1
|
Roussis IM, Pearton DJ, Niazi U, Tsaknakis G, Papadopoulos GL, Cook R, Saqi M, Ragoussis J, Strouboulis J. A novel role for Friend of GATA1 (FOG-1) in regulating cholesterol transport in murine erythropoiesis. PLoS Genet 2025; 21:e1011617. [PMID: 40048486 PMCID: PMC11913303 DOI: 10.1371/journal.pgen.1011617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/17/2025] [Accepted: 02/12/2025] [Indexed: 03/18/2025] Open
Abstract
Friend of GATA1 (FOG-1) is an essential transcriptional co-factor of the master erythroid transcription factor GATA1. The knockout of the Zfpm1 gene, coding for FOG-1, results in early embryonic lethality due to anemia in mice, similar to the embryonic lethal phenotype of the Gata1 gene knockout. However, a detailed molecular analysis of the Zfpm1 knockout phenotype in erythropoiesis is presently incomplete. To this end, we used CRISPR/Cas9 to knockout Zfpm1 in mouse erythroleukemic (MEL) cells. Phenotypic characterization of DMSO-induced terminal erythroid differentiation showed that the Zfpm1 knockout MEL cells did not progress past the proerythroblast stage of differentiation. Expression profiling of the Zfpm1 knockout MEL cells by RNAseq showed a lack of up-regulation of erythroid-related gene expression profiles. Bioinformatic analysis highlighted cholesterol transport as a pathway affected in the Zfpm1 knockout cells. Moreover, we show that the cholesterol transporters Abca1 and Ldlr fail to be repressed during erythroid differentiation in Zfpm1 knockout cells, resulting in higher intracellular lipid levels and higher membrane fluidity. We also show that in FOG-1 knockout cells, the nuclear levels of SREBP2, a key transcriptional regulator of cholesterol biosynthesis and transport, are markedly increased. On the basis of these findings we propose that FOG-1 (and, potentially, GATA1) regulate cholesterol homeostasis during erythroid differentiation directly through the down regulation of cholesterol transport genes and indirectly, through the repression of the SREBP2 transcriptional activator of cholesterol homeostasis. Taken together, our work provides a molecular basis for understanding FOG-1 functions in erythropoiesis and reveals a novel role for FOG-1 in cholesterol transport.
Collapse
Affiliation(s)
- Ioannis-Marios Roussis
- Red Cell Haematology Lab, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - David J. Pearton
- Red Cell Haematology Lab, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Umar Niazi
- Translational Bioinformatics, National Institute for Health Research Biomedical Centre, Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Grigorios Tsaknakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Crete, Greece
| | - Giorgio L. Papadopoulos
- Institute of Molecular Biology and Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Crete, Greece
| | - Riley Cook
- Bone Marrow Failure Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Mansoor Saqi
- Translational Bioinformatics, National Institute for Health Research Biomedical Centre, Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University and McGill Genome Centre, Montreal, Quebec, Canada
| | - John Strouboulis
- Red Cell Haematology Lab, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Liao R, Bresnick EH. Endogenous small molecule effectors in GATA transcription factor mechanisms governing biological and pathological processes. Exp Hematol 2024; 137:104252. [PMID: 38876253 PMCID: PMC11381147 DOI: 10.1016/j.exphem.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Transcriptional mechanisms establish and maintain complex genetic and protein networks to control cell state transitions. The hematopoietic transcription factor GATA1 is a master regulator of erythropoiesis and megakaryopoiesis, and human GATA1 genetic variants cause anemia and megakaryoblastic leukemia. Multiomic analyses revealed that GATA1 controls expression of transporters and metabolic enzymes that dictate intracellular levels of endogenous small molecules, including heme, metal ions, and sphingolipids. Besides its canonical function as a hemoglobin component, heme facilitates or antagonizes GATA1 function to regulate erythropoiesis via mechanisms dependent or independent of the heme-binding transcription factor BTB domain and CNC homology 1 (BACH1). GATA1 regulates the expression of genes encoding heme biosynthetic enzymes and BACH1. GATA1 maintains homeostasis of bioactive ceramides during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Disrupting ceramide homeostasis impairs critical cytokine signaling and is detrimental to erythroid cells. During erythroid maturation, GATA1 induces a zinc transporter switch that favors export versus import, thus dictating the intracellular zinc level, erythroblast survival, and differentiation. In aggregate, these studies support an emerging paradigm in which GATA factor-dependent transcriptional mechanisms control the intracellular levels of endogenous small molecules and small molecule-dependent feedback loops that serve as vital effectors of transcription factor activity, genome function, and cell state transitions.
Collapse
Affiliation(s)
- Ruiqi Liao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
3
|
Dolberg TB, Gunnels TF, Ling T, Sarnese KA, Crispino JD, Leonard JN. Building Synthetic Biosensors Using Red Blood Cell Proteins. ACS Synth Biol 2024; 13:1273-1289. [PMID: 38536408 PMCID: PMC11536268 DOI: 10.1021/acssynbio.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
As the use of engineered cell therapies expands from pioneering efforts in cancer immunotherapy to other applications, an attractive but less explored approach is the use of engineered red blood cells (RBCs). Compared to other cells, RBCs have a very long circulation time and reside in the blood compartment, so they could be ideally suited for applications as sentinel cells that enable in situ sensing and diagnostics. However, we largely lack tools for converting RBCs into biosensors. A unique challenge is that RBCs remodel their membranes during maturation, shedding many membrane components, suggesting that an RBC-specific approach may be needed. Toward addressing this need, here we develop a biosensing architecture built on RBC membrane proteins that are retained through erythropoiesis. This biosensor employs a mechanism in which extracellular ligand binding is transduced into intracellular reconstitution of a split output protein (including either a fluorophore or an enzyme). By comparatively evaluating a range of biosensor architectures, linker types, scaffold choices, and output signals, we identify biosensor designs and design features that confer substantial ligand-induced signal in vitro. Finally, we demonstrate that erythroid precursor cells engineered with our RBC-protein biosensors function in vivo. This study establishes a foundation for developing RBC-based biosensors that could ultimately address unmet needs including noninvasive monitoring of physiological signals for a range of diagnostic applications.
Collapse
Affiliation(s)
- Taylor B. Dolberg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Taylor F. Gunnels
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Te Ling
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kelly A. Sarnese
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
4
|
Katsumura KR, Liu P, Kim JA, Mehta C, Bresnick EH. Pathogenic GATA2 genetic variants utilize an obligate enhancer mechanism to distort a multilineage differentiation program. Proc Natl Acad Sci U S A 2024; 121:e2317147121. [PMID: 38422019 PMCID: PMC10927522 DOI: 10.1073/pnas.2317147121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024] Open
Abstract
Mutations in genes encoding transcription factors inactivate or generate ectopic activities to instigate pathogenesis. By disrupting hematopoietic stem/progenitor cells, GATA2 germline variants create a bone marrow failure and leukemia predisposition, GATA2 deficiency syndrome, yet mechanisms underlying the complex phenotypic constellation are unresolved. We used a GATA2-deficient progenitor rescue system to analyze how genetic variation influences GATA2 functions. Pathogenic variants impaired, without abrogating, GATA2-dependent transcriptional regulation. Variants promoted eosinophil and repressed monocytic differentiation without regulating mast cell and erythroid differentiation. While GATA2 and T354M required the DNA-binding C-terminal zinc finger, T354M disproportionately required the N-terminal finger and N terminus. GATA2 and T354M activated a CCAAT/Enhancer Binding Protein-ε (C/EBPε) enhancer, creating a feedforward loop operating with the T-cell Acute Lymphocyte Leukemia-1 (TAL1) transcription factor. Elevating C/EBPε partially normalized hematopoietic defects of GATA2-deficient progenitors. Thus, pathogenic germline variation discriminatively spares or compromises transcription factor attributes, and retaining an obligate enhancer mechanism distorts a multilineage differentiation program.
Collapse
Affiliation(s)
- Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Peng Liu
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Cancer Informatics Shared Resource, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Jeong-ah Kim
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| |
Collapse
|
5
|
Takasaki K, Chou ST. GATA1 in Normal and Pathologic Megakaryopoiesis and Platelet Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:261-287. [PMID: 39017848 DOI: 10.1007/978-3-031-62731-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
GATA1 is a highly conserved hematopoietic transcription factor (TF), essential for normal erythropoiesis and megakaryopoiesis, that encodes a full-length, predominant isoform and an amino (N) terminus-truncated isoform GATA1s. It is consistently expressed throughout megakaryocyte development and interacts with its target genes either independently or in association with binding partners such as FOG1 (friend of GATA1). While the N-terminus and zinc finger have classically been demonstrated to be necessary for the normal regulation of platelet-specific genes, murine models, cell-line studies, and human case reports indicate that the carboxy-terminal activation domain and zinc finger also play key roles in precisely controlling megakaryocyte growth, proliferation, and maturation. Murine models have shown that disruptions to GATA1 increase the proliferation of immature megakaryocytes with abnormal architecture and impaired terminal differentiation into platelets. In humans, germline GATA1 mutations result in variable cytopenias, including macrothrombocytopenia with abnormal platelet aggregation and excessive bleeding tendencies, while acquired GATA1s mutations in individuals with trisomy 21 (T21) result in transient abnormal myelopoiesis (TAM) and myeloid leukemia of Down syndrome (ML-DS) arising from a megakaryocyte-erythroid progenitor (MEP). Taken together, GATA1 plays a key role in regulating megakaryocyte differentiation, maturation, and proliferative capacity. As sequencing and proteomic technologies expand, additional GATA1 mutations and regulatory mechanisms contributing to human diseases of megakaryocytes and platelets are likely to be revealed.
Collapse
Affiliation(s)
- Kaoru Takasaki
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Dolberg TB, Gunnels TF, Ling T, Sarnese KA, Crispino JD, Leonard JN. Building synthetic biosensors using red blood cell proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.16.571988. [PMID: 38168174 PMCID: PMC10760168 DOI: 10.1101/2023.12.16.571988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As the use of engineered cell therapies expands from pioneering efforts in cancer immunotherapy to other applications, an attractive but less explored approach is the use of engineered red blood cells (RBCs). Compared to other cells, RBCs have a very long circulation time and reside in the blood compartment, so they could be ideally suited for applications as sentinel cells that enable in situ sensing and diagnostics. However, we largely lack tools for converting RBCs into biosensors. A unique challenge is that RBCs remodel their membranes during maturation, shedding many membrane components, suggesting that an RBC-specific approach may be needed. Towards addressing this need, here we develop a biosensing architecture built on RBC membrane proteins that are retained through erythropoiesis. This biosensor employs a mechanism in which extracellular ligand binding is transduced into intracellular reconstitution of a split output protein (including either a fluorophore or an enzyme). By comparatively evaluating a range of biosensor architectures, linker types, scaffold choices, and output signals, we identify biosensor designs and design features that confer substantial ligand-induced signal in vitro. Finally, we demonstrate that erythroid precursor cells engineered with our RBC protein biosensors function in vivo. This study establishes a foundation for developing RBC-based biosensors that could ultimately address unmet needs including non-invasive monitoring of physiological signals for a range of diagnostic applications.
