1
|
Hanschen ER, Herron MD, Wiens JJ, Nozaki H, Michod RE. Repeated evolution and reversibility of self-fertilization in the volvocine green algae. Evolution 2018; 72:386-398. [PMID: 29134623 PMCID: PMC5796843 DOI: 10.1111/evo.13394] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
Outcrossing and self-fertilization are fundamental strategies of sexual reproduction, each with different evolutionary costs and benefits. Self-fertilization is thought to be an evolutionary "dead-end" strategy, beneficial in the short term but costly in the long term, resulting in self-fertilizing species that occupy only the tips of phylogenetic trees. Here, we use volvocine green algae to investigate the evolution of self-fertilization. We use ancestral-state reconstructions to show that self-fertilization has repeatedly evolved from outcrossing ancestors and that multiple reversals from selfing to outcrossing have occurred. We use three phylogenetic metrics to show that self-fertilization is not restricted to the tips of the phylogenetic tree, a finding inconsistent with the view of self-fertilization as a dead-end strategy. We also find no evidence for higher extinction rates or lower speciation rates in selfing lineages. We find that self-fertilizing species have significantly larger colonies than outcrossing species, suggesting the benefits of selfing may counteract the costs of increased size. We speculate that our macroevolutionary results on self-fertilization (i.e., non-tippy distribution, no decreased diversification rates) may be explained by the haploid-dominant life cycle that occurs in volvocine algae, which may alter the costs and benefits of selfing.
Collapse
Affiliation(s)
- Erik R. Hanschen
- Department of Ecology and Evolutionary Biology, University of Arizona
| | | | - John J. Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona
| | | | - Richard E. Michod
- Department of Ecology and Evolutionary Biology, University of Arizona
| |
Collapse
|
2
|
Grochau-Wright ZI, Hanschen ER, Ferris PJ, Hamaji T, Nozaki H, Olson BJSC, Michod RE. Genetic basis for soma is present in undifferentiated volvocine green algae. J Evol Biol 2017; 30:1205-1218. [PMID: 28425150 PMCID: PMC5540444 DOI: 10.1111/jeb.13100] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 02/26/2017] [Accepted: 04/14/2017] [Indexed: 01/21/2023]
Abstract
Somatic cellular differentiation plays a critical role in the transition from unicellular to multicellular life, but the evolution of its genetic basis remains poorly understood. By definition, somatic cells do not reproduce to pass on genes and so constitute an extreme form of altruistic behaviour. The volvocine green algae provide an excellent model system to study the evolution of multicellularity and somatic differentiation. In Volvox carteri, somatic cell differentiation is controlled by the regA gene, which is part of a tandem duplication of genes known as the reg cluster. Although previous work found the reg cluster in divergent Volvox species, its origin and distribution in the broader group of volvocine algae has not been known. Here, we show that the reg cluster is present in many species without somatic cells and determine that the genetic basis for soma arose before the phenotype at the origin of the family Volvocaceae approximately 200 million years ago. We hypothesize that the ancestral function was involved in regulating reproduction in response to stress and that this function was later co-opted to produce soma. Determining that the reg cluster was co-opted to control somatic cell development provides insight into how cellular differentiation, and with it greater levels of complexity and individuality, evolves.
Collapse
Affiliation(s)
- Z I Grochau-Wright
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - E R Hanschen
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - P J Ferris
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - T Hamaji
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - H Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - B J S C Olson
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - R E Michod
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Nakada T, Tomita M. Morphology and phylogeny of a new wall-less freshwater volvocalean flagellate, Hapalochloris nozakii gen. et sp. nov. (Volvocales, Chlorophyceae). JOURNAL OF PHYCOLOGY 2017; 53:108-117. [PMID: 27767210 DOI: 10.1111/jpy.12484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
New strains of a wall-less unicellular volvocalean flagellate were isolated from a freshwater environment in Japan. Observations of the alga, described here as Hapalochloris nozakii Nakada, gen. et sp. nov., were made using light, fluorescence, and electron microscopy. Each vegetative cell had two flagella, four contractile vacuoles, and a spirally furrowed cup-shaped chloroplast with an axial pyrenoid, and mitochondria located in the furrows. Based on the morphology, H. nozakii was distinguished from other known wall-less volvocalean flagellates. Under electron microscopy, fibrous material, instead of a cell wall and dense cortical microtubules, was observed outside and inside the cell membrane, respectively. Based on the phylogenetic analyses of 18S rRNA gene sequences, H. nozakii was found to be closely related to Asterococcus, Oogamochlamys, Rhysamphichloris, and "Dunaliella" lateralis and was separated from other known wall-less flagellate volvocaleans, indicating independent secondary loss of the cell wall in H. nozakii. In the combined 18S rRNA and chloroplast gene tree, H. nozakii was sister to Lobochlamys.
