1
|
Roy U, Desai SS, Kumari S, Bushra T, Choudhary B, Raghavan SC. Understanding the Role of miR-29a in the Regulation of RAG1, a Gene Associated with the Development of the Immune System. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1125-1138. [PMID: 39269689 DOI: 10.4049/jimmunol.2300344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
The process of Ag receptor diversity is initiated by RAGs consisting of RAG1 and RAG2 in developing lymphocytes. Besides its role as a sequence-specific nuclease during V(D)J recombination, RAGs can also act as a structure-specific nuclease leading to genome instability. Thus, regulation of RAG expression is essential to maintaining genome stability. Previously, the role of miR29c in the regulation of RAG1 was identified. In this article, we report the regulation of RAG1 by miR-29a in the lymphocytes of both mice (Mus musculus) and humans (Homo sapiens). The level of RAG1 could be modulated by overexpression of miR-29a and inhibition using anti-miRs. Argonaute2-immunoprecipitation and high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation studies established the association of miR-29a and RAG1 with Argonaute proteins. We observed a negative correlation between miR-29a and RAG1 levels in mouse B and T cells and leukemia patients. Overexpression of pre-miR-29a in the bone marrow cells of mice led to the generation of mature miR-29a transcripts and reduced RAG1 expression, which led to a significant reduction in V(D)J recombination in pro-B cells. Importantly, our studies are consistent with the phenotype reported in miR-29a knockout mice, which showed impaired immunity and survival defects. Finally, we show that although both miR-29c and miR-29a can regulate RAG1 at mRNA and protein levels, miR-29a substantially impacts immunity and survival. Our results reveal that the repression of RAG1 activity by miR-29a in B cells of mice and humans is essential to maintain Ig diversity and prevent hematological malignancies resulting from aberrant RAG1 expression in lymphocytes.
Collapse
Affiliation(s)
- Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sagar Sanjiv Desai
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
| | - Susmita Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Tanzeem Bushra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
2
|
Kumari R, Roy U, Desai S, Mondal AS, Nair RR, Nilavar N, Choudhary B, Raghavan SC. MicroRNA, miR-501 regulate the V(D)J recombination in B cells. Biochem J 2023; 480:2061-2077. [PMID: 38084601 DOI: 10.1042/bcj20230250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The stringent regulation of RAGs (Recombination activating genes), the site-specific endonuclease responsible for V(D)J recombination, is important to prevent genomic rearrangements and chromosomal translocations in lymphoid cells. In the present study, we identify a microRNA, miR-501, which can regulate the expression of RAG1 in lymphoid cells. Overexpression of the pre-miRNA construct led to the generation of mature miRNAs and a concomitant reduction in RAG1 expression, whereas inhibition using anti-miRs resulted in its enhanced expression. The direct interaction of the 3'UTR of miR-501 with RAG1 was confirmed by the reporter assay. Importantly, overexpression of miRNAs led to inhibition of V(D)J recombination in B cells, revealing their impact on the physiological function of RAGs. Of interest is the inverse correlation observed for miR-501 with RAG1 in various leukemia patients and lymphoid cell lines, suggesting its possible use in cancer therapy. Thus, our results reveal the regulation of RAG1 by miR-501-3p in B cells and thus V(D)J recombination and its possible implications on immunoglobulin leukemogenesis.
Collapse
Affiliation(s)
- Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sagar Desai
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India
| | - Arannya S Mondal
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rajshree R Nair
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Namrata Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Paranjape AM, Desai SS, Nishana M, Roy U, Nilavar NM, Mondal A, Kumari R, Radha G, Katapadi VK, Choudhary B, Raghavan SC. Nonamer dependent RAG cleavage at CpGs can explain mechanism of chromosomal translocations associated to lymphoid cancers. PLoS Genet 2022; 18:e1010421. [PMID: 36228010 PMCID: PMC9595545 DOI: 10.1371/journal.pgen.1010421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/25/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Chromosomal translocations are considered as one of the major causes of lymphoid cancers. RAG complex, which is responsible for V(D)J recombination, can also cleave non-B DNA structures and cryptic RSSs in the genome leading to chromosomal translocations. The mechanism and factors regulating the illegitimate function of RAGs resulting in oncogenesis are largely unknown. Upon in silico analysis of 3760 chromosomal translocations from lymphoid cancer patients, we find that 93% of the translocation breakpoints possess adjacent cryptic nonamers (RAG binding sequences), of which 77% had CpGs in proximity. As a proof of principle, we show that RAGs can efficiently bind to cryptic nonamers present at multiple fragile regions and cleave at adjacent mismatches generated to mimic the deamination of CpGs. ChIP studies reveal that RAGs can indeed recognize these fragile sites on a chromatin context inside the cell. Finally, we show that AID, the cytidine deaminase, plays a significant role during the generation of mismatches at CpGs and reconstitute the process of RAG-dependent generation of DNA breaks both in vitro and inside the cells. Thus, we propose a novel mechanism for generation of chromosomal translocation, where RAGs bind to the cryptic nonamer sequences and direct cleavage at adjacent mismatch generated due to deamination of meCpGs or cytosines.
Collapse
Affiliation(s)
- Amita M. Paranjape
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sagar S. Desai
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mayilaadumveettil Nishana
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Namrata M. Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amrita Mondal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Gudapureddy Radha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
- * E-mail: (BC); (SCR)
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- * E-mail: (BC); (SCR)
| |
Collapse
|
4
|
Znc2 module of RAG1 contributes towards structure-specific nuclease activity of RAGs. Biochem J 2020; 477:3567-3582. [PMID: 32886094 DOI: 10.1042/bcj20200361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Recombination activating genes (RAGs), consisting of RAG1 and RAG2 have ability to perform spatially and temporally regulated DNA recombination in a sequence specific manner. Besides, RAGs also cleave at non-B DNA structures and are thought to contribute towards genomic rearrangements and cancer. The nonamer binding domain of RAG1 binds to the nonamer sequence of the signal sequence during V(D)J recombination. However, deletion of NBD did not affect RAG cleavage on non-B DNA structures. In the present study, we investigated the involvement of other RAG domains when RAGs act as a structure-specific nuclease. Studies using purified central domain (CD) and C-terminal domain (CTD) of the RAG1 showed that CD of RAG1 exhibited high affinity and specific binding to heteroduplex DNA, which was irrespective of the sequence of single-stranded DNA, unlike CTD which showed minimal binding. Furthermore, we show that ZnC2 of RAG1 is crucial for its binding to DNA structures as deletion and point mutations abrogated the binding of CD to heteroduplex DNA. Our results also provide evidence that unlike RAG cleavage on RSS, central domain of RAG1 is sufficient to cleave heteroduplex DNA harbouring pyrimidines, but not purines. Finally, we show that a point mutation in the DDE catalytic motif is sufficient to block the cleavage of CD on heteroduplex DNA. Therefore, in the present study we demonstrate that the while ZnC2 module in central domain of RAG1 is required for binding to non-B DNA structures, active site amino acids are important for RAGs to function as a structure-specific nuclease.
Collapse
|
5
|
Structural gymnastics of RAG-mediated DNA cleavage in V(D)J recombination. Curr Opin Struct Biol 2018; 53:178-186. [PMID: 30476719 DOI: 10.1016/j.sbi.2018.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/05/2018] [Indexed: 11/22/2022]
Abstract
A hallmark of vertebrate immunity is the diverse repertoire of antigen-receptor genes that results from combinatorial splicing of gene coding segments by V(D)J recombination. The (RAG1-RAG2)2 endonuclease complex (RAG) specifically recognizes and cleaves a pair of recombination signal sequences (RSSs), 12-RSS and 23-RSS, via the catalytic steps of nicking and hairpin formation. Both RSSs immediately flank the coding end segments and are composed of a conserved heptamer, a conserved nonamer, and a non-conserved spacer of either 12 base pairs (bp) or 23 bp in between. A single RAG complex only synapses a 12-RSS and a 23-RSS, which was denoted the 12/23 rule, a dogma that ensures recombination between V, D and J segments, but not within the same type of segments. This review recapitulates current structural studies to highlight the conformational transformations in both the RAG complex and the RSS during the consecutive steps of catalysis. The emerging structural mechanism emphasizes distortion of intact RSS and nicked RSS exerted by a piston-like motion in RAG1 and by dimer closure, respectively. Bipartite recognition of heptamer and nonamer, flexibly linked nonamer-binding domain dimer relatively to the heptamer recognition region dimer, and RSS plasticity and bending by HMGB1 together contribute to the molecular basis of the 12/23 rule in the RAG molecular machine.
