1
|
Sudakov NP, Chang HM, Renn TY, Klimenkov IV. Degenerative and Regenerative Actin Cytoskeleton Rearrangements, Cell Death, and Paradoxical Proliferation in the Gills of Pearl Gourami ( Trichogaster leerii) Exposed to Suspended Soot Microparticles. Int J Mol Sci 2023; 24:15146. [PMID: 37894826 PMCID: PMC10607021 DOI: 10.3390/ijms242015146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The effect is studied of water-suspended soot microparticles on the actin cytoskeleton, apoptosis, and proliferation in the gill epithelium of pearl gourami. To this end, the fish are kept in aquariums with 0.005 g/L of soot for 5 and 14 days. Laser confocal microscopy is used to find that at the analyzed times of exposure to the pollutant zones appear in the gill epithelium, where the actin framework of adhesion belts dissociates and F-actin either forms clumps or concentrates perinuclearly. It is shown that the exposure to soot microparticles enhances apoptosis. On day 5, suppression of the proliferation of cells occurs, but the proliferation increases to the control values on day 14. Such a paradoxical increase in proliferation may be a compensatory process, maintaining the necessary level of gill function under the exposure to toxic soot. This process may occur until the gills' recovery reserve is exhausted. In general, soot microparticles cause profound changes in the actin cytoskeleton in gill cells, greatly enhance cell death, and influence cell proliferation as described. Together, these processes may cause gill dysfunction and affect the viability of fish.
Collapse
Affiliation(s)
- Nikolay P. Sudakov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Ting-Yi Renn
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Igor V. Klimenkov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| |
Collapse
|
2
|
Sudakov NP, Klimenkov IV, Bedoshvili YD, Arsent'ev KY, Gorshkov AG, Izosimova ON, Yakhnenko VM, Kupchinskii AB, Didorenko SI, Likhoshway YV. Early structural and functional changes in Baikal Sculpin gills exposed to suspended soot microparticles in experiment. CHEMOSPHERE 2022; 290:133241. [PMID: 34896428 DOI: 10.1016/j.chemosphere.2021.133241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The toxic influence of soot microparticles on terrestrial organisms has been well studied, although there is scarce data on how microparticles could affect hydrobionts. We performed a first-ever study of the short-term (5 days) impact of furnace soot (0.005 g/L) on the structural and functional features of gill cells in the Baikal Sculpin species Paracottus knerii, Dybowski, 1874. The soot samples used in the experiment were composed of small (10-100 nm) particles and larger (up to 20 μm) aggregates. The dominant fractions of the polycyclic aromatic hydrocarbons of these microparticles were phenanthrene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzofluoranthenes, benzopyrenes, indeno[1,2,3-c,d]pyrenes, and benzo[ghi]perylene. Trace element analysis of the soot detected the presence of C, S, Si, Al, Ca, K, Mg, P, and Fe. The gill condition was assessed with electron scanning, transmission, and laser confocal microscopy. Soot induces degenerative changes in the macrostructure and surface of secondary lamellae and increases mucus production in fish gills. A decrease in mitochondrial activity, an increase in reactive oxygen species production, and an increase in the frequency of programmed cell death in gill epithelium were observed under the influence of soot. In chloride cells, an induction of macroautophagy was detected. In general, the changes in fish gills after the short-term influence of soot microparticles indicate the stress of respiratory and osmotic regulation systems in fish. The data obtained are important for forming a coherent picture of the impact of soot on hydrobionts and for developing bioindication methods for evaluating the risks of their influence on aquatic ecosystems.