Collapse
Affiliation(s)
- Takashi Nakada
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| |
Collapse
|
4
|
Nozaki H, Ueki N, Isaka N, Saigo T, Yamamoto K, Matsuzaki R, Takahashi F, Wakabayashi KI, Kawachi M. A New Morphological Type of Volvox from Japanese Large Lakes and Recent Divergence of this Type and V. ferrisii in Two Different Freshwater Habitats. PLoS One 2016; 11:e0167148. [PMID: 27880842 PMCID: PMC5120847 DOI: 10.1371/journal.pone.0167148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/09/2016] [Indexed: 11/26/2022] Open
Abstract
Volvox sect. Volvox is characterized by having unique morphological characteristics, such as thick cytoplasmic bridges between adult somatic cells in the spheroids and spiny zygote walls. Species of this section are found from various freshwater habitats. Recently, three species of Volvox sect. Volvox originating from rice paddies and a marsh were studied taxonomically based on molecular and morphological data of cultured materials. However, taxonomic studies have not been performed on cultured materials of this section originating from large lake water bodies. We studied a new morphological type of Volvox sect. Volvox (“Volvox sp. Sagami”), using cultured materials originating from two large lakes and a pond in Japan. Volvox sp. Sagami produced monoecious sexual spheroids and may represent a new morphological species; it could be clearly distinguished from all previously described monoecious species of Volvox sect. Volvox by its small number of eggs or zygotes (5–25) in sexual spheroids, with short acute spines (up to 3 μm long) on the zygote walls and elongated anterior somatic cells in asexual spheroids. Based on sequences of internal transcribed spacer (ITS) regions of nuclear ribosomal DNA (rDNA; ITS-1, 5.8S rDNA and ITS-2) and plastid genes, however, the Volvox sp. Sagami lineage and its sister lineage (the monoecious species V. ferrisii) showed very small genetic differences, which correspond to the variation within a single biological species in other volvocalean algae. Since V. ferrisii was different from Volvox sp. Sagami, by having approximately 100–200 zygotes in the sexual spheroids and long spines (6–8.5 μm long) on the zygote walls, as well as growing in Japanese rice paddies, these two morphologically distinct lineages might have diverged rapidly in the two different freshwater habitats. In addition, the swimming velocity during phototaxis of Volvox sp. Sagami spheroids originating from large lakes was significantly higher than that of V. ferrisii originating from rice paddies, suggesting adaptation of Volvox sp. Sagami to large water bodies.
Collapse
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113–0033, Japan
- * E-mail:
| | - Noriko Ueki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226–8503, Japan
| | - Nanako Isaka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Tokiko Saigo
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Kayoko Yamamoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Ryo Matsuzaki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa 16–2, Tsukuba-shi, Ibaraki, 305–8506, Japan
| | - Fumio Takahashi
- College of Life Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu-shi, Shiga, 525–8577, Japan
| | - Ken-ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226–8503, Japan
| | - Masanobu Kawachi
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa 16–2, Tsukuba-shi, Ibaraki, 305–8506, Japan
| |
Collapse
|
5
|
Höhn S, Hallmann A. Distinct shape-shifting regimes of bowl-shaped cell sheets - embryonic inversion in the multicellular green alga Pleodorina. BMC DEVELOPMENTAL BIOLOGY 2016; 16:35. [PMID: 27733125 PMCID: PMC5062935 DOI: 10.1186/s12861-016-0134-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/13/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND The multicellular volvocine alga Pleodorina is intermediate in organismal complexity between its unicellular relative, Chlamydomonas, and its multicellular relative, Volvox, which shows complete division of labor between different cell types. The volvocine green microalgae form a group of genera closely related to the genus Volvox within the order Volvocales (Chlorophyta). Embryos of multicellular volvocine algae consist of a cellular monolayer that, depending on the species, is either bowl-shaped or comprises a sphere. During embryogenesis, multicellular volvocine embryos turn their cellular monolayer right-side out to expose their flagella. This process is called 'inversion' and serves as simple model for epithelial folding in metazoa. While the development of spherical Volvox embryos has been the subject of detailed studies, the inversion process of bowl-shaped embryos is less well understood. Therefore, it has been unclear how the inversion of a sphere might have evolved from less complicated processes. RESULTS In this study we characterized the inversion of initially bowl-shaped embryos of the 64- to 128-celled volvocine species Pleodorina californica. We focused on the movement patterns of the cell sheet, cell shape changes and changes in the localization of cytoplasmic bridges (CBs) connecting the cells. The development of living embryos was recorded using time-lapse light microscopy. Moreover, fixed and sectioned embryos throughout inversion and at successive stages of development were analyzed by light and transmission electron microscopy. We generated three-dimensional models of the identified cell shapes including the localization of CBs. CONCLUSIONS In contrast to descriptions concerning volvocine embryos with lower cell numbers, the embryonic cells of P. californica undergo non-simultaneous and non-uniform cell shape changes. In P. californica, cell wedging in combination with a relocation of the CBs to the basal cell tips explains the curling of the cell sheet during inversion. In volvocine genera with lower organismal complexity, the cell shape changes and relocation of CBs are less pronounced in comparison to P. californica, while they are more pronounced in all members of the genus Volvox. This finding supports an increasing significance of the temporal and spatial regulation of cell shape changes and CB relocations with both increasing cell number and organismal complexity during evolution of differentiated multicellularity.
Collapse
Affiliation(s)
- Stephanie Höhn
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.,Present address: DAMTP, Biological Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, UK
| | - Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
6
|
Hanschen ER, Ferris PJ, Michod RE. Early evolution of the genetic basis for soma in the volvocaceae. Evolution 2014; 68:2014-25. [PMID: 24689915 DOI: 10.1111/evo.12416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/16/2014] [Indexed: 01/26/2023]
Abstract
To understand the hierarchy of life in evolutionary terms, we must explain why groups of one kind of individual, say cells, evolve into a new higher level individual, a multicellular organism. A fundamental step in this process is the division of labor into nonreproductive altruistic soma. The regA gene is critical for somatic differentiation in Volvox carteri, a multicellular species of volvocine algae. We report the sequence of regA-like genes and several syntenic markers from divergent species of Volvox. We show that regA evolved early in the volvocines and predict that lineages with and without soma descended from a regA-containing ancestor. We hypothesize an alternate evolutionary history of regA than the prevailing "proto-regA" hypothesis. The variation in presence of soma may be explained by multiple lineages independently evolving soma utilizing regA or alternate genetic pathways. Our prediction that the genetic basis for soma exists in species without somatic cells raises a number of questions, most fundamentally, under what conditions would species with the genetic potential for soma, and hence greater individuality, not evolve these traits. We conclude that the evolution of individuality in the volvocine algae is more complicated and labile than previously appreciated on theoretical grounds.
