1
|
Mangione RM, Pierce S, Zheng M, Martin RM, Goncalves C, Kumar A, Scaglione S, de Sousa Morgado C, Penzo A, Lancrey A, Reid RJD, Lautier O, Gaillard PH, Stirling PC, de Almeida SF, Rothstein R, Palancade B. DNA lesions can frequently precede DNA:RNA hybrid accumulation. Nat Commun 2025; 16:2401. [PMID: 40064914 PMCID: PMC11893903 DOI: 10.1038/s41467-025-57588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
While DNA:RNA hybrids contribute to multiple genomic transactions, their unscheduled formation is a recognized source of DNA lesions. Here, through a suite of systematic screens, we rather observed that a wide range of yeast mutant situations primarily triggering DNA damage actually leads to hybrid accumulation. Focusing on Okazaki fragment processing, we establish that genic hybrids can actually form as a consequence of replication-born discontinuities such as unprocessed flaps or unligated Okazaki fragments. Strikingly, such "post-lesion" DNA:RNA hybrids neither detectably contribute to genetic instability, nor disturb gene expression, as opposed to "pre-lesion" hybrids formed upon defective mRNA biogenesis, e.g., in THO complex mutants. Post-lesion hybrids similarly arise in distinct genomic instability situations, triggered by pharmacological or genetic manipulation of DNA-dependent processes, both in yeast and human cells. Altogether, our data establish that the accumulation of transcription-born DNA:RNA hybrids can occur as a consequence of various types of natural or pathological DNA lesions, yet do not necessarily aggravate their genotoxicity.
Collapse
Affiliation(s)
| | - Steven Pierce
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Myriam Zheng
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Robert M Martin
- GIMM-Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | - Arun Kumar
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Scaglione
- Centre de Recherche en Cancérologie de Marseille (CRCM), U1068 Inserm, UMR7258 CNRS, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Cristiana de Sousa Morgado
- GIMM-Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Arianna Penzo
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Astrid Lancrey
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Robert J D Reid
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Ophélie Lautier
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Pierre-Henri Gaillard
- Centre de Recherche en Cancérologie de Marseille (CRCM), U1068 Inserm, UMR7258 CNRS, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sérgio F de Almeida
- GIMM-Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
| |
Collapse
|
2
|
Yamamoto Y, Gustafson EA, Foulk MS, Smith HS, Gerbi SA. Anatomy and evolution of a DNA replication origin. Chromosoma 2021; 130:199-214. [PMID: 34254172 DOI: 10.1007/s00412-021-00756-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/09/2021] [Accepted: 03/09/2021] [Indexed: 10/20/2022]
Abstract
DNA amplification occurs at the DNA puff II/9A locus in the fungus fly Sciara coprophila. As a foundation to study the molecular mechanism for the initiating events of II/9A DNA re-replication, we have sequenced 14 kb spanning a DNase hypersensitive site (DHS) upstream of the 1 kb amplification origin and through transcription units II/9-1 and II/9-2 downstream of the origin. These elements are annotated as well as the ORC binding site at the origin and the transition point (TP) between continuous and discontinuous DNA syntheses that marks the origin of bidirectional replication at the nucleotide level. A 9 bp motif found at the TP is repeated near the other end of the 1 kb ORI and may identify a putative second TP. The steroid hormone ecdysone induces DNA amplification as well as transcription and puffing at locus II/9A. Within the 14 kb, several matches to the ecdysone response element (EcRE) consensus sequence were identified, including some in the amplification origin region. EcRE O-P is at a central axis of a remarkable symmetry, equidistant to the TPs that are themselves equidistant to EcRE O-1 and EcRE O-2. DNA sequence alterations have occurred throughout the II/9A region in a newly discovered polymorphism (#2). Polymorphism #2 is not specific to developmental stage, sex, or tissue, and it does not impair DNA amplification. The DHS, both 9 bp TP sequences, and EcREs O-1, O-P, and O-2 are conserved between the polymorphism #1 and #2 sequences, suggesting their functional importance and retention during evolutionary selection. Moreover, a 72 bp sequence in the Sciara DHS at DNA puff II/9A is conserved in DNA puff C-3 of Rhynchosciara americana. Comparisons are discussed between the Sciara II/9A amplicon and the chorion locus amplicon on the third chromosome of Drosophila.
Collapse
Affiliation(s)
- Yutaka Yamamoto
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Box G - Sidney Frank Life Sciences Building room 260, Providence, RI, 02912, USA
| | - Eric A Gustafson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Box G - Sidney Frank Life Sciences Building room 260, Providence, RI, 02912, USA.,Zipher Medical Affairs Co., 380 Wareham Street, Marion, MA, 02738, USA
| | - Michael S Foulk
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Box G - Sidney Frank Life Sciences Building room 260, Providence, RI, 02912, USA.,Department of Biology, Mercyhurst University, 501 East 38th Street, Erie, PA, 16546, USA
| | - Heidi S Smith
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Box G - Sidney Frank Life Sciences Building room 260, Providence, RI, 02912, USA
| | - Susan A Gerbi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Box G - Sidney Frank Life Sciences Building room 260, Providence, RI, 02912, USA.
| |
Collapse
|
3
|
Monitoring genome-wide replication fork directionality by Okazaki fragment sequencing in mammalian cells. Nat Protoc 2021; 16:1193-1218. [PMID: 33442052 DOI: 10.1038/s41596-020-00454-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/25/2020] [Indexed: 11/08/2022]
Abstract
The ability to monitor DNA replication fork directionality at the genome-wide scale is paramount for a greater understanding of how genetic and environmental perturbations can impact replication dynamics in human cells. Here we describe a detailed protocol for isolating and sequencing Okazaki fragments from asynchronously growing mammalian cells, termed Okazaki fragment sequencing (Ok-seq), for the purpose of quantitatively determining replication initiation and termination frequencies around specific genomic loci by meta-analyses. Briefly, cells are pulsed with 5-ethynyl-2'-deoxyuridine (EdU) to label newly synthesized DNA, and collected for DNA extraction. After size fractionation on a sucrose gradient, Okazaki fragments are concentrated and purified before click chemistry is used to tag the EdU label with a biotin conjugate that is cleavable under mild conditions. Biotinylated Okazaki fragments are then captured on streptavidin beads and ligated to Illumina adapters before library preparation for Illumina sequencing. The use of Ok-seq to interrogate genome-wide replication fork initiation and termination efficiencies can be applied to all unperturbed, asynchronously growing mammalian cells or under conditions of replication stress, and the assay can be performed in less than 2 weeks.