Collapse
Affiliation(s)
- Taylor B. Dolberg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Taylor F. Gunnels
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Te Ling
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kelly A. Sarnese
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
7
|
Johnson KD, Jung MM, Tran VL, Bresnick EH. Interferon regulatory factor-8-dependent innate immune alarm senses GATA2 deficiency to alter hematopoietic differentiation and function. Curr Opin Hematol 2023; 30:117-123. [PMID: 37254854 PMCID: PMC10236032 DOI: 10.1097/moh.0000000000000763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PURPOSE OF REVIEW Recent discoveries have provided evidence for mechanistic links between the master regulator of hematopoiesis GATA2 and the key component of interferon and innate immunity signaling pathways, interferon-regulatory factor-8 (IRF8). These links have important implications for the control of myeloid differentiation in physiological and pathological states. RECENT FINDINGS GATA2 deficiency resulting from loss of the Gata2 -77 enhancer in progenitors triggers an alarm that instigates the transcriptional induction of innate immune signaling and distorts a myeloid differentiation program. This pathological alteration renders progenitors hyperresponsive to interferon γ, toll-like receptor and interleukin-6 signaling and impaired in granulocyte-macrophage colony-stimulating factor signaling. IRF8 upregulation in -77-/- progenitors promotes monocyte and dendritic cell differentiation while suppressing granulocytic differentiation. As PU.1 promotes transcription of Irf8 and other myeloid and B-lineage genes, GATA2-mediated repression of these genes opposes the PU.1-dependent activating mechanism. SUMMARY As GATA2 deficiency syndrome is an immunodeficiency disorder often involving myelodysplastic syndromes and acute myeloid leukemia, elucidating how GATA2 commissions and decommissions genome activity and developmental regulatory programs will unveil mechanisms that go awry when GATA2 levels and/or activities are disrupted.
Collapse
Affiliation(s)
- Kirby D Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
8
|
Jung MM, Shen S, Botten GA, Olender T, Katsumura KR, Johnson KD, Soukup AA, Liu P, Zhang Q, Jensvold ZD, Lewis PW, Beagrie RA, Low JK, Yang L, Mackay JP, Godley LA, Brand M, Xu J, Keles S, Bresnick EH. Pathogenic human variant that dislocates GATA2 zinc fingers disrupts hematopoietic gene expression and signaling networks. J Clin Invest 2023; 133:e162685. [PMID: 36809258 PMCID: PMC10065080 DOI: 10.1172/jci162685] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer-mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter-zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.
Collapse
Affiliation(s)
- Mabel Minji Jung
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Siqi Shen
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Giovanni A. Botten
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas Olender
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute–General Hospital, Ottawa, Ontario, Canada
| | - Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Kirby D. Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Peng Liu
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Qingzhou Zhang
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute–General Hospital, Ottawa, Ontario, Canada
| | - Zena D. Jensvold
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter W. Lewis
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Robert A. Beagrie
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jason K.K. Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lihua Yang
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Joel P. Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lucy A. Godley
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois, USA
| | - Marjorie Brand
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jian Xu
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sunduz Keles
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| |
Collapse
|
9
|
Wang X, Liu S, Yu J. Multi-lineage Differentiation from Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:159-175. [PMID: 38228964 DOI: 10.1007/978-981-99-7471-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The hematopoietic stem cells (HSCs) have the ability to differentiate and give rise to all mature blood cells. Commitment to differentiation progressively limits the self-renewal potential of the original HSCs by regulating the level of lineage-specific gene expression. In this review, we will summarize the current understanding of the molecular mechanisms underlying HSC differentiation toward erythroid, myeloid, and lymphocyte lineages. Moreover, we will decipher how the single-cell technologies advance the lineage-biased HSC subpopulations and their differentiation potential.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing, China.
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences / Peking Union Medical College, Chengdu, China.
| | - Siqi Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing, China
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing, China.
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences / Peking Union Medical College, Chengdu, China.
| |
Collapse
|
10
|
Iwasaki-Yokozawa S, Nanjo R, Akiyama-Oda Y, Oda H. Lineage-specific, fast-evolving GATA-like gene regulates zygotic gene activation to promote endoderm specification and pattern formation in the Theridiidae spider. BMC Biol 2022; 20:223. [PMID: 36203191 PMCID: PMC9535882 DOI: 10.1186/s12915-022-01421-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background
The process of early development varies across the species-rich phylum Arthropoda. Owing to the limited research strategies for dissecting lineage-specific processes of development in arthropods, little is known about the variations in early arthropod development at molecular resolution. The Theridiidae spider, Parasteatoda tepidariorum, has its genome sequenced and could potentially contribute to dissecting early embryonic processes. Results We present genome-wide identification of candidate genes that exhibit locally restricted expression in germ disc forming stage embryos of P. tepidariorum, based on comparative transcriptomes of isolated cells from different regions of the embryo. A subsequent pilot screen by parental RNA interference identifies three genes required for body axis formation. One of them is a GATA-like gene that has been fast evolving after duplication and divergence from a canonical GATA family gene. This gene is designated fuchi nashi (fuchi) after its knockdown phenotypes, where the cell movement toward the formation of a germ disc was reversed. fuchi expression occurs in cells outside a forming germ disc and persists in the endoderm. Transcriptome and chromatin accessibility analyses of fuchi pRNAi embryos suggest that early fuchi activity regulates chromatin state and zygotic gene activation to promote endoderm specification and pattern formation. We also show that there are many uncharacterized genes regulated by fuchi. Conclusions Our genome-based research using an arthropod phylogenetically distant from Drosophila identifies a lineage-specific, fast-evolving gene with key developmental roles in one of the earliest, genome-wide regulatory events, and allows for molecular exploration of the developmental variations in early arthropod embryos. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01421-0.
Collapse
Affiliation(s)
- Sawa Iwasaki-Yokozawa
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan
| | - Ryota Nanjo
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.,Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan. .,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.
| |
Collapse
|
11
|
Zhang K, Tan J, Hao X, Tang H, Abbas MN, Su J, Su Y, Cui H. Bombyx mori U-shaped regulates the melanization cascade and immune response via binding with the Lozenge protein. INSECT SCIENCE 2022; 29:704-716. [PMID: 34331739 DOI: 10.1111/1744-7917.12959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/01/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Zinc finger protein, an important transcription factor, regulates gene expression associated with various physiological and pathological processes. U-shaped, belong to the Friend of GATA (FOG) transcription factor, plays a crucial role in hematopoiesis by interacting with the GATA transcription factor as a co-factor. However, little is known about its functions in insects. In the present study, a U-shaped cDNA was identified and characterized from the silkworm Bombyx mori and its potential roles in innate immunity investigated. The predicted silkworm U-shaped amino acid sequence contained a classical nuclear localization signal (NLS) motif "GESSPKRRRR" at position 450-459, and arginine residues at position 456 and 478 are the critical sites of the NLS. U-shaped mRNA was detected in all tested tissues of the B. mori; however, the highest levels were found in the hemocytes. U-shaped mRNA expression levels were upregulated in the hemocyte after the Escherichia coli and Staphylococcus aureus challenge. Furthermore, U-shaped knockdown significantly reduced the melanization process and suppressed the expression of melanization-associated genes, including PPO1, PPO2, PPAE and BAEE. In addition, U-shaped interacts with Lozenge protein to regulate the innate immune response of the insect. Our results revealed that U-shaped binds directly to Lozenge protein to modulate the melanization process and innate immune responses in silkworm.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400716, China
| | - Juan Tan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400716, China
| | - Xiangwei Hao
- Chongqing Reproductive and Genetics Institute, Chongqing Obstetrics and Gynecology Hospital, Chongqing, 400013, China
| | - Houyi Tang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400716, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400716, China
| | - Jingjing Su
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400716, China
| | - Yongyue Su
- Department of Orthopaedic, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, 650032, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400716, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| |
Collapse
|
12
|
Moussalem D, Augé B, Di Stefano L, Osman D, Gobert V, Haenlin M. Two Isoforms of serpent Containing Either One or Two GATA Zinc Fingers Provide Functional Diversity During Drosophila Development. Front Cell Dev Biol 2022; 9:795680. [PMID: 35178397 PMCID: PMC8844375 DOI: 10.3389/fcell.2021.795680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
GATA transcription factors play crucial roles in various developmental processes in organisms ranging from flies to humans. In mammals, GATA factors are characterized by the presence of two highly conserved domains, the N-terminal (N-ZnF) and the C-terminal (C-ZnF) zinc fingers. The Drosophila GATA factor Serpent (Srp) is produced in different isoforms that contains either both N-ZnF and C-ZnF (SrpNC) or only the C-ZnF (SrpC). Here, we investigated the functional roles ensured by each of these isoforms during Drosophila development. Using the CRISPR/Cas9 technique, we generated new mutant fly lines deleted for one (ΔsrpNC) or the other (ΔsrpC) encoded isoform, and a third one with a single point mutation in the N-ZnF that alters its interaction with its cofactor, the Drosophila FOG homolog U-shaped (Ush). Analysis of these mutants revealed that the Srp zinc fingers are differentially required for Srp to fulfill its functions. While SrpC is essential for embryo to adult viability, SrpNC, which is the closest conserved isoform to that of vertebrates, is not. However, to ensure its specific functions in larval hematopoiesis and fertility, Srp requires the presence of both N- and C-ZnF (SrpNC) and interaction with its cofactor Ush. Our results also reveal that in vivo the presence of N-ZnF restricts rather than extends the ability of GATA factors to regulate the repertoire of C-ZnF bound target genes.