Collapse
Affiliation(s)
- Erik R Hanschen
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Biosciences West, Rm. 310, Tucson, Arizona.
| | | | | |
Collapse
|
7
|
Hamaji T, Smith DR, Noguchi H, Toyoda A, Suzuki M, Kawai-Toyooka H, Fujiyama A, Nishii I, Marriage T, Olson BJSC, Nozaki H. Mitochondrial and plastid genomes of the colonial green alga Gonium pectorale give insights into the origins of organelle DNA architecture within the volvocales. PLoS One 2013; 8:e57177. [PMID: 23468928 PMCID: PMC3582580 DOI: 10.1371/journal.pone.0057177] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/18/2013] [Indexed: 02/07/2023] Open
Abstract
Volvocalean green algae have among the most diverse mitochondrial and plastid DNAs (mtDNAs and ptDNAs) from the eukaryotic domain. However, nearly all of the organelle genome data from this group are restricted to unicellular species, like Chlamydomonas reinhardtii, and presently only one multicellular species, the ∼4,000-celled Volvox carteri, has had its organelle DNAs sequenced. The V. carteri organelle genomes are repeat rich, and the ptDNA is the largest plastome ever sequenced. Here, we present the complete mtDNA and ptDNA of the colonial volvocalean Gonium pectorale, which is comprised of ∼16 cells and occupies a phylogenetic position closer to that of V. carteri than C. reinhardtii within the volvocine line. The mtDNA and ptDNA of G. pectorale are circular-mapping AT-rich molecules with respective lengths and coding densities of 16 and 222.6 kilobases and 73 and 44%. They share some features with the organelle DNAs of V. carteri, including palindromic repeats within the plastid compartment, but show more similarities with those of C. reinhardtii, such as a compact mtDNA architecture and relatively low organelle DNA intron contents. Overall, the G. pectorale organelle genomes raise several interesting questions about the origin of linear mitochondrial chromosomes within the Volvocales and the relationship between multicellularity and organelle genome expansion.
Collapse
Affiliation(s)
- Takashi Hamaji
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto, Japan
| | - David R. Smith
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hideki Noguchi
- Center for Advanced Genomics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Toyoda
- Center for Advanced Genomics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masahiro Suzuki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Asao Fujiyama
- Center for Advanced Genomics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Ichiro Nishii
- Temasek Life Sciences Laboratory, The National University of Singapore, Singapore, Singapore
| | - Tara Marriage
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Bradley J. S. C. Olson
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
8
|
Lineage-specific fragmentation and nuclear relocation of the mitochondrial cox2 gene in chlorophycean green algae (Chlorophyta). Mol Phylogenet Evol 2012; 64:166-76. [PMID: 22724135 DOI: 10.1016/j.ympev.2012.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most eukaryotes the subunit 2 of cytochrome c oxidase (COX2) is encoded in intact mitochondrial genes. Some green algae, however, exhibit split cox2 genes (cox2a and cox2b) encoding two polypeptides (COX2A and COX2B) that form a heterodimeric COX2 subunit. Here, we analyzed the distribution of intact and split cox2 gene sequences in 39 phylogenetically diverse green algae in phylum Chlorophyta obtained from databases (28 sequences from 22 taxa) and from new cox2 data generated in this work (23 sequences from 18 taxa). Our results support previous observations based on a smaller number of taxa, indicating that algae in classes Prasinophyceae, Ulvophyceae, and Trebouxiophyceae contain orthodox, intact mitochondrial cox2 genes. In contrast, all of the algae in Chlorophyceae that we examined exhibited split cox2 genes, and could be separated into two groups: one that has a mitochondrion-localized cox2a gene and a nucleus-localized cox2b gene ("Scenedesmus-like"), and another that has both cox2a and cox2b genes in the nucleus ("Chlamydomonas-like"). The location of the split cox2a and cox2b genes was inferred using five different criteria: differences in amino acid sequences, codon usage (mitochondrial vs. nuclear), codon preference (third position frequencies), presence of nucleotide sequences encoding mitochondrial targeting sequences and presence of spliceosomal introns. Distinct green algae could be grouped according to the form of cox2 gene they contain: intact or fragmented, mitochondrion- or nucleus-localized, and intron-containing or intron-less. We present a model describing the events that led to mitochondrial cox2 gene fragmentation and the independent and sequential migration of cox2a and cox2b genes to the nucleus in chlorophycean green algae. We also suggest that the distribution of the different forms of the cox2 gene provides important insights into the phylogenetic relationships among major groups of Chlorophyceae.