Collapse
|
6
|
Abstract
The mechanism for initiating DNA cleavage by DDE-family enzymes, including the RAG endonuclease, which initiates V(D)J recombination, is not well understood. Here we report six cryo-EM structures of zebrafish RAG in complex with one or two intact recombination signal sequences (RSSs), at up to 3.9-Å resolution. Unexpectedly, these structures reveal DNA melting at the heptamer of the RSSs, thus resulting in a corkscrew-like rotation of coding-flank DNA and the positioning of the scissile phosphate in the active site. Substrate binding is associated with dimer opening and a piston-like movement in RAG1, first outward to accommodate unmelted DNA and then inward to wedge melted DNA. These precleavage complexes show limited base-specific contacts of RAG at the conserved terminal CAC/GTG sequence of the heptamer, thus suggesting conservation based on a propensity to unwind. CA and TG overwhelmingly dominate terminal sequences in transposons and retrotransposons, thereby implicating a universal mechanism for DNA melting during the initiation of retroviral integration and DNA transposition.
Collapse
|
7
|
Khan FA, Ali SO. Physiological Roles of DNA Double-Strand Breaks. J Nucleic Acids 2017; 2017:6439169. [PMID: 29181194 PMCID: PMC5664317 DOI: 10.1155/2017/6439169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/24/2017] [Indexed: 12/20/2022] Open
Abstract
Genomic integrity is constantly threatened by sources of DNA damage, internal and external alike. Among the most cytotoxic lesions is the DNA double-strand break (DSB) which arises from the cleavage of both strands of the double helix. Cells boast a considerable set of defences to both prevent and repair these breaks and drugs which derail these processes represent an important category of anticancer therapeutics. And yet, bizarrely, cells deploy this very machinery for the intentional and calculated disruption of genomic integrity, harnessing potentially destructive DSBs in delicate genetic transactions. Under tight spatiotemporal regulation, DSBs serve as a tool for genetic modification, widely used across cellular biology to generate diverse functionalities, ranging from the fundamental upkeep of DNA replication, transcription, and the chromatin landscape to the diversification of immunity and the germline. Growing evidence points to a role of aberrant DSB physiology in human disease and an understanding of these processes may both inform the design of new therapeutic strategies and reduce off-target effects of existing drugs. Here, we review the wide-ranging roles of physiological DSBs and the emerging network of their multilateral regulation to consider how the cell is able to harness DNA breaks as a critical biochemical tool.
Collapse
Affiliation(s)
- Farhaan A. Khan
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| | - Syed O. Ali
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| |
Collapse
|
8
|
Raveendran D, Raghavan SC. Biochemical Characterization of Nonamer Binding Domain of RAG1 Reveals its Thymine Preference with Respect to Length and Position. Sci Rep 2016; 6:19091. [PMID: 26742581 PMCID: PMC4705477 DOI: 10.1038/srep19091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/20/2015] [Indexed: 12/15/2022] Open
Abstract
RAG complex consisting of RAG1 and RAG2 is a site-specific endonuclease responsible for the generation of antigen receptor diversity. It cleaves recombination signal sequence (RSS), comprising of conserved heptamer and nonamer. Nonamer binding domain (NBD) of RAG1 plays a central role in the recognition of RSS. To investigate the DNA binding properties of the domain, NBD of murine RAG1 was cloned, expressed and purified. Electrophoretic mobility shift assays showed that NBD binds with high affinity to nonamer in the context of 12/23 RSS or heteroduplex DNA. NBD binding was specific to thymines when single stranded DNA containing poly A, C, G or T were used. Biolayer interferometry studies showed that poly T binding to NBD was robust and comparable to that of 12RSS. More than 23 nt was essential for NBD binding at homothymidine stretches. On a double-stranded DNA, NBD could bind to A:T stretches, but not G:C or random sequences. Although NBD is indispensable for sequence specific activity of RAGs, external supplementation of purified nonamer binding domain to NBD deleted cRAG1/cRAG2 did not restore its activity, suggesting that the overall domain architecture of RAG1 is important. Therefore, we define the sequence requirements of NBD binding to DNA.
Collapse
Affiliation(s)
- Deepthi Raveendran
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
9
|
Javadekar SM, Raghavan SC. Snaps and mends: DNA breaks and chromosomal translocations. FEBS J 2015; 282:2627-45. [PMID: 25913527 DOI: 10.1111/febs.13311] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/29/2015] [Accepted: 04/23/2015] [Indexed: 01/11/2023]
Abstract
Integrity in entirety is the preferred state of any organism. The temporal and spatial integrity of the genome ensures continued survival of a cell. DNA breakage is the first step towards creation of chromosomal translocations. In this review, we highlight the factors contributing towards the breakage of chromosomal DNA. It has been well-established that the structure and sequence of DNA play a critical role in selective fragility of the genome. Several non-B-DNA structures such as Z-DNA, cruciform DNA, G-quadruplexes, R loops and triplexes have been implicated in generation of genomic fragility leading to translocations. Similarly, specific sequences targeted by proteins such as Recombination Activating Genes and Activation Induced Cytidine Deaminase are involved in translocations. Processes that ensure the integrity of the genome through repair may lead to persistence of breakage and eventually translocations if their actions are anomalous. An insufficient supply of nucleotides and chromatin architecture may also play a critical role. This review focuses on a range of events with the potential to threaten the genomic integrity of a cell, leading to cancer.
Collapse
Affiliation(s)
- Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
10
|
Compound heterozygous mutation of Rag1 leading to Omenn syndrome. PLoS One 2015; 10:e0121489. [PMID: 25849362 PMCID: PMC4388548 DOI: 10.1371/journal.pone.0121489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/02/2015] [Indexed: 01/09/2023] Open
Abstract
Omenn syndrome is a primary immunodeficiency disorder, featuring susceptibility to infections and autoreactive T cells and resulting from defective genomic rearrangement of genes for the T cell and B cell receptors. The most frequent etiologies are hypomorphic mutations in "non-core" regions of the Rag1 or Rag2 genes, the protein products of which are critical members of the cellular apparatus for V(D)J recombination. In this report, we describe an infant with Omenn syndrome with a previously unreported termination mutation (p.R142*) in Rag1 on one allele and a partially characterized substitution mutation (p.V779M) in a "core" region of the other Rag1 allele. Using a cellular recombination assay, we found that while the p.R142* mutation completely abolished V(D)J recombination activity, the p.V779M mutation conferred a severe, but not total, loss of V(D)J recombination activity. The recombination defect of the V779 mutant was not due to overall misfolding of Rag1, however, as this mutant supported wild-type levels of V(D)J cleavage. These findings provide insight into the role of this poorly understood region of Rag1 and support the role of Rag1 in a post-cleavage stage of recombination.