Collapse
Affiliation(s)
- Douaa Moussalem
- Molecular, Cellular and Developmental Biology Department (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Benoit Augé
- Molecular, Cellular and Developmental Biology Department (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Luisa Di Stefano
- Molecular, Cellular and Developmental Biology Department (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Dani Osman
- Faculty of Sciences III, Lebanese University, Tripoli, Lebanon.,Azm Center for Research in Biotechnology and Its Applications, LBA3B, EDST, Lebanese University, Tripoli, Lebanon
| | - Vanessa Gobert
- Molecular, Cellular and Developmental Biology Department (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Marc Haenlin
- Molecular, Cellular and Developmental Biology Department (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
13
|
Chakraborty S, Shapiro LC, de Oliveira S, Rivera-Pena B, Verma A, Shastri A. Therapeutic targeting of the inflammasome in myeloid malignancies. Blood Cancer J 2021; 11:152. [PMID: 34521810 PMCID: PMC8440507 DOI: 10.1038/s41408-021-00547-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
Even though genetic perturbations and mutations are important for the development of myeloid malignancies, the effects of an inflammatory microenvironment are a critical modulator of carcinogenesis. Activation of the innate immune system through various ligands and signaling pathways is an important driver of myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). The DAMPs, or alarmins, which activate the inflammasome pathway via the TLR4/NLR signaling cascade causes the lytic cell death of hematopoietic stem and progenitor cells (HSPCs), ineffective hematopoiesis, and β-catenin-induced proliferation of cancer cells, leading to the development of MDS/AML phenotype. It is also associated with other myeloid malignancies and involved in the pathogenesis of associated cytopenias. Ongoing research suggests the interplay of inflammasome mediators with immune modulators and transcription factors to have a significant role in the development of myeloid diseases, and possibly therapy resistance. This review discusses the role and importance of inflammasomes and immune pathways in myeloid malignancies, particularly MDS/AML, to better understand the disease pathophysiology and decipher the scope of therapeutic interventions.
Collapse
Affiliation(s)
- Samarpana Chakraborty
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Lauren C Shapiro
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Bianca Rivera-Pena
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Amit Verma
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Aditi Shastri
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Montefiore Medical Center, Bronx, NY, 10461, USA.
| |
Collapse
|
14
|
Human GATA2 mutations and hematologic disease: how many paths to pathogenesis? Blood Adv 2021; 4:4584-4592. [PMID: 32960960 DOI: 10.1182/bloodadvances.2020002953] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/21/2020] [Indexed: 01/19/2023] Open
Abstract
The surge of human genetic information, enabled by increasingly facile and economically feasible genomic technologies, has accelerated discoveries on the relationship of germline genetic variation to hematologic diseases. For example, germline variation in GATA2, encoding a vital transcriptional regulator of multilineage hematopoiesis, creates a predisposition to bone marrow failure and acute myeloid leukemia termed GATA2 deficiency syndrome. More than 300 GATA2 variants representing missense, truncating, and noncoding enhancer mutations have been documented. Although these variants can diminish GATA2 expression and/or function, the functional ramifications of many variants are unknown. Studies using genetic rescue and knockin mouse systems have established that GATA2 mutations differentially affect molecular processes in distinct target genes and within a single target cell. Considering that target genes for a transcription factor can differ in sensitivity to altered levels of the factor, and transcriptional mechanisms are often cell type specific, the context-dependent consequences of GATA2 mutations in experimental systems portend the complex phenotypes and interindividual variation of GATA2 deficiency syndrome. This review documents GATA2 human genetics and the state of efforts to traverse from physiological insights to pathogenic mechanisms.
Collapse
|
15
|
Johnson KD, Conn DJ, Shishkova E, Katsumura KR, Liu P, Shen S, Ranheim EA, Kraus SG, Wang W, Calvo KR, Hsu AP, Holland SM, Coon JJ, Keles S, Bresnick EH. Constructing and deconstructing GATA2-regulated cell fate programs to establish developmental trajectories. J Exp Med 2021; 217:151996. [PMID: 32736380 PMCID: PMC7596813 DOI: 10.1084/jem.20191526] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/08/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Stem and progenitor cell fate transitions constitute key decision points in organismal development that enable access to a developmental path or actively preclude others. Using the hematopoietic system, we analyzed the relative importance of cell fate–promoting mechanisms versus negating fate-suppressing mechanisms to engineer progenitor cells with multilineage differentiation potential. Deletion of the murine Gata2−77 enhancer, with a human equivalent that causes leukemia, downregulates the transcription factor GATA2 and blocks progenitor differentiation into erythrocytes, megakaryocytes, basophils, and granulocytes, but not macrophages. Using multiomics and single-cell analyses, we demonstrated that the enhancer orchestrates a balance between pro- and anti-fate circuitry in single cells. By increasing GATA2 expression, the enhancer instigates a fate-promoting mechanism while abrogating an innate immunity–linked, fate-suppressing mechanism. During embryogenesis, the suppressing mechanism dominated in enhancer mutant progenitors, thus yielding progenitors with a predominant monocytic differentiation potential. Coordinating fate-promoting and -suppressing circuits therefore averts deconstruction of a multifate system into a monopotent system and maintains critical progenitor heterogeneity and functionality.
Collapse
Affiliation(s)
- Kirby D Johnson
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Daniel J Conn
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Koichi R Katsumura
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Peng Liu
- University of Wisconsin Carbone Cancer Center, Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Siqi Shen
- Department of Statistics, University of Wisconsin, Madison, WI
| | - Erik A Ranheim
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sean G Kraus
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Weixin Wang
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Emery H Bresnick
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
16
|
Blood disease-causing and -suppressing transcriptional enhancers: general principles and GATA2 mechanisms. Blood Adv 2020; 3:2045-2056. [PMID: 31289032 DOI: 10.1182/bloodadvances.2019000378] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
Intensive scrutiny of human genomes has unveiled considerable genetic variation in coding and noncoding regions. In cancers, including those of the hematopoietic system, genomic instability amplifies the complexity and functional consequences of variation. Although elucidating how variation impacts the protein-coding sequence is highly tractable, deciphering the functional consequences of variation in noncoding regions (genome reading), including potential transcriptional-regulatory sequences, remains challenging. A crux of this problem is the sheer abundance of gene-regulatory sequence motifs (cis elements) mediating protein-DNA interactions that are intermixed in the genome with thousands of look-alike sequences lacking the capacity to mediate functional interactions with proteins in vivo. Furthermore, transcriptional enhancers harbor clustered cis elements, and how altering a single cis element within a cluster impacts enhancer function is unpredictable. Strategies to discover functional enhancers have been innovated, and human genetics can provide vital clues to achieve this goal. Germline or acquired mutations in functionally critical (essential) enhancers, for example at the GATA2 locus encoding a master regulator of hematopoiesis, have been linked to human pathologies. Given the human interindividual genetic variation and complex genetic landscapes of hematologic malignancies, enhancer corruption, creation, and expropriation by new genes may not be exceedingly rare mechanisms underlying disease predisposition and etiology. Paradigms arising from dissecting essential enhancer mechanisms can guide genome-reading strategies to advance fundamental knowledge and precision medicine applications. In this review, we provide our perspective of general principles governing the function of blood disease-linked enhancers and GATA2-centric mechanisms.
Collapse
|
17
|
Cavalcante de Andrade Silva M, Katsumura KR, Mehta C, Velloso EDRP, Bresnick EH, Godley LA. Breaking the spatial constraint between neighboring zinc fingers: a new germline mutation in GATA2 deficiency syndrome. Leukemia 2020; 35:264-268. [PMID: 32286542 DOI: 10.1038/s41375-020-0820-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Marcela Cavalcante de Andrade Silva
- Serviço de Hematologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, BR Av. Dr. Eneas de Carvalho 155, Cerqueira César, 01246-000, São Paulo, SP, Brazil.,Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL, USA
| | - Koichi R Katsumura
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Charu Mehta
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Elvira D R P Velloso
- Serviço de Hematologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, BR Av. Dr. Eneas de Carvalho 155, Cerqueira César, 01246-000, São Paulo, SP, Brazil
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Lucy A Godley
- Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Suzuki M, Katayama S, Yamamoto M. Two effects of GATA2 enhancer repositioning by 3q chromosomal rearrangements. IUBMB Life 2019; 72:159-169. [PMID: 31820561 DOI: 10.1002/iub.2191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023]
Abstract
Chromosomal inversion and translocation between 3q21 and 3q26 [inv (3)(q21.3q26.2) and t(3;3)(q21.3;q26.2), respectively] give rise to acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), which have poor prognoses. The chromosomal rearrangements reposition a GATA2 distal hematopoietic enhancer from the original 3q21 locus to the EVI1 (also known as MECOM) locus on 3q26. Therefore, the GATA2 enhancer from one of two GATA2 alleles drives EVI1 gene expression in hematopoietic stem and progenitor cells, which promotes the accumulation of abnormal progenitors and induces leukemogenesis. On the other hand, one allele of the GATA2 gene loses its enhancer, which results in reduced GATA2 expression. The GATA2 gene encodes a transcription factor critical for the generation and maintenance of hematopoietic stem and progenitor cells. GATA2 haploinsufficiency has been known to cause immunodeficiency and myeloid leukemia. Notably, reduced GATA2 expression suppresses the differentiation but promotes the proliferation of EVI1-expressing leukemic cells, which accelerates EVI1-driven leukemogenesis. A series of studies have shown that the GATA2 enhancer repositioning caused by the chromosomal rearrangements between 3q21 and 3q26 provokes misexpression of both the EVI1 and GATA2 genes and that these two effects coordinately elicit high-risk leukemia.
Collapse
Affiliation(s)
- Mikiko Suzuki
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Katayama
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
19
|
Gutiérrez L, Caballero N, Fernández-Calleja L, Karkoulia E, Strouboulis J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life 2019; 72:89-105. [PMID: 31769197 DOI: 10.1002/iub.2192] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
GATA1 is considered as the "master" transcription factor in erythropoiesis. It regulates at the transcriptional level all aspects of erythroid maturation and function, as revealed by gene knockout studies in mice and by genome-wide occupancies in erythroid cells. The GATA1 protein contains two zinc finger domains and an N-terminal transactivation domain. GATA1 translation results in the production of the full-length protein and of a shorter variant (GATA1s) lacking the N-terminal transactivation domain, which is functionally deficient in supporting erythropoiesis. GATA1 protein abundance is highly regulated in erythroid cells at different levels, including transcription, mRNA translation, posttranslational modifications, and protein degradation, in a differentiation-stage-specific manner. Maintaining high GATA1 protein levels is essential in the early stages of erythroid maturation, whereas downregulating GATA1 protein levels is a necessary step in terminal erythroid differentiation. The importance of maintaining proper GATA1 protein homeostasis in erythropoiesis is demonstrated by the fact that both GATA1 loss and its overexpression result in lethal anemia. Importantly, alterations in any of those GATA1 regulatory checkpoints have been recognized as an important cause of hematological disorders such as dyserythropoiesis (with or without thrombocytopenia), β-thalassemia, Diamond-Blackfan anemia, myelodysplasia, or leukemia. In this review, we provide an overview of the multilevel regulation of GATA1 protein homeostasis in erythropoiesis and of its deregulation in hematological disease.