Collapse
|
9
|
Kawafune K, Hongoh Y, Hamaji T, Nozaki H. Molecular identification of rickettsial endosymbionts in the non-phagotrophic volvocalean green algae. PLoS One 2012; 7:e31749. [PMID: 22363720 PMCID: PMC3283676 DOI: 10.1371/journal.pone.0031749] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/12/2012] [Indexed: 02/01/2023] Open
Abstract
Background The order Rickettsiales comprises Gram-negative obligate intracellular bacteria (also called rickettsias) that are mainly associated with arthropod hosts. This group is medically important because it contains human-pathogenic species that cause dangerous diseases. Until now, there has been no report of non-phagotrophic photosynthetic eukaryotes, such as green plants, harboring rickettsias. Methodology/Principal Findings We examined the bacterial endosymbionts of two freshwater volvocalean green algae: unicellular Carteria cerasiformis and colonial Pleodorina japonica. Epifluorescence microscopy using 4′-6-deamidino-2-phenylindole staining revealed the presence of endosymbionts in all C. cerasiformis NIES-425 cells, and demonstrated a positive correlation between host cell size and the number of endosymbionts. Strains both containing and lacking endosymbionts of C. cerasiformis (NIES-425 and NIES-424) showed a >10-fold increase in cell number and typical sigmoid growth curves over 192 h. A phylogenetic analysis of 16 S ribosomal (r)RNA gene sequences from the endosymbionts of C. cerasiformis and P. japonica demonstrated that they formed a robust clade (hydra group) with endosymbionts of various non-arthropod hosts within the family Rickettsiaceae. There were significantly fewer differences in the 16 S rRNA sequences of the rickettsiacean endosymbionts between C. cerasiformis and P. japonica than in the chloroplast 16 S rRNA or 18 S rRNA of the host volvocalean cells. Fluorescence in situ hybridization demonstrated the existence of the rickettsiacean endosymbionts in the cytoplasm of two volvocalean species. Conclusions/Significance The rickettsiacean endosymbionts are likely not harmful to their volvocalean hosts and may have been recently transmitted from other non-arthropod organisms. Because rickettsias are the closest relatives of mitochondria, incipient stages of mitochondrial endosymbiosis may be deduced using both strains with and without C. cerasiformis endosymbionts.
Collapse
Affiliation(s)
- Kaoru Kawafune
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yuichi Hongoh
- Department of Biological Sciences, School of Bioscience and Biotechnology, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Takashi Hamaji
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
10
|
Abstract
Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics.
Collapse
Affiliation(s)
- James G Umen
- Donald Danforth Plant Science Center, 975 North Warson Rd., St. Louis, MO 63132 USA
| | - Bradley J S C Olson
- Molecular Cellular and Developmental Biology, Ecological Genomics Institute, Division of Biology, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
11
|
Höhn S, Hallmann A. There is more than one way to turn a spherical cellular monolayer inside out: type B embryo inversion in Volvox globator. BMC Biol 2011; 9:89. [PMID: 22206406 PMCID: PMC3324393 DOI: 10.1186/1741-7007-9-89] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/29/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epithelial folding is a common morphogenetic process during the development of multicellular organisms. In metazoans, the biological and biomechanical processes that underlie such three-dimensional (3D) developmental events are usually complex and difficult to investigate. Spheroidal green algae of the genus Volvox are uniquely suited as model systems for studying the basic principles of epithelial folding. Volvox embryos begin life inside out and then must turn their spherical cell monolayer outside in to achieve their adult configuration; this process is called 'inversion.' There are two fundamentally different sequences of inversion processes in Volvocaceae: type A and type B. Type A inversion is well studied, but not much is known about type B inversion. How does the embryo of a typical type B inverter, V. globator, turn itself inside out? RESULTS In this study, we investigated the type B inversion of V. globator embryos and focused on the major movement patterns of the cellular monolayer, cell shape changes and changes in the localization of cytoplasmic bridges (CBs) connecting the cells. Isolated intact, sectioned and fragmented embryos were analyzed throughout the inversion process using light microscopy, confocal laser scanning microscopy, scanning electron microscopy and transmission electron microscopy techniques. We generated 3D models of the identified cell shapes, including the localizations of CBs. We show how concerted cell-shape changes and concerted changes in the position of cells relative to the CB system cause cell layer movements and turn the spherical cell monolayer inside out. The type B inversion of V. globator is compared to the type A inversion in V. carteri. CONCLUSIONS Concerted, spatially and temporally coordinated changes in cellular shapes in conjunction with concerted migration of cells relative to the CB system are the causes of type B inversion in V. globator. Despite significant similarities between type A and type B inverters, differences exist in almost all details of the inversion process, suggesting analogous inversion processes that arose through parallel evolution. Based on our results and due to the cellular biomechanical implications of the involved tensile and compressive forces, we developed a global mechanistic scenario that predicts epithelial folding during embryonic inversion in V. globator.
