1
|
Association of Clinical Aspects and Genetic Variants with the Severity of Cisplatin-Induced Ototoxicity in Head and Neck Squamous Cell Carcinoma: A Prospective Cohort Study. Cancers (Basel) 2023; 15:cancers15061759. [PMID: 36980643 PMCID: PMC10046479 DOI: 10.3390/cancers15061759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Background: Cisplatin (CDDP) is a major ototoxic chemotherapy agent for head and neck squamous cell carcinoma (HNSCC) treatment. Clinicopathological features and genotypes encode different stages of CDDP metabolism, as their coexistence may influence the prevalence and severity of hearing loss. Methods: HNSCC patients under CDDP chemoradiation were prospectively provided with baseline and post-treatment audiometry. Clinicopathological features and genetic variants encoding glutathione S-transferases (GSTT1, GSTM1, GSTP1), nucleotide excision repair (XPC, XPD, XPF, ERCC1), mismatch repair (MLH1, MSH2, MSH3, EXO1), and apoptosis (P53, CASP8, CASP9, CASP3, FAS, FASL)-related proteins were analyzed regarding ototoxicity. Results: Eighty-nine patients were included, with a cumulative CDDP dose of 260 mg/m2. Moderate/severe ototoxicity occurred in 26 (29%) patients, particularly related to hearing loss at frequencies over 3000 Hertz. Race, body-mass index, and cumulative CDDP were independent risk factors. Patients with specific isolated and combined genotypes of GSTM1, GSTP1 c.313A>G, XPC c.2815A>C, XPD c.934G>A, EXO1 c.1762G>A, MSH3 c.3133A>G, FASL c.-844A>T, and P53 c.215G>C SNVs had up to 32.22 higher odds of presenting moderate/severe ototoxicity. Conclusions: Our data present, for the first time, the association of combined inherited nucleotide variants involved in CDDP efflux, DNA repair, and apoptosis with ototoxicity, which could be potential predictors in future clinical and genomic models.
Collapse
|
2
|
Morelli C, Formica V, Riondino S, Russo A, Ferroni P, Guadagni F, Roselli M. Irinotecan or Oxaliplatin: Which is the First Move for the Mate? Curr Med Chem 2021; 28:3158-3172. [PMID: 33069191 DOI: 10.2174/0929867327666201016124950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The aim of the present review is to discuss the potential link between RAS, BRAF and microsatellite instability (MSI) mutational patterns and chemotherapeutic agent efficacy [Irinotecan (IRI) vs. Oxaliplatin (OXA)], and how this can potentially influence the choice of the chemotherapy backbone. METHODS Following a review of the research literature, all pertinent articles published in the core journals were selected for the study. The inclusion criteria regarded relevant clinical and pre-clinical studies on the topic of interest (Relationship of OXA and IRI to KRAS/BRAF mutations and MSI). RESULTS Excision repair cross complementation group 1 (ERCC1) expression is inhibited by KRAS mutation, making tumor cells more sensitive to OXA. Results from OPUS, COIN and PRIME trials support that no conclusive data are available for BRAF mutant population because of the small number of patients. Enhanced IRI cytotoxicity to MSI cell lines is due to the participation of some of the mismatch repair (MMR) components in various DNA repair processes and their role in the maintenance of the pro-apoptotic effect of IRI and G2/M cell arrest. CONCLUSION OXA and IRI are indispensable drugs for mCRC treatment and their selection must be as careful as that of targeted agents. We suggest taking into consideration the interaction between known genomic alterations and OXA and IRI activity to personalize chemotherapy in mCRC patients.
Collapse
Affiliation(s)
- Cristina Morelli
- Department of Systems Medicine, Medical Oncology Unit, Tor Vergata Clinical Center, Tor Vergata University of Rome, Viale Oxford 81, 00133, Rome, Italy
| | - Vincenzo Formica
- Department of Systems Medicine, Medical Oncology Unit, Tor Vergata Clinical Center, Tor Vergata University of Rome, Viale Oxford 81, 00133, Rome, Italy
| | - Silvia Riondino
- Department of Systems Medicine, Medical Oncology Unit, Tor Vergata Clinical Center, Tor Vergata University of Rome, Viale Oxford 81, 00133, Rome, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Patrizia Ferroni
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Fiorella Guadagni
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Mario Roselli
- Department of Systems Medicine, Medical Oncology Unit, Tor Vergata Clinical Center, Tor Vergata University of Rome, Viale Oxford 81, 00133, Rome, Italy
| |
Collapse
|
3
|
Hua T, Kang S, Li XF, Tian YJ, Li Y. DNA methylome profiling identifies novel methylated genes in epithelial ovarian cancer patients with platinum resistance. J Obstet Gynaecol Res 2021; 47:1031-1039. [PMID: 33403724 DOI: 10.1111/jog.14634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022]
Abstract
AIM Platinum-based chemotherapy is widely used for epithelial ovarian cancer (EOC). As high as 20-25% of EOC patients will not respond to the initial chemotherapy. Accumulated evidences have implied that DNA methylation may serve as a potential bio-marker for chemotherapy-resistant phenotypic screening; however, the pattern underlying primary platinum resistance remains unclear. METHODS Reduced representation bisulfite sequencing (RRBS) analysis was performed to identify differences in methylation status between primary platinum-resistant patients Progression free survival (PFS) (PFS < 6 months, n = 8) and extreme sensitive patients (PFS ≥ 24 months, n = 8). The Qubit 3.0 Fluorometer was used for the quantification of RRBS library. The RRBS library was sequenced on Illumina HiSeq2500 sequencer as 50 bp paired-end reads. RESULTS After screening, 94 valid hyper-/hypo-methylated regions were identified to be located within 94 gene promoter and exon regions (adjusted q ≤ 0.5), which were primarily associated with cell-cell adhesion, B cell activation and lymphocyte activation according to GO analysis. The 19 differentially methylated regions (DMR) located in the promoter region including TRC-GCA11-1, LOC105370912, ANO7P1, DHX4,MSH2, CDCP2, CCNL1, ARHGAP42P2, PRDM13, LOC101928344, USP29, ZIC5,IL1RAPL1, EVX2, ABR, MGRN1, UBALD1, LINC00261, and ISL2 were identified according to the order of P-values from low to high, of which MSH2, LINC00261, MGRN1, ZIC5, EVX2, CCNL1, and DHX40 were presented to play a variety of roles in cancers process based on the previous studies. CONCLUSION DNA methylome profiling based on RRBS assay is an effective method for screening aberrantly methylated genes in primary platinum-resistant patients, which may serve as a potential epigenetic bio-marker for the prediction of primary platinum resistance.
Collapse
Affiliation(s)
- Tian Hua
- Department of Gynaecology, Affiliated Xing Tai People Hospital of Hebei Medial University, Xingtai, China
| | - Shan Kang
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Xiao-Fei Li
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Yun-Jie Tian
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Yan Li
- Department of Molecular Biology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| |
Collapse
|
4
|
Klinakis A, Karagiannis D, Rampias T. Targeting DNA repair in cancer: current state and novel approaches. Cell Mol Life Sci 2020; 77:677-703. [PMID: 31612241 PMCID: PMC11105035 DOI: 10.1007/s00018-019-03299-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
DNA damage response, DNA repair and genomic instability have been under study for their role in tumor initiation and progression for many years now. More recently, next-generation sequencing on cancer tissue from various patient cohorts have revealed mutations and epigenetic silencing of various genes encoding proteins with roles in these processes. These findings, together with the unequivocal role of DNA repair in therapeutic response, have fueled efforts toward the clinical exploitation of research findings. The successful example of PARP1/2 inhibitors has also supported these efforts and led to numerous preclinical and clinical trials with a large number of small molecules targeting various components involved in DNA repair singularly or in combination with other therapies. In this review, we focus on recent considerations related to DNA damage response and new DNA repair inhibition agents. We then discuss how immunotherapy can collaborate with these new drugs and how epigenetic drugs can rewire the activity of repair pathways and sensitize cancer cells to DNA repair inhibition therapies.
Collapse
Affiliation(s)
- Apostolos Klinakis
- Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece.