Collapse
Affiliation(s)
- Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Department of Medicine, Universidad de Oviedo, Oviedo, Spain
| | - Noemí Caballero
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Fernández-Calleja
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Elena Karkoulia
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Crete, Greece
| | - John Strouboulis
- Cancer Comprehensive Center, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
20
|
Ling T, Crispino JD. GATA1 mutations in red cell disorders. IUBMB Life 2019; 72:106-118. [PMID: 31652397 DOI: 10.1002/iub.2177] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023]
Abstract
GATA1 is an essential regulator of erythroid cell gene expression and maturation. In its absence, erythroid progenitors are arrested in differentiation and undergo apoptosis. Much has been learned about GATA1 function through animal models, which include genetic knockouts as well as ones with decreased levels of expression. However, even greater insights have come from the finding that a number of rare red cell disorders, including Diamond-Blackfan anemia, are associated with GATA1 mutations. These mutations affect the amino-terminal zinc finger (N-ZF) and the amino-terminus of the protein, and in both cases can alter the DNA-binding activity, which is primarily conferred by the third functional domain, the carboxyl-terminal zinc finger (C-ZF). Here we discuss the role of GATA1 in erythropoiesis with an emphasis on the mutations found in human patients with red cell disorders.
Collapse
Affiliation(s)
- Te Ling
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| |
Collapse
|
21
|
Zhang J, Ali AM, Lieu YK, Liu Z, Gao J, Rabadan R, Raza A, Mukherjee S, Manley JL. Disease-Causing Mutations in SF3B1 Alter Splicing by Disrupting Interaction with SUGP1. Mol Cell 2019; 76:82-95.e7. [PMID: 31474574 PMCID: PMC7065273 DOI: 10.1016/j.molcel.2019.07.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022]
Abstract
SF3B1, which encodes an essential spliceosomal protein, is frequently mutated in myelodysplastic syndromes (MDS) and many cancers. However, the defect of mutant SF3B1 is unknown. Here, we analyzed RNA sequencing data from MDS patients and confirmed that SF3B1 mutants use aberrant 3' splice sites. To elucidate the underlying mechanism, we purified complexes containing either wild-type or the hotspot K700E mutant SF3B1 and found that levels of a poorly studied spliceosomal protein, SUGP1, were reduced in mutant spliceosomes. Strikingly, SUGP1 knockdown completely recapitulated the splicing errors, whereas SUGP1 overexpression drove the protein, which our data suggest plays an important role in branchsite recognition, into the mutant spliceosome and partially rescued splicing. Other hotspot SF3B1 mutants showed similar altered splicing and diminished interaction with SUGP1. Our study demonstrates that SUGP1 loss is a common defect of spliceosomes with disease-causing SF3B1 mutations and, because this defect can be rescued, suggests possibilities for therapeutic intervention.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Abdullah M Ali
- Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Yen K Lieu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Zhaoqi Liu
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Jianchao Gao
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Azra Raza
- Irving Cancer Research Center, Columbia University, New York, NY 10032, USA; Division of Hematology/Oncology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Siddhartha Mukherjee
- Irving Cancer Research Center, Columbia University, New York, NY 10032, USA; Division of Hematology/Oncology, Department of Medicine, Columbia University, New York, NY 10032, USA.
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
22
|
Liang L, Peng Y, Zhang J, Zhang Y, Roy M, Han X, Xiao X, Sun S, Liu H, Nie L, Kuang Y, Zhu Z, Deng J, Xia Y, Sankaran VG, Hillyer CD, Mohandas N, Ye M, An X, Liu J. Deubiquitylase USP7 regulates human terminal erythroid differentiation by stabilizing GATA1. Haematologica 2019; 104:2178-2187. [PMID: 30872372 PMCID: PMC6821630 DOI: 10.3324/haematol.2018.206227] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 03/13/2019] [Indexed: 01/01/2023] Open
Abstract
Ubiquitination is an enzymatic post-translational modification that affects protein fate. The ubiquitin-proteasome system (UPS) was first discovered in reticulocytes where it plays important roles in reticulocyte maturation. Recent studies have revealed that ubiquitination is a dynamic and reversible process and that deubiquitylases are capable of removing ubiquitin from their protein substrates. Given the fact that the UPS is highly active in reticulocytes, it is speculated that deubiquitylases may play important roles in erythropoiesis. Yet, the role of deubiquitylases in erythropoiesis remains largely unexplored. In the present study, we found that the expression of deubiquitylase USP7 is significantly increased during human terminal erythroid differentiation. We further showed that interfering with USP7 function, either by short hairpin RNA-mediated knockdown or USP7-specific inhibitors, impaired human terminal erythroid differentiation due to decreased GATA1 level and that restoration of GATA1 levels rescued the differentiation defect. Mechanistically, USP7 deficiency led to a decreased GATA1 protein level that could be reversed by proteasome inhibitors. Furthermore, USP7 interacts directly with GATA1 and catalyzes the removal of K48-linked poly ubiquitylation chains conjugated onto GATA1, thereby stabilizing GATA1 protein. Collectively, our findings have identified an important role of a deubiquitylase in human terminal erythroid differentiation by stabilizing GATA1, the master regulator of erythropoiesis.
Collapse
Affiliation(s)
- Long Liang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yuanliang Peng
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jieying Zhang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA
| | - Yibin Zhang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Mridul Roy
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xu Han
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Shuming Sun
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Hong Liu
- Xiangya Hospital, Central South University, Changsha, China
| | - Ling Nie
- Xiangya Hospital, Central South University, Changsha, China
| | - Yijin Kuang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zesen Zhu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jinghui Deng
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vijay G Sankaran
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA .,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China .,Erythropoiesis Research Center, Central South University, Changsha, China
| |
Collapse
|
23
|
Barbarani G, Fugazza C, Strouboulis J, Ronchi AE. The Pleiotropic Effects of GATA1 and KLF1 in Physiological Erythropoiesis and in Dyserythropoietic Disorders. Front Physiol 2019; 10:91. [PMID: 30809156 PMCID: PMC6379452 DOI: 10.3389/fphys.2019.00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023] Open
Abstract
In the last few years, the advent of new technological approaches has led to a better knowledge of the ontogeny of erythropoiesis during development and of the journey leading from hematopoietic stem cells (HSCs) to mature red blood cells (RBCs). Our view of a well-defined hierarchical model of hematopoiesis with a near-homogeneous HSC population residing at the apex has been progressively challenged in favor of a landscape where HSCs themselves are highly heterogeneous and lineages separate earlier than previously thought. The coordination of these events is orchestrated by transcription factors (TFs) that work in a combinatorial manner to activate and/or repress their target genes. The development of next generation sequencing (NGS) has facilitated the identification of pathological mutations involving TFs underlying hematological defects. The examples of GATA1 and KLF1 presented in this review suggest that in the next few years the number of TF mutations associated with dyserythropoietic disorders will further increase.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - Cristina Fugazza
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - John Strouboulis
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Antonella E Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| |
Collapse
|
24
|
Churpek JE, Bresnick EH. Transcription factor mutations as a cause of familial myeloid neoplasms. J Clin Invest 2019; 129:476-488. [PMID: 30707109 DOI: 10.1172/jci120854] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The initiation and evolution of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are driven by genomic events that disrupt multiple genes controlling hematopoiesis. Human genetic studies have discovered germline mutations in single genes that instigate familial MDS/AML. The best understood of these genes encode transcription factors, such as GATA-2, RUNX1, ETV6, and C/EBPα, which establish and maintain genetic networks governing the genesis and function of blood stem and progenitor cells. Many questions remain unanswered regarding how genes and circuits within these networks function in physiology and disease and whether network integrity is exquisitely sensitive to or efficiently buffered from perturbations. In familial MDS/AML, mutations change the coding sequence of a gene to generate a mutant protein with altered activity or introduce frameshifts or stop codons or disrupt regulatory elements to alter protein expression. Each mutation has the potential to exert quantitatively and qualitatively distinct influences on networks. Consistent with this mechanistic diversity, disease onset is unpredictable and phenotypic variability can be considerable. Efforts to elucidate mechanisms and forge prognostic and therapeutic strategies must therefore contend with a spectrum of patient-specific leukemogenic scenarios. Here we illustrate mechanistic advances in our understanding of familial MDS/AML syndromes caused by germline mutations of hematopoietic transcription factors.
Collapse
Affiliation(s)
- Jane E Churpek
- Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
25
|
Katsumura KR, Mehta C, Hewitt KJ, Soukup AA, Fraga de Andrade I, Ranheim EA, Johnson KD, Bresnick EH. Human leukemia mutations corrupt but do not abrogate GATA-2 function. Proc Natl Acad Sci U S A 2018; 115:E10109-E10118. [PMID: 30301799 PMCID: PMC6205465 DOI: 10.1073/pnas.1813015115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
By inducing the generation and function of hematopoietic stem and progenitor cells, the master regulator of hematopoiesis GATA-2 controls the production of all blood cell types. Heterozygous GATA2 mutations cause immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. GATA2 disease mutations commonly disrupt amino acid residues that mediate DNA binding or cis-elements within a vital GATA2 intronic enhancer, suggesting a haploinsufficiency mechanism of pathogenesis. Mutations also occur in GATA2 coding regions distinct from the DNA-binding carboxyl-terminal zinc finger (C-finger), including the amino-terminal zinc finger (N-finger), and N-finger function is not established. Whether distinct mutations differentially impact GATA-2 mechanisms is unknown. Here, we demonstrate that N-finger mutations decreased GATA-2 chromatin occupancy and attenuated target gene regulation. We developed a genetic complementation assay to quantify GATA-2 function in myeloid progenitor cells from Gata2 -77 enhancer-mutant mice. GATA-2 complementation increased erythroid and myeloid differentiation. While GATA-2 disease mutants were not competent to induce erythroid differentiation of Lin-Kit+ myeloid progenitors, unexpectedly, they promoted myeloid differentiation and proliferation. As the myelopoiesis-promoting activity of GATA-2 mutants exceeded that of GATA-2, GATA2 disease mutations are not strictly inhibitory. Thus, we propose that the haploinsufficiency paradigm does not fully explain GATA-2-linked pathogenesis, and an amalgamation of qualitative and quantitative defects instigated by GATA2 mutations underlies the complex phenotypes of GATA-2-dependent pathologies.