Collapse
|
11
|
Synapsis alters RAG-mediated nicking at Tcrb recombination signal sequences: implications for the “beyond 12/23” rule. Mol Cell Biol 2014; 34:2566-80. [PMID: 24797073 DOI: 10.1128/mcb.00411-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
At the Tcrb locus, Vβ-to-Jβ rearrangement is permitted by the 12/23 rule but is not observed in vivo, a restriction termed the “beyond 12/23” rule (B12/23 rule). Previous work showed that Vβ recombination signal sequences (RSSs) do not recombine with Jβ RSSs because Jβ RSSs are crippled for either nicking or synapsis. This result raised the following question: how can crippled Jβ RSSs recombine with Dβ RSSs? We report here that the nicking of some Jβ RSSs can be substantially stimulated by synapsis with a 3′Dβ1 partner RSS. This result helps to reconcile disagreement in the field regarding the impact of synapsis on nicking. Furthermore, our data allow for the classification of Tcrb RSSs into two major categories: those that nick quickly and those that nick slowly in the absence of a partner. Slow-nicking RSSs can be stimulated to nick more efficiently upon synapsis with an appropriate B12/23 partner, and our data unexpectedly suggest that fast-nicking RSSs can be inhibited for nicking upon synapsis with an inappropriate partner. These observations indicate that the RAG proteins exert fine control over every step of V(D)J cleavage and support the hypothesis that initial RAG binding can occur on RSSs with either 12- or 23-bp spacers (12- or 23-RSSs, respectively).
Collapse
|
12
|
Kumari R, Raghavan SC. Structure-specific nuclease activity of RAGs is modulated by sequence, length and phase position of flanking double-stranded DNA. FEBS J 2014; 282:4-18. [PMID: 25327637 DOI: 10.1111/febs.13121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/10/2014] [Accepted: 10/17/2014] [Indexed: 11/28/2022]
Abstract
RAGs (recombination activating genes) are responsible for the generation of antigen receptor diversity through the process of combinatorial joining of different V (variable), D (diversity) and J (joining) gene segments. In addition to its physiological property, wherein RAG functions as a sequence-specific nuclease, it can also act as a structure-specific nuclease leading to genomic instability and cancer. In the present study, we investigate the factors that regulate RAG cleavage on non-B DNA structures. We find that RAG binding and cleavage on heteroduplex DNA is dependent on the length of the double-stranded flanking region. Besides, the immediate flanking double-stranded region regulates RAG activity in a sequence-dependent manner. Interestingly, the cleavage efficiency of RAGs at the heteroduplex region is influenced by the phasing of DNA. Thus, our results suggest that sequence, length and phase positions of the DNA can affect the efficiency of RAG cleavage when it acts as a structure-specific nuclease. These findings provide novel insights on the regulation of the pathological functions of RAGs.
Collapse
Affiliation(s)
- Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
13
|
G-quadruplex structures formed at the HOX11 breakpoint region contribute to its fragility during t(10;14) translocation in T-cell leukemia. Mol Cell Biol 2013; 33:4266-81. [PMID: 24001773 DOI: 10.1128/mcb.00540-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The t(10;14) translocation involving the HOX11 gene is found in several T-cell leukemia patients. Previous efforts to determine the causes of HOX11 fragility were not successful. The role of non-B DNA structures is increasingly becoming an important cause of genomic instability. In the present study, bioinformatics analysis revealed two G-quadruplex-forming motifs at the HOX11 breakpoint cluster. Gel shift assays showed formation of both intra- and intermolecular G-quadruplexes, the latter being more predominant. The structure formation was dependent on four stretches of guanines, as revealed by mutagenesis. Circular dichroism analysis identified parallel conformations for both quadruplexes. The non-B DNA structure could block polymerization during replication on a plasmid, resulting in consistent K(+)-dependent pause sites, which were abolished upon mutation of G-motifs, thereby demonstrating the role of the stretches of guanines even on double-stranded DNA. Extrachromosomal assays showed that the G-quadruplex motifs could block transcription, leading to reduced expression of green fluorescent protein (GFP) within cells. More importantly, sodium bisulfite modification assay showed the single-stranded character at regions I and II of HOX11 in the genome. Thus, our findings suggest the occurrence of G-quadruplex structures at the HOX11 breakpoint region, which could explain its fragility during the t(10;14) translocation.
Collapse
|
14
|
Malu S, Malshetty V, Francis D, Cortes P. Role of non-homologous end joining in V(D)J recombination. Immunol Res 2013; 54:233-46. [PMID: 22569912 DOI: 10.1007/s12026-012-8329-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathway of V(D)J recombination was discovered almost three decades ago. Yet it continues to baffle scientists because of its inherent complexity and the multiple layers of regulation that are required to efficiently generate a diverse repertoire of T and B cells. The non-homologous end-joining (NHEJ) DNA repair pathway is an integral part of the V(D)J reaction, and its numerous players perform critical functions in generating this vast diversity, while ensuring genomic stability. In this review, we summarize the efforts of a number of laboratories including ours in providing the mechanisms of V(D)J regulation with a focus on the NHEJ pathway. This involves discovering new players, unraveling unknown roles for known components, and understanding how deregulation of these pathways contributes to generation of primary immunodeficiencies. A long-standing interest of our laboratory has been to elucidate various mechanisms that control RAG activity. Our recent work has focused on understanding the multiple protein-protein interactions and protein-DNA interactions during V(D)J recombination, which allow efficient and regulated generation of the antigen receptors. Exploring how deregulation of this process contributes to immunodeficiencies also continues to be an important area of research for our group.
Collapse
Affiliation(s)
- Shruti Malu
- Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | |
Collapse
|
15
|
Nishana M, Raghavan SC. Role of recombination activating genes in the generation of antigen receptor diversity and beyond. Immunology 2013; 137:271-81. [PMID: 23039142 DOI: 10.1111/imm.12009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 08/19/2012] [Accepted: 08/21/2012] [Indexed: 01/18/2023] Open
Abstract
V(D)J recombination is the process by which antibody and T-cell receptor diversity is attained. During this process, antigen receptor gene segments are cleaved and rejoined by non-homologous DNA end joining for the generation of combinatorial diversity. The major players of the initial process of cleavage are the proteins known as RAG1 (recombination activating gene 1) and RAG2. In this review, we discuss the physiological function of RAGs as a sequence-specific nuclease and its pathological role as a structure-specific nuclease. The first part of the review discusses the basic mechanism of V(D)J recombination, and the last part focuses on how the RAG complex functions as a sequence-specific and structure-specific nuclease. It also deals with the off-target cleavage of RAGs and its implications in genomic instability.
Collapse
|
16
|
A non-B DNA can replace heptamer of V(D)J recombination when present along with a nonamer: implications in chromosomal translocations and cancer. Biochem J 2013; 448:115-25. [PMID: 22891626 DOI: 10.1042/bj20121031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The RAG (recombination-activating gene) complex is responsible for the generation of antigen receptor diversity by acting as a sequence-specific nuclease. Recent studies have shown that it also acts as a structure-specific nuclease. However, little is known about the factors regulating this activity at the genomic level. We show in the present study that the proximity of a V(D)J nonamer to heteroduplex DNA significantly increases RAG cleavage and binding efficiencies at physiological concentrations of MgCl(2). The position of the nonamer with respect to heteroduplex DNA was important, but not orientation. A spacer length of 18 bp between the nonamer and mismatch was optimal for RAG-mediated DNA cleavage. Mutations to the sequence of the nonamer and deletion of the nonamer-binding domain of RAG1 reinforced the role of the nonamer in the enhancement in RAG cleavage. Interestingly, partial mutation of the nonamer did not significantly reduce RAG cleavage on heteroduplex DNA, suggesting that even cryptic nonamers were sufficient to enhance RAG cleavage. More importantly, we show that the fragile region involved in chromosomal translocations associated with BCL2 (B-cell lymphoma 2) can be cleaved by RAGs following a nonamer-dependent mechanism. Hence our results from the present study suggest that a non-B DNA can replace the heptamer of RSS (recombination signal sequence) when present adjacent to nonamers, explaining the generation of certain chromosomal translocations in lymphoid malignancies.
Collapse
|
17
|
Robbiani DF, Nussenzweig MC. Chromosome translocation, B cell lymphoma, and activation-induced cytidine deaminase. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:79-103. [PMID: 22974238 DOI: 10.1146/annurev-pathol-020712-164004] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of B cell lymphomas in the early 1980s led to the cloning of genes (c-MYC and IGH) at a chromosome translocation breakpoint. A rush followed to identify recurrently translocated genes in all types of cancer, which led to remarkable advances in our understanding of cancer genetics. B lymphocyte tumors commonly bear chromosome translocations to immunoglobulin genes, which points to a role for antibody gene diversification processes in tumorigenesis. The discovery of activation-induced cytidine deaminase (AID) and the use of murine models to study translocation have led to a new understanding of how these events contribute to the genesis of lymphomas. Here, we review these advances with a focus on AID and insights gained from the study of translocations in primary cells.