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece.
| |
Collapse
|
5
|
Tian H, Yan L, Xiao-Fei L, Hai-Yan S, Juan C, Shan K. Hypermethylation of mismatch repair gene hMSH2 associates with platinum-resistant disease in epithelial ovarian cancer. Clin Epigenetics 2019; 11:153. [PMID: 31666131 PMCID: PMC6822346 DOI: 10.1186/s13148-019-0748-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/22/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE One major reason of the high mortality of epithelial ovarian cancer (EOC) is due to platinum-based chemotherapy resistance. Aberrant DNA methylation may be a potential mechanism underlying the development of platinum resistance in EOC. The purpose of this study is to discover potential aberrant DNA methylation that contributes to drug resistance. METHODS By initially screening of 16 platinum-sensitive/resistant samples from EOC patients with reduced representation bisulfite sequencing (RRBS), the upstream region of the hMSH2 gene was discovered hypermethylated in the platinum-resistant group. The effect of hMSH2 methylation on the cellular response to cisplatin was explored by demethylation and knockdown assays in ovarian cancer cell line A2780. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry was employed to examine the methylation levels of hMSH2 upstream region in additional 40 EOC patient samples. RT-qPCR and IHC assay was used to detect the hMSH2 mRNA and protein expression in extended 150 patients. RESULTS RRBS assay discovered an upstream region from - 1193 to - 1125 of hMSH2 was significant hypermethylated in resistant EOC patients (P = 1.06 × 10-14). In vitro analysis demonstrated that global demethylation increased cisplatin sensitivity along with a higher expression of the hMSH2 mRNA and protein. Knockdown hMSH2 reduced the cell sensitivity to cisplatin. MALDI-TOF mass spectrometry assay validated the strong association of hypermethylation of hMSH2 upstream region with platinum resistance. Spearman's correlation analysis revealed a significantly negative connection between methylation level of hMSH2 upstream region and its expression. The Kaplan-Meier analyses showed the high methylation of hMSH2 promoter region, and its low expressions are associated with worse survival. In multivariable models, hMSH2 low expression was an independent factor predicting poor outcome (P = 0.03, HR = 1.91, 95%CI = 1.85-2.31). CONCLUSION The hypermethylation of hMSH2 upstream region is associated with platinum resistant in EOC, and low expression of hMSH2 may be an index for the poor prognosis.
Collapse
Affiliation(s)
- Hua Tian
- Department of Molecular Biology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
- Department of Obstetrics and Gynaecology, Affiliated Xing Tai People Hospital of Hebei Medial University, Xingtai, China
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Li Yan
- Department of Molecular Biology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Li Xiao-Fei
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Sun Hai-Yan
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Chen Juan
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Kang Shan
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China.
| |
Collapse
|
6
|
Si W, Kang S, Sun H, Chen J, Cao S, Li Y. Genetic polymorphisms in hMSH2 and hMLH1 genes are associated with prognosis in epithelial ovarian cancer patients. Int J Gynecol Cancer 2019; 29:1148-1155. [PMID: 31273068 DOI: 10.1136/ijgc-2019-000368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE DNA mismatch repair deficiency is not only thought to promote tumorigenesis but is also suggested to be associated with platinum-based chemotherapy treatment. In this study, we investigated the effects of two genetic polymorphisms in the hMSH2 and hMLH1 genes on the risk of epithelial ovarian cancer and the clinical outcome of patients treated with platinum-based chemotherapy. METHODS A case-control study was performed in 536 epithelial ovarian cancer patients and 532 control women. Genotypes of two polymorphisms were determined by the polymerase chain reaction/ligase detection reaction method. Pearson Chi-square test was used to evaluate genotype distributions and allele frequencies in the patients and controls. Kaplan-Meier survival curves, and univariate and multivariate Cox regression models were used to analyze the effect of polymorphisms on patients' prognoses. RESULTS The genotype and allele frequencies of the rs2303428 and rs1800734 polymorphisms were not significantly different between the case and control groups. Compared with wild homozygous genotype, the presence of variant alleles (heterozygous and variant homozygous genotypes) did not affect the risk of developing epithelial ovarian cancer. However, survival analysis showed that the rs2303428 polymorphism was related to the prognosis of epithelial ovarian cancer patients. Compared with the TT genotype, patients carrying the C allele had a shorter progression-free survival during the 3- and 5-year follow-up (HR 1.41, 95% CI 1.07 to 1.87 and HR 1.56, 95% CI 1.12 to 2.16, respectively). For the rs1800734 polymorphism, the A allele may significantly increase patients' progression-free survival compared with the GG genotype in the 5-year follow-up (HR 0.66, 95% CI 0.44 to 0.98). CONCLUSION Our research suggests that genetic polymorphisms in hMSH2 and hMLH1 may indicate the clinical progression of epithelial ovarian cancer patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Wengang Si
- Department of Obstetrics and Gynaecology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| | - Shan Kang
- Department of Obstetrics and Gynaecology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| | - Haiyan Sun
- Department of Obstetrics and Gynaecology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| | - Juan Chen
- Department of Obstetrics and Gynaecology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| | - Shiru Cao
- Department of Molecular Biology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| | - Yan Li
- Department of Molecular Biology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| |
Collapse
|
7
|
Duan FX, Gu GL, Yang HR, Yu PF, Zhang Z. Must Peutz-Jeghers syndrome patients have the LKB1/STK11 gene mutation? A case report and review of the literature. World J Clin Cases 2018; 6:224-232. [PMID: 30148152 PMCID: PMC6107527 DOI: 10.12998/wjcc.v6.i8.224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 02/05/2023] Open
Abstract
Peutz-Jeghers syndrome (PJS) is an autosomal dominant inherited disease, which is characterized by mucocutaneous pigmentation and multiple gastrointestinal hamartoma polyps. The germline mutation of LKB1/STK11 gene on chromosome 19p13.3 is considered to be the hereditary cause of PJS. However, must a patient with PJS have the LKB1/STK11 gene mutation? We here report a case of a male patient who had typical manifestations of PJS and a definite family history, but did not have LKB1/STK11 gene mutation. By means of high-throughput sequencing technology, only mutations in APC gene (c.6662T > C: p.Met2221Thr) and MSH6 gene (c.3488A > T: p.Glu1163Val) were detected. The missense mutations in APC and MSH6 gene may lead to abnormalities in structure and function of their expression products, and may result in the occurrence of PJS. This study suggests that some other genetic disorders may cause PJS besides LKB1/STK11 gene mutation.
Collapse
Affiliation(s)
- Fu-Xiao Duan
- Department of General Surgery, Air Force General Hospital of Chinese PLA, Beijing 100142, China
| | - Guo-Li Gu
- Department of General Surgery, Air Force General Hospital of Chinese PLA, Beijing 100142, China
| | - Hai-Rui Yang
- Department of General Surgery, Air Force General Hospital of Chinese PLA, Beijing 100142, China
| | - Peng-Fei Yu
- Department of General Surgery, Air Force General Hospital of Chinese PLA, Beijing 100142, China
| | - Zhi Zhang
- Department of General Surgery, Air Force General Hospital of Chinese PLA, Beijing 100142, China
| |
Collapse
|
8
|
Nogueira GAS, Costa EFD, Lopes-Aguiar L, Lima TRP, Visacri MB, Pincinato EC, Lourenço GJ, Calonga L, Mariano FV, Altemani AMDAM, Altemani JMC, Moriel P, Chone CT, Ramos CD, Lima CSP. Polymorphisms in DNA mismatch repair pathway genes predict toxicity and response to cisplatin chemoradiation in head and neck squamous cell carcinoma patients. Oncotarget 2018; 9:29538-29547. [PMID: 30038702 PMCID: PMC6049861 DOI: 10.18632/oncotarget.25268] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is treated with cisplatin (CDDP) and radiotherapy (RT), and distinct results are observed among patients with similar clinicopathological aspects. This prospective study aimed to investigate whether MLH1 c.-93G>A (rs1800734), MSH2 c.211+9C>G (rs2303426), MSH3 c.3133G>A (rs26279), EXO1 c.1765G>A (rs1047840), and EXO1 c.2270C>T (rs9350) single nucleotide polymorphisms (SNPs) of the mismatch repair (MMR) pathway change side effects and response rate of 90 HNSCC patients treated with CDDP and RT. DNA from peripheral blood was analyzed by PCR-based methods to obtain genotypes. It was observed 4.27-fold and 4.69-fold increased risks of presenting pronounced nephrotoxicity with treatment in patients with MSH3 GG and EXO1 rs9350 CC genotypes compared with patients with GA or AA and CT or TT genotypes, respectively. MSH3 GG or GA and GT haplotype of EXO1 rs1047840 and rs9350 SNPs conferred to patients 10.29 and 4.00 more chances of presenting pronounced ototoxicity after treatment than MSH3 AA genotype and other EXO1 haplotypes, respectively. Patients with EXO1 rs1047840 GA or AA genotype and AC haplotype of EXO1 rs1047840 and rs9350 SNPs had both 9.55-fold increased risks of achieving partial response or stable disease instead of complete remission after treatment than patients with EXO1 GG genotype and other EXO1 haplotypes, respectively. For the first time, our data show preliminary indication that inherited alterations of DNA MMR pathway, related to MSH3 rs26279, EXO1 rs1047840 and EXO1 rs9350 SNPs, modify toxicity and response to chemoradiation in HNSCC, and may contribute to future personalized treatment of patients.
