Left Ventricular Assist Device Support. Circ J 2011; 75:2387-96. [DOI: 10.1253/circj.cj-11-0118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raffaele Caruso
- CNR Clinical Physiology Institute, Cardiovascular Department, Niguarda Cà Granda Hospital Milan
| | | | - Chiara Boroni
- CNR Clinical Physiology Institute, Cardiovascular Department, Niguarda Cà Granda Hospital Milan
| | - Jonica Campolo
- CNR Clinical Physiology Institute, Cardiovascular Department, Niguarda Cà Granda Hospital Milan
| | | | | | - Claudio Russo
- Cardiovascular Department, Niguarda Cà Granda Hospital
| | - Marina Parolini
- CNR Clinical Physiology Institute, Cardiovascular Department, Niguarda Cà Granda Hospital Milan
| | | | | | - Oberdan Parodi
- CNR Clinical Physiology Institute, Cardiovascular Department, Niguarda Cà Granda Hospital Milan
- Cardiovascular Department, Niguarda Cà Granda Hospital
| |
Collapse
|
39
|
Jellis C, Martin J, Narula J, Marwick TH. Assessment of Nonischemic Myocardial Fibrosis. J Am Coll Cardiol 2010; 56:89-97. [DOI: 10.1016/j.jacc.2010.02.047] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/19/2010] [Accepted: 02/01/2010] [Indexed: 01/19/2023]
|
40
|
Identification of potential genomic biomarkers for early detection of chemically induced cardiotoxicity in rats. Toxicology 2010; 271:36-44. [DOI: 10.1016/j.tox.2010.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 02/25/2010] [Accepted: 02/26/2010] [Indexed: 11/22/2022]
|
41
|
Chronic treatment with clenbuterol modulates endothelial progenitor cells and circulating factors in a murine model of cardiomyopathy. J Cardiovasc Transl Res 2009; 2:182-90. [PMID: 20559986 DOI: 10.1007/s12265-009-9089-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to determine the effects of chronic treatment with the beta 2 adrenergic receptor agonist clenbuterol on endothelial progenitor cells (EPC) in a well-characterized model of heart failure, the muscle LIM protein knockout (MLP(-/-)) mouse. MLP(-/-) mice were treated daily with clenbuterol (2 mg/kg) or saline subcutaneously for 6 weeks. Clenbuterol led to a 30% increase in CD31(+) cells in the bone marrow of MLP(-/-) heart failure mice (p < 0.004). Clenbuterol did not improve ejection fraction. Clenbuterol treatment in MLP(-/-) mice was associated with significant changes in the following circulating factors: tissue inhibitor of metalloproteinase-type 1, leukemia inhibitory factor 1, C-reactive protein, apolipoprotein A1, fibroblast growth factor 2, serum glutamic oxaloacetic transaminase, macrophage-derived chemokine, and monocyte chemoattractant protein-3. Clenbuterol treatment in the MLP(-/-) model of heart failure did not rescue heart function, yet did increase CD31(+) cells in the bone marrow. This is the first evidence that a beta 2 agonist increases EPC proliferation in the bone marrow in a preclinical model of heart failure.
Collapse
|
42
|
Kuner R, Barth AS, Ruschhaupt M, Buness A, Zwermann L, Kreuzer E, Steinbeck G, Poustka A, Sültmann H, Nabauer M. Genomic analysis reveals poor separation of human cardiomyopathies of ischemic and nonischemic etiologies. Physiol Genomics 2008; 34:88-94. [PMID: 18430805 DOI: 10.1152/physiolgenomics.00299.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clinically, the differentiation between ischemic (ICM) and nonischemic (NICM) human cardiomyopathies is highly relevant, because ICM and NICM differ with respect to prognosis and certain aspects of pharmacological therapy, despite a common final phenotype characterized by ventricular dilatation and reduced contractility. So far, it is unclear whether microarray-based signatures can be used to infer the etiology of heart failure. Using three different classification algorithms, we independently analyzed one cDNA and two publicly available high-density oligonucleotide microarray studies comprising a total of 279 end-stage human heart failure samples. When classifiers identified in a single study were applied to the remaining studies, misclassification rates >25% for ICM and NICM specimens were noted, indicating poor separation of both etiologies. However, data mining of 458 classifier genes that were concordantly identified in at least two of the three data sets points to different biological processes in ICM vs. NICM. Consistent with the underlying ischemia, cytokine signaling pathways and immediate-early response genes were overrepresented in ICM samples, whereas NICM samples displayed a deregulation of cytoskeletal transcripts, genes encoding for the major histocompatibility complex, and antigen processing and presentation pathways, potentially pointing to immunologic processes in NICM. Overall, our results suggest that ICM and NICM exhibit substantial heterogeneity at the transcriptomic level. Prospective studies are required to test whether etiology-specific gene expression patterns are present at earlier disease stages or in subsets of both etiologies.