Collapse
Affiliation(s)
- Nikolay P Sudakov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia.
| | - Igor V Klimenkov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Yekaterina D Bedoshvili
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Kirill Yu Arsent'ev
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Alexander G Gorshkov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Oksana N Izosimova
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Vera M Yakhnenko
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Alexandr B Kupchinskii
- Baikal Museum, Siberian Branch, Russian Academy of Sciences, 1 Akademicheskaya St., Listvyanka, 664520, Russia
| | - Sergei I Didorenko
- Baikal Museum, Siberian Branch, Russian Academy of Sciences, 1 Akademicheskaya St., Listvyanka, 664520, Russia
| | - Yelena V Likhoshway
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| |
Collapse
|
3
|
Velotta JP, Wegrzyn JL, Ginzburg S, Kang L, Czesny S, O'Neill RJ, McCormick SD, Michalak P, Schultz ET. Transcriptomic imprints of adaptation to fresh water: parallel evolution of osmoregulatory gene expression in the Alewife. Mol Ecol 2017; 26:831-848. [DOI: 10.1111/mec.13983] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Jonathan P. Velotta
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06269-3043 USA
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06269-3043 USA
| | - Samuel Ginzburg
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06269-3043 USA
| | - Lin Kang
- Department of Biological Sciences; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Sergiusz Czesny
- Lake Michigan Biological Station; Illinois Natural History Survey; University of Illinois; Zion IL 60099 USA
| | - Rachel J. O'Neill
- Department of Molecular and Cell Biology; University of Connecticut; Storrs CT 06269-3125 USA
| | - Stephen D. McCormick
- Conte Anadromous Fish Research Center; U.S. Geological Survey; Turners Falls MA 01376 USA
| | - Pawel Michalak
- Department of Biological Sciences; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Eric T. Schultz
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06269-3043 USA
| |
Collapse
|
4
|
Abstract
Organisms exposed to altered salinity must be able to perceive osmolality change because metabolism has evolved to function optimally at specific intracellular ionic strength and composition. Such osmosensing comprises a complex physiological process involving many elements at organismal and cellular levels of organization. Input from numerous osmosensors is integrated to encode magnitude, direction, and ionic basis of osmolality change. This combinatorial nature of osmosensing is discussed with emphasis on fishes.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Science, Physiological Genomics Group, University of California, Davis, Davis, California
| |
Collapse
|
5
|
|
6
|
Galvez F, Tsui T, Wood CM. Cultured trout gill epithelia enriched in pavement cells or in mitochondria-rich cells provides insights into Na+ and Ca2+ transport. In Vitro Cell Dev Biol Anim 2008; 44:415-25. [DOI: 10.1007/s11626-008-9131-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Accepted: 06/10/2008] [Indexed: 11/24/2022]
|
7
|
Trout gill cells in primary culture on solid and permeable supports. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:903-12. [DOI: 10.1016/j.cbpa.2007.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/20/2007] [Accepted: 09/20/2007] [Indexed: 11/22/2022]
|
8
|
Zhou B, Nichols J, Playle RC, Wood CM. An in vitro biotic ligand model (BLM) for silver binding to cultured gill epithelia of freshwater rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol 2005; 202:25-37. [PMID: 15589974 DOI: 10.1016/j.taap.2004.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 06/02/2004] [Indexed: 11/17/2022]
Abstract
"Reconstructed" gill epithelia on filter supports were grown in primary culture from dispersed gill cells of freshwater rainbow trout (Oncorhynchus mykiss). This preparation contains both pavement cells and chloride cells, and after 7-9 days in culture, permits exposure of the apical surface to true freshwater while maintaining blood-like culture media on the basolateral surface, and exhibits a stable transepithelial resistance (TER) and transepithelial potential (TEP) under these conditions. These epithelia were used to develop a possible in vitro version of the biotic ligand model (BLM) for silver; the in vivo BLM uses short-term gill binding of the metal to predict acute silver toxicity as a function of freshwater chemistry. Radio-labeled silver ((110m)Ag as AgNO(3)) was placed on the apical side (freshwater), and the appearance of (110m)Ag in the epithelia (binding) and in the basolateral media (flux) over 3 h were monitored. Silver binding (greater than the approximate range 0-100 mug l(-1)) and silver flux were concentration-dependent with a 50% saturation point (apparent K(d)) value of about 10 mug l(-1) or 10(-7) M, very close to the 96-h LC50 in vivo in the same water chemistry. There were no adverse effects of silver on TER, TEP, or Na(+), K(+)-ATPase activity, though the latter declined over longer exposures, as in vivo. Silver flux over 3 h was small (<20%) relative to binding, and was insensitive to water chemistry. However, silver binding was decreased by elevations in freshwater Na(+) and dissolved organic carbon (humic acid) concentrations, increased by elevations in freshwater Cl(-) and reductions in pH, and insensitive to elevations in Ca(2+). With the exception of the pH response, these effects were qualitatively and quantitatively similar to in vivo BLM responses. The results suggest that an in vitro BLM approach may provide a simple and cost-effective way for evaluating the protective effects of site-specific waters.