Collapse
Affiliation(s)
| | | | - Leisa Lopes-Aguiar
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Tathiane Regine Penna Lima
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Marília Berlofa Visacri
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Eder Carvalho Pincinato
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Luciane Calonga
- Department of Ophthalmology and Otorhinolaryngology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Patrícia Moriel
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Carlos Takahiro Chone
- Department of Ophthalmology and Otorhinolaryngology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Celso Dario Ramos
- Department of Radiology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Carmen Silvia Passos Lima
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
Ashktorab H, Mokarram P, Azimi H, Olumi H, Varma S, Nickerson ML, Brim H. Targeted exome sequencing reveals distinct pathogenic variants in Iranians with colorectal cancer. Oncotarget 2018; 8:7852-7866. [PMID: 28002797 PMCID: PMC5341754 DOI: 10.18632/oncotarget.13977] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Next Generation Sequencing (NGS) is currently used to establish mutational profiles in many multigene diseases such as colorectal cancer (CRC), which is on the rise in many parts of the developing World including, Iran. Little is known about its genetic hallmarks in these populations. AIM To identify variants in 15 CRC-associated genes in patients of Iranian descent. RESULTS There were 51 validated variants distributed on 12 genes: 22% MSH3 (n = 11/51), 10% MSH6 (n = 5/51), 8% AMER1 (n = 4/51), 20% APC (n = 10/51), 2% BRAF (n = 1/51), 2% KRAS (n = 1/51), 12% PIK3CA (n = 6/51), 8% TGFβR2A (n = 4/51), 2% SMAD4 (n = 1/51), 4% SOX9 (n = 2/51), 6% TCF7L2 (n = 3/51), and 6% TP53 (n = 3/51). Most known and distinct variants were in mismatch repair genes (MMR, 32%) and APC (20%). Among oncogenes, PIK3CA was the top target (12%). MATERIALS AND METHODS CRC specimens from 63 Shirazi patients were used to establish the variant' profile on an Ion Torrent platform by targeted exome sequencing. To rule-out technical artifacts, the variants were validated in 13 of these samples using an Illumina NGS platform. Validated variants were annotated and compared to variants from publically available databases. An in-silico functional analysis was performed. MSI status of the analyzed samples was established. CONCLUSION These results illustrate for the first time CRC mutational profile in Iranian patients. MSH3, MSH6, APC and PIK3CA genes seem to play a bigger role in the path to cancer in this population. These findings will potentially lead to informed genetic diagnosis protocol and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC, USA
| | - Pooneh Mokarram
- Current address: Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Azimi
- Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC, USA
| | - Hasti Olumi
- Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC, USA
| | | | - Michael L Nickerson
- Laboratory of Translational Genomics, National Cancer Institute, Bethesda, MD, USA
| | - Hassan Brim
- Department of Pathology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
10
|
Ashktorab H, Azimi H, Varma S, Tavakoli P, Nickerson ML, Brim H. Distinctive DNA mismatch repair and APC rare variants in African Americans with colorectal neoplasia. Oncotarget 2017; 8:99966-99977. [PMID: 29245953 PMCID: PMC5725144 DOI: 10.18632/oncotarget.21557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/23/2017] [Indexed: 12/17/2022] Open
Abstract
PURPOSE African Americans have a higher incidence and mortality from colorectal cancer. This disparity might be due, in part, to the type of mutations in driver genes. In this study, we examined alterations specific to APC, MSH3, and MSH6 genes using targeted exome sequencing to determine distinctive variants in the course of neoplastic transformation. EXPERIMENTAL DESIGN A total of 140 African American colon samples (30 normal, 21 adenomas, 33 advanced adenomas and 56 cancers) were used as our discovery set on an Ion Torrent platform. A 36 samples subset was resequenced on an Illumina platform for variants' validation. Bioinformatics analyses were performed and novel validated variants are reported. RESULTS Two novel MSH6 variants were validated and mapped to the MutS-V region near the MSH2 binding site. For MSH3, 4 known variants were validated and were located in exon 10 (3 non-synonymous) and exon 18 (1 synonymous). As for APC, 20 variants were validated with 4 novel variants: 3 stopgain and 1 non-synonymous. These variants mapped prior to and on the Armadillo repeats region, to the 15-amino acid repeat region, and to the 20-amino acid repeats region, respectively. CONCLUSION We defined novel variants that target DNA mismatch repair and APC genes in African Americans with colorectal lesions. A greater frequency of variants in genes encoding DNA mismatch repair functions and APC likely plays major roles in colorectal cancer initiation and higher incidence of the disease in African Americans.
Collapse
Affiliation(s)
| | - Hamed Azimi
- Department of Medicine and Cancer Center, Washington, DC, USA
| | | | - Payaam Tavakoli
- Department of Medicine and Cancer Center, Washington, DC, USA
| | - Michael L. Nickerson
- Laboratory of Translational Genomics, National Cancer Institute, Bethesda, MD, USA
| | - Hassan Brim
- Department of Pathology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
11
|
Brabec V, Hrabina O, Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Rudolph C, Melau C, Nielsen JE, Vile Jensen K, Liu D, Pena-Diaz J, Rajpert-De Meyts E, Rasmussen LJ, Jørgensen A. Involvement of the DNA mismatch repair system in cisplatin sensitivity of testicular germ cell tumours. Cell Oncol (Dordr) 2017; 40:341-355. [PMID: 28536927 DOI: 10.1007/s13402-017-0326-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Testicular germ cell tumours (TGCT) are highly sensitive to cisplatin-based chemotherapy, but patients with tumours containing differentiated teratoma components are less responsive to this treatment. The cisplatin sensitivity in TGCT has previously been linked to the embryonic phenotype in the majority of tumours, although the underlying mechanism largely remains to be elucidated. The aim of this study was to investigate the role of the DNA mismatch repair (MMR) system in the cisplatin sensitivity of TGCT. METHODS The expression pattern of key MMR proteins, including MSH2, MSH6, MLH1 and PMS2, were investigated during testis development and in the pathogenesis of TGCT, including germ cell neoplasia in situ (GCNIS). The TGCT-derived cell line NTera2 was differentiated using retinoic acid (10 μM, 6 days) after which MMR protein expression and activity, as well as cisplatin sensitivity, were investigated in both undifferentiated and differentiated cells. Finally, the expression of MSH2 was knocked down by siRNA in NTera2 cells after which the effect on cisplatin sensitivity was examined. RESULTS MMR proteins were expressed in proliferating cells in the testes, while in malignant germ cells MMR protein expression was found to coincide with the expression of the pluripotency factor OCT4, with no or low expression in the more differentiated yolk sac tumours, choriocarcinomas and teratomas. In differentiated NTera2 cells we found a significantly (p < 0.05) lower expression of the MMR and pluripotency factors, as well as a reduced MMR activity and cisplatin sensitivity, compared to undifferentiated NTera2 cells. Also, we found that partial knockdown of MSH2 expression in undifferentiated NTera2 cells resulted in a significantly (p < 0.001) reduced cisplatin sensitivity. CONCLUSION This study reports, for the first time, expression of the MMR system in fetal gonocytes, from which GCNIS cells are derived. Our findings in primary TGCT specimens and TGCT-derived cells suggest that a reduced sensitivity to cisplatin in differentiated TGCT components could result from a reduced expression of MMR proteins, in particular MSH2 and MLH1, which are involved in the recognition of cisplatin adducts and in activation of the DNA damage response pathway to initiate apoptosis.
Collapse
Affiliation(s)
- Christiane Rudolph
- University Department of Growth and Reproduction (Rigshospitalet), Blegdamsvej 9, 2100, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Cecilie Melau
- University Department of Growth and Reproduction (Rigshospitalet), Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - John E Nielsen
- University Department of Growth and Reproduction (Rigshospitalet), Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Kristina Vile Jensen
- University Department of Growth and Reproduction (Rigshospitalet), Blegdamsvej 9, 2100, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Dekang Liu
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Javier Pena-Diaz
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Ewa Rajpert-De Meyts
- University Department of Growth and Reproduction (Rigshospitalet), Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Anne Jørgensen
- University Department of Growth and Reproduction (Rigshospitalet), Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|
13
|
Karachaliou N, Moreno MDLLG, Sosa AE, Santarpia M, Lazzari C, Capote AR, Massuti B, Rosell R. Using genetics to predict patient response to platinum-based chemotherapy. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1298969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Niki Karachaliou
- Instituto of Oncology Rosell (IOR), University Hospital Sagrat Cor, Barcelona, Spain
| | | | - Aaron E. Sosa
- Instituto of Oncology Rosell (IOR), University Hospital Sagrat Cor, Barcelona, Spain
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology ‘‘G. Barresi’’, University of Messina, Messina, Italy
| | - Chiara Lazzari
- Department of Oncology, Division of Experimental Medicine, IRCCS San Raffaele, Milan, Italy
| | | | - Bartomeu Massuti
- Medical Oncology Service, Hospital General de Alicante, Alicante, Spain
| | - Rafael Rosell
- Instituto of Oncology Rosell (IOR), Quirón-Dexeus University Institute, Barcelona, Spain
- Laboratory of Cancer Molecular Biology, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Cancer Biology & Precision Medicine Laboratory, Catalan Institute of Oncology (ICO), Germans Trias i Pujol University Hospital, Badalona, Spain
| |
Collapse
|
14
|
Extended Abstracts. Toxicol Pathol 2016. [DOI: 10.1177/019262339702500633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Can the response to a platinum-based therapy be predicted by the DNA repair status in non-small cell lung cancer? Cancer Treat Rev 2016; 48:8-19. [DOI: 10.1016/j.ctrv.2016.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/04/2016] [Accepted: 05/12/2016] [Indexed: 12/17/2022]
|
16
|
Savreux-Lenglet G, Depauw S, David-Cordonnier MH. Protein Recognition in Drug-Induced DNA Alkylation: When the Moonlight Protein GAPDH Meets S23906-1/DNA Minor Groove Adducts. Int J Mol Sci 2015; 16:26555-81. [PMID: 26556350 PMCID: PMC4661830 DOI: 10.3390/ijms161125971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
DNA alkylating drugs have been used in clinics for more than seventy years. The diversity of their mechanism of action (major/minor groove; mono-/bis-alkylation; intra-/inter-strand crosslinks; DNA stabilization/destabilization, etc.) has undoubtedly major consequences on the cellular response to treatment. The aim of this review is to highlight the variety of established protein recognition of DNA adducts to then particularly focus on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) function in DNA adduct interaction with illustration using original experiments performed with S23906-1/DNA adduct. The introduction of this review is a state of the art of protein/DNA adducts recognition, depending on the major or minor groove orientation of the DNA bonding as well as on the molecular consequences in terms of double-stranded DNA maintenance. It reviews the implication of proteins from both DNA repair, transcription, replication and chromatin maintenance in selective DNA adduct recognition. The main section of the manuscript is focusing on the implication of the moonlighting protein GAPDH in DNA adduct recognition with the model of the peculiar DNA minor groove alkylating and destabilizing drug S23906-1. The mechanism of action of S23906-1 alkylating drug and the large variety of GAPDH cellular functions are presented prior to focus on GAPDH direct binding to S23906-1 adducts.
