1
|
Harrington EM, Murphy JC, Harper KL, Hayward C, Mottram TJ, Aspden JL, Whitehouse A. EMG1 methyltransferase activity affects ribosome occupancy at KSHV uORFs. Cell Rep 2025; 44:115516. [PMID: 40215162 DOI: 10.1016/j.celrep.2025.115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/22/2025] [Accepted: 03/14/2025] [Indexed: 04/26/2025] Open
Abstract
Viruses lack their own translational machinery and rely exclusively on the host cell for synthesis of viral proteins. Viruses have evolved diverse mechanisms to redirect the host cell translation apparatus to favor viral transcripts. A unique mechanism employed by Kaposi's sarcoma-associated herpesvirus (KSHV) involves manipulation of cellular ribosome composition, producing virus-induced specialized ribosomes. These ribosomes scan through KSHV upstream open reading frames (uORFs) in late lytic genes, allowing efficient translation of downstream main KSHV ORFs. Here, we highlight the enhanced association of the ribosomal biogenesis factor EMG1 with precursor-40S ribosome complexes during KSHV lytic replication. Depletion of EMG1 results in significantly reduced expression of viral proteins and progression through the lytic cascade, culminating in a dramatic reduction of infectious virus production. We further demonstrate that the methyltransferase activity of EMG1 is required for effective regulation of translation of KSHV uORFs in late lytic genes.
Collapse
Affiliation(s)
- Elena M Harrington
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - James C Murphy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Katherine L Harper
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Connor Hayward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Timothy J Mottram
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; LeedsOmics, University of Leeds, Leeds LS2 9JT, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; LeedsOmics, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
2
|
Review of Ribosome Interactions with SARS-CoV-2 and COVID-19 mRNA Vaccine. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010057. [PMID: 35054450 PMCID: PMC8780073 DOI: 10.3390/life12010057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/29/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causing pathogen of the unprecedented global Coronavirus Disease 19 (COVID-19) pandemic. Upon infection, the virus manipulates host cellular machinery and ribosomes to synthesize its own proteins for successful replication and to facilitate further infection. SARS-CoV-2 executes a multi-faceted hijacking of the host mRNA translation and cellular protein synthesis. Viral nonstructural proteins (NSPs) interact with a range of different ribosomal states and interfere with mRNA translation. Concurrent mutations on NSPs and spike proteins contribute to the epidemiological success of variants of concern (VOCs). The interactions between ribosomes and SARS-CoV-2 represent attractive targets for the development of antiviral therapeutics and vaccines. Recently approved COVID-19 mRNA vaccines also utilize the cellular machinery, to produce antigens and trigger immune responses. The design features of the mRNA vaccines are critical to efficient mRNA translation in ribosomes, and are directly related to the vaccine's efficacy, safety, and immunogenicity. This review describes recent knowledge of how the SARS-CoV-2 virus' genomic characteristics interfere with ribosomal function and mRNA translation. In addition, we discuss the current learning of the design features of mRNA vaccines and their impacts on translational activity in ribosomes. The understanding of ribosomal interactions with the virus and mRNA vaccines offers the foundation for antiviral therapeutic discovery and continuous mRNA vaccine optimization to lower the dose, to increase durability and/or to reduce adverse effects.
Collapse
|
3
|
Venkataram S, Monasky R, Sikaroodi SH, Kryazhimskiy S, Kacar B. Evolutionary stalling and a limit on the power of natural selection to improve a cellular module. Proc Natl Acad Sci U S A 2020; 117:18582-18590. [PMID: 32680961 PMCID: PMC7414050 DOI: 10.1073/pnas.1921881117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells consist of molecular modules which perform vital biological functions. Cellular modules are key units of adaptive evolution because organismal fitness depends on their performance. Theory shows that in rapidly evolving populations, such as those of many microbes, adaptation is driven primarily by common beneficial mutations with large effects, while other mutations behave as if they are effectively neutral. As a consequence, if a module can be improved only by rare and/or weak beneficial mutations, its adaptive evolution would stall. However, such evolutionary stalling has not been empirically demonstrated, and it is unclear to what extent stalling may limit the power of natural selection to improve modules. Here we empirically characterize how natural selection improves the translation machinery (TM), an essential cellular module. We experimentally evolved populations of Escherichia coli with genetically perturbed TMs for 1,000 generations. Populations with severe TM defects initially adapted via mutations in the TM, but TM adaptation stalled within about 300 generations. We estimate that the genetic load in our populations incurred by residual TM defects ranges from 0.5 to 19%. Finally, we found evidence that both epistasis and the depletion of the pool of beneficial mutations contributed to evolutionary stalling. Our results suggest that cellular modules may not be fully optimized by natural selection despite the availability of adaptive mutations.