Collapse
Affiliation(s)
- Ruprecht Kuner
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Spinale FG. Myocardial Matrix Remodeling and the Matrix Metalloproteinases: Influence on Cardiac Form and Function. Physiol Rev 2007; 87:1285-342. [DOI: 10.1152/physrev.00012.2007] [Citation(s) in RCA: 855] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is now becoming apparent that dynamic changes occur within the interstitium that directly contribute to adverse myocardial remodeling following myocardial infarction (MI), with hypertensive heart disease and with intrinsic myocardial disease such as cardiomyopathy. Furthermore, a family of matrix proteases, the matrix metalloproteinases (MMPs) and the tissue inhibitors of MMPs (TIMPs), has been recognized to play an important role in matrix remodeling in these cardiac disease states. The purpose of this review is fivefold: 1) to examine and redefine the myocardial matrix as a critical and dynamic entity with respect to the remodeling process encountered with MI, hypertension, or cardiomyopathic disease; 2) present the remarkable progress that has been made with respect to MMP/TIMP biology and how it relates to myocardial matrix remodeling; 3) to evaluate critical translational/clinical studies that have provided a cause-effect relationship between alterations in MMP/TIMP regulation and myocardial matrix remodeling; 4) to provide a critical review and analysis of current diagnostic, prognostic, and pharmacological approaches that utilized our basic understanding of MMP/TIMPs in the context of cardiac disease; and 5) most importantly, to dispel the historical belief that the myocardial matrix is a passive structure and supplant this belief that the regulation of matrix protease pathways such as the MMPs and TIMPs will likely yield a new avenue of diagnostic and therapeutic strategies for myocardial remodeling and the progression to heart failure.
Collapse
|
44
|
Terracciano CMN, Koban MU, Soppa GK, Siedlecka U, Lee J, Stagg MA, Yacoub MH. The role of the cardiac Na+/Ca2+ exchanger in reverse remodeling: relevance for LVAD-recovery. Ann N Y Acad Sci 2007; 1099:349-60. [PMID: 17446475 DOI: 10.1196/annals.1387.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Different strategies can, at least in certain conditions, prevent or reverse myocardial remodeling due to heart failure and induce myocardial functional improvement. Na+/Ca2+ exchanger (NCX) is considered a major player in the pathophysiology of heart failure but its role in reverse remodeling is unknown. A combination of mechanical unloading by left ventricular assist devices (LVADs) and pharmacological therapy has been shown to induce clinical recovery in a limited number of patients with end-stage heart failure. In myocytes isolated from these patients we found that, after LVAD treatment, NCX1/SERCA2a mRNA was 38% higher than at device implant. We studied the ability of NCX to extrude Ca2+ during caffeine-induced SR Ca2+ release in isolated ventricular myocytes from these patients. The time constant of decline was slower in heart failure. In myocytes from patients with clinical recovery following mechanical and pharmacological treatment, NCX1-mediated Ca2+ extrusion was faster compared with myocytes from patient who, despite identical treatment, did not recover. We propose that increased NCX function may be associated with reverse remodeling in patients and that factors that regulate NCX function (i.e., phosphorylation or intracellular [Na+]) other than NCX expression levels alone, may have detrimental consequences on cardiac function.