Collapse
Affiliation(s)
- Gaëlle Savreux-Lenglet
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Sabine Depauw
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| |
Collapse
|
17
|
Sawant A, Kothandapani A, Zhitkovich A, Sobol RW, Patrick SM. Role of mismatch repair proteins in the processing of cisplatin interstrand cross-links. DNA Repair (Amst) 2015; 35:126-36. [PMID: 26519826 DOI: 10.1016/j.dnarep.2015.10.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/13/2022]
Abstract
Mismatch repair (MMR) deficiency gives rise to cisplatin resistance and can lead to poor prognosis in cancers. Various models have been proposed to explain this low level of resistance caused due to loss of MMR proteins. We have shown that MMR proteins are required to maintain cisplatin interstrand cross-links (ICLs) on the DNA leading to increased cellular sensitivity. In our previous studies, we have shown that BER processing of the cisplatin ICLs is mutagenic. Polymerase β (Polβ) can generate mismatches which leads to the activation and the recruitment of mismatch repair proteins. In this paper, we distinguished between the requirement of different downstream MMR proteins for maintaining cisplatin sensitivity. We show that the MutSα (MSH2-MSH6) heterocomplex is required to maintain cisplatin sensitivity, whereas the Mutsβ complex has no effect. These results can be correlated with the increased repair of cisplatin ICLs and ICL induced DNA double strand breaks (DSBs) in the resistant cells. Moreover, we show that MLH1 proficient cells displayed a cisplatin sensitive phenotype when compared with the MLH1 deficient cells and the ATPase activity of MLH1 is essential to mediate this effect. Based on these results, we propose that MutSα as well as the downstream MMR pathway proteins are essential to maintain a cisplatin sensitive phenotype as a consequence of processing Polβ induced mismatches at sites flanking cisplatin ICLs.
Collapse
Affiliation(s)
- Akshada Sawant
- Department of Biochemistry and Cancer Biology, University of Toledo-Health Science Campus, Toledo, OH 43614, USA
| | - Anbarasi Kothandapani
- Department of Biochemistry and Cancer Biology, University of Toledo-Health Science Campus, Toledo, OH 43614, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Robert W Sobol
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15213, USA; Department of Oncologic Sciences, Molecular & Metabolic Oncology Program, University of South Alabama Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Steve M Patrick
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
18
|
O'Grady S, Finn SP, Cuffe S, Richard DJ, O'Byrne KJ, Barr MP. The role of DNA repair pathways in cisplatin resistant lung cancer. Cancer Treat Rev 2014; 40:1161-70. [PMID: 25458603 DOI: 10.1016/j.ctrv.2014.10.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/11/2014] [Indexed: 11/19/2022]
Abstract
Platinum chemotherapeutic agents such as cisplatin are currently used in the treatment of various malignancies such as lung cancer. However, their efficacy is significantly hindered by the development of resistance during treatment. While a number of factors have been reported that contribute to the onset of this resistance phenotype, alterations in the DNA repair capacity of damaged cells is now recognised as an important factor in mediating this phenomenon. The mode of action of cisplatin has been linked to its ability to crosslink purine bases on the DNA, thereby interfering with DNA repair mechanisms and inducing DNA damage. Following DNA damage, cells respond by activating a DNA-damage response that either leads to repair of the lesion by the cell thereby promoting resistance to the drug, or cell death via activation of the apoptotic response. Therefore, DNA repair is a vital target to improving cancer therapy and reduce the resistance of tumour cells to DNA damaging agents currently used in the treatment of cancer patients. To date, despite the numerous findings that differential expression of components of the various DNA repair pathways correlate with response to cisplatin, translation of such findings in the clinical setting are still warranted. The identification of alterations in specific proteins and pathways that contribute to these unique DNA repair pathways in cisplatin resistant cancer cells may potentially lead to a renewed interest in the development of rational novel therapies for cisplatin resistant cancers, in particular, lung cancer.
Collapse
Affiliation(s)
- Shane O'Grady
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Dublin 8, Ireland.
| | - Stephen P Finn
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Dublin 8, Ireland; Department of Histopathology, St James's Hospital and Trinity College Dublin, Ireland.
| | - Sinead Cuffe
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Dublin 8, Ireland.
| | - Derek J Richard
- Cancer and Ageing Research Program, Queensland University of Technology, Brisbane, Australia.
| | - Kenneth J O'Byrne
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Dublin 8, Ireland; Cancer and Ageing Research Program, Queensland University of Technology, Brisbane, Australia.
| | - Martin P Barr
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
19
|
Perevozchikova SA, Trikin RM, Heinze RJ, Romanova EA, Oretskaya TS, Friedhoff P, Kubareva EA. Is thymidine glycol containing DNA a substrate of E. coli DNA mismatch repair system? PLoS One 2014; 9:e104963. [PMID: 25133614 PMCID: PMC4136841 DOI: 10.1371/journal.pone.0104963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/15/2014] [Indexed: 11/18/2022] Open
Abstract
The DNA mismatch repair (MMR) system plays a crucial role in the prevention of replication errors and in the correction of some oxidative damages of DNA bases. In the present work the most abundant oxidized pyrimidine lesion, 5,6-dihydro-5,6-dihydroxythymidine (thymidine glycol, Tg) was tested for being recognized and processed by the E. coli MMR system, namely complex of MutS, MutL and MutH proteins. In a partially reconstituted MMR system with MutS-MutL-MutH proteins, G/Tg and A/Tg containing plasmids failed to provoke the incision of DNA. Tg residue in the 30-mer DNA duplex destabilized double helix due to stacking disruption with neighboring bases. However, such local structural changes are not important for E. coli MMR system to recognize this lesion. A lack of repair of Tg containing DNA could be due to a failure of MutS (a first acting protein of MMR system) to interact with modified DNA in a proper way. It was shown that Tg in DNA does not affect on ATPase activity of MutS. On the other hand, MutS binding affinities to DNA containing Tg in G/Tg and A/Tg pairs are lower than to DNA with a G/T mismatch and similar to canonical DNA. Peculiarities of MutS interaction with DNA was monitored by Förster resonance energy transfer (FRET) and fluorescence anisotropy. Binding of MutS to Tg containing DNAs did not result in the formation of characteristic DNA kink. Nevertheless, MutS homodimer orientation on Tg-DNA is similar to that in the case of G/T-DNA. In contrast to G/T-DNA, neither G/Tg- nor A/Tg-DNA was able to stimulate ADP release from MutS better than canonical DNA. Thus, Tg residue in DNA is unlikely to be recognized or processed by the E. coli MMR system. Probably, the MutS transformation to active “sliding clamp” conformation on Tg-DNA is problematic.
Collapse
Affiliation(s)
- Svetlana A. Perevozchikova
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Roman M. Trikin
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Roger J. Heinze
- Institute for Biochemistry, Justus Liebig University, Giessen, Germany
| | - Elena A. Romanova
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana S. Oretskaya
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Peter Friedhoff
- Institute for Biochemistry, Justus Liebig University, Giessen, Germany
| | - Elena A. Kubareva
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| |
Collapse
|
20
|
Negureanu L, Salsbury FR. Destabilization of the MutSα's protein-protein interface due to binding to the DNA adduct induced by anticancer agent carboplatin via molecular dynamics simulations. J Mol Model 2013; 19:4969-89. [PMID: 24061854 DOI: 10.1007/s00894-013-1998-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/05/2013] [Indexed: 12/22/2022]
Abstract
DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα's surveillance for DNA errors would possibly be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations.
Collapse
|
21
|
Kline CLB, El-Deiry WS. Personalizing colon cancer therapeutics: targeting old and new mechanisms of action. Pharmaceuticals (Basel) 2013; 6:988-1038. [PMID: 24276379 PMCID: PMC3817731 DOI: 10.3390/ph6080988] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/30/2013] [Accepted: 08/16/2013] [Indexed: 12/17/2022] Open
Abstract
The use of pharmaceuticals for colon cancer treatment has been increasingly personalized, in part due to the development of new molecular tools. In this review, we discuss the old and new colon cancer chemotherapeutics, and the parameters that have been shown to be predictive of efficacy and safety of these chemotherapeutics. In addition, we discuss how alternate pharmaceuticals have been developed in light of a potential lack of response or resistance to a particular chemotherapeutic.