Collapse
Affiliation(s)
- Sandeep Venkataram
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Ross Monasky
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Shohreh H Sikaroodi
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Sergey Kryazhimskiy
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
| | - Betul Kacar
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721;
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
4
|
Yang HW, Kim HD, Kim TS, Kim J. Senescent Cells Differentially Translate Senescence-Related mRNAs Via Ribosome Heterogeneity. J Gerontol A Biol Sci Med Sci 2020; 74:1015-1024. [PMID: 30285098 DOI: 10.1093/gerona/gly228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
The ribosome has a lateral stalk which consists of rpLP0, rpLP1, and rpLP2. One of these proteins, rpLP2, is decreased in translating ribosome when cellular senescence is induced. Y-box binding protein-1 (YB-1) is also reduced in polysomal fraction of senescent cells. We discovered that rpLP2 depletion in the ribosome can cause the detachment of YB-1 in polysomes and that it is linked to cellular senescence. Our results also revealed that a decrement of CK2α or GRK2 in senescent cells induced an increment of unphosphorylated rpLP2, resulting in release of YB-1 from polysomes. This heterogeneous senescent ribosome has different translational efficiencies for some senescence-related genes. We also showed that the decrease of rpLP1/rpLP2 and YB-1 in senescent ribosomes was not specific to cell type or stress type and the same phenomenon was also observed in aged mouse livers regardless of gender. Taken together, our results suggest that the senescent ribosome complex appears to have low levels of rpLP1/rpLP2 and YB-1, resulting in altered translational efficiency for senescence-related genes.
Collapse
Affiliation(s)
- Hee Woong Yang
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hag Dong Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea.,HAEL Lab, TechnoComplex Building, Korea University, Seoul, Republic of Korea
| | - Tae-Sung Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea.,HAEL Lab, TechnoComplex Building, Korea University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Ferianec V, Fülöp M, Ježovičová M, Radošinská J, Husseinová M, Feriancová M, Radošinská D, Barančík M, Muchová J, Hȍgger P, Ďuračková Z. The Oak-wood Extract Robuvit ® Improves Recovery and Oxidative Stress after Hysterectomy: A Randomized, Double-blind, Placebo-controlled Pilot Study. Nutrients 2020; 12:nu12040913. [PMID: 32230721 PMCID: PMC7230691 DOI: 10.3390/nu12040913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 01/23/2023] Open
Abstract
Hysterectomy has a variety of medical indications and improves pre-operative symptoms but might compromise the quality of life during recovery due to symptoms such as fatigue, headache, nausea, depression, or pain. The aim of the present study was to determine the effect of a standardized extract from French oak wood (Quercus robur) containing at least 40% polyphenols of the ellagitannins class, Robuvit®, on convalescence and oxidative stress of women after hysterectomy. Recovery status was monitored with the SF-36 questionnaire. The supplementation with Robuvit® (300 mg/day) during 4 weeks significantly improved general and mental health, while under placebo some items significantly deteriorated. Oxidative stress and enhancement of MMP–9 activity was significantly reduced by Robuvit® versus placebo. After 8 weeks of intervention, the patients’ condition improved independently of the intervention. Our results suggest that the use of Robuvit® as a natural supplement relieves post-operative symptoms of patients after hysterectomy and reduces oxidative stress. The study was registered with ID ISRCTN 11457040 (13/09/2019).
Collapse
Affiliation(s)
- Vladimír Ferianec
- Department of II. Gynecology and Obstetrics, Medical Faculty, Comenius University, 82606 Bratislava, Slovakia; (V.F.); (M.F.)
| | - Matej Fülöp
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia; (M.F.); (M.J.); (J.M.)
| | - Miriam Ježovičová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia; (M.F.); (M.J.); (J.M.)
| | - Jana Radošinská
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81108 Bratislava, Slovakia; (J.R.); (M.H.)
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104 Bratislava, Slovakia;
| | - Marta Husseinová
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81108 Bratislava, Slovakia; (J.R.); (M.H.)
| | - Michaela Feriancová
- Department of II. Gynecology and Obstetrics, Medical Faculty, Comenius University, 82606 Bratislava, Slovakia; (V.F.); (M.F.)
| | - Dominika Radošinská
- Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia;
| | - Miroslav Barančík
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104 Bratislava, Slovakia;
| | - Jana Muchová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia; (M.F.); (M.J.); (J.M.)
| | - Petra Hȍgger
- Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, 97074 Würzburg, Germany;
| | - Zdeňka Ďuračková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia; (M.F.); (M.J.); (J.M.)