Collapse
Affiliation(s)
- Cesare M N Terracciano
- Heart Science Centre, Imperial College London, Laboratory of Cell Electrophysiology, National Heart and Lung Institute, Harefield Hospital, Harefield, Middlesex UB9 6JH, UK.
| | | | | | | | | | | | | |
Collapse
|
45
|
Jahanyar J, Joyce DL, Southard RE, Loebe M, Noon GP, Koerner MM, Torre-Amione G, Youker KA. Decorin-mediated Transforming Growth Factor-β Inhibition Ameliorates Adverse Cardiac Remodeling. J Heart Lung Transplant 2007; 26:34-40. [PMID: 17234515 DOI: 10.1016/j.healun.2006.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/29/2006] [Accepted: 10/17/2006] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Implantation of a left ventricular assist device (LVAD) has been shown to induce regression of fibrosis in patients with congestive heart failure (CHF) and improve myocardial function. The mechanism of reverse remodeling after mechanical circulatory support (MCS), however, has not been fully characterized. In this study we examined the anti-fibrotic effects of decorin, an extracellular matrix (ECM) proteoglycan, on the transforming growth factor-beta (TGF-beta) pathway. METHODS Human myocardial tissue samples were obtained from patients undergoing LVAD implantation and again following subsequent transplantation after a sustained period of MCS. The specimens were examined by utilizing different molecular and histologic techniques, including human cardiac fibroblast in vitro studies. We assessed gene expression, mRNA and protein levels. RESULTS We found a significant decrease in interstitial fibrosis after MCS, with a decrease in collagen mRNA transcription rates, serving as an indirect measurement of collagen synthesis. Both the mRNA and protein levels of decorin were significantly increased after a period of MCS. Decorin mRNA was up-regulated by 44% after MCS (p < 0.01), which paralleled the increase in interstitial decorin deposition (p < 0.001). In addition, p-SMAD2, a molecular marker downstream of the TGF-beta pathway, was found to be inactivated after MCS (p < 0.02). Moreover, cultured human cardiac fibroblasts exposed to TGF-beta demonstrated decreased collagen production when exogenous decorin was added (p < 0.03). CONCLUSIONS The decorin molecule is potentially involved in reverse cardiac remodeling, by directly inhibiting the TGF-beta pathway and its pro-fibrotic effects on the failing human heart.
Collapse
Affiliation(s)
- Jama Jahanyar
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cullen ME, Yuen AHY, Felkin LE, Smolenski RT, Hall JL, Grindle S, Miller LW, Birks EJ, Yacoub MH, Barton PJR. Myocardial expression of the arginine:glycine amidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation 2006; 114:I16-20. [PMID: 16820567 DOI: 10.1161/circulationaha.105.000448] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Combination therapy consisting of mechanical unloading using a left ventricular assist device (LVAD) and pharmacological intervention can promote recovery from end-stage heart failure, but the mechanism is unknown. Preliminary microarray analysis revealed a significant and unexpected decrease in myocardial arginine:glycine amidinotransferase (AGAT) gene expression during recovery in these patients. The aim of this study was to evaluate the expression and role of AGAT expression in heart failure and recovery. METHODS AND RESULTS We used quantitative real time (TaqMan) polymerase chain reaction to examine myocardial AGAT mRNA expression in implant and explant samples from recovering patients after combination therapy (n=12), end-stage heart failure (ESHF) samples from stable patients undergoing transplantation without LVAD support (n=10), and donor hearts with normal hemodynamic function (n=8). AGAT mRNA expression was significantly elevated in all heart failure patients relative to donors (4.3-fold [P<0.001] and 2.7-fold [P<0.005] in LVAD and ESHF relative to donors, respectively) and returned to normal levels after recovery. AGAT enzyme activity was detectable in both human and rat myocardia and was elevated in heart failure. CONCLUSIONS Our data highlight local and potentially regulated expression of AGAT activity in the myocardium and suggest a specific response to heart failure involving elevated local creatine synthesis. These findings have implications both for the management of recovery patients undergoing combination therapy and for heart failure in general.