Collapse
Affiliation(s)
- Koichi R Katsumura
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Charu Mehta
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Kyle J Hewitt
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Alexandra A Soukup
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Isabela Fraga de Andrade
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Erik A Ranheim
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Kirby D Johnson
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Emery H Bresnick
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| |
Collapse
|
26
|
Tanimura N, Liao R, Wilson GM, Dent MR, Cao M, Burstyn JN, Hematti P, Liu X, Zhang Y, Zheng Y, Keles S, Xu J, Coon JJ, Bresnick EH. GATA/Heme Multi-omics Reveals a Trace Metal-Dependent Cellular Differentiation Mechanism. Dev Cell 2018; 46:581-594.e4. [PMID: 30122630 DOI: 10.1016/j.devcel.2018.07.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/01/2018] [Accepted: 07/19/2018] [Indexed: 01/27/2023]
Abstract
By functioning as an enzyme cofactor, hemoglobin component, and gene regulator, heme is vital for life. One mode of heme-regulated transcription involves amplifying the activity of GATA-1, a key determinant of erythrocyte differentiation. To discover biological consequences of the metal cofactor-transcription factor mechanism, we merged GATA-1/heme-regulated sectors of the proteome and transcriptome. This multi-omic analysis revealed a GATA-1/heme circuit involving hemoglobin subunits, ubiquitination components, and proteins not implicated in erythrocyte biology, including the zinc exporter Slc30a1. Though GATA-1 induced expression of Slc30a1 and the zinc importer Slc39a8, Slc39a8 dominantly increased intracellular zinc, which conferred erythroblast survival. Subsequently, a zinc transporter switch, involving decreased importer and sustained exporter expression, reduced intracellular zinc during terminal differentiation. Downregulating Slc30a1 increased intracellular zinc and, strikingly, accelerated differentiation. This analysis established a conserved paradigm in which a GATA-1/heme circuit controls trace metal transport machinery and trace metal levels as a mechanism governing cellular differentiation.
Collapse
Affiliation(s)
- Nobuyuki Tanimura
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Ruiqi Liao
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Gary M Wilson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew R Dent
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Miao Cao
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Judith N Burstyn
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peiman Hematti
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Xin Liu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ye Zheng
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Jian Xu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53715, USA; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
27
|
Bresnick EH, Hewitt KJ, Mehta C, Keles S, Paulson RF, Johnson KD. Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond. Development 2018; 145:dev151423. [PMID: 29321181 PMCID: PMC5825862 DOI: 10.1242/dev.151423] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemoglobin-expressing erythrocytes (red blood cells) act as fundamental metabolic regulators by providing oxygen to cells and tissues throughout the body. Whereas the vital requirement for oxygen to support metabolically active cells and tissues is well established, almost nothing is known regarding how erythrocyte development and function impact regeneration. Furthermore, many questions remain unanswered relating to how insults to hematopoietic stem/progenitor cells and erythrocytes can trigger a massive regenerative process termed 'stress erythropoiesis' to produce billions of erythrocytes. Here, we review the cellular and molecular mechanisms governing erythrocyte development and regeneration, and discuss the potential links between these events and other regenerative processes.
Collapse
Affiliation(s)
- Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kyle J Hewitt
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Charu Mehta
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA
| | - Kirby D Johnson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
28
|
Wang LL, Zhou LB, Shu J, Li NN, Zhang HW, Jin R, Zhuang LL, Zhou GP. Up-regulation of IRF-3 expression through GATA-1 acetylation by histone deacetylase inhibitor in lung adenocarcinoma A549 cells. Oncotarget 2017; 8:75943-75951. [PMID: 29100282 PMCID: PMC5652676 DOI: 10.18632/oncotarget.18371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/21/2017] [Indexed: 11/30/2022] Open
Abstract
Interferon regulatory factor 3 (IRF-3) is an important transcription factor for interferon genes. Although its functional activation by viral infection has been widely explicated, the regulatory mechanism of IRF-3 gene expression in cancer cells is poorly understood. In this study, we demonstrated treatment of lung adenocarcinoma A549 cells with trichostatin A (TSA) and valproic acid (VPA), two different classes of histone deacetylase inhibitors, strongly stimulated IRF-3 gene expression. Truncated and mutated IRF-3 promoter indicated that a specific GATA-1 element was responsible for TSA-induced activation of IRF-3 promoter. Chromatin immunoprecipitation and electrophoretic mobility shift assay showed that TSA treatment increased the binding affinity of GATA-1 to IRF-3 promoter. Using immunoprecipitation assay and immunoblotting, we demonstrated that TSA increased the level of acetylated GATA-1 in A549 cells. In summary, our study implied that TSA enhanced IRF-3 gene expression through increased GATA-1 recruitment to IRF-3 promoter and the acetylation level of GATA-1 in lung adenocarcinoma A549 cells.
Collapse
Affiliation(s)
- Lu-Lu Wang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lan-Bo Zhou
- Grade 2013 Clinical Class 7, The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jin Shu
- Department of Pediatric Respiration, Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Nan-Nan Li
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hui-Wen Zhang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li-Li Zhuang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
29
|
Abstract
The discovery of the GATA binding protein (GATA factor) transcription factor family revolutionized hematology. Studies of GATA proteins have yielded vital contributions to our understanding of how hematopoietic stem and progenitor cells develop from precursors, how progenitors generate red blood cells, how hemoglobin synthesis is regulated, and the molecular underpinnings of nonmalignant and malignant hematologic disorders. This thrilling journey began with mechanistic studies on a β-globin enhancer- and promoter-binding factor, GATA-1, the founding member of the GATA family. This work ushered in the cloning of related proteins, GATA-2-6, with distinct and/or overlapping expression patterns. Herein, we discuss how the hematopoietic GATA factors (GATA-1-3) function via a battery of mechanistic permutations, which can be GATA factor subtype, cell type, and locus specific. Understanding this intriguing protein family requires consideration of how the mechanistic permutations are amalgamated into circuits to orchestrate processes of interest to the hematologist and more broadly.
Collapse
|
30
|
MicroRNA-363 and GATA-1 are regulated by HIF-1α in K562 cells under hypoxia. Mol Med Rep 2016; 14:2503-10. [PMID: 27485543 PMCID: PMC4991751 DOI: 10.3892/mmr.2016.5578] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/28/2016] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to investigate regulatory relationships among hypoxia-inducible factor-1α (HIF-1α), microRNA and erythroid transcription factors. K562 cells were transfected with HIF-1α knockout or with overexpression lentivirus of plasmid (MOI 10). The cells were divided into 3 groups: the negative control, overexpressing and interference groups. The cells were cultured under normoxia and hypoxia. Expression of miR-17*, miR-363 and miR-574-5p in the three groups was determined by quantitative PCR. Expression levels of erythroid transcription factor mRNAs such as GATA-1/GATA-2 and nuclear factor-erythroid 2 (NF-E2) were measured using RT-qPCR while the protein expression was studied using western blot analysis. Under normoxia or hypoxia, the levels of miR-17*, miR-363 and miR-574-5p in the overexpression group were higher than those in the other groups. Differences were statistically significant (P<0.05). Under hypoxia, the level of miR-363 in the interference group was less than that in the negative control group and difference was statistically significant (P<0.05). The level of GATA-1 mRNA in the overexpression group was higher than that in the negative control group, however, in the interference group the level was lower than that in the overexpression group under both normoxic and hypoxic conditions. The level of GATA-2 mRNA in the interference group was higher than that in other two groups under normoxic or hypoxic conditions. The NF-E2 mRNA was reversely related to GATA-2. The levels of HIF-1α, GATA-1 and NF-E2 mRNAs in the negative control under hypoxia were higher than those of normoxia. The level of HIF-1α mRNA in the overexpression group in hypoxia was lower than that in normoxia, while the GATA-1 and GATA-2 mRNA showed a reverse association. The levels of HIF-1α and GATA-2 mRNA in the interference group under hypoxia were higher compared to those of normoxia. Differences were statistically significant (P<0.05). Western blot results suggested that GATA-1, GATA-2 and NF-E2 protein expression correlated with changes in their respective mRNA transcription levels. The results therefore suggested that GATA-l and miR-363 were involved in the regulation of hematopoiesis via the HIF-1α pathway in K562 cells under hypoxic condition. The hsa-miR-17* and hsa-miR-574-5p were not entirely dependent on HIF-1α, suggesting possible complex regulatory mechanisms involved in hypoxia.
Collapse
|
31
|
GATA1 Binding Kinetics on Conformation-Specific Binding Sites Elicit Differential Transcriptional Regulation. Mol Cell Biol 2016; 36:2151-67. [PMID: 27215385 DOI: 10.1128/mcb.00017-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 05/17/2016] [Indexed: 01/19/2023] Open
Abstract
GATA1 organizes erythroid and megakaryocytic differentiation by orchestrating the expression of multiple genes that show diversified expression profiles. Here, we demonstrate that GATA1 monovalently binds to a single GATA motif (Single-GATA) while a monomeric GATA1 and a homodimeric GATA1 bivalently bind to two GATA motifs in palindromic (Pal-GATA) and direct-repeat (Tandem-GATA) arrangements, respectively, and form higher stoichiometric complexes on respective elements. The amino-terminal zinc (N) finger of GATA1 critically contributes to high occupancy of GATA1 on Pal-GATA. GATA1 lacking the N finger-DNA association fails to trigger a rate of target gene expression comparable to that seen with the wild-type GATA1, especially when expressed at low level. This study revealed that Pal-GATA and Tandem-GATA generate transcriptional responses from GATA1 target genes distinct from the response of Single-GATA. Our results support the notion that the distinct alignments in binding motifs are part of a critical regulatory strategy that diversifies and modulates transcriptional regulation by GATA1.
Collapse
|
32
|
SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies. Sci Rep 2016; 6:26509. [PMID: 27211601 PMCID: PMC4876461 DOI: 10.1038/srep26509] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/04/2016] [Indexed: 12/23/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML-NBs) are PML-based nuclear structures that regulate various cellular processes. SUMOylation, the process of covalently conjugating small ubiquitin-like modifiers (SUMOs), is required for both the formation and the disruption of PML-NBs. However, detailed mechanisms of how SUMOylation regulates these processes remain unknown. Here we report that SUMO5, a novel SUMO variant, mediates the growth and disruption of PML-NBs. PolySUMO5 conjugation of PML at lysine 160 facilitates recruitment of PML-NB components, which enlarges PML-NBs. SUMO5 also increases polySUMO2/3 conjugation of PML, resulting in RNF4-mediated disruption of PML-NBs. The acute promyelocytic leukemia oncoprotein PML-RARα blocks SUMO5 conjugation of PML, causing cytoplasmic displacement of PML and disruption of PML-NBs. Our work not only identifies a new member of the SUMO family but also reveals the mechanistic basis of the PML-NB life cycle in human cells.