Collapse
Affiliation(s)
- Bingsheng Zhou
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.
| | | | | | | |
Collapse
|
9
|
Sandbichler AM, Pelster B. Acid-base regulation in isolated gill cells of the goldfish (Carassius auratus). J Comp Physiol B 2004; 174:601-10. [PMID: 15503056 DOI: 10.1007/s00360-004-0449-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2004] [Indexed: 10/26/2022]
Abstract
Mechanisms of acid release and intracellular pH (pH(i)) homeostasis were analysed in goldfish (Carassius auratus) gill cells in primary culture. The rate of acid secretion was measured using a cytosensor microphysiometer, and pH(i) was determined using the fluorescent probe 2',7'-bis-(3-carboxypropyl)-5-(and-6)-carboxyfluorescein (BCPCF). Amiloride, a Na(+) channel and Na(+)/H(+) exchanger (NHE) inhibitor, had no effect on pH(i), but acid secretion of the gill cells was significantly impaired. In the presence of amiloride, the intracellular acidification (achieved using the NH(4)Cl pulse technique) was more severe than in the absence of amiloride, and recovery from the acidosis was slowed down. Accordingly, acid secretion of gill cells was severely reduced in the absence of extracellular Na(+). Under steady-state conditions, 4,4'-diisothiocyanatodihydro-stilbene-2,2'-disulfonic acid (DIDS), a HCO(3)(-)-transport inhibitor, caused a slow acidification of pH(i), and acid secretion was significantly reduced. No recovery from intracellular acidification was observed in the presence of DIDS. Bafilomycin A(1), an inhibitor of V-ATPase, had no effect on steady-state pH(i) and recovery from an intracellular acidification, whereas the rate of acid secretion under steady-state conditions was slightly reduced. Immunohistochemistry clearly revealed the presence of the V-ATPase B-subunit in goldfish gill lamellae. Taken together, these results suggest that a Na(+)-dependent HCO(3)(-) transport is the dominant mechanism besides an NHE and V-ATPase to control pH(i) in goldfish gill cells.
Collapse
Affiliation(s)
- Adolf Michael Sandbichler
- Institut für Zoologie und Limnologie, Leopold-Franzens-Universität Innsbruck, 6020 Innsbruck, Austria
| | | |
Collapse
|
10
|
Leguen I, Prunet P. Effect of hypotonic shock on cultured pavement cells from freshwater or seawater rainbow trout gills. Comp Biochem Physiol A Mol Integr Physiol 2004; 137:259-69. [PMID: 15123200 DOI: 10.1016/j.cbpb.2003.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 09/25/2003] [Accepted: 09/26/2003] [Indexed: 11/17/2022]
Abstract
The effect of hypotonic shock on cultured pavement gill cells from freshwater (FW)- and seawater (SW)-adapted trout was investigated. Exposure to 2/3rd strength Ringer solution produced an increase in cell volume followed by a slow regulatory volume decrease (RVD). The hypotonic challenge also induced a biphasic increase in cytosolic Ca(2+) with an initial peak followed by a sustained plateau. Absence of external Ca(2+) did not modify cell volume under isotonic conditions, but inhibited RVD after hypotonic shock. [Ca(2+)](i) response to hypotonicity was also partially inhibited in Ca-free bathing solutions. Similar results were obtained whether using cultured gill cells prepared from FW or SW fishes. When comparing freshly isolated cells with cultured gill cells, a similar Ca(2+) signalling response to hypotonic shock was observed regardless of the presence or absence of Ca(2+) in the solution. In conclusion, gill pavement cells in primary culture are able to regulate cell volume after a cell swelling and express a RVD response associated with an intracellular calcium increase. A similar response to a hypotonic shock was recorded for cultured gill cells collected from FW and SW trout. Finally, we showed that calcium responses were physiologically relevant as comparable results were observed with freshly isolated cells exposed to hypoosmotic shock.