Collapse
Affiliation(s)
- Christina Leah B Kline
- Hematology/Oncology Division, Penn State Hershey Medical Center, Hershey, PA 17033, USA.
| | | |
Collapse
|
22
|
Negureanu L, Salsbury FR. Non-specificity and synergy at the binding site of the carboplatin-induced DNA adduct via molecular dynamics simulations of the MutSα-DNA recognition complex. J Biomol Struct Dyn 2013; 32:969-92. [PMID: 23799640 DOI: 10.1080/07391102.2013.799437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
MutSα is the most abundant mismatch-binding factor of human DNA mismatch repair (MMR) proteins. MMR maintains genetic stability by recognizing and repairing DNA defects. Failure to accomplish their function may lead to cancer. In addition, MutSα recognizes at least some types of DNA damage making it a target for anticancer agents. Here, complementing scarce experimental data, we report unique hydrogen-bonding motifs associated with the recognition of the carboplatin induced DNA damage by MutSα. These data predict that carboplatin and cisplatin induced damaging DNA adducts are recognized by MutSα in a similar manner. Our simulations also indicate that loss of base pairing at the damage site results in (1) non-specific binding and (2) changes in the atomic flexibility at the lesion site and beyond. To further quantify alterations at MutSα-DNA interface in response to damage recognition, non-bonding interactions and salt bridges were investigated. These data indicate (1) possible different packing and (2) disruption of the salt bridges at the MutSα-DNA interface in the damaged complex. These findings (1) underscore the general observation of disruptions at the MutSα-DNA interface and (2) highlight the nature of the anticancer effect of the carboplatin agent. The analysis was carried out from atomistic simulations.
Collapse
|
23
|
Kothandapani A, Sawant A, Dangeti VSMN, Sobol RW, Patrick SM. Epistatic role of base excision repair and mismatch repair pathways in mediating cisplatin cytotoxicity. Nucleic Acids Res 2013; 41:7332-43. [PMID: 23761438 PMCID: PMC3753620 DOI: 10.1093/nar/gkt479] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Base excision repair (BER) and mismatch repair (MMR) pathways play an important role in modulating cis-Diamminedichloroplatinum (II) (cisplatin) cytotoxicity. In this article, we identified a novel mechanistic role of both BER and MMR pathways in mediating cellular responses to cisplatin treatment. Cells defective in BER or MMR display a cisplatin-resistant phenotype. Targeting both BER and MMR pathways resulted in no additional resistance to cisplatin, suggesting that BER and MMR play epistatic roles in mediating cisplatin cytotoxicity. Using a DNA Polymerase β (Polβ) variant deficient in polymerase activity (D256A), we demonstrate that MMR acts downstream of BER and is dependent on the polymerase activity of Polβ in mediating cisplatin cytotoxicity. MSH2 preferentially binds a cisplatin interstrand cross-link (ICL) DNA substrate containing a mismatch compared with a cisplatin ICL substrate without a mismatch, suggesting a novel mutagenic role of Polβ in activating MMR in response to cisplatin. Collectively, these results provide the first mechanistic model for BER and MMR functioning within the same pathway to mediate cisplatin sensitivity via non-productive ICL processing. In this model, MMR participation in non-productive cisplatin ICL processing is downstream of BER processing and dependent on Polβ misincorporation at cisplatin ICL sites, which results in persistent cisplatin ICLs and sensitivity to cisplatin.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Biochemistry and Cancer Biology, University of Toledo - Health Science Campus, Toledo, OH 43614, USA, Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA and Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
24
|
Felício DF, Vidal LDS, Irineu RS, Leitão AC, von Kruger WA, Britto CDP, Cardoso A, Cardoso JS, Lage C. Overexpression of Escherichia coli nucleotide excision repair genes after cisplatin-induced damage. DNA Repair (Amst) 2013; 12:63-72. [DOI: 10.1016/j.dnarep.2012.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 10/25/2012] [Accepted: 10/30/2012] [Indexed: 12/12/2022]
|
25
|
Puch CBMD, Barbier E, Sauvaigo S, Gasparutto D, Breton J. Tools and strategies for DNA damage interactome analysis. Mutat Res 2012; 752:72-83. [PMID: 23220222 DOI: 10.1016/j.mrrev.2012.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 11/01/2012] [Accepted: 11/22/2012] [Indexed: 11/26/2022]
Abstract
DNA is the target of multiple endogenous and exogenous agents generating chemical lesions on the double helix. Cellular DNA damage response pathways rely on a myriad of proteins interacting with DNA alterations. The cartography of this interactome currently includes well known actors of chromatin remodelling, DNA repair or proteins hijacked from their natural functions such as transcription factors. In order to go further into the characterisation of these protein networks, proteomics-based methods began to be used in the early 2000s. The strategies are diverse and include mainly (i) damaged DNA molecules used as targets on protein microarrays, (ii) damaged DNA probes used to trap within complex cellular extracts proteins that are then separated and identified by proteomics, (iii) identification of chromatin- bound proteins after a genotoxic stress, or (iv) identification of proteins associated with other proteins already known to be part of DNA damage interactome. All these approaches have already been performed to find new proteins recognizing oxidised bases, abasic sites, strand breaks or crosslinks generated by anticancer drugs such as nitrogen mustards and platinating agents. Identified interactions are generally confirmed using complementary methods such as electromobility shift assays or surface plasmon resonance. These strategies allowed, for example, demonstration of interactions between cisplatin-DNA crosslinks and PARP-1 or the protein complex PTW/PP. The next challenging step will be to understand the biological repercussions of these newly identified interactions which may help to unravel new mechanisms involved in genetic toxicology, discover new cellular responses to anticancer drugs or identify new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | - Ewa Barbier
- Laboratoire Lésions des Acides Nucléiques, SCIB, UMR-E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble, F-38054, France
| | - Sylvie Sauvaigo
- Laboratoire Lésions des Acides Nucléiques, SCIB, UMR-E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble, F-38054, France
| | - Didier Gasparutto
- Laboratoire Lésions des Acides Nucléiques, SCIB, UMR-E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble, F-38054, France
| | - Jean Breton
- Laboratoire Lésions des Acides Nucléiques, SCIB, UMR-E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble, F-38054, France; UFR de Pharmacie, Université Joseph Fourier-Grenoble 1, Domaine de la Merci, La Tronche, F-38706, France.
| |
Collapse
|
26
|
Elder RM, Jayaraman A. Role of structure and dynamics of DNA with cisplatin and oxaliplatin adducts in various sequence contexts on binding of HMGB1a. MOLECULAR SIMULATION 2012. [DOI: 10.1080/08927022.2011.654208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Tompkins JD, Wu X, Her C. MutS homologue hMSH5: role in cisplatin-induced DNA damage response. Mol Cancer 2012; 11:10. [PMID: 22401567 PMCID: PMC3325843 DOI: 10.1186/1476-4598-11-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 03/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background Cisplatin (cis-diamminedichloroplatinum (II), CDDP) and its analogues constitute an important class of anticancer drugs in the treatment of various malignancies; however, its effectiveness is frequently affected by mutations in genes involved in the repair and signaling of cisplatin-induced DNA damage. These observations necessitate a need for a better understanding of the molecular events governing cellular sensitivity to cisplatin. Results Here, we show that hMSH5 mediates sensitization to cisplatin-induced DNA damage in human cells. Our study indicates that hMSH5 undergoes cisplatin-elicited protein induction and tyrosine phosphorylation. Silencing of hMSH5 by RNAi or expression of hMSH5 phosphorylation-resistant mutant hMSH5Y742F elevates cisplatin-induced G2 arrest and renders cells susceptible to cisplatin toxicity at clinically relevant doses. In addition, our data show that cisplatin promotes hMSH5 chromatin association and hMSH5 deficiency increases cisplatin-triggered γ-H2AX foci. Consistent with a possible role for hMSH5 in recombinational repair of cisplatin-triggered double-strand breaks (DSBs), the formation of cisplatin-induced hMSH5 nuclear foci is hRad51-dependent. Conclusion Collectively, our current study has suggested a role for hMSH5 in the processing of cisplatin-induced DSBs, and silencing of hMSH5 may provide a new means to improve the therapeutic efficacy of cisplatin.