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 81108 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
6
|
Yan TT, Fu XL, Li J, Bian YN, Liu DJ, Hua R, Ren LL, Li CT, Sun YW, Chen HY, Fang JY, Hong J. Downregulation of RPL15 may predict poor survival and associate with tumor progression in pancreatic ductal adenocarcinoma. Oncotarget 2016; 6:37028-42. [PMID: 26498693 PMCID: PMC4741913 DOI: 10.18632/oncotarget.5939] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/17/2015] [Indexed: 12/29/2022] Open
Abstract
Early diagnosis and treatment in pancreatic ductal adenocarcinoma (PDAC) is still a challenge worldwide. The poor survival of PDAC patients mainly due to early metastasis when first diagnosed and lack of prognostic biomarker. Ribosomal protein L15 (RPL15), an RNA-binding protein, is a component of ribosomal 60S subunit. It was reported that RPL15 is dysregulated in various type of cancers. However, little is known about the role of RPL15 in PDAC carcinogenesis and progression. Herein, we clarified RPL15 expression status may serve as an independent prognostic biomarker in three independent PDAC patient cohorts. We found that RPL15 was dramatically decreased in PDAC tissues and cell lines. The high expression of RPL15 was inversely correlated with TNM stage, histological differentiation, T classification and vascular invasion. Low expression of RPL15 was significantly associated with poor overall survival of PDAC patients. Furthermore, we demonstrated that the reduction of RPL15 may promote invasion ability of pancreatic cell by inducing EMT process. In conclusion, decreased RPL15 expression is associated with invasiveness of PDAC cells, and RPL15 expression status may serve as a reliable prognostic biomarker in PDAC patients.
Collapse
Affiliation(s)
- Ting-Ting Yan
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xue-Liang Fu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jiao Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ying-Nan Bian
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - D Jun Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Lin-Lin Ren
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Cheng-Tao Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Hao-Yan Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Shi Z, Barna M. Translating the genome in time and space: specialized ribosomes, RNA regulons, and RNA-binding proteins. Annu Rev Cell Dev Biol 2015; 31:31-54. [PMID: 26443190 DOI: 10.1146/annurev-cellbio-100814-125346] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A central question in cell and developmental biology is how the information encoded in the genome is differentially interpreted to generate a diverse array of cell types. A growing body of research on posttranscriptional gene regulation is revealing that both global protein synthesis rates and the translation of specific mRNAs are highly specialized in different cell types. How this exquisite translational regulation is achieved is the focus of this review. Two levels of regulation are discussed: the translation machinery and cis-acting elements within mRNAs. Recent evidence shows that the ribosome itself directs how the genome is translated in time and space and reveals surprising functional specificity in individual components of the core translation machinery. We are also just beginning to appreciate the rich regulatory information embedded in the untranslated regions of mRNAs, which direct the selective translation of transcripts. These hidden RNA regulons may interface with a myriad of RNA-binding proteins and specialized translation machinery to provide an additional layer of regulation to how transcripts are spatiotemporally expressed. Understanding this largely unexplored world of translational codes hardwired in the core translation machinery is an exciting new research frontier fundamental to our understanding of gene regulation, organismal development, and evolution.