Collapse
Affiliation(s)
- Davide F Robbiani
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | | |
Collapse
|
18
|
Abstract
Developing lymphocytes must assemble antigen receptor genes encoding the B cell and T cell receptors. This process is executed by the V(D)J recombination reaction, which can be divided into DNA cleavage and DNA joining steps. The former is carried out by a lymphocyte-specific RAG endonuclease, which mediates DNA cleavage at two recombining gene segments and their flanking RAG recognition sequences. RAG cleavage generates four broken DNA ends that are repaired by nonhomologous end joining forming coding and signal joints. On rare occasions, these DNA ends may join aberrantly forming chromosomal lesions such as translocations, deletions and inversions that have the potential to cause cellular transformation and lymphoid tumors. We discuss the activation of DNA damage responses by RAG-induced DSBs focusing on the component pathways that promote their normal repair and guard against their aberrant resolution. Moreover, we discuss how this DNA damage response impacts processes important for lymphocyte development.
Collapse
Affiliation(s)
- Beth A Helmink
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
19
|
Naik AK, Raghavan SC. Differential reaction kinetics, cleavage complex formation, and nonamer binding domain dependence dictate the structure-specific and sequence-specific nuclease activity of RAGs. J Mol Biol 2011; 415:475-88. [PMID: 22119487 DOI: 10.1016/j.jmb.2011.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/27/2011] [Accepted: 11/01/2011] [Indexed: 11/28/2022]
Abstract
During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the "nonamer binding region," which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
20
|
Nambiar M, Raghavan SC. How does DNA break during chromosomal translocations? Nucleic Acids Res 2011; 39:5813-25. [PMID: 21498543 PMCID: PMC3152359 DOI: 10.1093/nar/gkr223] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 12/20/2022] Open
Abstract
Chromosomal translocations are one of the most common types of genetic rearrangements and are molecular signatures for many types of cancers. They are considered as primary causes for cancers, especially lymphoma and leukemia. Although many translocations have been reported in the last four decades, the mechanism by which chromosomes break during a translocation remains largely unknown. In this review, we summarize recent advances made in understanding the molecular mechanism of chromosomal translocations.
Collapse
Affiliation(s)
- Mridula Nambiar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
21
|
Nussenzweig A, Nussenzweig MC. Origin of chromosomal translocations in lymphoid cancer. Cell 2010; 141:27-38. [PMID: 20371343 DOI: 10.1016/j.cell.2010.03.016] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/13/2010] [Accepted: 03/16/2010] [Indexed: 11/26/2022]
Abstract
Aberrant fusions between heterologous chromosomes are among the most prevalent cytogenetic abnormalities found in cancer cells. Oncogenic chromosomal translocations provide cells with a proliferative or survival advantage. They may either initiate transformation or be acquired secondarily as a result of genomic instability. Here, we highlight recent advances toward understanding the origin of chromosomal translocations in incipient lymphoid cancers and how tumor-suppressive pathways normally limit the frequency of these aberrant recombination events. Deciphering the mechanisms that mediate chromosomal fusions will open new avenues for developing therapeutic strategies aimed at eliminating lesions that lead to the initiation, maintenance, and progression of cancer.
Collapse
Affiliation(s)
- André Nussenzweig
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
22
|
Naik AK, Lieber MR, Raghavan SC. Cytosines, but not purines, determine recombination activating gene (RAG)-induced breaks on heteroduplex DNA structures: implications for genomic instability. J Biol Chem 2010; 285:7587-97. [PMID: 20051517 DOI: 10.1074/jbc.m109.089631] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sequence specificity of the recombination activating gene (RAG) complex during V(D)J recombination has been well studied. RAGs can also act as structure-specific nuclease; however, little is known about the mechanism of its action. Here, we show that in addition to DNA structure, sequence dictates the pattern and efficiency of RAG cleavage on altered DNA structures. Cytosine nucleotides are preferentially nicked by RAGs when present at single-stranded regions of heteroduplex DNA. Although unpaired thymine nucleotides are also nicked, the efficiency is many fold weaker. Induction of single- or double-strand breaks by RAGs depends on the position of cytosines and whether it is present on one or both of the strands. Interestingly, RAGs are unable to induce breaks when adenine or guanine nucleotides are present at single-strand regions. The nucleotide present immediately next to the bubble sequence could also affect RAG cleavage. Hence, we propose "C((d))C((S))C((S))" (d, double-stranded; s, single-stranded) as a consensus sequence for RAG-induced breaks at single-/double-strand DNA transitions. Such a consensus sequence motif is useful for explaining RAG cleavage on other types of DNA structures described in the literature. Therefore, the mechanism of RAG cleavage described here could explain facets of chromosomal rearrangements specific to lymphoid tissues leading to genomic instability.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
23
|
Base flipping in V(D)J recombination: insights into the mechanism of hairpin formation, the 12/23 rule, and the coordination of double-strand breaks. Mol Cell Biol 2009; 29:5889-99. [PMID: 19720743 DOI: 10.1128/mcb.00187-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tn5 transposase cleaves the transposon end using a hairpin intermediate on the transposon end. This involves a flipped base that is stacked against a tryptophan residue in the protein. However, many other members of the cut-and-paste transposase family, including the RAG1 protein, produce a hairpin on the flanking DNA. We have investigated the reversed polarity of the reaction for RAG recombination. Although the RAG proteins appear to employ a base-flipping mechanism using aromatic residues, the putatively flipped base is not at the expected location and does not appear to stack against any of the said aromatic residues. We propose an alternative model in which a flipped base is accommodated in a nonspecific pocket or cleft within the recombinase. This is consistent with the location of the flipped base at position -1 in the coding flank, which can be occupied by purine or pyrimidine bases that would be difficult to stabilize using a single, highly specific, interaction. Finally, during this work we noticed that the putative base-flipping events on either side of the 12/23 recombination signal sequence paired complex are coupled to the nicking steps and serve to coordinate the double-strand breaks on either side of the complex.
Collapse
|
24
|
Zhang M, Swanson PC. HMGB1/2 can target DNA for illegitimate cleavage by the RAG1/2 complex. BMC Mol Biol 2009; 10:24. [PMID: 19317908 PMCID: PMC2666730 DOI: 10.1186/1471-2199-10-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 03/24/2009] [Indexed: 01/09/2023] Open
Abstract
Background V(D)J recombination is initiated in antigen receptor loci by the pairwise cleavage of recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins via a nick-hairpin mechanism. The RSS contains highly conserved heptamer (consensus: 5'-CACAGTG) and nonamer (consensus: 5'-ACAAAAACC) motifs separated by either 12- or 23-base pairs of poorly conserved sequence. The high mobility group proteins HMGB1 and HMGB2 (HMGB1/2) are highly abundant architectural DNA binding proteins known to promote RAG-mediated synapsis and cleavage of consensus recombination signals in vitro by facilitating RSS binding and bending by the RAG1/2 complex. HMGB1/2 are known to recognize distorted DNA structures such as four-way junctions, and damaged or modified DNA. Whether HMGB1/2 can promote RAG-mediated DNA cleavage at sites lacking a canonical RSS by targeting or stabilizing structural distortions is unclear, but is important for understanding the etiology of chromosomal translocations involving antigen receptor genes and proto-oncogene sequences that do not contain an obvious RSS-like element. Results Here we identify a novel DNA breakpoint site in the plasmid V(D)J recombination substrate pGG49 (bps6197) that is cleaved by the RAG proteins via a nick-hairpin mechanism. The bps6197 sequence lacks a recognizable heptamer at the breakpoint (5'-CCTGACG-3') but contains a nonamer-like element (5'-ACATTAACC-3') 30 base pairs from the cleavage site. We find that RAG-mediated bps6197 cleavage is promoted by HMGB1/2, requiring both HMG-box domains to be intact to facilitate RAG-mediated cleavage, and is stimulated by synapsis with a 12-RSS. A dyad-symmetric inverted repeat sequence lying 5' to the breakpoint is implicated as a target for HMGB1/2 activity. Conclusion We have identified a novel DNA sequence, called bps6197, that supports standard V(D)J-type cleavage despite the absence of an apparent heptamer motif. Efficient RAG-mediated bps6197 cleavage requires the presence of HMGB1/2, is stimulated by synapsis with a 12-RSS partner, and is directed in part by an inverted repeat sequence adjacent to the DNA cleavage site. These results have important implications for understanding how the RAG proteins can introduce a DNA double-strand break at DNA sequences that do not contain an obvious heptamer-like motif.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE, USA.