Collapse
Affiliation(s)
- Stephanie Höhn
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | | |
Collapse
|
12
|
McManus HA, Lewis LA, Fučíková K, Haugen P. Invasion of protein coding genes by green algal ribosomal group I introns. Mol Phylogenet Evol 2011; 62:109-16. [PMID: 22056605 DOI: 10.1016/j.ympev.2011.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 06/04/2011] [Accepted: 09/17/2011] [Indexed: 11/25/2022]
Abstract
The spread of group I introns depends on their association with intron-encoded homing endonucleases. Introns that encode functional homing endonuclease genes (HEGs) are highly invasive, whereas introns that only encode the group I ribozyme responsible for self-splicing are generally stably inherited (i.e., vertical inheritance). A number of recent case studies have provided new knowledge on the evolution of group I introns, however, there are still large gaps in understanding of their distribution on the tree of life, and how they have spread into new hosts and genic sites. During a larger phylogenetic survey of chlorophyceaen green algae, we found that 23 isolates contain at least one group I intron in the rbcL chloroplast gene. Structural analyses show that the introns belong to one of two intron lineages, group IA2 intron-HEG (GIY-YIG family) elements inserted after position 462 in the rbcL gene, and group IA1 introns inserted after position 699. The latter intron type sometimes encodes HNH homing endonucleases. The distribution of introns was analyzed on an exon phylogeny and patterns were recovered that are consistent with vertical inheritance and possible horizontal transfer. The rbcL 462 introns are thus far reported only within the Volvocales, Hydrodictyaceae and Bracteacoccus, and closely related isolates of algae differ in the presence of rbcL introns. Phylogenetic analysis of the intron conserved regions indicates that the rbcL699 and rbcL462 introns have distinct evolutionary origins. The rbcL699 introns were likely derived from ribosomal RNA L2449 introns, whereas the rbcL462 introns form a close relationship with psbA introns.
Collapse
Affiliation(s)
- Hilary A McManus
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Rd., Storrs, CT 06269, USA.
| | | | | | | |
Collapse
|
13
|
Hallmann A. Evolution of reproductive development in the volvocine algae. ACTA ACUST UNITED AC 2010; 24:97-112. [PMID: 21174128 PMCID: PMC3098969 DOI: 10.1007/s00497-010-0158-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/27/2010] [Indexed: 11/26/2022]
Abstract
The evolution of multicellularity, the separation of germline cells from sterile somatic cells, and the generation of a male-female dichotomy are certainly among the greatest innovations of eukaryotes. Remarkably, phylogenetic analysis suggests that the shift from simple to complex, differentiated multicellularity was not a unique progression in the evolution of life, but in fact a quite frequent event. The spheroidal green alga Volvox and its close relatives, the volvocine algae, span the full range of organizational complexity, from unicellular and colonial genera to multicellular genera with a full germ-soma division of labor and male-female dichotomy; thus, these algae are ideal model organisms for addressing fundamental issues related to the transition to multicellularity and for discovering universal rules that characterize this transition. Of all living species, Volvox carteri represents the simplest version of an immortal germline producing specialized somatic cells. This cellular specialization involved the emergence of mortality and the production of the first dead ancestors in the evolution of this lineage. Volvocine algae therefore exemplify the evolution of cellular cooperation from cellular autonomy. They also serve as a prime example of the evolution of complex traits by a few successive, small steps. Thus, we learn from volvocine algae that the evolutionary transition to complex, multicellular life is probably much easier to achieve than is commonly believed.
Collapse
Affiliation(s)
- Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
14
|
Ueki N, Matsunaga S, Inouye I, Hallmann A. How 5000 independent rowers coordinate their strokes in order to row into the sunlight: phototaxis in the multicellular green alga Volvox. BMC Biol 2010; 8:103. [PMID: 20663212 PMCID: PMC2920248 DOI: 10.1186/1741-7007-8-103] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/27/2010] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The evolution of multicellular motile organisms from unicellular ancestors required the utilization of previously evolved tactic behavior in a multicellular context. Volvocine green algae are uniquely suited for studying tactic responses during the transition to multicellularity because they range in complexity from unicellular to multicellular genera. Phototactic responses are essential for these flagellates because they need to orientate themselves to receive sufficient light for photosynthesis, but how does a multicellular organism accomplish phototaxis without any known direct communication among cells? Several aspects of the photoresponse have previously been analyzed in volvocine algae, particularly in the unicellular alga Chlamydomonas. RESULTS In this study, the phototactic behavior in the spheroidal, multicellular volvocine green alga Volvox rousseletii (Volvocales, Chlorophyta) was analyzed. In response to light stimuli, not only did the flagella waveform and beat frequency change, but the effective stroke was reversed. Moreover, there was a photoresponse gradient from the anterior to the posterior pole of the spheroid, and only cells of the anterior hemisphere showed an effective response. The latter caused a reverse of the fluid flow that was confined to the anterior hemisphere. The responsiveness to light is consistent with an anterior-to-posterior size gradient of eyespots. At the posterior pole, the eyespots are tiny or absent, making the corresponding cells appear to be blind. Pulsed light stimulation of an immobilized spheroid was used to simulate the light fluctuation experienced by a rotating spheroid during phototaxis. The results demonstrated that in free-swimming spheroids, only those cells of the anterior hemisphere that face toward the light source reverse the beating direction in the presence of illumination; this behavior results in phototactic turning. Moreover, positive phototaxis is facilitated by gravitational forces. Under our conditions, V. rousseletii spheroids showed no negative phototaxis. CONCLUSIONS On the basis of our results, we developed a mechanistic model that predicts the phototactic behavior in V. rousseletii. The model involves photoresponses, periodically changing light conditions, morphological polarity, rotation of the spheroid, two modes of flagellar beating, and the impact of gravity. Our results also indicate how recently evolved multicellular organisms adapted the phototactic capabilities of their unicellular ancestors to multicellular life.