Collapse
Affiliation(s)
- Zhen Shi
- Department of Developmental Biology and Department of Genetics, Stanford University, Stanford, California 94305;
| | - Maria Barna
- Department of Developmental Biology and Department of Genetics, Stanford University, Stanford, California 94305;
| |
Collapse
|
8
|
Affiliation(s)
- Akio Kanai
- Functional RNA Group, Institute for Advanced Biosciences, Keio University Tsuruoka, Japan
| |
Collapse
|
9
|
Daube SS, Bar-Ziv RH. Protein nanomachines assembly modes: cell-free expression and biochip perspectives. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:613-28. [DOI: 10.1002/wnan.1234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Shirley S. Daube
- Materials and Interfaces; Weizmann Institute of Science; Rehovot Israel
| | - Roy H. Bar-Ziv
- Materials and Interfaces; Weizmann Institute of Science; Rehovot Israel
| |
Collapse
|
10
|
Chen D, Zhang R, Shen W, Fu H, Liu S, Sun K, Sun X. RPS12-specific shRNA inhibits the proliferation, migration of BGC823 gastric cancer cells with S100A4 as a downstream effector. Int J Oncol 2013; 42:1763-9. [PMID: 23546393 DOI: 10.3892/ijo.2013.1872] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/06/2013] [Indexed: 11/05/2022] Open
Abstract
Our previous study using suppression subtractive hybridization (SSH), cDNA microarray and semi-quantitative RT-PCR showed that RPS12 was overexpressed in gastric cancer and it was closely related to metastasis. However, the role of RPS12 in gastric cancer is not clear, which led us to conduct the current study to further investigate the effects of RPS12 on the proliferation and migration of gastric cancer cells, and also to explore the underlying molecular mechanisms. RNA interference was used to inhibit the expression of RPS12. The expression of RPS12 and S100A4 in gastric cancer cells was determined using semi-quantitative RT-PCR and western blot analysis. Cell proliferation and migration were detected by MTT and transwell assay, respectively. In addition, the promoter activity of S100A4 was measured by a Dual-Luciferase Reporter Assay System. We found that RNAi‑mediated RPS12 downregulation led to reduced proliferation and migration of BGC823 and SGC7901 gastric cancer cells. Further results showed that RPS12 inhibition led to reduced S100A4 expression and decreased promoter activity of S100A4 in BGC823 cells. We demonstrated that ectopic expression of S100A4 reversed the reduced proliferation and migration ability after RPS12 inhibition in BGC823 cells. Our findings provide the first demonstration that RPS12 plays important roles in regulating the proliferation and migration of gastric cancer cells. S100A4 can mediate the effects of RPS12 as a downstream effector.
Collapse
Affiliation(s)
- Danqi Chen
- Department of Medical Genetics, China Medical University, Shenyang 110001, PR China
| | | | | | | | | | | | | |
Collapse
|
11
|
SHARMA AJEETK, CHOWDHURY DEBASHISH. TEMPLATE-DIRECTED BIOPOLYMERIZATION: TAPE-COPYING TURING MACHINES. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s1793048012300083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA, RNA and proteins are among the most important macromolecules in a living cell. These molecules are polymerized by molecular machines. These natural nano-machines polymerize such macromolecules, adding one monomer at a time, using another linear polymer as the corresponding template. The machine utilizes input chemical energy to move along the template which also serves as a track for the movements of the machine. In the Alan Turing year 2012, it is worth pointing out that these machines are "tape-copying Turing machines". We review the operational mechanisms of the polymerizer machines and their collective behavior from the perspective of statistical physics, emphasizing their common features in spite of the crucial differences in their biological functions. We also draw the attention of the physics community to another class of modular machines that carry out a different type of template-directed polymerization. We hope this review will inspire new kinetic models for these modular machines.
Collapse
Affiliation(s)
- AJEET K. SHARMA
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | |
Collapse
|
12
|
Xue S, Barna M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 2012; 13:355-69. [PMID: 22617470 DOI: 10.1038/nrm3359] [Citation(s) in RCA: 496] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Historically, the ribosome has been viewed as a complex ribozyme with constitutive rather than intrinsic regulatory capacity in mRNA translation. However, emerging studies reveal that ribosome activity may be highly regulated. Heterogeneity in ribosome composition resulting from differential expression and post-translational modifications of ribosomal proteins, ribosomal RNA (rRNA) diversity and the activity of ribosome-associated factors may generate 'specialized ribosomes' that have a substantial impact on how the genomic template is translated into functional proteins. Moreover, constitutive components of the ribosome may also exert more specialized activities by virtue of their interactions with specific mRNA regulatory elements such as internal ribosome entry sites (IRESs) or upstream open reading frames (uORFs). Here we discuss the hypothesis that intrinsic regulation by the ribosome acts to selectively translate subsets of mRNAs harbouring unique cis-regulatory elements, thereby introducing an additional level of regulation in gene expression and the life of an organism.
Collapse
Affiliation(s)
- Shifeng Xue
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
13
|
Rothman S. How is the balance between protein synthesis and degradation achieved? Theor Biol Med Model 2010; 7:25. [PMID: 20573219 PMCID: PMC2909984 DOI: 10.1186/1742-4682-7-25] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/23/2010] [Indexed: 12/19/2022] Open
Abstract
Unlike most substances that cells manufacture, proteins are not produced and broken down by a common series of chemical reactions, but by completely different (independent and disconnected) mechanisms that possess no intrinsic means of making the rates of the two processes equal and attaining steady state concentrations. Balance between them is achieved extrinsically and is often imagined today to be the result of the actions of chemical feedback agents. But however instantiated, chemical feedback or any similar mechanism can only rectify induced imbalances in a system previously balanced by other means. Those "other means" necessarily involve reversible mass action or equilibrium-based interactions between native and altered forms of protein molecules somewhere in time and space between their synthesis and degradation.