Collapse
|
33
|
DeVilbiss AW, Tanimura N, McIver SC, Katsumura KR, Johnson KD, Bresnick EH. Navigating Transcriptional Coregulator Ensembles to Establish Genetic Networks: A GATA Factor Perspective. Curr Top Dev Biol 2016; 118:205-44. [PMID: 27137658 DOI: 10.1016/bs.ctdb.2016.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complex developmental programs require orchestration of intrinsic and extrinsic signals to control cell proliferation, differentiation, and survival. Master regulatory transcription factors are vital components of the machinery that transduce these stimuli into cellular responses. This is exemplified by the GATA family of transcription factors that establish cell type-specific genetic networks and control the development and homeostasis of systems including blood, vascular, adipose, and cardiac. Dysregulated GATA factor activity/expression underlies anemia, immunodeficiency, myelodysplastic syndrome, and leukemia. Parameters governing the capacity of a GATA factor expressed in multiple cell types to generate cell type-specific transcriptomes include selective coregulator usage and target gene-specific chromatin states. As knowledge of GATA-1 mechanisms in erythroid cells constitutes a solid foundation, we will focus predominantly on GATA-1, while highlighting principles that can be extrapolated to other master regulators. GATA-1 interacts with ubiquitous and lineage-restricted transcription factors, chromatin modifying/remodeling enzymes, and other coregulators to activate or repress transcription and to maintain preexisting transcriptional states. Major unresolved issues include: how does a GATA factor selectively utilize diverse coregulators; do distinct epigenetic landscapes and nuclear microenvironments of target genes dictate coregulator requirements; and do gene cohorts controlled by a common coregulator ensemble function in common pathways. This review will consider these issues in the context of GATA factor-regulated hematopoiesis and from a broader perspective.
Collapse
Affiliation(s)
- A W DeVilbiss
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - N Tanimura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - S C McIver
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K R Katsumura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K D Johnson
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - E H Bresnick
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States.
| |
Collapse
|
34
|
Hewitt KJ, Johnson KD, Gao X, Keles S, Bresnick EH. The Hematopoietic Stem and Progenitor Cell Cistrome: GATA Factor-Dependent cis-Regulatory Mechanisms. Curr Top Dev Biol 2016; 118:45-76. [PMID: 27137654 PMCID: PMC8572122 DOI: 10.1016/bs.ctdb.2016.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Transcriptional regulators mediate the genesis and function of the hematopoietic system by binding complex ensembles of cis-regulatory elements to establish genetic networks. While thousands to millions of any given cis-element resides in a genome, how transcriptional regulators select these sites and how site attributes dictate functional output is not well understood. An instructive system to address this problem involves the GATA family of transcription factors that control vital developmental and physiological processes and are linked to multiple human pathologies. Although GATA factors bind DNA motifs harboring the sequence GATA, only a very small subset of these abundant motifs are occupied in genomes. Mechanistic studies revealed a unique configuration of a GATA factor-regulated cis-element consisting of an E-box and a downstream GATA motif separated by a short DNA spacer. GATA-1- or GATA-2-containing multiprotein complexes at these composite elements control transcription of genes critical for hematopoietic stem cell emergence in the mammalian embryo, hematopoietic progenitor cell regulation, and erythroid cell maturation. Other constituents of the complex include the basic helix-loop-loop transcription factor Scl/TAL1, its heterodimeric partner E2A, and the Lim domain proteins LMO2 and LDB1. This chapter reviews the structure/function of E-box-GATA composite cis-elements, which collectively constitute an important sector of the hematopoietic stem and progenitor cell cistrome.
Collapse
Affiliation(s)
- Kyle J. Hewitt
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Kirby D. Johnson
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Xin Gao
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health
| | - Emery H. Bresnick
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program,Corresponding author:
| |
Collapse
|
35
|
Tanimura N, Miller E, Igarashi K, Yang D, Burstyn JN, Dewey CN, Bresnick EH. Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation. EMBO Rep 2015; 17:249-65. [PMID: 26698166 DOI: 10.15252/embr.201541465] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022] Open
Abstract
Metal ion-containing macromolecules have fundamental roles in essentially all biological processes throughout the evolutionary tree. For example, iron-containing heme is a cofactor in enzyme catalysis and electron transfer and an essential hemoglobin constituent. To meet the intense demand for hemoglobin assembly in red blood cells, the cell type-specific factor GATA-1 activates transcription of Alas2, encoding the rate-limiting enzyme in heme biosynthesis, 5-aminolevulinic acid synthase-2 (ALAS-2). Using genetic editing to unravel mechanisms governing heme biosynthesis, we discovered a GATA factor- and heme-dependent circuit that establishes the erythroid cell transcriptome. CRISPR/Cas9-mediated ablation of two Alas2 intronic cis elements strongly reduces GATA-1-induced Alas2 transcription, heme biosynthesis, and surprisingly, GATA-1 regulation of other vital constituents of the erythroid cell transcriptome. Bypassing ALAS-2 function in Alas2 cis element-mutant cells by providing its catalytic product 5-aminolevulinic acid rescues heme biosynthesis and the GATA-1-dependent genetic network. Heme amplifies GATA-1 function by downregulating the heme-sensing transcriptional repressor Bach1 and via a Bach1-insensitive mechanism. Through this dual mechanism, heme and a master regulator collaborate to orchestrate a cell type-specific transcriptional program that promotes cellular differentiation.
Collapse
Affiliation(s)
- Nobuyuki Tanimura
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Eli Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University School of Medicine, Sendai, Japan
| | - David Yang
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Judith N Burstyn
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
36
|
Genome-Wide Organization of GATA1 and TAL1 Determined at High Resolution. Mol Cell Biol 2015; 36:157-72. [PMID: 26503782 PMCID: PMC4702602 DOI: 10.1128/mcb.00806-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/06/2015] [Indexed: 11/25/2022] Open
Abstract
Erythroid development and differentiation from multiprogenitor cells into red blood cells requires precise transcriptional regulation. Key erythroid transcription factors, GATA1 and TAL1, cooperate, along with other proteins, to regulate many aspects of this process. How GATA1 and TAL1 are juxtaposed along the DNA and their cognate DNA binding site across the mouse genome remains unclear. We applied high-resolution ChIP-exo (chromatin immunoprecipitation followed by 5′-to-3′ exonuclease treatment and then massively parallel DNA sequencing) to GATA1 and TAL1 to study their positional organization across the mouse genome during GATA1-dependent maturation. Two complementary methods, MultiGPS and peak pairing, were used to determine high-confidence binding locations by ChIP-exo. We identified ∼10,000 GATA1 and ∼15,000 TAL1 locations, which were essentially confirmed by ChIP-seq (chromatin immunoprecipitation followed by massively parallel DNA sequencing). Of these, ∼4,000 locations were bound by both GATA1 and TAL1. About three-quarters of them were tightly linked to a partial E-box located 7 or 8 bp upstream of a WGATAA motif. Both TAL1 and GATA1 generated distinct characteristic ChIP-exo peaks around WGATAA motifs that reflect their positional arrangement within a complex. We show that TAL1 and GATA1 form a precisely organized complex at a compound motif consisting of a TG 7 or 8 bp upstream of a WGATAA motif across thousands of genomic locations.
Collapse
|
37
|
GATA-dependent transcriptional and epigenetic control of cardiac lineage specification and differentiation. Cell Mol Life Sci 2015; 72:3871-81. [PMID: 26126786 PMCID: PMC4575685 DOI: 10.1007/s00018-015-1974-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/14/2022]
Abstract
Heart progenitor cells differentiate into various cell types including pacemaker and working cardiomyocytes. Cell-type specific gene expression is achieved by combinatorial interactions between tissue-specific transcription factors (TFs), co-factors, and chromatin remodelers and DNA binding elements in regulatory regions. Dysfunction of these transcriptional networks may result in congenital heart defects. Functional analysis of the regulatory DNA sequences has contributed substantially to the identification of the transcriptional network components and combinatorial interactions regulating the tissue-specific gene programs. GATA TFs have been identified as central players in these networks. In particular, GATA binding elements have emerged as a platform to recruit broadly active histone modification enzymes and cell-type-specific co-factors to drive cell-type-specific gene programs. Here, we discuss the role of GATA factors in cell fate decisions and differentiation in the developing heart.
Collapse
|
38
|
Epigenetic Determinants of Erythropoiesis: Role of the Histone Methyltransferase SetD8 in Promoting Erythroid Cell Maturation and Survival. Mol Cell Biol 2015; 35:2073-87. [PMID: 25855754 DOI: 10.1128/mcb.01422-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/27/2015] [Indexed: 12/12/2022] Open
Abstract
Erythropoiesis, in which committed progenitor cells generate millions of erythrocytes daily, involves dramatic changes in the chromatin structure and transcriptome of erythroblasts, prior to their enucleation. While the involvement of the master-regulatory transcription factors GATA binding protein 1 (GATA-1) and GATA-2 in this process is established, the mechanistic contributions of many chromatin-modifying/remodeling enzymes in red cell biology remain enigmatic. We demonstrated that SetD8, a histone methyltransferase that catalyzes monomethylation of histone H4 at lysine 20 (H4K20me1), is a context-dependent GATA-1 corepressor in erythroid cells. To determine whether SetD8 controls erythroid maturation and/or function, we used a small hairpin RNA (shRNA)-based loss-of-function strategy in a primary murine erythroblast culture system. In this system, SetD8 promoted erythroblast maturation and survival, and this did not involve upregulation of the established regulator of erythroblast survival Bcl-x(L). SetD8 catalyzed H4K20me1 at a critical Gata2 cis element and restricted occupancy by an enhancer of Gata2 transcription, Scl/TAL1, thereby repressing Gata2 transcription. Elevating GATA-2 levels in erythroid precursors yielded a maturation block comparable to that induced by SetD8 downregulation. As lowering GATA-2 expression in the context of SetD8 knockdown did not rescue erythroid maturation, we propose that SetD8 regulation of erythroid maturation involves multiple target genes. These results establish SetD8 as a determinant of erythroid cell maturation and provide a framework for understanding how a broadly expressed histone-modifying enzyme mediates cell-type-specific GATA factor function.
Collapse
|
39
|
Chlon TM, McNulty M, Goldenson B, Rosinski A, Crispino JD. Global transcriptome and chromatin occupancy analysis reveal the short isoform of GATA1 is deficient for erythroid specification and gene expression. Haematologica 2015; 100:575-84. [PMID: 25682601 DOI: 10.3324/haematol.2014.112714] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 02/02/2015] [Indexed: 01/23/2023] Open
Abstract
GATA1 is a master transcriptional regulator of the differentiation of several related myeloid blood cell types, including erythrocytes and megakaryocytes. Germ-line mutations that cause loss of full length GATA1, but allow for expression of the short isoform (GATA1s), are associated with defective erythropoiesis in a subset of patients with Diamond Blackfan Anemia. Despite extensive studies of GATA1s in megakaryopoiesis, the mechanism by which GATA1s fails to support normal erythropoiesis is not understood. In this study, we used global gene expression and chromatin occupancy analysis to compare the transcriptional activity of GATA1s to GATA1. We discovered that compared to GATA1, GATA1s is less able to activate the erythroid gene expression program and terminal differentiation in cells with dual erythroid-megakaryocytic differentiation potential. Moreover, we found that GATA1s bound to many of its erythroid-specific target genes less efficiently than full length GATA1. These results suggest that the impaired ability of GATA1s to promote erythropoiesis in DBA may be caused by failure to occupy erythroid-specific gene regulatory elements.