Collapse
Affiliation(s)
- Noriko Ueki
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577 Japan
| | - Shigeru Matsunaga
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577 Japan
- The Promotion Center for Research and Education, Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa, 240-0193 Japan
| | - Isao Inouye
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577 Japan
| | - Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
15
|
Nakada T, Nozaki H. TAXONOMIC STUDY OF TWO NEW GENERA OF FUSIFORM GREEN FLAGELLATES, TABRIS GEN. NOV. AND HAMAKKO GEN. NOV. (VOLVOCALES, CHLOROPHYCEAE)(1). JOURNAL OF PHYCOLOGY 2009; 45:482-92. [PMID: 27033826 DOI: 10.1111/j.1529-8817.2009.00652.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
On the basis of LM, we isolated strains of two species of fusiform green flagellates that could be assigned to former Chlorogonium (Cg.) Ehrenb. One species, "Cg."heimii Bourr., lacked a pyrenoid in its vegetative cells and required organic compounds for growth. The other was similar to Cg. elongatum (P. A. Dang.) Francé and "Cg."acus Nayal, but with slightly smaller vegetative cells. Their molecular phylogeny was also studied based on combined 18S rRNA, RUBISCO LSU (rbcL), and P700 chl a-apoprotein A2 (psaB) gene sequences. Both species were separated from Chlorogonium emend., Gungnir Nakada and Rusalka Nakada, which were formerly assigned to Chlorogonium. They were accordingly assigned to new genera, Tabris Nakada gen. nov. and Hamakko (Hk.) Nakada gen. nov. as T. heimii (Bourr.) Nakada comb. nov. and Hk. caudatus Nakada sp. nov., respectively. Tabris is differentiated from other genera of fusiform green flagellates by its vegetative cells, which only have two apical contractile vacuoles and lack a pyrenoid in the chloroplast. Hamakko, on the other hand, is distinguishable by the fact that its pyrenoids in vegetative cells are penetrated by flattened thylakoid lamellae.
Collapse
Affiliation(s)
- Takashi Nakada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Smith DR, Lee RW. The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA. BMC Genomics 2009; 10:132. [PMID: 19323823 PMCID: PMC2670323 DOI: 10.1186/1471-2164-10-132] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 03/26/2009] [Indexed: 11/30/2022] Open
Abstract
Background The magnitude of noncoding DNA in organelle genomes can vary significantly; it is argued that much of this variation is attributable to the dissemination of selfish DNA. The results of a previous study indicate that the mitochondrial DNA (mtDNA) of the green alga Volvox carteri abounds with palindromic repeats, which appear to be selfish elements. We became interested in the evolution and distribution of these repeats when, during a cursory exploration of the V. carteri nuclear DNA (nucDNA) and plastid DNA (ptDNA) sequences, we found palindromic repeats with similar structural features to those of the mtDNA. Upon this discovery, we decided to investigate the diversity and evolutionary implications of these palindromic elements by sequencing and characterizing large portions of mtDNA and ptDNA and then comparing these data to the V. carteri draft nuclear genome sequence. Results We sequenced 30 and 420 kilobases (kb) of the mitochondrial and plastid genomes of V. carteri, respectively – resulting in partial assemblies of these genomes. The mitochondrial genome is the most bloated green-algal mtDNA observed to date: ~61% of the sequence is noncoding, most of which is comprised of short palindromic repeats spread throughout the intergenic and intronic regions. The plastid genome is the largest (>420 kb) and most expanded (>80% noncoding) ptDNA sequence yet discovered, with a myriad of palindromic repeats in the noncoding regions, which have a similar size and secondary structure to those of the mtDNA. We found that 15 kb (~0.01%) of the nuclear genome are homologous to the palindromic elements of the mtDNA, and 50 kb (~0.05%) are homologous to those of the ptDNA. Conclusion Selfish elements in the form of short palindromic repeats have propagated in the V. carteri mtDNA and ptDNA, resulting in the distension of these genomes. Copies of these same repeats are also found in a small fraction of the nucDNA, but appear to be inert in this compartment. We conclude that the palindromic repeats in V. carteri represent a single class of selfish DNA and speculate that the derivation of this element involved the lateral gene transfer of an organelle intron that first appeared in the mitochondrial genome, spreading to the ptDNA through mitochondrion-to-plastid DNA migrations, and eventually arrived in the nucDNA through organelle-to-nucleus DNA transfer events. The overall implications of palindromic repeats on the evolution of chlorophyte organelle genomes are discussed.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
17
|
Nakada T, Nozaki H, Pröschold T. MOLECULAR PHYLOGENY, ULTRASTRUCTURE, AND TAXONOMIC REVISION OF CHLOROGONIUM (CHLOROPHYTA): EMENDATION OF CHLOROGONIUM AND DESCRIPTION OF GUNGNIR GEN. NOV. AND RUSALKA GEN. NOV.(1). JOURNAL OF PHYCOLOGY 2008; 44:751-760. [PMID: 27041433 DOI: 10.1111/j.1529-8817.2008.00525.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We examined the molecular phylogeny and ultrastructure of Chlorogonium and related species to establish the natural taxonomy at the generic level. Phylogenetic analyses of 18S rRNA and RUBISCO LSU (rbcL) gene sequences revealed two separate clades of Chlorogonium from which Chlorogonium (Cg.) fusiforme Matv. was robustly separated. One clade comprised Cg. neglectum Pascher and Cg. kasakii Nozaki, whereas the other clade included the type species Cg. euchlorum (Ehrenb.) Ehrenb., Cg. elongatum (P. A. Dang.) Francé, and Cg. capillatum Nozaki, M. Watanabe et Aizawa. On the basis of unique ultrastructural characteristics, we described Gungnir Nakada gen. nov. comprising three species: G. neglectum (Pascher) Nakada comb. nov., G. mantoniae (H. Ettl) Nakada comb. nov., and G. kasakii (Nozaki) Nakada comb. nov. We also emended Chlorogonium as a monophyletic genus composed of Cg. euchlorum, Cg. elongatum, and Cg. capillatum. Because Cg. fusiforme was distinguished from the redefined Chlorogonium and Gungnir by the structure of its starch plate, which is associated with pyrenoids, we reclassified this species as Rusalka fusiformis (Matv.) Nakada gen. et comb. nov.