Collapse
Affiliation(s)
- Stephen Rothman
- University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
14
|
Parrales A, Palma-Nicolás JP, López E, López-Colomé AM. Thrombin stimulates RPE cell proliferation by promoting c-Fos-mediated cyclin D1 expression. J Cell Physiol 2010; 222:302-12. [DOI: 10.1002/jcp.21951] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Jamesdaniel S, Salvi R, Coling D. Auditory proteomics: methods, accomplishments and challenges. Brain Res 2009; 1277:24-36. [PMID: 19245797 DOI: 10.1016/j.brainres.2009.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 02/07/2009] [Accepted: 02/11/2009] [Indexed: 02/04/2023]
Abstract
The advent of contemporary proteomic technologies has ushered in definite advances to the field of auditory research and has provided the potential for a dramatic increase in applications in the near future. Two dimensional-differential gel electrophoresis (2D-DIGE) followed by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), antibody microarrays and tandem mass spectrometry have evolved as the major tools. Each of these techniques has unique features with distinct advantages. This review attempts to highlight the common as well as diverse characteristics of these methods and their suitability and application to different experimental conditions employed to investigate the auditory system. In addition a glimpse of the valuable scientific information that has been gained in the hearing field using a proteomic approach is given. Finally, a brief view of the directions that auditory proteomics research is headed for has been discussed.
Collapse
Affiliation(s)
- Samson Jamesdaniel
- Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
16
|
Bashan A, Yonath A. The linkage between ribosomal crystallography, metal ions, heteropolytungstates and functional flexibility. J Mol Struct 2008; 890:289-294. [PMID: 19915655 PMCID: PMC2757297 DOI: 10.1016/j.molstruc.2008.03.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Crystallography of ribosomes, the universal cell nucleoprotein assemblies facilitating the translation of the genetic-code into proteins, met with severe problems owing to their large size, complex structure, inherent flexibility and high conformational variability. For the case of the small ribosomal subunit, which caused extreme difficulties, post crystallization treatment by minute amounts of a heteropolytungstate cluster allowed structure determination at atomic resolution. This cluster played a dual role in ribosomal crystallography: providing anomalous phasing power and dramatically increased the resolution, by stabilization of a selected functional conformation. Thus, four out of the fourteen clusters that bind to each of the crystallized small subunits are attached to a specific ribosomal protein in a fashion that may control a significant component of the subunit internal flexibility, by "gluing" symmetrical related subunits. Here we highlight basic issues in the relationship between metal ions and macromolecules and present common traits controlling in the interactions between polymetalates and various macromolecules, which may be extended towards the exploitation of polymetalates for therapeutical treatment.
Collapse
Affiliation(s)
- Anat Bashan
- Department of Structural Biology, Weizmann Inst., 76100 Rehovot, Israel
| | | |
Collapse
|
17
|
Grela P, Sawa-Makarska J, Gordiyenko Y, Robinson CV, Grankowski N, Tchorzewski M. Structural Properties of the Human Acidic Ribosomal P Proteins Forming the P1-P2 Heterocomplex. J Biochem 2007; 143:169-77. [PMID: 17984123 DOI: 10.1093/jb/mvm207] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Wang H, Zhao LN, Li KZ, Ling R, Li XJ, Wang L. Overexpression of ribosomal protein L15 is associated with cell proliferation in gastric cancer. BMC Cancer 2006; 6:91. [PMID: 16608517 PMCID: PMC1459873 DOI: 10.1186/1471-2407-6-91] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 04/11/2006] [Indexed: 01/28/2023] Open
Abstract
Background Ribosomal proteins are the components of ribosome, which also exhibit various secondary functions in DNA repair, apoptosis, drug resistance and proliferation. In our previous study of microarray, ribosomal protein L15 (RPL15) was identified as an upregulated gene in gastric cancer. Methods We investigated the expression of ribosomal protein L15 in gastric cancer and the effect of RPL15 on proliferation of gastric cancer. Results It was found that the expression of RPL15 was markedly up-regulated in gastric cancer tissues. RPL15 was also highly expressed in gastric cancer cell lines AGS, MKN45, MKN28, SGC7901 and KATOIII. Inhibition of RPL15 expression by siRNA vector transfection suppressed the growth of SGC7901 cells significantly, which was independent of the expression of Cyclin D1 and B1. Down-regulation of RPL15 expression inhibited SGC7901 cell growth in soft agar and its tumorigenicity in nude mice. Conclusion RPL15 promotes cell proliferation and may be a potential target for anticancer therapy of gastric cancer.