Collapse
Affiliation(s)
- Martin E Cullen
- National Heart and Lung Institute, Imperial College London, Heart Science Centre, Harefield, Middlesex, UB9 6JH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Conraads VM, Bosmans JM, Schuerwegh AJ, Goovaerts I, De Clerck LS, Stevens WJ, Bridts CH, Vrints CJ. Intracellular monocyte cytokine production and CD 14 expression are up-regulated in severe vs mild chronic heart failure. J Heart Lung Transplant 2006; 24:854-9. [PMID: 15982613 DOI: 10.1016/j.healun.2004.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 03/23/2004] [Accepted: 04/12/2004] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The role of circulating monocytes in the process of low-grade inflammation, characteristic of chronic heart failure (CHF), has recently been questioned. Lipopolysaccharide (LPS) desensitization has been proposed to mediate reduced monocyte cytokine elaboration in patients with severe CHF. METHODS Intracellular monocyte production of interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6) and tumor necrosis factor (TNF)-alpha, and monocyte CD 14 expression were measured flow-cytometrically without and after 8-hour LPS stimulation in 46 patients with CHF and in a healthy control group. RESULTS Basal cytokine concentrations were similar for the control and the mild CHF groups (New York Heart Association [NYHA] Class I or II). After LPS stimulation, IL-6 (p=0.002) and TNF-alpha levels (p=0.001) were lower in the latter group, whereas IL-1 beta production was comparable. For the moderate-severe CHF patients, unstimulated IL-1 beta (p=0.04) was higher, whereas IL-6 (p=0.2) and TNF-alpha (p=0.1) levels were not different from the controls. Measurement of LPS-stimulated cytokine production showed no differences between the control group and patients with moderate-severe CHF (all p= 0.5). Upon comparing mild vs moderate-severe CHF patients, higher levels of unstimulated cytokine production (IL-1 beta, p=0.002; IL-6, p=0.01; TNF-alpha, p=0.003), stimulated IL-1 beta (p=0.002) and IL-6 (p=0.008) were found in the latter patients. CD 14 expression in the moderate-severe CHF group was higher than in the mild-CHF group (p = 0.03) and was strongly related to stimulated IL-1 beta (r=0.62, p<0.0001), IL-6 (r=0.56, p=0.0002) and TNF-alpha (r=0.41, p=0.006) production. CONCLUSIONS CD 14 expression and monocyte cytokine production, both unstimulated and after LPS stimulation, are increased in moderate-severe CHF when compared with mild CHF. These data suggest that circulating monocytes, possibly via increased CD 14 expression, may play a significant role in the immunologic dysbalance observed in advanced CHF.
Collapse
Affiliation(s)
- Viviane M Conraads
- Department of Cardiology, University Hospital Antwerp (UIA), Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lowes BD, Zolty R, Minobe WA, Robertson AD, Leach S, Hunter L, Bristow MR. Serial gene expression profiling in the intact human heart. J Heart Lung Transplant 2006; 25:579-88. [PMID: 16678038 PMCID: PMC2709530 DOI: 10.1016/j.healun.2006.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 01/10/2006] [Accepted: 01/16/2006] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND In chronic heart failure due to a dilated cardiomyopathy phenotype, the molecular bases for contractile dysfunction and chamber remodeling remain largely unidentified. METHODS To investigate the feasibility of measuring global gene expression serially in the intact failing human heart, we performed repeated messenger RNA (mRNA) expression profiling using RNA extracted from endomyocardial biopsy specimens and gene chip methodology in 8 subjects with idiopathic dilated cardiomyopathy. In patients treated with beta-blocking agents or placebo, myocardial gene expression was measured in endomyocardial biopsy material and radionuclide ejection fraction was measured at baseline and after 4 to 12 months of treatment. Gene expression was measured for 12,625 gene sequences by using Affymetrix U95 gene chips and commercially available software. For 6 mRNAs, gene chip results were compared with measurements made by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS In an unfiltered composite analysis of changes in expression detected in the patients with high-signal intensity chips, 241 genes showed an increase and 331 genes a decrease in mRNA abundance. There was good agreement between changes measured by quantitative RT-PCR and those determined by gene chips. There was less variance between differences in phenotype in patients sampled serially as compared between subjects with similar phenotypes sampled at baseline. CONCLUSIONS Serial gene expression profiling with association to phenotypic change is feasible in the intact human heart and may offer advantages to cross-sectional expression profiling. This study suggests that the intact failing remodeled human heart is in an activated state of gene expression, with a large net reduction in gene expression occurring as phenotypic improvement occurs.