Collapse
Affiliation(s)
- Timothy M Chlon
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA Present address Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Maureen McNulty
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Benjamin Goldenson
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Alexander Rosinski
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
40
|
McIver SC, Kang YA, DeVilbiss AW, O'Driscoll CA, Ouellette JN, Pope NJ, Camprecios G, Chang CJ, Yang D, Bouhassira EE, Ghaffari S, Bresnick EH. The exosome complex establishes a barricade to erythroid maturation. Blood 2014; 124:2285-97. [PMID: 25115889 PMCID: PMC4183988 DOI: 10.1182/blood-2014-04-571083] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/25/2014] [Indexed: 12/28/2022] Open
Abstract
Complex genetic networks control hematopoietic stem cell differentiation into progenitors that give rise to billions of erythrocytes daily. Previously, we described a role for the master regulator of erythropoiesis, GATA-1, in inducing genes encoding components of the autophagy machinery. In this context, the Forkhead transcription factor, Foxo3, amplified GATA-1-mediated transcriptional activation. To determine the scope of the GATA-1/Foxo3 cooperativity, and to develop functional insights, we analyzed the GATA-1/Foxo3-dependent transcriptome in erythroid cells. GATA-1/Foxo3 repressed expression of Exosc8, a pivotal component of the exosome complex, which mediates RNA surveillance and epigenetic regulation. Strikingly, downregulating Exosc8, or additional exosome complex components, in primary erythroid precursor cells induced erythroid cell maturation. Our results demonstrate a new mode of controlling erythropoiesis in which multiple components of the exosome complex are endogenous suppressors of the erythroid developmental program.
Collapse
Affiliation(s)
- Skye C McIver
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Yoon-A Kang
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Andrew W DeVilbiss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Chelsea A O'Driscoll
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Jonathan N Ouellette
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Nathaniel J Pope
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Genis Camprecios
- Department of Developmental and Regenerative Biology, Mt. Sinai School of Medicine, New York, NY
| | - Chan-Jung Chang
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY; and
| | - David Yang
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison WI
| | - Eric E Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY; and
| | - Saghi Ghaffari
- Department of Developmental and Regenerative Biology, Mt. Sinai School of Medicine, New York, NY
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
41
|
Clifton MK, Westman BJ, Thong SY, O’Connell MR, Webster MW, Shepherd NE, Quinlan KG, Crossley M, Blobel GA, Mackay JP. The identification and structure of an N-terminal PR domain show that FOG1 is a member of the PRDM family of proteins. PLoS One 2014; 9:e106011. [PMID: 25162672 PMCID: PMC4146578 DOI: 10.1371/journal.pone.0106011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/26/2014] [Indexed: 11/19/2022] Open
Abstract
FOG1 is a transcriptional regulator that acts in concert with the hematopoietic master regulator GATA1 to coordinate the differentiation of platelets and erythrocytes. Despite considerable effort, however, the mechanisms through which FOG1 regulates gene expression are only partially understood. Here we report the discovery of a previously unrecognized domain in FOG1: a PR (PRD-BF1 and RIZ) domain that is distantly related in sequence to the SET domains that are found in many histone methyltransferases. We have used NMR spectroscopy to determine the solution structure of this domain, revealing that the domain shares close structural similarity with SET domains. Titration with S-adenosyl-L-homocysteine, the cofactor product synonymous with SET domain methyltransferase activity, indicated that the FOG PR domain is not, however, likely to function as a methyltransferase in the same fashion. We also sought to define the function of this domain using both pulldown experiments and gel shift assays. However, neither pulldowns from mammalian nuclear extracts nor yeast two-hybrid assays reproducibly revealed binding partners, and we were unable to detect nucleic-acid-binding activity in this domain using our high-diversity Pentaprobe oligonucleotides. Overall, our data demonstrate that FOG1 is a member of the PRDM (PR domain containing proteins, with zinc fingers) family of transcriptional regulators. The function of many PR domains, however, remains somewhat enigmatic for the time being.
Collapse
Affiliation(s)
- Molly K. Clifton
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Belinda J. Westman
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Sock Yue Thong
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | | | - Michael W. Webster
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | | | - Kate G. Quinlan
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Merlin Crossley
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Gerd A. Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joel P. Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
42
|
Tevosian SG. Transgenic mouse models in the study of reproduction: insights into GATA protein function. Reproduction 2014; 148:R1-R14. [DOI: 10.1530/rep-14-0086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For the past 2 decades, transgenic technology in mice has allowed for an unprecedented insight into the transcriptional control of reproductive development and function. The key factor among the mouse genetic tools that made this rapid advance possible is a conditional transgenic approach, a particularly versatile method of creating gene deletions and substitutions in the mouse genome. A centerpiece of this strategy is an enzyme, Cre recombinase, which is expressed from defined DNA regulatory elements that are active in the tissue of choice. The regulatory DNA element (either genetically engineered or natural) assures Cre expression only in predetermined cell types, leading to the guided deletion of genetically modified (flanked by loxP or ‘floxed’ byloxP) gene loci. This review summarizes and compares the studies in which genes encoding GATA family transcription factors were targeted either globally or by Cre recombinases active in the somatic cells of ovaries and testes. The conditional gene loss experiments require detailed knowledge of the spatial and temporal expression of Cre activity, and the challenges in interpreting the outcomes are highlighted. These studies also expose the complexity of GATA-dependent regulation of gonadal gene expression and suggest that gene function is highly context dependent.
Collapse
|
43
|
Krivega I, Dale RK, Dean A. Role of LDB1 in the transition from chromatin looping to transcription activation. Genes Dev 2014; 28:1278-90. [PMID: 24874989 PMCID: PMC4066399 DOI: 10.1101/gad.239749.114] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Many questions remain about the relationship between chromatin loop formation and transcription. In erythroid cells, LDB1 is required for looping of the β-globin locus control region (LCR) to the active β-globin promoter. Dean and colleagues show that the LDB1 dimerization domain (DD) is necessary to restore LCR-promoter looping and transcription in LDB1-depleted cells. Deletion analysis reveals a conserved region of the LDB1 DD dispensable for dimerization and chromatin looping but necessary for transcription activation. The results thus uncouple enhancer–promoter looping from transcription at the β-globin locus. Many questions remain about how close association of genes and distant enhancers occurs and how this is linked to transcription activation. In erythroid cells, lim domain binding 1 (LDB1) protein is recruited to the β-globin locus via LMO2 and is required for looping of the β-globin locus control region (LCR) to the active β-globin promoter. We show that the LDB1 dimerization domain (DD) is necessary and, when fused to LMO2, sufficient to completely restore LCR–promoter looping and transcription in LDB1-depleted cells. The looping function of the DD is unique and irreplaceable by heterologous DDs. Dissection of the DD revealed distinct functional properties of conserved subdomains. Notably, a conserved helical region (DD4/5) is dispensable for LDB1 dimerization and chromatin looping but essential for transcriptional activation. DD4/5 is required for the recruitment of the coregulators FOG1 and the nucleosome remodeling and deacetylating (NuRD) complex. Lack of DD4/5 alters histone acetylation and RNA polymerase II recruitment and results in failure of the locus to migrate to the nuclear interior, as normally occurs during erythroid maturation. These results uncouple enhancer–promoter looping from nuclear migration and transcription activation and reveal new roles for LDB1 in these processes.
Collapse
Affiliation(s)
- Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
44
|
DeVilbiss AW, Sanalkumar R, Johnson KD, Keles S, Bresnick EH. Hematopoietic transcriptional mechanisms: from locus-specific to genome-wide vantage points. Exp Hematol 2014; 42:618-29. [PMID: 24816274 DOI: 10.1016/j.exphem.2014.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/04/2014] [Indexed: 12/12/2022]
Abstract
Hematopoiesis is an exquisitely regulated process in which stem cells in the developing embryo and the adult generate progenitor cells that give rise to all blood lineages. Master regulatory transcription factors control hematopoiesis by integrating signals from the microenvironment and dynamically establishing and maintaining genetic networks. One of the most rudimentary aspects of cell type-specific transcription factor function, how they occupy a highly restricted cohort of cis-elements in chromatin, remains poorly understood. Transformative technologic advances involving the coupling of next-generation DNA sequencing technology with the chromatin immunoprecipitation assay (ChIP-seq) have enabled genome-wide mapping of factor occupancy patterns. However, formidable problems remain; notably, ChIP-seq analysis yields hundreds to thousands of chromatin sites occupied by a given transcription factor, and only a fraction of the sites appear to be endowed with critical, non-redundant function. It has become en vogue to map transcription factor occupancy patterns genome-wide, while using powerful statistical tools to establish correlations to inform biology and mechanisms. With the advent of revolutionary genome editing technologies, one can now reach beyond correlations to conduct definitive hypothesis testing. This review focuses on key discoveries that have emerged during the path from single loci to genome-wide analyses, specifically in the context of hematopoietic transcriptional mechanisms.
Collapse
Affiliation(s)
- Andrew W DeVilbiss
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; University of Wisconsin-Madison Blood Research Program, Madison, Wisconsin, USA
| | - Rajendran Sanalkumar
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; University of Wisconsin-Madison Blood Research Program, Madison, Wisconsin, USA
| | - Kirby D Johnson
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; University of Wisconsin-Madison Blood Research Program, Madison, Wisconsin, USA
| | - Sunduz Keles
- University of Wisconsin-Madison Blood Research Program, Madison, Wisconsin, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Emery H Bresnick
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; University of Wisconsin-Madison Blood Research Program, Madison, Wisconsin, USA.
| |
Collapse
|
45
|
Hewitt KJ, Sanalkumar R, Johnson KD, Keles S, Bresnick EH. Epigenetic and genetic mechanisms in red cell biology. Curr Opin Hematol 2014; 21:155-64. [PMID: 24722192 PMCID: PMC6061918 DOI: 10.1097/moh.0000000000000034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Erythropoiesis, in which hematopoietic stem cells (HSCs) generate lineage-committed progenitors that mature into erythrocytes, is regulated by numerous chromatin modifying and remodeling proteins. We will focus on how epigenetic and genetic mechanisms mesh to establish the erythroid transcriptome and how studying erythropoiesis can yield genomic principles. RECENT FINDINGS Trans-acting factor binding to small DNA motifs (cis-elements) underlies regulatory complex assembly at specific chromatin sites, and therefore unique transcriptomes. As cis-elements are often very small, thousands or millions of copies of a given element reside in a genome. Chromatin restricts factor access in a context-dependent manner, and cis-element-binding factors recruit chromatin regulators that mediate functional outputs. Technologies to map chromatin attributes of loci in vivo, to edit genomes and to sequence whole genomes have been transformative in discovering critical cis-elements linked to human disease. SUMMARY Cis-elements mediate chromatin-targeting specificity, and chromatin regulators dictate cis-element accessibility/function, illustrating an amalgamation of genetic and epigenetic mechanisms. Cis-elements often function ectopically when studied outside of their endogenous loci, and complex strategies to identify nonredundant cis-elements require further development. Facile genome-editing technologies provide a new approach to address this problem. Extending genetic analyses beyond exons and promoters will yield a rich pipeline of cis-element alterations with importance for red cell biology and disease.