| | | |
Collapse
|
25
|
Tsai AG, Lu H, Raghavan SC, Muschen M, Hsieh CL, Lieber MR. Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell 2008; 135:1130-42. [PMID: 19070581 DOI: 10.1016/j.cell.2008.10.035] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 07/29/2008] [Accepted: 10/21/2008] [Indexed: 12/16/2022]
Abstract
We have assembled, annotated, and analyzed a database of over 1700 breakpoints from the most common chromosomal rearrangements in human leukemias and lymphomas. Using this database, we show that although the CpG dinucleotide constitutes only 1% of the human genome, it accounts for 40%-70% of breakpoints at pro-B/pre-B stage translocation regions-specifically, those near the bcl-2, bcl-1, and E2A genes. We do not observe CpG hotspots in rearrangements involving lymphoid-myeloid progenitors, mature B cells, or T cells. The stage specificity, lineage specificity, CpG targeting, and unique breakpoint distributions at these cluster regions may be explained by a lesion-specific double-strand breakage mechanism involving the RAG complex acting at AID-deaminated methyl-CpGs.
Collapse
Affiliation(s)
- Albert G Tsai
- Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, MC9176, Los Angeles, CA 90089-9176, USA
| | | | | | | | | | | |
Collapse
|
26
|
Lieber MR, Raghavan SC, Yu K. Mechanistic Aspects of Lymphoid Chromosomal Translocations. J Natl Cancer Inst Monogr 2008:8-11. [DOI: 10.1093/jncimonographs/lgn012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Nishihara T, Nagawa F, Imai T, Sakano H. RAG-heptamer interaction in the synaptic complex is a crucial biochemical checkpoint for the 12/23 recombination rule. J Biol Chem 2007; 283:4877-85. [PMID: 18089566 DOI: 10.1074/jbc.m709890200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In V(D)J recombination, the RAG1 and RAG2 protein complex cleaves the recombination signal sequences (RSSs), generating a hairpin structure at the coding end. The cleavage occurs only between two RSSs with different spacer lengths of 12 and 23 bp. Here we report that in the synaptic complex, recombination-activating gene (RAG) proteins interact with the 7-mer and unstack the adjacent base in the coding region. We generated a RAG1 mutant that exhibits reduced RAG-7-mer interaction, unstacking of the coding base, and hairpin formation. Mutation of the 23-RSS at the first position of the 7-mer, which has been reported to impair the cleavage of the partner 12-RSS, demonstrated phenotypes similar to those of the RAG1 mutant; the RAG interaction and base unstacking in the partner 12-RSS are reduced. We propose that the RAG-7-mer interaction is a critical step for coding DNA distortion and hairpin formation in the context of the 12/23 rule.
Collapse
Affiliation(s)
- Tadashi Nishihara
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
28
|
Drejer-Teel AH, Fugmann SD, Schatz DG. The beyond 12/23 restriction is imposed at the nicking and pairing steps of DNA cleavage during V(D)J recombination. Mol Cell Biol 2007; 27:6288-99. [PMID: 17636023 PMCID: PMC2099602 DOI: 10.1128/mcb.00835-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The beyond 12/23 (B12/23) rule ensures inclusion of a Dbeta gene segment in the assembled T-cell receptor (TCR) beta variable region exon and is manifest by a failure of direct Vbeta-to-Jbeta gene segment joining. The restriction is enforced during the DNA cleavage step of V(D)J recombination by the recombination-activating gene 1 and 2 (RAG1/2) proteins and the recombination signal sequences (RSSs) flanking the TCRbeta gene segments. Nothing is known about the step(s) at which DNA cleavage is defective or how TCRbeta locus sequences contribute to these defects. To address this, we examined the steps of DNA cleavage by the RAG proteins using TCRbeta locus V, D, and J RSS oligonucleotide substrates. The results demonstrate that the B12/23 rule is enforced through slow nicking of Jbeta substrates and to some extent through poor synapsis of Vbeta and Jbeta substrates. Nicking is controlled largely by the coding flank and, unexpectedly, the RSS spacer, while synapsis is controlled primarily by the RSS nonamer. The results demonstrate that different Jbeta substrates are crippled at different steps of cleavage by distinct combinations of defects in the various DNA elements and strongly suggest that the DNA nicking step of V(D)J recombination can be rate limiting in vivo.
Collapse
Affiliation(s)
- Anna H Drejer-Teel
- Department of Genetics, Yale University School of Medicine, 330 Cedar St., New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
29
|
The structure-specific nicking of small heteroduplexes by the RAG complex: implications for lymphoid chromosomal translocations. DNA Repair (Amst) 2007; 6:751-9. [PMID: 17307402 DOI: 10.1016/j.dnarep.2006.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/15/2006] [Accepted: 12/29/2006] [Indexed: 10/23/2022]
Abstract
During V(D)J recombination, the RAG complex binds at recombination signal sequences and creates double-strand breaks. In addition to this sequence-specific recognition of the RSS, the RAG complex has been shown to be a structure-specific nuclease, cleaving 3' overhangs and 3' flaps, and, more recently, 10 nucleotides (nt) bubble (heteroduplex) structures. Here, we assess the smallest size heteroduplex that core and full-length RAGs can cleave. We also test whether bubbles adjacent to a partial RSS are nicked any differently or any more efficiently than bubbles that are surrounded by random sequence. These points are important in considering what types and what size of non-B DNA structure that the RAG complex can nick, and this helps assess the role of the RAG complex in mediating lymphoid chromosomal translocations. We find that the smallest bubble nicked by the RAG complex is 3nt, and proximity to a partial or full RSS sequence does not affect the nicking by RAGs. RAG nicking efficiency increases with the size of the heteroduplex and is only about two-fold less efficient than an RSS when the bubble is 6nt. We consider these findings in the context of RAG nicking at non-B DNA structures in lymphoid chromosomal translocations.
Collapse
|
30
|
Sobacchi C, Marrella V, Rucci F, Vezzoni P, Villa A. RAG-dependent primary immunodeficiencies. Hum Mutat 2006; 27:1174-84. [PMID: 16960852 DOI: 10.1002/humu.20408] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in recombination activating genes 1 and 2 (RAG1 and RAG2) cause a spectrum of severe immunodeficiencies ranging from classical T cell-B cell-severe combined immunodeficiency (T(-)B(-)SCID) and Omenn syndrome (OS) to an increasing number of peculiar cases. While it is well established from biochemical data that the specific genetic defect in either of the RAG genes is the first determinant of the clinical presentation, there is also increasing evidence that environmental factors play an important role and can lead to a different phenotypic expression of a given genotype. However, a better understanding of the mechanisms by which the molecular defect impinges on the cellular phenotype of OS is still lacking. Ongoing studies in knock-in mice could better clarify this aspect.