Collapse
Affiliation(s)
- Hui Wang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, the Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Li-Na Zhao
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, the Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Kai-Zong Li
- Department of Hepatobiliary Surgery, Xijing Hospital, the Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Rui Ling
- Department of Vascular and Endocrine Surgery, Xijing Hospital, the Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Xiao-Jun Li
- Department of Vascular and Endocrine Surgery, Xijing Hospital, the Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Ling Wang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, the Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| |
Collapse
|
19
|
Graindorge JS, Rousselle JC, Senger B, Lenormand P, Namane A, Lacroute F, Fasiolo F. Deletion of EFL1 results in heterogeneity of the 60 S GTPase-associated rRNA conformation. J Mol Biol 2005; 352:355-69. [PMID: 16095611 DOI: 10.1016/j.jmb.2005.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 06/29/2005] [Accepted: 07/11/2005] [Indexed: 12/19/2022]
Abstract
Previous work suggested that the release of the nucleolar Tif6 from nascent 60 S subunits occurs in the cytoplasm and requires the cytoplasmic EF-2-like GTPase, Efl1. To check whether this release involves an rRNA structural rearrangement mediated by Efl1, we analyzed the rRNA conformation of the GTPase center of 80 S ribosomes in three contexts: wild-type, Deltaefl1 and a dominant suppressor R1 of Deltaefl1. This analysis was restricted to domain II and VI of 25 S rRNA. The rRNA analysis of R1 ribosomes allows us to distinguish the effects due to depletion of Efl1 from the resulting nucleolar deficit of Tif6. Efl1 inhibits the EF-2 GTPase activity, suggesting that the two proteins share a similar ribosome-binding site. The 80 S ribosomes from either type failed to show any difference of conformation in the two rRNA domains analyzed. However, the same analysis performed on the pool of free 60 S subunits reveals several rRNA conformational differences between wild-type and Deltaefl1 subunits, whereas that from the suppressor strain is similar to wild-type. This suggests that the nucleolar deficit of Tif6 during assembly of the 60 S preribosomes is responsible for the changes in rRNA conformation observed in Deltaefl1 60 S subunits. We also purified 60 S preribosomes from the three genetic contexts by TAP-tagging Tif6. The protein content of 60 S preribosomes associated with Tif6p in a Deltaefl1 strain are obtained at a lower yield but have, surprisingly, a protein composition that is a priori similar to that of wild-type and the suppressor strain.
Collapse
Affiliation(s)
- Jean-Sébastien Graindorge
- UPR no. 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Wintermeyer W, Peske F, Beringer M, Gromadski KB, Savelsbergh A, Rodnina MV. Mechanisms of elongation on the ribosome: dynamics of a macromolecular machine. Biochem Soc Trans 2004; 32:733-7. [PMID: 15494001 DOI: 10.1042/bst0320733] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protein synthesis in the cell is performed on ribosomes, large ribonucleoprotein particles, which in bacteria consist of three RNA molecules and over 50 proteins. This review summarizes recent progress in understanding the mechanisms of the elongation phase of protein synthesis. Results from rapid kinetic analysis of elongation reactions are discussed in the light of recent structural data.
Collapse
Affiliation(s)
- W Wintermeyer
- Institute of Molecular Biology, University of Witten/Herdecke, Stockumer Str. 10, 58448 Witten, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Christodoulou J, Larsson G, Fucini P, Connell SR, Pertinhez TA, Hanson CL, Redfield C, Nierhaus KH, Robinson CV, Schleucher J, Dobson CM. Heteronuclear NMR investigations of dynamic regions of intact Escherichia coli ribosomes. Proc Natl Acad Sci U S A 2004; 101:10949-54. [PMID: 15263071 PMCID: PMC503724 DOI: 10.1073/pnas.0400928101] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
15N-(1)H NMR spectroscopy has been used to probe the dynamic properties of uniformly (15)N labeled Escherichia coli ribosomes. Despite the high molecular weight of the complex ( approximately 2.3 MDa), [(1)H-(15)N] heteronuclear single-quantum correlation spectra contain approximately 100 well resolved resonances, the majority of which arise from two of the four C-terminal domains of the stalk proteins, L7/L12. Heteronuclear pulse-field gradient NMR experiments show that the resonances arise from species with a translational diffusion constant consistent with that of the intact ribosome. Longitudinal relaxation time (T(1)) and T(1 rho) (15)N-spin relaxation measurements show that the observable domains tumble anisotropically, with an apparent rotational correlation time significantly longer than that expected for a free L7/L12 domain but much shorter than expected for a protein rigidly incorporated within the ribosomal particle. The relaxation data allow the ribosomally bound C-terminal domains to be oriented relative to the rotational diffusion tensor. Binding of elongation factor G to the ribosome results in the disappearance of the resonances of the L7/L12 domains, indicating a dramatic reduction in their mobility. This result is in agreement with cryoelectron microscopy studies showing that the ribosomal stalk assumes a single rigid orientation upon elongation factor G binding. As well as providing information about the dynamical properties of L7/L12, these results demonstrate the utility of heteronuclear NMR in the study of mobile regions of large biological complexes and form the basis for further NMR studies of functional ribosomal complexes in the context of protein synthesis.