Collapse
Affiliation(s)
- Joshua D Tompkins
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Mail Drop 64-7520, Pullman, WA 99164, USA
| | | | | |
Collapse
|
28
|
Zhu G, Myint M, Ang WH, Song L, Lippard SJ. Monofunctional platinum-DNA adducts are strong inhibitors of transcription and substrates for nucleotide excision repair in live mammalian cells. Cancer Res 2011; 72:790-800. [PMID: 22180496 DOI: 10.1158/0008-5472.can-11-3151] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To overcome drug resistance and reduce the side effects of cisplatin, a widely used antineoplastic agent, major efforts have been made to develop next generation platinum-based anticancer drugs. Because cisplatin-DNA adducts block RNA polymerase II unless removed by transcription-coupled excision repair, compounds that react similarly but elude repair are desirable. The monofunctional platinum agent pyriplatin displays antitumor activity in mice, a cytotoxicity profile in cell cultures distinct from that of cisplatin, and a unique in vitro transcription inhibition mechanism. In this study, we incorporated pyriplatin globally or site specifically into luciferase reporter vectors to examine its transcription inhibition profiles in live mammalian cells. Monofunctional pyriplatin reacted with plasmid DNA as efficiently as bifunctional cisplatin and inhibited transcription as strongly as cisplatin in various mammalian cells. Using repair-defective nucleotide excision repair (NER)-, mismatch repair-, and single-strand break repair-deficient cells, we show that NER is mainly responsible for removal of pyriplatin-DNA adducts. These findings reveal that the mechanism by which pyriplatin generates its antitumor activity is very similar to that of cisplatin, despite the chemically different nature of their DNA adducts, further supporting a role for monofunctional platinum anticancer agents in human cancer therapy. This information also provides support for the validity of the proposed mechanism of action of cisplatin and provides a rational basis for the design of more potent platinum anticancer drug candidates using a monofunctional DNA-damaging strategy.
Collapse
Affiliation(s)
- Guangyu Zhu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
29
|
Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene 2011; 31:1869-83. [PMID: 21892204 DOI: 10.1038/onc.2011.384] [Citation(s) in RCA: 1985] [Impact Index Per Article: 141.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platinum-based drugs, and in particular cis-diamminedichloroplatinum(II) (best known as cisplatin), are employed for the treatment of a wide array of solid malignancies, including testicular, ovarian, head and neck, colorectal, bladder and lung cancers. Cisplatin exerts anticancer effects via multiple mechanisms, yet its most prominent (and best understood) mode of action involves the generation of DNA lesions followed by the activation of the DNA damage response and the induction of mitochondrial apoptosis. Despite a consistent rate of initial responses, cisplatin treatment often results in the development of chemoresistance, leading to therapeutic failure. An intense research has been conducted during the past 30 years and several mechanisms that account for the cisplatin-resistant phenotype of tumor cells have been described. Here, we provide a systematic discussion of these mechanism by classifying them in alterations (1) that involve steps preceding the binding of cisplatin to DNA (pre-target resistance), (2) that directly relate to DNA-cisplatin adducts (on-target resistance), (3) concerning the lethal signaling pathway(s) elicited by cisplatin-mediated DNA damage (post-target resistance) and (4) affecting molecular circuitries that do not present obvious links with cisplatin-elicited signals (off-target resistance). As in some clinical settings cisplatin constitutes the major therapeutic option, the development of chemosensitization strategies constitute a goal with important clinical implications.
Collapse
Affiliation(s)
- L Galluzzi
- INSERM, U848 Apoptosis, Cancer and Immunity, Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Pabla N, Ma Z, McIlhatton MA, Fishel R, Dong Z. hMSH2 recruits ATR to DNA damage sites for activation during DNA damage-induced apoptosis. J Biol Chem 2011; 286:10411-8. [PMID: 21285353 DOI: 10.1074/jbc.m110.210989] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
DNA damage response (DDR) activates a complex signaling network that triggers DNA repair, cell cycle arrest, and/or cell death. Depending on the type and severity of DNA lesion, DDR is controlled by "master" regulators including ATM and ATR protein kinases. Cisplatin, a major chemotherapy drug that cross-links DNA, induces ATR-dependent DDR, resulting in apoptosis. However, it is unclear how ATR is activated. To identify the key regulators of ATR, we analyzed the proteins that associate with ATR after cisplatin treatment by blue native-PAGE and co-immunoprecipitation. The mismatch repair protein hMSH2 was found to be a major ATR-binding protein. Functionally, ATR activation and its recruitment to nuclear foci during cisplatin treatment were attenuated, and DNA damage signaling, involving Chk2, p53, and PUMA-α, was suppressed in hMSH2-deficient cells. ATR activation induced by the DNA methylating agent N-methyl-N-nitrosourea was also shown to be hMSH2-dependent. Intriguingly, hMSH2-mediated ATR recruitment and activation appeared independent of replication protein A, Rad17, and the Rad9-Hus1-Rad1 protein complex. Together the results support a hMSH2-dependent pathway of ATR activation and downstream Chk2/p53 signaling.
Collapse
Affiliation(s)
- Navjotsingh Pabla
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
31
|
Köberle B, Tomicic MT, Usanova S, Kaina B. Cisplatin resistance: Preclinical findings and clinical implications. Biochim Biophys Acta Rev Cancer 2010; 1806:172-82. [PMID: 20647037 DOI: 10.1016/j.bbcan.2010.07.004] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 02/03/2023]
Affiliation(s)
- Beate Köberle
- Institute of Toxicology, University Medical Center Mainz, Germany.
| | | | | | | |
Collapse
|
32
|
Increased expression of p27 is associated with the cisplatin resistance in gastric cancer cell line YCC-3. Arch Pharm Res 2010; 33:1127-32. [DOI: 10.1007/s12272-010-0720-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 11/30/2022]
|
33
|
Lenglet G, David-Cordonnier MH. DNA-Destabilizing Agents as an Alternative Approach for Targeting DNA: Mechanisms of Action and Cellular Consequences. J Nucleic Acids 2010; 2010. [PMID: 20725618 PMCID: PMC2915751 DOI: 10.4061/2010/290935] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/27/2010] [Accepted: 06/03/2010] [Indexed: 01/06/2023] Open
Abstract
DNA targeting drugs represent a large proportion of the actual anticancer drug pharmacopeia, both in terms of drug brands and prescription volumes. Small DNA-interacting molecules share the ability of certain proteins to change the DNA helix's overall organization and geometrical orientation via tilt, roll, twist, slip, and flip effects. In this ocean of DNA-interacting compounds, most stabilize both DNA strands and very few display helix-destabilizing properties. These types of DNA-destabilizing effect are observed with certain mono- or bis-intercalators and DNA alkylating agents (some of which have been or are being developed as cancer drugs). The formation of locally destabilized DNA portions could interfere with protein/DNA recognition and potentially affect several crucial cellular processes, such as DNA repair, replication, and transcription. The present paper describes the molecular basis of DNA destabilization, the cellular impact on protein recognition, and DNA repair processes and the latter's relationships with antitumour efficacy.
Collapse
Affiliation(s)
- Gaëlle Lenglet
- INSERM U-837, Jean-Pierre Aubert Research Center (JPARC), Team 4 Molecular and Cellular Targeting for Cancer Treatment, Institute for Research on Cancer of Lille (IRCL), Lille F-59045, France
| | | |
Collapse
|
34
|
Vasquez KM. Targeting and processing of site-specific DNA interstrand crosslinks. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:527-39. [PMID: 20196133 PMCID: PMC2895014 DOI: 10.1002/em.20557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA interstrand crosslinks (ICLs) are among the most cytotoxic types of DNA damage, and thus ICL-inducing agents such as cyclophosphamide, melphalan, cisplatin, psoralen, and mitomycin C have been used clinically as anticancer drugs for decades. ICLs can also be formed endogenously as a consequence of cellular metabolic processes. ICL-inducing agents continue to be among the most effective chemotherapeutic treatments for many cancers; however, treatment with these agents can lead to secondary malignancies, in part due to mutagenic processing of the DNA lesions. The mechanisms of ICL repair have been characterized more thoroughly in bacteria and yeast than in mammalian cells. Thus, a better understanding of the molecular mechanisms of ICL processing offers the potential to improve the efficacy of these drugs in cancer therapy. In mammalian cells, it is thought that ICLs are repaired by the coordination of proteins from several pathways, including nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), homologous recombination (HR), translesion synthesis (TLS), and proteins involved in Fanconi anemia (FA). In this review, we focus on the potential functions of NER, MMR, and HR proteins in the repair of and response to ICLs in human cells and in mice. We will also discuss a unique approach, using psoralen covalently linked to triplex-forming oligonucleotides to direct ICLs to specific sites in the mammalian genome.
Collapse
Affiliation(s)
- Karen M Vasquez
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA.
| |
Collapse
|
35
|
Cantor SB, Xie J. Assessing the link between BACH1/FANCJ and MLH1 in DNA crosslink repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:500-507. [PMID: 20658644 DOI: 10.1002/em.20568] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
FANCJ (also known as BRIP1 or BACH1) is a DNA helicase that was originally identified by its direct interaction with the hereditary breast cancer protein, BRCA1. Similar to BRCA1, FANCJ function is essential for DNA repair and breast cancer suppression. FANCJ is also mutated in the cancer prone syndrome Fanconi anemia, for which patient cells are characterized by extreme sensitivity to agents that generate DNA interstand crosslinks. Unexpectedly, correction of the interstrand crosslink sensitivity of FANCJ-null patient cells did not require the FANCJ/BRCA1 interaction. Instead, FANCJ binding to the mismatch repair protein, MLH1 was required. Given this finding, we address the role of FANCJ and MLH1 in DNA crosslink processing and how their functions could be linked in checkpoint and/or recombination pathways. We speculate that after DNA crosslink processing and repair, the FANCJ/MLH1 interaction is critical for recovery and restart of replication. These ideas are considered and summarized in this review.