Collapse
|
31
|
Rahman NS, Godderz LJ, Stray SJ, Capra JD, Rodgers KK. DNA cleavage of a cryptic recombination signal sequence by RAG1 and RAG2. Implications for partial V(H) gene replacement. J Biol Chem 2006; 281:12370-80. [PMID: 16531612 DOI: 10.1074/jbc.m507906200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibody and T cell receptor genes are assembled from gene segments by V(D)J recombination to produce an almost infinitely diverse repertoire of antigen specificities. Recombination is initiated by cleavage of conserved recombination signal sequences (RSS) by RAG1 and RAG2 during lymphocyte development. Recent evidence demonstrates that recombination can occur at noncanonical RSS sites within Ig genes or at other loci, outside the context of normal lymphocyte receptor gene rearrangement. We have characterized the ability of the RAG proteins to bind and cleave a cryptic RSS (cRSS) located within an Ig V(H) gene segment. The RAG proteins bound with sequence specificity to either the consensus RSS or the cRSS. The RAG proteins nick the cRSS on both the top and bottom strands, thereby bypassing the formation of the DNA hairpin intermediate observed in RAG cleavage of canonical RSS substrates. We propose that the RAG proteins may utilize an alternative mechanism for double-stranded DNA cleavage, depending on the substrate sequence. These results have implications for further diversification of the antigen receptor repertoire as well as the role of the RAG proteins in genomic instability.
Collapse
Affiliation(s)
- Negar S Rahman
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
Far from being mutually exclusive, immunodeficiency and autoimmunity may occur simultaneously. During the last years, analysis of Autoimmune Polyendocrinopathy--Candidiasis--Ectodermal Dystrophy (APECED) and Immunodysregulation--Polyendocrinopathy--Enteropathy--X-linked (IPEX), two rare monogenic forms of immunodeficiency associated with autoimmunity, has led to the identification of Auto Immune Regulator (AIRE) and Forkhead Box P3 (FOXP3), essential transcriptional regulators, involved in central tolerance and peripheral immune homeostasis, respectively. Characterization of the molecular and cellular mechanisms involved in APECED, and recognition that AIRE expression is sustained by effective thymopoiesis, has recently allowed to define that the autoimmunity of Omenn syndrome, a combined immunodeficiency due to defects of V(D)J recombination, also results from defective expression of AIRE. The implications of identification of the basis of autoimmunity in these rare forms of immunodeficiency have important implications for a better understanding of more common autoimmune disorders, and for development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Luigi D Notarangelo
- Angelo Nocivelli Institute for Molecular Medicine, Department of Pediatrics, University of Brescia, Brescia, Italy
| | | | | |
Collapse
|
33
|
Abstract
It has been unclear why certain defined DNA regions are consistently sites of chromosomal translocations. Some of these are simply sequences of recognition by endogenous recombination enzymes, but most are not. Recent progress indicates that some of the most common fragile sites in human neoplasm assume non-B DNA structures, namely deviations from the Watson-Crick helix. Because of the single strandedness within these non-B structures, they are vulnerable to structure-specific nucleases. Here we summarize these findings and integrate them with other recent data for non-B structures at sites of consistent constitutional chromosomal translocations.
Collapse
Affiliation(s)
- Sathees C Raghavan
- Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | |
Collapse
|
34
|
Raghavan SC, Swanson PC, Ma Y, Lieber MR. Double-strand break formation by the RAG complex at the bcl-2 major breakpoint region and at other non-B DNA structures in vitro. Mol Cell Biol 2005; 25:5904-19. [PMID: 15988007 PMCID: PMC1168826 DOI: 10.1128/mcb.25.14.5904-5919.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 12/30/2004] [Accepted: 04/10/2005] [Indexed: 11/20/2022] Open
Abstract
The most common chromosomal translocation in cancer, t(14;18) at the 150-bp bcl-2 major breakpoint region (Mbr), occurs in follicular lymphomas. The bcl-2 Mbr assumes a non-B DNA conformation, thus explaining its distinctive fragility. This non-B DNA structure is a target of the RAG complex in vivo, but not because of its primary sequence. Here we report that the RAG complex generates at least two independent nicks that lead to double-strand breaks in vitro, and this requires the non-B DNA structure at the bcl-2 Mbr. A 3-bp mutation is capable of abolishing the non-B structure formation and the double-strand breaks. The observations on the bcl-2 Mbr reflect more general properties of the RAG complex, which can bind and nick at duplex-single-strand transitions of other non-B DNA structures, resulting in double-strand breaks in vitro. Hence, the present study reveals novel insight into a third mechanism of action of RAGs on DNA, besides the standard heptamer/nonamer-mediated cleavage in V(D)J recombination and the in vitro transposase activity.
Collapse
Affiliation(s)
- Sathees C Raghavan
- Norris Comprehensive Cancer Center, Rm. 5428, University of Southern California Keck School of Medicine, 1441 Eastlake Ave., MC9176, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
35
|
Abstract
V(D)J recombination is a form of site-specific DNA rearrangement through which antigen receptor genes are assembled. This process involves the breakage and reunion of DNA mediated by two lymphoid cell-specific proteins, recombination activating genes RAG-1 and RAG-2, and ubiquitously expressed architectural DNA-binding proteins and DNA-repair factors. Here I review the progress toward understanding the composition, assembly, organization, and activity of the protein-DNA complexes that support the initiation of V(D)J recombination, as well as the molecular basis for the sequence-specific recognition of recombination signal sequences (RSSs) that are the targets of the RAG proteins. Parallels are drawn between V(D)J recombination and Tn5/Tn10 transposition with respect to the reactions, the proteins, and the protein-DNA complexes involved in these processes. I also consider the relative roles of the different sequence elements within the RSS in recognition, cleavage, and post-cleavage events. Finally, I discuss alternative DNA transactions mediated by the V(D)J recombinase, the protein-DNA complexes that support them, and factors and forces that control them.
Collapse
Affiliation(s)
- Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE 68178, USA.
| |
Collapse
|
36
|
Abstract
The genes that encode immunoglobulins and T-cell receptors must be assembled from the multiple variable (V), joining (J), and sometimes diversity (D) gene segments present in the germline loci. This process of V(D)J recombination is the major source of the immense diversity of the immune repertoire of jawed vertebrates. The recombinase that initiates the process, recombination-activating genes 1 (RAG1) and RAG2, belongs to a large family that includes transposases and retroviral integrases. RAG1/2 cleaves the DNA adjacent to the gene segments to be recombined, and the segments are then joined together by DNA repair factors. A decade of biochemical research on RAG1/2 has revealed many similarities to transposition, culminating with the observation that RAG1/2 can carry out transpositional strand transfer. Here, we discuss the parallels between V(D)J recombination and transposition, focusing specifically on the assembly of the recombination nucleoprotein complex, the mechanism of cleavage, the disassembly of post-cleavage complexes, and aberrant reactions carried out by the recombinase that do not result in successful locus rearrangement and may be deleterious to the organism. This work highlights the considerable diversity of transposition systems and their relation to V(D)J recombination.
Collapse
Affiliation(s)
- Jessica M Jones
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington DC, USA
| | | |
Collapse
|
37
|
Ciubotaru M, Schatz DG. Synapsis of recombination signal sequences located in cis and DNA underwinding in V(D)J recombination. Mol Cell Biol 2004; 24:8727-44. [PMID: 15367690 PMCID: PMC516766 DOI: 10.1128/mcb.24.19.8727-8744.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 02/21/2004] [Accepted: 06/22/2004] [Indexed: 11/20/2022] Open
Abstract
V(D)J recombination requires binding and synapsis of a complementary (12/23) pair of recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins, aided by a high-mobility group protein, HMG1 or HMG2. Double-strand DNA cleavage within this synaptic, or paired, complex is thought to involve DNA distortion or melting near the site of cleavage. Although V(D)J recombination normally occurs between RSSs located on the same DNA molecule (in cis), all previous studies that directly assessed RSS synapsis were performed with the two DNA substrates in trans. To overcome this limitation, we have developed a facilitated circularization assay using DNA substrates of reduced length to assess synapsis of RSSs in cis. We show that a 12/23 pair of RSSs is the preferred substrate for synapsis of cis RSSs and that the efficiency of pairing is dependent upon RAG1-RAG2 stoichiometry. Synapsis in cis occurs rapidly and is kinetically favored over synapsis of RSSs located in trans. This experimental system also allowed the generation of underwound DNA substrates containing pairs of RSSs in cis. Importantly, we found that the RAG proteins cleave such substrates substantially more efficiently than relaxed substrates and that underwinding may enhance RSS synapsis as well as RAG1/2-mediated catalysis. The energy stored in such underwound substrates may be used in the generation of DNA distortion and/or protein conformational changes needed for synapsis and cleavage. We propose that this unwinding is uniquely sensed during synapsis of an appropriate 12/23 pair of RSSs.