Collapse
Affiliation(s)
- John Christodoulou
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wintermeyer W, Savelsbergh A, Semenkov YP, Katunin VI, Rodnina MV. Mechanism of elongation factor G function in tRNA translocation on the ribosome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:449-58. [PMID: 12762047 DOI: 10.1101/sqb.2001.66.449] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- W Wintermeyer
- Institute of Molecular Biology, University of Witten/Herdecke, 58448 Witten, Germany
| | | | | | | | | |
Collapse
|
23
|
Larsson SL, Sloma MS, Nygård O. Conformational changes in the structure of domains II and V of 28S rRNA in ribosomes treated with the translational inhibitors ricin or alpha-sarcin. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:53-62. [PMID: 12151095 DOI: 10.1016/s0167-4781(02)00406-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ricin and alpha-sarcin modify neighbouring sites in the so-called sarcin/ricin (S/R) loop of 28S rRNA, thereby destroying the necessary dynamic flexibility of the ribosome, and inhibiting the elongation factor assisted steps of the elongation cycle. The effects of the two translational inhibitors on the conformation of domains II and V of 28S rRNA were investigated by chemical modification of programmed mouse ribosomes pretreated with ricin or alpha-sarcin. The results showed that the two ribosome-inactivating proteins (RIP) influenced the structure of the ribosomal RNA. Inhibitor-affected sites were located at or near sites previously proposed to be involved in functional domains. The modification patterns obtained after ricin or alpha-sarcin treatment of ribosomes were partially overlapping. However, there were several inhibitor-specific structural changes in 28S rRNA. Such changes were found at positions located at the GTPase activating centre of the ribosome and in the S/R domain, indicating that the structure in these regions of the ribosomes differed after treatment with the two inhibitors. These changes are consistent with ricin and alpha-sarcin having specific effects on eEF-2 and eEF-1 interaction with the ribosome, respectively.
Collapse
Affiliation(s)
- Sofia L Larsson
- Cell Biology Unit, Natural Science Section, Södertörns Högskola, Box 4101, S-141 04 Huddinge, Sweden
| | | | | |
Collapse
|
24
|
Angelastro JM, Töröcsik B, Greene LA. Nerve growth factor selectively regulates expression of transcripts encoding ribosomal proteins. BMC Neurosci 2002; 3:3. [PMID: 11922865 PMCID: PMC100322 DOI: 10.1186/1471-2202-3-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2001] [Accepted: 02/28/2002] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND NGF exerts a variety of actions including promotion of neuronal differentiation and survival. The PC12 rat pheochromocytoma cell line has proved valuable for studying how NGF works and has revealed that the NGF mechanism includes regulation of gene expression. Accordingly, we used SAGE (Serial Analysis of Gene Expression) to compare levels of specific transcripts in PC12 cells before and after long-term NGF exposure. Of the approximately 22,000 transcripts detected and quantified, 4% are NGF-regulated by 6-fold or more. Here, we used database information to identify transcripts in our SAGE libraries that encode ribosomal proteins and have compared the effect of NGF on their relative levels of expression. RESULTS Among the transcripts detected in our SAGE analysis, 74 were identified as encoding ribosomal proteins. Ribosomal protein transcripts were among the most abundantly expressed and, for naive and NGF-treated PC12 cells, represented 5.2% and 3.5%, respectively, of total transcripts analyzed. Surprisingly, nearly half of ribosomal protein transcripts underwent statistically significant NGF-promoted alterations in relative abundance, with changes of up to 5-fold. Of the changes, approximately 2/3 represented decreases. A time course revealed that the relative abundance of transcripts encoding RPL9 increases within 1 hr of NGF treatment and is maximally elevated by 8 hr. CONCLUSIONS These data establish that NGF selectively changes expression of ribosomal protein transcripts. These findings raise potential roles for regulation of ribosomal protein transcripts in NGF-promoted withdrawal from the cell cycle and neuronal differentiation and indicate that regulation of individual ribosomal protein transcripts is cell- and stimulus-specific.