Collapse
Affiliation(s)
- Sharon B Cantor
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | |
Collapse
|
36
|
Ahmad S. Platinum-DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Chem Biodivers 2010; 7:543-66. [PMID: 20232326 DOI: 10.1002/cbdv.200800340] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Platinum-based compounds are widely used as chemotherapeutics for the treatment of a variety of cancers. The anticancer activity of cisplatin and other platinum drugs is believed to arise from their interaction with DNA. Several cellular pathways are activated in response to this interaction, which include recognition by high-mobility group and repair proteins, translesion synthesis by polymerases, and induction of apoptosis. The apoptotic process is regulated by activation of caspases, p53 gene, and several proapoptotic and antiapoptotic proteins. Such cellular processing eventually leads to an inhibition of the replication or transcription machinery of the cell. Deactivation of platinum drugs by thiols, increased nucleotide excision repair of Pt-DNA adducts, decreased mismatch repair, and defective apoptosis result in resistance to platinum therapy. The differences in cytotoxicity of various platinum complexes are attributed to the differential recognition of their adducts by cellular proteins. Cisplatin and oxaliplatin both produce mainly 1,2-GG intrastrand cross-links as major adducts, but oxaliplatin is found to be more active particularly against cisplatin-resistant tumor cells. Mismatch repair and replicative bypass appear to be the processes most likely involved in differentiating the molecular responses to these two agents. This review describes the formation of Pt-DNA adducts, their interaction with cellular components, and biological effects of this interaction.
Collapse
Affiliation(s)
- Saeed Ahmad
- Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan.
| |
Collapse
|
37
|
Cheng H, Sun N, Sun X, Chen B, Li F, Feng J, Cheng L, Cao Y. Polymorphisms in hMSH2 and hMLH1 and response to platinum-based chemotherapy in advanced non-small-cell lung cancer patients. Acta Biochim Biophys Sin (Shanghai) 2010; 42:311-7. [PMID: 20458443 DOI: 10.1093/abbs/gmq023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Platinum-based chemotherapeutics are the most common regimens for advanced non-small-cell lung cancer (NSCLC) patients. However, it is difficult to identify platinum resistance in clinical treatment. Genetic factors are thought to represent important determinants of drug efficacy. In this study, we investigated whether singlenucleotide polymorphisms (SNPs) in human mutS homolog 2 (hMSH2) and the human mutL homolog 1 (hMLH1) were associated with the tumor response in advanced NSCLC patients received platinum-based chemotherapy in Chinese population. Totally, 96 patients with advanced NSCLC were routinely treated with cisplatin- or carboplatin-based chemotherapy. The three-dimensional (3D), polyacrylamide gel-based DNA microarray method was used to evaluate the genotypes of hMSH2 gIVS12-6T/ C and hMLH1-1151T/A with peripheral lymphocytes. We found that there was a significantly increased chance of treatment response to platinum-based chemotherapy with the hMSH2 gIVS12-6T/C polymorphism. The 3D polyacrylamide gel-based DNA microarray method is accurate, high-throughput, and inexpensive, especially suitable for a large scale of SNP genotyping in population.
Collapse
Affiliation(s)
- Hongyan Cheng
- Clinical Medicine College of Southeast University, Nanjing 210009, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhu G, Lippard SJ. Photoaffinity labeling reveals nuclear proteins that uniquely recognize cisplatin-DNA interstrand cross-links. Biochemistry 2009; 48:4916-25. [PMID: 19364127 DOI: 10.1021/bi900389b] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The DNA-binding inorganic compound cisplatin is one of the most successful anticancer drugs. The detailed mechanism by which cells recognize and process cisplatin-DNA damage is of great interest. Although the family of proteins that bind cisplatin 1,2- and 1,3-intrastrand cross-links has been identified, much less is known about cellular protein interactions with cisplatin interstrand cross-links (ICLs). In order to address this question, a photoreactive analogue of cisplatin, PtBP(6), was used to construct a DNA duplex containing a site-specific platinum ICL. This DNA probe was characterized and used in photo-cross-linking experiments to separate and identify nuclear proteins that bind to the ICL by peptide mass fingerprint analysis. Several such proteins were discovered, including PARP-1, hMutSbeta, DNA ligase III, XRCC1, and PNK. The photo-cross-linking approach was independently validated by an electrophoretic mobility shift assay demonstrating hMutSbeta binding to a cisplatin ICL. Proteins that recognize the platinum ICL were also identified in cisplatin-resistant cells, cells halted at various phases of the cell cycle, and in different carcinoma cells. Nuclear proteins that bind to the platinum ICL differ from those binding to intrastrand cross-links, indicating different mechanisms for disruption of cellular functions.
Collapse
Affiliation(s)
- Guangyu Zhu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
39
|
Apoptotic function of human PMS2 compromised by the nonsynonymous single-nucleotide polymorphic variant R20Q. Proc Natl Acad Sci U S A 2008; 105:13993-8. [PMID: 18768816 DOI: 10.1073/pnas.0806435105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mismatch repair (MMR) corrects replication errors during DNA synthesis. The mammalian MMR proteins also activate cell cycle checkpoints and apoptosis in response to persistent DNA damage. MMR-deficient cells are resistant to cisplatin, a DNA cross-linking agent used in chemotherapy, because of impaired activation of apoptotic pathways. It is shown that postmeiotic segregation 2 (PMS2), an MMR protein, is required for cisplatin-induced activation of p73, a member of the p53 family of transcription factors with proapoptotic activity. The human PMS2 is highly polymorphic, with at least 12 known nonsynonymous codon changes identified. We show here that the PMS2(R20Q) variant is defective in activating p73-dependent apoptotic response to cisplatin. When expressed in Pms2-deficient mouse fibroblasts, human PMS2(R20Q) but not PMS2 interfered with the apoptotic response to cisplatin. Correspondingly, PMS2 but not PMS2(R20Q) enhanced the cytotoxic effect of cisplatin measured by clonogenic survival. Because PMS2(R20Q) lacks proapoptotic activity, this polymorphic allele may modulate tumor responses to cisplatin among cancer patients.
Collapse
|
40
|
McMurray CT. Hijacking of the mismatch repair system to cause CAG expansion and cell death in neurodegenerative disease. DNA Repair (Amst) 2008; 7:1121-34. [PMID: 18472310 DOI: 10.1016/j.dnarep.2008.03.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mammalian cells have evolved sophisticated DNA repair systems to correct mispaired or damaged bases and extrahelical loops. Emerging evidence suggests that, in some cases, the normal DNA repair machinery is "hijacked" to become a causative factor in mutation and disease, rather than act as a safeguard of genomic integrity. In this review, we consider two cases in which active MMR leads to mutation or to cell death. There may be similar mechanisms by which uncoupling of normal MMR recognition from downstream repair allows triplet expansions underlying human neurodegenerative disease, or cell death in response to chemical lesion.
Collapse
Affiliation(s)
- Cynthia T McMurray
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
41
|
Johnson SW, Ferry KV, Hamilton TC. Recent insights into platinum drug resistance in cancer. Drug Resist Updat 2007; 1:243-54. [PMID: 16904407 DOI: 10.1016/s1368-7646(98)80005-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/1998] [Revised: 05/04/1998] [Accepted: 05/06/1998] [Indexed: 10/25/2022]
Abstract
Cisplatin and its analogs have become important components of chemotherapeutic regimens for the treatment of solid tumors, however, their overall effectiveness is limited by the emergence of drug-resistant tumor cells. Resistance to the platinum drugs is multifactorial consisting of mechanisms that prevent the formation of lethal platinum-DNA adducts and mechanisms that operate downstream of the drug/target interaction to promote cell survival. Continued progress in the study of the drug resistance phenotype as well as the development of new platinum analogs may eventually lead to improved therapies and increased survival rates.
Collapse
Affiliation(s)
- S W Johnson
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
42
|
Affiliation(s)
- Yongwon Jung
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | |
Collapse
|
43
|
Plotz G, Zeuzem S, Raedle J. DNA mismatch repair and Lynch syndrome. J Mol Histol 2006; 37:271-83. [PMID: 16821093 DOI: 10.1007/s10735-006-9038-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 06/06/2006] [Indexed: 01/31/2023]
Abstract
The evolutionary conserved mismatch repair proteins correct a wide range of DNA replication errors. Their importance as guardians of genetic integrity is reflected by the tremendous decrease of replication fidelity (two to three orders of magnitude) conferred by their loss. Germline mutations in mismatch repair genes, predominantly MSH2 and MLH1, have been found to underlie the Lynch syndrome (also called hereditary non-polyposis colorectal cancer, HNPCC), a hereditary predisposition for cancer. Lynch syndrome affects predominantly the colon and accounts for 2-5% of all colon cancer cases. During more than 30 years of biochemical, crystallographic and clinical research, deep insight has been achieved in the function of mismatch repair and the diseases that are associated with its loss. We review the biochemistry of mismatch repair and also introduce the clinical, diagnostic and genetic aspects of Lynch syndrome.