Collapse
Affiliation(s)
- Kyle J. Hewitt
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Rajendran Sanalkumar
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Kirby D. Johnson
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Sunduz Keles
- UW-Madison Blood Research Program, Carbone Cancer Center
- Department of Biostatistics and Medical Informatics, Department of Statistics, Wisconsin Institutes for Medical Research, Madison, Wisconsin, USA
| | - Emery H. Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| |
Collapse
|
46
|
Abstract
Most heritable anemias are caused by mutations in genes encoding globins, red blood cell (RBC) membrane proteins, or enzymes in the glycolytic and hexose monophosphate shunt pathways. A less common class of genetic anemia is caused by mutations that alter the functions of erythroid transcription factors (TFs). Many TF mutations associated with heritable anemia cause truncations or amino acid substitutions, resulting in the production of functionally altered proteins. Characterization of these mutant proteins has provided insights into mechanisms of gene expression, hematopoietic development, and human disease. Mutations within promoter or enhancer regions that disrupt TF binding to essential erythroid genes also cause anemia and heritable variations in RBC traits, such as fetal hemoglobin content. Defining the latter may have important clinical implications for de-repressing fetal hemoglobin synthesis to treat sickle cell anemia and β thalassemia. Functionally important alterations in genes encoding TFs or their cognate cis elements are likely to occur more frequently than currently appreciated, a hypothesis that will soon be tested through ongoing genome-wide association studies and the rapidly expanding use of global genome sequencing for human diagnostics. Findings obtained through such studies of RBCs and associated diseases are likely generalizable to many human diseases and quantitative traits.
Collapse
|
47
|
Zheng R, Rebolledo-Jaramillo B, Zong Y, Wang L, Russo P, Hancock W, Stanger BZ, Hardison RC, Blobel GA. Function of GATA factors in the adult mouse liver. PLoS One 2013; 8:e83723. [PMID: 24367609 PMCID: PMC3867416 DOI: 10.1371/journal.pone.0083723] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/06/2013] [Indexed: 11/24/2022] Open
Abstract
GATA transcription factors and their Friend of Gata (FOG) cofactors control the development of diverse tissues. GATA4 and GATA6 are essential for the expansion of the embryonic liver bud, but their expression patterns and functions in the adult liver are unclear. We characterized the expression of GATA and FOG factors in whole mouse liver and purified hepatocytes. GATA4, GATA6, and FOG1 are the most prominently expressed family members in whole liver and hepatocytes. GATA4 chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) identified 4409 occupied sites, associated with genes enriched in ontologies related to liver function, including lipid and glucose metabolism. However, hepatocyte-specific excision of Gata4 had little impact on gross liver architecture and function, even under conditions of regenerative stress, and, despite the large number of GATA4 occupied genes, resulted in relatively few changes in gene expression. To address possible redundancy between GATA4 and GATA6, both factors were conditionally excised. Surprisingly, combined Gata4,6 loss did not exacerbate the phenotype resulting from Gata4 loss alone. This points to the presence of an unusually robust transcriptional network in adult hepatocytes that ensures the maintenance of liver function.
Collapse
Affiliation(s)
- Rena Zheng
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Boris Rebolledo-Jaramillo
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yiwei Zong
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine and Biesecker Center for Pediatric Liver Disease, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Pierre Russo
- Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Wayne Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine and Biesecker Center for Pediatric Liver Disease, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Ben Z. Stanger
- Division of Gastroenterology, Department of Medicine, Department of Cell and Developmental Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ross C. Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gerd A. Blobel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
48
|
Tarafdar A, Dobbin E, Corrigan P, Freeburn R, Wheadon H. Canonical Wnt signaling promotes early hematopoietic progenitor formation and erythroid specification during embryonic stem cell differentiation. PLoS One 2013; 8:e81030. [PMID: 24324557 PMCID: PMC3850021 DOI: 10.1371/journal.pone.0081030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/11/2013] [Indexed: 01/08/2023] Open
Abstract
The generation of hematopoietic stem cells (HSCs) during development is a complex process linked to morphogenic signals. Understanding this process is important for regenerative medicine applications that require in vitro production of HSC. In this study we investigated the effects of canonical Wnt/β-catenin signaling during early embryonic differentiation and hematopoietic specification using an embryonic stem cell system. Our data clearly demonstrates that following early differentiation induction, canonical Wnt signaling induces a strong mesodermal program whilst maintaining a degree of stemness potential. This involved a complex interplay between β-catenin/TCF/LEF/Brachyury/Nanog. β-catenin mediated up-regulation of TCF/LEF resulted in enhanced brachyury levels, which in-turn lead to Nanog up-regulation. During differentiation, active canonical Wnt signaling also up-regulated key transcription factors and cell specific markers essential for hematopoietic specification, in particular genes involved in establishing primitive erythropoiesis. This led to a significant increase in primitive erythroid colony formation. β-catenin signaling also augmented early hematopoietic and multipotent progenitor (MPP) formation. Following culture in a MPP specific cytokine cocktail, activation of β-catenin suppressed differentiation of the early hematopoietic progenitor population, with cells displaying a higher replating capacity and a propensity to form megakaryocytic erythroid progenitors. This bias towards erythroid lineage commitment was also observed when hematopoietic progenitors were directed to undergo myeloid colony formation. Overall this study underscores the importance of canonical Wnt/β-catenin signaling in mesodermal specification, primitive erythropoiesis and early hematopietic progenitor formation during hematopoietic induction.
Collapse
Affiliation(s)
- Anuradha Tarafdar
- Paul O’Gorman Leukaemia Research Centre, University of Glasgow, United
Kingdom
- Biomedical Science Institute, University of Ulster, Northern Ireland,
United Kingdom
| | - Edwina Dobbin
- Department of Haematology, Western General Hospital, Edinburgh, United
Kingdom
| | - Pamela Corrigan
- Biomedical Science Institute, University of Ulster, Northern Ireland,
United Kingdom
| | - Robin Freeburn
- School of Science, University of the West of Scotland, Paisley, United
Kingdom
| | - Helen Wheadon
- Paul O’Gorman Leukaemia Research Centre, University of Glasgow, United
Kingdom
| |
Collapse
|
49
|
Bagu ET, Layoun A, Calvé A, Santos MM. Friend of GATA and GATA-6 modulate the transcriptional up-regulation of hepcidin in hepatocytes during inflammation. Biometals 2013; 26:1051-65. [PMID: 24179092 DOI: 10.1007/s10534-013-9683-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 10/19/2013] [Indexed: 01/15/2023]
Abstract
Hepcidin is an antimicrobial peptide hormone that plays a central role in the metabolism of iron and its expression in the liver can be induced through two major pathways: the inflammatory pathway, mainly via IL-6; and the iron-sensing pathway, mediated by BMP-6. GATA-proteins are group of evolutionary conserved transcriptional regulators that bind to the consensus motif-WGATAR-in the promoter region. In hepatoma cells, GATA-proteins 4 and 6 in conjunction with the co-factor friend of GATA (FOG) were shown to modulate the transcription of HAMP. However, it is unclear as to which of the GATA-proteins drive the expression of HAMP in vivo. In this study, using in vitro and in vivo approaches, we investigated the relevance of GATA and FOG proteins in the expression of hepcidin following treatment with IL-6 and BMP-6. We found that treatment of Huh7 cells with either IL-6 or BMP-6 increased the HAMP promoter activity. The HAMP promoter activity following treatment with IL-6 or BMP-6 was further increased by co-transfection of the promoter with GATA proteins 4 and 6. However, co-transfection of the HAMP promoter with FOG proteins 1 or 2 repressed the promoter response to treatments with either IL-6 or BMP-6. The effects of both GATA and FOG proteins on the promoter activity in response to IL-6 or BMP-6 treatment were abrogated by mutation of the GATA response element-TTATCT-in the HAMP promoter region -103/-98. In vivo, treatment of mice with lipopolysaccharide led to a transient increase of Gata-6 expression in the liver that was positively correlated with the expression of hepcidin. Our results indicate that during inflammation GATA-6 is up-regulated in concert with hepcidin while GATA-4 and FOG (1 and 2) are repressed.
Collapse
Affiliation(s)
- Edward T Bagu
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, (ICM), University of Montreal, Pavillon De Sève Porte Y-5625, 2099 rue Alexandre De Sève, Montreal, QC, H2L 4M1, Canada,
| | | | | | | |
Collapse
|
50
|
Gao H, Wu X, Fossett N. Drosophila E-cadherin functions in hematopoietic progenitors to maintain multipotency and block differentiation. PLoS One 2013; 8:e74684. [PMID: 24040319 PMCID: PMC3764055 DOI: 10.1371/journal.pone.0074684] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/07/2013] [Indexed: 01/12/2023] Open
Abstract
A fundamental question in stem cell biology concerns the regulatory strategies that control the choice between multipotency and differentiation. Drosophila blood progenitors or prohemocytes exhibit key stem cell characteristics, including multipotency, quiescence, and niche dependence. As a result, studies of Drosophila hematopoiesis have provided important insights into the molecular mechanisms that control these processes. Here, we show that E-cadherin is an important regulator of prohemocyte fate choice, maintaining prohemocyte multipotency and blocking differentiation. These functions are reminiscent of the role of E-cadherin in mammalian embryonic stem cells. We also show that mis-expression of E-cadherin in differentiating hemocytes disrupts the boundary between these cells and undifferentiated prohemocytes. Additionally, upregulation of E-cadherin in differentiating hemocytes increases the number of intermediate cell types expressing the prohemocyte marker, Patched. Furthermore, our studies indicate that the Drosophila GATA transcriptional co-factor, U-shaped, is required for E-cadherin expression. Consequently, E-cadherin is a downstream target of U-shaped in the maintenance of prohemocyte multipotency. In contrast, we showed that forced expression of the U-shaped GATA-binding partner, Serpent, repressed E-cadherin expression and promoted lamellocyte differentiation. Thus, U-shaped may maintain E-cadherin expression by blocking the inhibitory activity of Serpent. Collectively, these observations suggest that GATA:FOG complex formation regulates E-cadherin levels and, thereby, the choice between multipotency and differentiation. The work presented in this report further defines the molecular basis of prohemocyte cell fate choice, which will provide important insights into the mechanisms that govern stem cell biology.
Collapse
Affiliation(s)
- Hongjuan Gao
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Xiaorong Wu
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nancy Fossett
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|