Collapse
Affiliation(s)
- James M Angelastro
- Department of Pathology and Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032, USA
| | - Béata Töröcsik
- Department of Pathology and Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032, USA
- On leave from the Department of Biology, University Medical School of Pecs, Pecs, Hungary
| | - Lloyd A Greene
- Department of Pathology and Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032, USA
| |
Collapse
|
25
|
Cate JH. Construction of low-resolution x-ray crystallographic electron density maps of the ribosome. Methods 2001; 25:303-8. [PMID: 11860284 DOI: 10.1006/meth.2001.1242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Advances in X-ray crystallography now allow biological macromolecules of almost any size to be imaged at atomic resolution. Here, I outline the strategy that allowed for the solution of the 70S ribosome structure to 7.8-A resolution. The most important factors involve the effective use of synchrotron radiation and the application of existing crystallographic software to very large structures.
Collapse
Affiliation(s)
- J H Cate
- Departments of Chemistry and Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.
| |
Collapse
|
26
|
Abstract
Electron cryomicroscopy methods comprise a rapidly expanding field providing insights into the structure and function of biological macromolecules and their supramolecular assemblies. The 3.8 A resolution structure of the membrane protein aquaporin, a view of the herpesvirus capsid at 8.5 A and the 10 A resolution structure of the spliceosomal U1 small nuclear ribonucleoprotein complex are three outstanding examples emphasizing the versatility of this technique.
Collapse
Affiliation(s)
- V M Unger
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8024, USA.
| |
Collapse
|
27
|
Barloy-Hubler F, Lelaure V, Galibert F. Ribosomal protein gene cluster analysis in eubacterium genomics: homology between Sinorhizobium meliloti strain 1021 and Bacillus subtilis. Nucleic Acids Res 2001; 29:2747-56. [PMID: 11433019 PMCID: PMC55768 DOI: 10.1093/nar/29.13.2747] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The first whole genome sequence of a symbiotic soil bacterium, Sinorhizobium meliloti (formely named Rhizobium meliloti) strain 1021, is due in 2001. As an active participant in the European and North American consortium that has completed this work, our group has sequenced a region on the chromosome containing clusters rpoBC, str, S10, spc and alpha corresponding to 30 protein genes. The structural organization and function of these genes were compared with those of orthologs in another 15 complete eubacterial genomes available in databases. This study, involving the DNA and amino acid sequences as well as the organization of the whole region (gene order, cluster order, etc.), has shown that the phylogenetic tree resulting from a comparison of the amino acid sequence is rather similar to that derived from 16S rRNA sequence data. However, the tree achieved by aligning DNA sequences groups the organisms with a high GC content (>60% GC), while that based on a comparison of gene cluster orientation and organization reveals a greater level of correspondence between the alpha-proteobacteria S.meliloti and the firmicute Bacillus subtilis.
Collapse
Affiliation(s)
- F Barloy-Hubler
- Laboratoire Génétique et Développement, UMR6061-CNRS, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex, France
| | | | | |
Collapse
|
28
|
Jaeger L, Westhof E, Leontis NB. TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res 2001; 29:455-63. [PMID: 11139616 PMCID: PMC29663 DOI: 10.1093/nar/29.2.455] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Structural information on complex biological RNA molecules can be exploited to design tectoRNAs or artificial modular RNA units that can self-assemble through tertiary interactions thereby forming nanoscale RNA objects. The selective interactions of hairpin tetraloops with their receptors can be used to mediate tectoRNA assembly. Here we report on the modulation of the specificity and the strength of tectoRNA assembly (in the nanomolar to micromolar range) by variation of the length of the RNA subunits, the nature of their interacting motifs and the degree of flexibility of linker regions incorporated into the molecules. The association is also dependent on the concentration of magnesium. Monitoring of tectoRNA assembly by lead(II) cleavage protection indicates that some degree of structural flexibility is required for optimal binding. With tectoRNAs one can compare the binding affinities of different tertiary motifs and quantify the strength of individual interactions. Furthermore, in analogy to the synthons used in organic chemistry to synthesize more complex organic compounds, tectoRNAs form the basic assembly units for constructing complex RNA structures on the nanometer scale. Thus, tectoRNA provides a means for constructing molecular scaffoldings that organize functional modules in three-dimensional space for a wide range of applications.
Collapse
Affiliation(s)
- L Jaeger
- Institut de Biologie Moléculaire et Cellulaire, UPR 9002 du CNRS, 15 rue René Descartes, F-67084 Strasbourg Cedex, France.
| | | | | |
Collapse
|