Collapse
Affiliation(s)
- Guido Plotz
- Klinik für Innere Medizin II, Universitätsklinikum des Saarlandes, Kirrberger Strasse, Gebäude 41, D-66421 Homburg, Germany.
| | | | | |
Collapse
|
44
|
Salsbury FR, Clodfelter JE, Gentry MB, Hollis T, Scarpinato KD. The molecular mechanism of DNA damage recognition by MutS homologs and its consequences for cell death response. Nucleic Acids Res 2006; 34:2173-85. [PMID: 16648361 PMCID: PMC1450329 DOI: 10.1093/nar/gkl238] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We determined the molecular mechanism of cell death response by MutS homologs in distinction to the repair event. Key protein–DNA contacts differ in the interaction of MutS homologs with cisplatinated versus mismatched DNA. Mutational analyses of protein–DNA contacts, which were predicted by molecular dynamics (MD) simulations, were performed. Mutations in suggested interaction sites can affect repair and cell death response independently, and to different extents. A glutamate residue is identified as the key contact with cisplatin-DNA. Mutation of the residue increases cisplatin resistance due to increased non-specific DNA binding. In contrast, the conserved phenylalanine that is instrumental and indispensable for mismatch recognition during repair is not required for cisplatin cytotoxicity. These differences in protein–DNA interactions are translated into localized conformational changes that affect nucleotide requirements and inter-subunit interactions. Specifically, the ability for ATP binding/hydrolysis has little consequence for the MMR-dependent damage response. As a consequence, intersubunit contacts are altered that most likely affect the interaction with downstream proteins. We here describe the interaction of MutS homologs with DNA damage, as it differs from the interaction with a mismatch, and its structural translation into all other functional regions of the protein as a mechanism to initiate cell death response and concomitantly inhibit repair.
Collapse
Affiliation(s)
| | - Jill E. Clodfelter
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center BoulevardWinston-Salem, NC 27157, USA
| | - Michael B. Gentry
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center BoulevardWinston-Salem, NC 27157, USA
| | - Thomas Hollis
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center BoulevardWinston-Salem, NC 27157, USA
| | - Karin Drotschmann Scarpinato
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center BoulevardWinston-Salem, NC 27157, USA
- To whom correspondence should be addressed. Tel: +1 336 713 4077; Fax: +1 336 716 0255;
| |
Collapse
|
45
|
Affiliation(s)
- Ravi R Iyer
- Department of Biochemistry and Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
46
|
Lin X, Trang J, Okuda T, Howell SB. DNA polymerase zeta accounts for the reduced cytotoxicity and enhanced mutagenicity of cisplatin in human colon carcinoma cells that have lost DNA mismatch repair. Clin Cancer Res 2006; 12:563-8. [PMID: 16428501 DOI: 10.1158/1078-0432.ccr-05-1380] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mutagenicity of cis-diamminedichloroplatinum(II) (DDP; cisplatin) and the rate at which resistance develops with repeated exposure to DDP are dependent on mutagenic translesional replication across DDP DNA adducts, mediated in part by DNA polymerase zeta, and on the integrity of the DNA mismatch repair (MMR) system. The aim of this study was to determine whether disabling Pol zeta by suppressing expression of its hREV3 subunit in human cancer cells can reduce the mutagenicity of DDP and whether loss of MMR facilitates mutagenic Pol zeta-dependent translesional bypass. The HCT116+ch3 (MMR(+)/REV3(+)) and HCT116 (MMR(-)/REV3(+)) human colon carcinoma cell lines were engineered to suppress hREV3 mRNA by stable expression of a short hairpin interfering RNA targeted to hREV3. The effect of knocking down REV3 expression was to completely offset the DDP resistance mediated by loss of MMR. Knockdown of REV3 also reduced the mutagenicity of DDP and eliminated the enhanced mutagenicity of DDP observed in the MMR(-)/REV3(+) cells. Similar results were obtained when the ability of the cells to express luciferase from a platinated plasmid was measured. We conclude that Pol zeta plays a central role in the mutagenic bypass of DDP adducts and that the DDP resistance, enhanced mutagenicity, and the increased capacity of MMR(-)/REV3(+) cells to express a gene burdened by DDP adducts are all dependent on the Pol zeta pathway.
Collapse
Affiliation(s)
- Xinjian Lin
- Department of Medicine and the Cancer Center, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Loss of DNA mismatch repair (MMR) in mammalian cells, as well as having a causative role in cancer, has been linked to resistance to certain DNA damaging agents including clinically important cytotoxic chemotherapeutics. MMR-deficient cells exhibit defects in G2/M cell cycle arrest and cell killing when treated with these agents. MMR-dependent cell cycle arrest occurs, at least for low doses of alkylating agents, only after the second S-phase following DNA alkylation, suggesting that two rounds of DNA replication are required to generate a checkpoint signal. These results point to an indirect role for MMR proteins in damage signalling where aberrant processing of mismatches leads to the generation of DNA structures (single-strand gaps and/or double-strand breaks) that provoke checkpoint activation and cell killing. Significantly, recent studies have revealed that the role of MMR proteins in mismatch repair can be uncoupled from the MMR-dependent damage responses. Thus, there is a threshold of expression of MSH2 or MLH1 required for proper checkpoint and cell-death signalling, even though sub-threshold levels are sufficient for fully functional MMR repair activity. Segregation is also revealed through the identification of mutations in MLH1 or MSH2 that provide alleles functional in MMR but not in DNA damage responses and mutations in MSH6 that compromise MMR but not in apoptotic responses to DNA damaging agents. These studies suggest a direct role for MMR proteins in recognizing and signalling DNA damage responses that is independent of the MMR catalytic repair process. How MMR-dependent G2 arrest may link to cell death remains elusive and we speculate that it is perhaps the resolution of the MMR-dependent G2 cell cycle arrest following DNA damage that is important in terms of cell survival.
Collapse
Affiliation(s)
- Vincent O'Brien
- Centre for Oncology and Applied Pharmacology, Cancer Research UK Beatson Laboratories, Garscube Estate, Glasgow G61 1BD, UK.
| | | |
Collapse
|
48
|
Zorbas H, Keppler BK. Cisplatin damage: are DNA repair proteins saviors or traitors to the cell? Chembiochem 2005; 6:1157-66. [PMID: 15934047 DOI: 10.1002/cbic.200400427] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Haralabos Zorbas
- Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | |
Collapse
|
49
|
Park SJ, Armstrong S, Kim CH, Yu M, Robertson K, Kelley MR, Lee SH. Lack of EGF receptor contributes to drug sensitivity of human germline cells. Br J Cancer 2005; 92:334-41. [PMID: 15655552 PMCID: PMC2361860 DOI: 10.1038/sj.bjc.6602315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Germline mutations have been associated with generation of various types of tumour. In this study, we investigated genetic alteration of germline tumours that affect the drug sensitivity of cells. Although all germline tumour cells we tested were hypersensitive to DNA-damaging drugs, no significant alteration was observed in their DNA repair activity or the expression of DNA repair proteins. In contrast, germline tumours expressed very low level of epidermal growth factor receptor (EGFR) compared to drug-resistant ovarian cancer cells. An immunohistochemical analysis indicated that most of the primary germline tumours we tested expressed very low level of EGFR. In accordance with this, overexpression of EGFR in germline tumour cells showed an increase in drug resistance, suggesting that a lack of EGFR, at least in part, contributes to the drug sensitivity of germline tumours.
Collapse
Affiliation(s)
- S-J Park
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Adamson AW, Beardsley DI, Kim WJ, Gao Y, Baskaran R, Brown KD. Methylator-induced, mismatch repair-dependent G2 arrest is activated through Chk1 and Chk2. Mol Biol Cell 2005; 16:1513-26. [PMID: 15647386 PMCID: PMC551512 DOI: 10.1091/mbc.e04-02-0089] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SN1 DNA methylating agents such as the nitrosourea N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) elicit a G2/M checkpoint response via a mismatch repair (MMR) system-dependent mechanism; however, the exact nature of the mechanism governing MNNG-induced G2/M arrest and how MMR mechanistically participates in this process are unknown. Here, we show that MNNG exposure results in activation of the cell cycle checkpoint kinases ATM, Chk1, and Chk2, each of which has been implicated in the triggering of the G2/M checkpoint response. We document that MNNG induces a robust, dose-dependent G2 arrest in MMR and ATM-proficient cells, whereas this response is abrogated in MMR-deficient cells and attenuated in ATM-deficient cells treated with moderate doses of MNNG. Pharmacological and RNA interference approaches indicated that Chk1 and Chk2 are both required components for normal MNNG-induced G2 arrest. MNNG-induced nuclear exclusion of the cell cycle regulatory phosphatase Cdc25C occurred in an MMR-dependent manner and was compromised in cells lacking ATM. Finally, both Chk1 and Chk2 interact with the MMR protein MSH2, and this interaction is enhanced after MNNG exposure, supporting the notion that the MMR system functions as a molecular scaffold at the sites of DNA damage that facilitates activation of these kinases.
Collapse
Affiliation(s)
- Aaron W Adamson
- Department of Biochemistry and Molecular Biology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|