Collapse
Affiliation(s)
- Isabelle Leguen
- INRA-SCRIBE, Fish Adaptation and Stress Group, IFR Reproduction, Development and Ecophysiology, campus de Beaulieu, 35042 Rennes Cedex, France.
| | | |
Collapse
|
11
|
Wood CM, Kelly SP, Zhou B, Fletcher M, O'Donnell M, Eletti B, Pärt P. Cultured gill epithelia as models for the freshwater fish gill. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1566:72-83. [PMID: 12421539 DOI: 10.1016/s0005-2736(02)00595-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We review recent progress in the development of models for the freshwater teleost gill based on reconstructed flat epithelia grown on permeable filter supports in primary culture. Methods are available for single-seeded insert (SSI) preparations consisting of pavement cells (PVCs) only from trout and tilapia, and double-seeded insert (DSI) preparations from trout, containing both PVCs (85%) and mitochondria-rich cells (MRCs, 15%), as in the intact gill. While there are some quantitative differences, both SSI and DSI epithelia manifest electrical and passive permeability characteristics typical of intact gills and representative of very tight epithelia. Both preparations withstand apical freshwater exposure, exhibiting large increases in transepithelial resistance (TER), negative transepithelial potential (TEP), and low rates of ion loss, but there is only a small active apical-to-basolateral "influx" of Cl(-) (and not of Na(+)). Responses to various hormonal treatments are described (thyroid hormone T3, prolactin, and cortisol). Cortisol has the most marked effects, stimulating Na(+),K(+)-ATPase activity and promoting active Na(+) and Cl(-) influxes in DSI preparations, and raising TER and reducing passive ion effluxes in both epithelia via reductions in paracellular permeability. Experiments using DSI epithelia lacking Na(+) uptake demonstrate that both NH(3) and NH(4)(+) diffusion occur, but are not large enough to account for normal rates of branchial ammonia excretion, suggesting that Na(+)-linked carrier-mediated processes are important for ammonia excretion in vivo. Future research goals are suggested.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
12
|
Marshall WS. Na(+), Cl(-), Ca(2+) and Zn(2+) transport by fish gills: retrospective review and prospective synthesis. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 293:264-83. [PMID: 12115901 DOI: 10.1002/jez.10127] [Citation(s) in RCA: 322] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The secondary active Cl(-) secretion in seawater (SW) teleost fish gills and elasmobranch rectal gland involves basolateral Na(+),K(+)-ATPase and NKCC, apical membrane CFTR anion channels, and a paracellular Na(+)-selective conductance. In freshwater (FW) teleost gill, the mechanism of NaCl uptake is more controversial and involves apical V-type H(+)-ATPase linked to an apical Na(+) channel, apical Cl(-)-HCO-3 exchange and basolateral Na(+),K(+)-ATPase. Ca(2+) uptake (in FW and SW) is via Ca(2+) channels in the apical membrane and Ca(2+)-ATPase in the basolateral membrane. Mainly this transport occurs in mitochondria rich (MR) chloride cells, but there is a role for the pavement cells also. Future research will likely expand in two major directions, molded by methodology: first in physiological genomics of all the transporters, including their expression, trafficking, operation, and regulation at the molecular level, and second in biotelemetry to examine multivariable components in behavioral physiological ecology, thus widening the integration of physiology from the molecular to the environmental levels while deepening understanding at all levels.
Collapse
Affiliation(s)
- W S Marshall
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada, B2G 2W5
| |
Collapse
|