Collapse
Affiliation(s)
- Takashi Nakada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, JapanCulture Collection of Algae and Protozoa, Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Dunbeg by Oban, Argyll PA37 1QA, UK
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, JapanCulture Collection of Algae and Protozoa, Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Dunbeg by Oban, Argyll PA37 1QA, UK
| | - Thomas Pröschold
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, JapanCulture Collection of Algae and Protozoa, Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Dunbeg by Oban, Argyll PA37 1QA, UK
| |
Collapse
|
18
|
Herron MD, Michod RE. Evolution of complexity in the volvocine algae: transitions in individuality through Darwin's eye. Evolution 2007; 62:436-51. [PMID: 18031303 DOI: 10.1111/j.1558-5646.2007.00304.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transition from unicellular to differentiated multicellular organisms constitutes an increase in the level complexity, because previously existing individuals are combined to form a new, higher-level individual. The volvocine algae represent a unique opportunity to study this transition because they diverged relatively recently from unicellular relatives and because extant species display a range of intermediate grades between unicellular and multicellular, with functional specialization of cells. Following the approach Darwin used to understand "organs of extreme perfection" such as the vertebrate eye, this jump in complexity can be reduced to a series of small steps that cumulatively describe a gradual transition between the two levels. We use phylogenetic reconstructions of ancestral character states to trace the evolution of steps involved in this transition in volvocine algae. The history of these characters includes several well-supported instances of multiple origins and reversals. The inferred changes can be understood as components of cooperation-conflict-conflict mediation cycles as predicted by multilevel selection theory. One such cycle may have taken place early in volvocine evolution, leading to the highly integrated colonies seen in extant volvocine algae. A second cycle, in which the defection of somatic cells must be prevented, may still be in progress.
Collapse
Affiliation(s)
- Matthew D Herron
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
19
|
Evans KM, Wortley AH, Mann DG. An assessment of potential diatom "barcode" genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 2007; 158:349-64. [PMID: 17581782 DOI: 10.1016/j.protis.2007.04.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 04/07/2007] [Indexed: 11/29/2022]
Abstract
Due to limited morphological differentiation, diatoms can be very difficult to identify and cryptic speciation is widespread. There is a need for a narrower species concept if contentious issues such as diatom biodiversities and biogeographies are to be resolved. We assessed the effectiveness of several genes (cox1, rbcL, 18S and ITS rDNA) to distinguish cryptic species within the model 'morphospecies', Sellaphora pupula agg. This is the first time that the suitability of cox1 as an identification tool for diatoms has been assessed. A range of cox1 primers was tested on Sellaphora and various outgroup taxa. Sequences were obtained for 34 isolates belonging to 22 Sellaphora taxa and three others (Pinnularia, Eunotia and Tabularia). Intraspecific divergences ranged from 0 to 5bp (=0.8%) and interspecific levels were at least 18bp (=c. 3%). Cox1 divergence was usually much greater than rbcL divergence and always much more variable than 18S rDNA. ITS rDNA sequences were more variable than cox1, but well-known problems concerning intragenomic variability caution against its use in identification. More information and less sequencing effort mean that cox1 can be a very useful aid in diatom identification. The usefulness of cox1 for determining phylogenetic relationships among Sellaphora species was also assessed and compared to rbcL. Tree topologies were very similar, although support values were generally lower for cox1.
Collapse
MESH Headings
- Algal Proteins/genetics
- Cyclooxygenase 1/genetics
- DNA Primers
- DNA, Algal/chemistry
- DNA, Algal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer
- Diatoms/classification
- Diatoms/cytology
- Diatoms/genetics
- Genes, rRNA
- Molecular Sequence Data
- Phylogeny
- RNA, Algal/genetics
- RNA, Ribosomal, 18S/genetics
- Ribulose-Bisphosphate Carboxylase/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Katharine M Evans
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK.
| | | | | |
Collapse
|
20
|
Desnitskiy AG. Evolutionary reorganizations of ontogenesis in related species of coenobial volvocine algae. Russ J Dev Biol 2006. [DOI: 10.1134/s1062360406040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Michod RE, Viossat Y, Solari CA, Hurand M, Nedelcu AM. Life-history evolution and the origin of multicellularity. J Theor Biol 2005; 239:257-72. [PMID: 16288782 DOI: 10.1016/j.jtbi.2005.08.043] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2005] [Revised: 07/30/2005] [Accepted: 07/30/2005] [Indexed: 11/21/2022]
Abstract
The fitness of an evolutionary individual can be understood in terms of its two basic components: survival and reproduction. As embodied in current theory, trade-offs between these fitness components drive the evolution of life-history traits in extant multicellular organisms. Here, we argue that the evolution of germ-soma specialization and the emergence of individuality at a new higher level during the transition from unicellular to multicellular organisms are also consequences of trade-offs between the two components of fitness-survival and reproduction. The models presented here explore fitness trade-offs at both the cell and group levels during the unicellular-multicellular transition. When the two components of fitness negatively covary at the lower level there is an enhanced fitness at the group level equal to the covariance of components at the lower level. We show that the group fitness trade-offs are initially determined by the cell level trade-offs. However, as the transition proceeds to multicellularity, the group level trade-offs depart from the cell level ones, because certain fitness advantages of cell specialization may be realized only by the group. The curvature of the trade-off between fitness components is a basic issue in life-history theory and we predict that this curvature is concave in single-celled organisms but becomes increasingly convex as group size increases in multicellular organisms. We argue that the increasingly convex curvature of the trade-off function is driven by the initial cost of reproduction to survival which increases as group size increases. To illustrate the principles and conclusions of the model, we consider aspects of the biology of the volvocine green algae, which contain both unicellular and multicellular members.