Collapse
Affiliation(s)
- Brian D Lowes
- Division of Cardiology and the Center for Computational Pharmacology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Burkhoff D, Klotz S, Mancini DM. LVAD-Induced Reverse Remodeling: Basic and Clinical Implications for Myocardial Recovery. J Card Fail 2006; 12:227-39. [PMID: 16624689 DOI: 10.1016/j.cardfail.2005.10.012] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 10/09/2005] [Accepted: 10/18/2005] [Indexed: 10/24/2022]
Abstract
BACKGROUND With improved technology, increasing clinical experience, and expanding indications for use, left ventricular assist devices (LVADs) are assuming a greater role in the care of patients with end-stage heart failure. Early in the course of LVAD use as a bridge to transplant, it became evident that some patients exhibit substantial recovery of ventricular function, which led to the concept of reverse remodeling. METHODS AND RESULTS Herein we summarize and integrate insights derived from a multitude of studies that have investigated how LVAD support influences ventricular structural, cellular, extracellular matrix, molecular, biochemical, and metabolic characteristics of the end-stage failing heart. The focus includes a review of the extent and sustainability of reverse remodeling, the important advances in understanding of the pathophysiology of heart failure derived from these studies and the implications of these findings for development of new therapeutic strategies. CONCLUSION In brief, studies of LVAD-heart interactions have led to the understanding that although we once considered the end-stage failing heart of patients near death to be irreversibly diseased, when given sufficient mechanical unloading and restoration of more normal neurohormonal milieu, a relatively large degree of myocardial recovery is possible. Comparison of effects on right and left ventricles have provided mechanistic insights by implicating hemodynamic unloading as primarily regulating certain aspects of reverse remodeling, neurohormonal factors as regulating other aspects, and joint regulation of still other aspects. As such these observations have driven a shift of thinking of chronic heart failure as a progressive irreversible disease process to a potentially treatable entity.
Collapse
Affiliation(s)
- Daniel Burkhoff
- J. Skirball Center for Cardiovascular Research, Cardiovascular Research Foundation, Orangeburg, NY 10962, USA
| | | | | |
Collapse
|
50
|
Alla F, Kearney-Schwartz A, Radauceanu A, Das Dores S, Dousset B, Zannad F. Early changes in serum markers of cardiac extra-cellular matrix turnover in patients with uncomplicated hypertension and type II diabetes. Eur J Heart Fail 2005; 8:147-53. [PMID: 16198628 DOI: 10.1016/j.ejheart.2005.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 05/11/2005] [Accepted: 06/27/2005] [Indexed: 10/25/2022] Open
Abstract
AIMS Extracellular matrix (ECM) turnover is a major determinant of diastolic dysfunction and pumping capacity, thus potentially contributing to the progression of congestive heart failure (CHF). Patients with both arterial hypertension and diabetes have a high risk of heart failure. Whether these patients have changes in cardiac ECM has not been studied previously. Our objective was to compare blood markers of collagen turnover among patients with CHF, patients with hypertension and type II diabetes (HD), and healthy individuals. METHODS AND RESULTS Measurements were performed in 239 CHF patients; 64 HD patients and 92 healthy subjects. We showed by adjusted ANOVA that PIIINP levels were significantly higher in CHF and HD patients than in controls, and higher in CHF patients than in HD patients. MMP1 levels were significantly lower in CHF and HD patients than in controls. Collagen type I markers (PICP and PINP) were not influenced by CHF but were lower in HD patients as compared to controls (p<0.05 for all comparisons). CONCLUSION In heart failure, markers of cardiac collagen synthesis are increased and markers of degradation are decreased, potentially contributing to cardiac fibrosis and thus to poor outcome. Changes in collagen turnover may also occur early in the disease process in high-risk patients before heart failure is clinically detectable.
Collapse
Affiliation(s)
- François Alla
- Epidemiology Department (EA 3444), University Hospital, Nancy, France
| | | | | | | | | | | |
Collapse
|