Collapse
Affiliation(s)
- Mihai Ciubotaru
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar St., TAC S625, New Haven, CT 06510.
| | | |
Collapse
|
38
|
De P, Peak MM, Rodgers KK. DNA cleavage activity of the V(D)J recombination protein RAG1 is autoregulated. Mol Cell Biol 2004; 24:6850-60. [PMID: 15254250 PMCID: PMC444861 DOI: 10.1128/mcb.24.15.6850-6860.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 10/07/2003] [Accepted: 05/12/2004] [Indexed: 01/13/2023] Open
Abstract
RAG1 and RAG2 catalyze the first DNA cleavage steps in V(D)J recombination. We demonstrate that the isolated central domain of RAG1 has inherent single-stranded (ss) DNA cleavage activity, which does not require, but is enhanced by, RAG2. The central domain, therefore, contains the active-site residues necessary to perform hydrolysis of the DNA phosphodiester backbone. Furthermore, the catalytic activity of this domain on ss DNA is abolished by addition of the C-terminal domain of RAG1. The inhibitory effects of this latter domain are suppressed on substrates containing double-stranded (ds) DNA. Together, the activities of the reconstituted domains on ss versus mixed ds-ss DNA approximate the activity of intact RAG1 in the presence of RAG2. We propose how the combined actions of the RAG1 domains may function in V(D)J recombination and also in aberrant cleavage reactions that may lead to genomic instability in B and T lymphocytes.
Collapse
Affiliation(s)
- Pallabi De
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | | | |
Collapse
|
39
|
Nagawa F, Hirose S, Nishizumi H, Nishihara T, Sakano H. Joining mutants of RAG1 and RAG2 that demonstrate impaired interactions with the coding-end DNA. J Biol Chem 2004; 279:38360-8. [PMID: 15249552 DOI: 10.1074/jbc.m405485200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In V(D)J joining of antigen receptor genes, two recombination signal sequences (RSSs), 12- and 23-RSSs, form a complex with the protein products of recombination activating genes, RAG1 and RAG2. DNaseI footprinting demonstrates that the interaction of RAG proteins with substrate RSS DNA is not just limited to the signal region but involves the coding sequence as well. Joining mutants of RAG1 and RAG2 demonstrate impaired interactions with the coding region in both pre- and postcleavage type complexes. A possible role of this RAG coding region interaction is discussed in the context of V(D)J recombination.
Collapse
Affiliation(s)
- Fumikiyo Nagawa
- Department of Biophysics and Biochemistry, Graduate School of Science, and Core Research for Evolutional Science and Technology Program of the Japan Science and Technology Agency, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
40
|
Nishihara T, Nagawa F, Nishizumi H, Kodama M, Hirose S, Hayashi R, Sakano H. In vitro processing of the 3'-overhanging DNA in the postcleavage complex involved in V(D)J joining. Mol Cell Biol 2004; 24:3692-702. [PMID: 15082765 PMCID: PMC387758 DOI: 10.1128/mcb.24.9.3692-3702.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The postcleavage complex involved in V(D)J joining is known to possess a transpositional strand transfer activity, whose physiological role is yet to be clarified. Here we report that RAG1 and RAG2 proteins in the signal end (SE) complex cleave the 3'-overhanging structure of the synthetic coding-end (CE) DNA in two successive steps in vitro. The 3'-overhanging structure is attacked by the SE complex imprecisely, near the double-stranded/single-stranded (ds/ss) junction, and transferred to the SE. The transferred overhang is then resolved and cleaved precisely at the ds/ss junction, generating either the linear or the circular cleavage products. Thus, the blunt-end structure is restored for the SE and variably processed ends are generated for the synthetic CE. This 3'-processing activity is observed not only with the core RAG2 but also with the full-length protein.
Collapse
Affiliation(s)
- Tadashi Nishihara
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Raghavan SC, Swanson PC, Wu X, Hsieh CL, Lieber MR. A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature 2004; 428:88-93. [PMID: 14999286 DOI: 10.1038/nature02355] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2003] [Accepted: 01/19/2004] [Indexed: 11/09/2022]
Abstract
The causes of spontaneous chromosomal translocations in somatic cells of biological organisms are largely unknown, although double-strand DNA breaks are required in all proposed mechanisms. The most common chromosomal abnormality in human cancer is the reciprocal translocation between chromosomes 14 and 18 (t(14;18)), which occurs in follicular lymphomas. The break at the immunoglobulin heavy-chain locus on chromosome 14 is an interruption of the normal V(D)J recombination process. But the breakage on chromosome 18, at the Bcl-2 gene, occurs within a confined 150-base-pair region (the major breakpoint region or Mbr) for reasons that have remained enigmatic. We have reproduced key features of the translocation process on an episome that propagates in human cells. The RAG complex--which is the normal enzyme for DNA cleavage at V, D or J segments--nicks the Bcl-2 Mbr in vitro and in vivo in a manner that reflects the pattern of the chromosomal translocations; however, the Mbr is not a V(D)J recombination signal. Rather the Bcl-2 Mbr assumes a non-B-form DNA structure within the chromosomes of human cells at 20-30% of alleles. Purified DNA assuming this structure contains stable regions of single-strandedness, which correspond well to the translocation regions in patients. Hence, a stable non-B-DNA structure in the human genome appears to be the basis for the fragility of the Bcl-2 Mbr, and the RAG complex is able to cleave this structure.
Collapse
Affiliation(s)
- Sathees C Raghavan
- Norris Comprehensive Cancer Center, Room 5428, University of Southern California Keck School of Medicine, 1441 Eastlake Ave., MC9176, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
42
|
Yant SR, Kay MA. Nonhomologous-end-joining factors regulate DNA repair fidelity during Sleeping Beauty element transposition in mammalian cells. Mol Cell Biol 2003; 23:8505-18. [PMID: 14612396 PMCID: PMC262663 DOI: 10.1128/mcb.23.23.8505-8518.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Herein, we report that the DNA-dependent protein kinase (DNA-PK) regulates the DNA damage introduced during Sleeping Beauty (SB) element excision and reinsertion in mammalian cells. Using both plasmid- and chromosome-based mobility assays, we analyzed the repair of transposase-induced double-stranded DNA breaks in cells deficient in either the DNA-binding subunit of DNA-PK (Ku) or its catalytic subunit (DNA-PKcs). We found that the free 3' overhangs left after SB element excision were efficiently and accurately processed by the major Ku-dependent nonhomologous-end-joining pathway. Rejoining of broken DNA molecules in the absence of Ku resulted in extensive end degradation at the donor site and greatly increased the frequency of recombination with ectopic templates. Therefore, the major DNA-PK-dependent DNA damage response predominates over more-error-prone repair pathways and thereby facilitates high-fidelity DNA repair during transposon mobilization in mammalian cells. Although transposable elements were not found to be efficiently circularized after transposase-mediated excision, DNA-PK deficiency supported more-frequent transposase-mediated element insertion than was found in wild-type controls. We conclude that, based on its ability to regulate excision site junctional diversity and transposon insertion frequency, DNA-PK serves an important protective role during transpositional recombination in mammals.