Collapse
Affiliation(s)
- Richard E Michod
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA.
| | | | | | | | | |
Collapse
|
22
|
Haugen P, Coucheron DH, Rønning SB, Haugli K, Johansen S. The molecular evolution and structural organization of self-splicing group I introns at position 516 in nuclear SSU rDNA of myxomycetes. J Eukaryot Microbiol 2004; 50:283-92. [PMID: 15132172 DOI: 10.1111/j.1550-7408.2003.tb00135.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Group I introns are relatively common within nuclear ribosomal DNA of eukaryotic microorganisms, especially in myxomycetes. Introns at position S516 in the small subunit ribosomal RNA gene are particularly common, but have a sporadic occurrence in myxomycetes. Fuligo septica, Badhamia gracilis, and Physarum flavicomum, all members of the family Physaraceae, contain related group IC1 introns at this site. The F. septica intron was studied at the molecular level and found to self-splice as naked RNA and to generate full-length intron RNA circles during incubation. Group I introns at position S516 appear to have a particularly widespread distribution among protists and fungi. Secondary structural analysis of more than 140 S516 group I introns available in the database revealed five different types of organization, including IC1 introns with and without His-Cys homing endonuclease genes, complex twin-ribozyme introns, IE introns, and degenerate group I-like introns. Both intron structural and phylogenetic analyses indicate a multiple origin of the S516 introns during evolution. The myxomycete introns are related to S516 introns in the more distantly related brown algae and Acanthamoeba species. Possible mechanisms of intron transfer both at the RNA- and DNA-levels are discussed in order to explain the observed widespread, but scattered, phylogenetic distribution.
Collapse
Affiliation(s)
- Peik Haugen
- Department of Molecular Biotechnology, RNA Research Group, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
23
|
Haugen P, Reeb V, Lutzoni F, Bhattacharya D. The evolution of homing endonuclease genes and group I introns in nuclear rDNA. Mol Biol Evol 2003; 21:129-40. [PMID: 14595099 DOI: 10.1093/molbev/msh005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Group I introns are autonomous genetic elements that can catalyze their own excision from pre-RNA. Understanding how group I introns move in nuclear ribosomal (r)DNA remains an important question in evolutionary biology. Two models are invoked to explain group I intron movement. The first is termed homing and results from the action of an intron-encoded homing endonuclease that recognizes and cleaves an intronless allele at or near the intron insertion site. Alternatively, introns can be inserted into RNA through reverse splicing. Here, we present the sequences of two large group I introns from fungal nuclear rDNA, which both encode putative full-length homing endonuclease genes (HEGs). Five remnant HEGs in different fungal species are also reported. This brings the total number of known nuclear HEGs from 15 to 22. We determined the phylogeny of all known nuclear HEGs and their associated introns. We found evidence for intron-independent HEG invasion into both homologous and heterologous introns in often distantly related lineages, as well as the "switching" of HEGs between different intron peripheral loops and between sense and antisense strands of intron DNA. These results suggest that nuclear HEGs are frequently mobilized. HEG invasion appears, however, to be limited to existing introns in the same or neighboring sites. To study the intron-HEG relationship in more detail, the S943 group I intron in fungal small-subunit rDNA was used as a model system. The S943 HEG is shown to be widely distributed as functional, inactivated, or remnant ORFs in S943 introns.
Collapse
Affiliation(s)
- Peik Haugen
- Department of Biological Sciences and Center for Comparative Genomics, University of Iowa, USA
| | | | | | | |
Collapse
|
24
|
Nozaki H, Misumi O, Kuroiwa T. Phylogeny of the quadriflagellate Volvocales (Chlorophyceae) based on chloroplast multigene sequences. Mol Phylogenet Evol 2003; 29:58-66. [PMID: 12967607 DOI: 10.1016/s1055-7903(03)00089-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Since the phylogenetic relationships of the green plants (green algae and land plants) have been extensively studied using 18S ribosomal RNA sequences, change in the arrangement of basal bodies in flagellate cells is considered to be one of the major evolutionary events in the green plants. However, the phylogenetic relationships between biflagellate and quadriflagellate species within the Volvocales remain uncertain. This study examined the phylogeny of three genera of quadriflagellate Volvocales (Carteria, Pseudocarteria, and Hafniomonas) using concatenated sequences from three chloroplast genes. Using these multigene sequences, all three quadriflagellate genera were basal to other members (biflagellates) of the CW (clockwise) group (the Volvocales and their relatives, the Chlorophyceae) and formed three robust clades. Since the flagellar apparatuses of these three quadriflagellate lineages are diverse, including counter clockwise (CCW) and CW orientation of the basal bodies, the CW orientation of the basal bodies might have evolved from the CCW orientation in the ancestral quadriflagellate volvocalean algae, giving rise to the biflagellates, major members of the CW group.
Collapse
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|