Collapse
Affiliation(s)
- Stephen R Yant
- Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, California 94305-5208, USA
| | | |
Collapse
|
43
|
Swanson PC, Volkmer D, Wang L. Full-length RAG-2, and not full-length RAG-1, specifically suppresses RAG-mediated transposition but not hybrid joint formation or disintegration. J Biol Chem 2003; 279:4034-44. [PMID: 14612436 DOI: 10.1074/jbc.m311100200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RAG-1 and RAG-2 initiate V(D)J recombination by introducing DNA breaks at recombination signal sequences flanking a pair of antigen receptor gene segments. Occasionally, the RAG proteins mediate two other alternative DNA rearrangements in vivo: the rejoining of signal and coding ends and the transposition of signal ends into unrelated DNA. In contrast, truncated, catalytically active "core" RAG proteins readily catalyze these reactions in vitro, suggesting that full-length RAG proteins directly or indirectly suppress these undesired reactions in vivo. To discriminate between direct and indirect suppression models, full-length RAG proteins were purified and characterized in vitro. From mammalian cells, full-length RAG-1 is readily purified with core RAG-2 but not full-length RAG-2 and vice versa. Despite differences in DNA binding activity, recombinase containing either core or full-length RAG-1 or RAG-2 possess comparable cleavage, rejoining, and end-processing activity, as well as similar usage preferences for canonical versus cryptic recombination signals. However, recombinase containing full-length RAG-2, but not full-length RAG-1, exhibits dramatically reduced transposition activity in vitro. These data suggest RAG-mediated transposition and rejoining are differentially regulated by the full-length RAG proteins in vivo (the former directly by RAG-2 and the latter indirectly through other factors) and argue that noncore portions of the RAG proteins have little or no direct influence over V(D)J recombinase site specificity.
Collapse
Affiliation(s)
- Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, Nebraska 68178, USA.
| | | | | |
Collapse
|
44
|
Affiliation(s)
- Jorge Mansilla-Soto
- Immunobiology Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
45
|
Abstract
V(D)J recombination is the specialized DNA rearrangement used by cells of the immune system to assemble immunoglobulin and T-cell receptor genes from the preexisting gene segments. Because there is a large choice of segments to join, this process accounts for much of the diversity of the immune response. Recombination is initiated by the lymphoid-specific RAG1 and RAG2 proteins, which cooperate to make double-strand breaks at specific recognition sequences (recombination signal sequences, RSSs). The neighboring coding DNA is converted to a hairpin during breakage. Broken ends are then processed and joined with the help of several factors also involved in repair of radiation-damaged DNA, including the DNA-dependent protein kinase (DNA-PK) and the Ku, Artemis, DNA ligase IV, and Xrcc4 proteins, and possibly histone H2AX and the Mre11/Rad50/Nbs1 complex. There may be other factors not yet known. V(D)J recombination is strongly regulated by limiting access to RSS sites within chromatin, so that particular sites are available only in certain cell types and developmental stages. The roles of enhancers, histone acetylation, and chromatin remodeling factors in controlling accessibility are discussed. The RAG proteins are also capable of transposing RSS-ended fragments into new DNA sites. This transposition helps to explain the mechanism of RAG action and supports earlier proposals that V(D)J recombination evolved from an ancient mobile DNA element.
Collapse
Affiliation(s)
- Martin Gellert
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892-0540, USA.
| |
Collapse
|
46
|
Swanson PC. A RAG-1/RAG-2 tetramer supports 12/23-regulated synapsis, cleavage, and transposition of V(D)J recombination signals. Mol Cell Biol 2002; 22:7790-801. [PMID: 12391148 PMCID: PMC134746 DOI: 10.1128/mcb.22.22.7790-7801.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Initiation of V(D)J recombination involves the synapsis and cleavage of a 12/23 pair of recombination signal sequences by RAG-1 and RAG-2. Ubiquitous nonspecific DNA-bending factors of the HMG box family, such as HMG-1, are known to assist in these processes. After cleavage, the RAG proteins remain bound to the cut signal ends and, at least in vitro, support the integration of these ends into unrelated target DNA via a transposition-like mechanism. To investigate whether the protein complex supporting synapsis, cleavage, and transposition of V(D)J recombination signals utilized the same complement of RAG and HMG proteins, I compared the RAG protein stoichiometries and activities of discrete protein-DNA complexes assembled on intact, prenicked, or precleaved recombination signal sequence (RSS) substrates in the absence and presence of HMG-1. In the absence of HMG-1, I found that two discrete RAG-1/RAG-2 complexes are detected by mobility shift assay on all RSS substrates tested. Both contain dimeric RAG-1 and either one or two RAG-2 subunits. The addition of HMG-1 supershifts both complexes without altering the RAG protein stoichiometry. I find that 12/23-regulated recombination signal synapsis and cleavage are only supported in a protein-DNA complex containing HMG-1 and a RAG-1/RAG-2 tetramer. Interestingly, the RAG-1/RAG-2 tetramer also supports transposition, but HMG-1 is dispensable for its activity.
Collapse
Affiliation(s)
- Patrick C Swanson
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska 68178, USA.
| |
Collapse
|
47
|
Tsai CL, Drejer AH, Schatz DG. Evidence of a critical architectural function for the RAG proteins in end processing, protection, and joining in V(D)J recombination. Genes Dev 2002; 16:1934-49. [PMID: 12154124 PMCID: PMC186421 DOI: 10.1101/gad.984502] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In addition to creating the DNA double strand breaks that initiate V(D)J recombination, the RAG proteins are thought to play a critical role in the joining phase of the reaction. One such role, suggested by in vitro studies, might be to ensure the structural integrity of postcleavage complexes, but the significance of such a function in vivo is unknown. We have identified RAG1 mutants that are proficient in DNA cleavage but defective in their ability to interact with coding ends after cleavage and in the capture of target DNA for transposition. As a result, these mutants exhibit severe defects in hybrid joint formation, hairpin coding end opening, and transposition in vitro, and in V(D)J recombination in vivo. Our results suggest that the RAG proteins have an architectural function in facilitating proper and efficient V(D)J joining, and a protective function in preventing degradation of broken ends prior to joining.
Collapse
Affiliation(s)
- Chia-Lun Tsai
- Department of Molecular Biophysics and Biochemistry, Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
48
|
Abstract
Cleavage by the V(D)J recombinase at a pair of recombination signal sequences creates two coding ends and two signal ends. The RAG proteins can integrate these signal ends, without sequence specificity, into an unrelated target DNA molecule. Here we demonstrate that such transposition events are greatly stimulated by--and specifically targeted to--hairpins and other distorted DNA structures. The mechanism of target selection by the RAG proteins thus appears to involve recognition of distorted DNA. These data also suggest a novel mechanism for the formation of alternative recombination products termed hybrid joints, in which a signal end is joined to a hairpin coding end. We suggest that hybrid joints may arise by transposition in vivo and propose a new model to account for some recurrent chromosome translocations found in human lymphomas. According to this model, transposition can join antigen receptor loci to partner sites that lack recombination signal sequence elements but bear particular structural features. The RAG proteins are capable of mediating all necessary breakage and joining events on both partner chromosomes; thus, the V(D)J recombinase may be far more culpable for oncogenic translocations than has been suspected.
Collapse
Affiliation(s)
- Gregory S Lee
- Department of Immunology, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
49
|
Ostertag EM, Kazazian HH. Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res 2001; 11:2059-65. [PMID: 11731496 PMCID: PMC311219 DOI: 10.1101/gr.205701] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
L1 retrotransposons are pervasive in the human genome. Approximately 25% of recent L1 insertions in the genome are inverted and truncated at the 5' end of the element, but the mechanism of L1 inversion has been a complete mystery. We analyzed recent L1 inversions from the genomic database and discovered several findings that suggested a mechanism for the creation of L1 inversions, which we call twin priming. Twin priming is a consequence of target primed reverse transcription (TPRT), a coupled reverse transcription/integration reaction that L1 elements are thought to use during their retrotransposition. In TPRT, the L1 endonuclease cleaves DNA at its target site to produce a double-strand break with two single-strand overhangs. During twin priming, one of the overhangs anneals to the poly(A) tail of the L1 RNA, and the other overhang anneals internally on the RNA. The overhangs then serve as primers for reverse transcription. The data further indicate that a process identical to microhomology-driven single-strand annealing resolves L1 inversion intermediates.
Collapse
Affiliation(s)
- E M Ostertag
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
50
|
Affiliation(s)
- D G Hesslein
- Department of Cell Biology and Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|