Collapse
|
4
|
Aria V, Yeeles JTP. Mechanism of Bidirectional Leading-Strand Synthesis Establishment at Eukaryotic DNA Replication Origins. Mol Cell 2018; 73:S1097-2765(18)30879-7. [PMID: 30451148 PMCID: PMC6344338 DOI: 10.1016/j.molcel.2018.10.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/17/2018] [Accepted: 10/11/2018] [Indexed: 11/29/2022]
Abstract
DNA replication commences at eukaryotic replication origins following assembly and activation of bidirectional CMG helicases. Once activated, CMG unwinds the parental DNA duplex and DNA polymerase α-primase initiates synthesis on both template strands. By utilizing an origin-dependent replication system using purified yeast proteins, we have mapped start sites for leading-strand replication. Synthesis is mostly initiated outside the origin sequence. Strikingly, rightward leading strands are primed left of the origin and vice versa. We show that each leading strand is established from a lagging-strand primer synthesized by the replisome on the opposite side of the origin. Preventing elongation of primers synthesized left of the origin blocked rightward leading strands, demonstrating that replisomes are interdependent for leading-strand synthesis establishment. The mechanism we reveal negates the need for dedicated leading-strand priming and necessitates a crucial role for the lagging-strand polymerase Pol δ in connecting the nascent leading strand with the advancing replisome.
Collapse
Affiliation(s)
- Valentina Aria
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Joseph T P Yeeles
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
5
|
Kang S, Kang MS, Ryu E, Myung K. Eukaryotic DNA replication: Orchestrated action of multi-subunit protein complexes. Mutat Res 2018; 809:58-69. [PMID: 28501329 DOI: 10.1016/j.mrfmmm.2017.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/13/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
Genome duplication is an essential process to preserve genetic information between generations. The eukaryotic cell cycle is composed of functionally distinct phases: G1, S, G2, and M. One of the key replicative proteins that participate at every stage of DNA replication is the Mcm2-7 complex, a replicative helicase. In the G1 phase, inactive Mcm2-7 complexes are loaded on the replication origins by replication-initiator proteins, ORC and Cdc6. Two kinases, S-CDK and DDK, convert the inactive origin-loaded Mcm2-7 complex to an active helicase, the CMG complex in the S phase. The activated CMG complex begins DNA unwinding and recruits enzymes essential for DNA synthesis to assemble a replisome at the replication fork. After completion of DNA synthesis, the inactive CMG complex on the replicated DNA is removed from chromatin to terminate DNA replication. In this review, we will discuss the structure, function, and regulation of the molecular machines involved in each step of DNA replication.
Collapse
Affiliation(s)
- Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea.
| | - Mi-Sun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; School of Life Sciences, Ulsan National Institute for Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; School of Life Sciences, Ulsan National Institute for Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
6
|
Bielinsky AK, Leung W. Not just for coding: a new role for histone tails in replication enzyme activation. FEBS J 2017; 283:4244-4246. [PMID: 27921370 DOI: 10.1111/febs.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The processing of Okazaki fragments when they are assembled into nucleosomes has received little attention. In this issue of The FEBS Journal, Seo and colleagues show that binding to histone tails stimulates the enzymatic activity of flap endonuclease 1 (Rad27). Histone tails are structurally similar to the C terminus of Rad27 and can thus mimic its autostimulatory function. This study highlights an active regulatory role for nucleosomes on DNA metabolism.
Collapse
Affiliation(s)
- Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Wendy Leung
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Cannan WJ, Rashid I, Tomkinson AE, Wallace SS, Pederson DS. The Human Ligase IIIα-XRCC1 Protein Complex Performs DNA Nick Repair after Transient Unwrapping of Nucleosomal DNA. J Biol Chem 2017; 292:5227-5238. [PMID: 28184006 DOI: 10.1074/jbc.m116.736728] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 02/07/2017] [Indexed: 01/25/2023] Open
Abstract
Reactive oxygen species generate potentially cytotoxic and mutagenic lesions in DNA, both between and within the nucleosomes that package DNA in chromatin. The vast majority of these lesions are subject to base excision repair (BER). Enzymes that catalyze the first three steps in BER can act at many sites in nucleosomes without the aid of chromatin-remodeling agents and without irreversibly disrupting the host nucleosome. Here we show that the same is true for a protein complex comprising DNA ligase IIIα and the scaffolding protein X-ray repair cross-complementing protein 1 (XRCC1), which completes the fourth and final step in (short-patch) BER. Using in vitro assembled nucleosomes containing discretely positioned DNA nicks, our evidence indicates that the ligase IIIα-XRCC1 complex binds to DNA nicks in nucleosomes only when they are exposed by periodic, spontaneous partial unwrapping of DNA from the histone octamer; that the scaffolding protein XRCC1 enhances the ligation; that the ligation occurs within a complex that ligase IIIα-XRCC1 forms with the host nucleosome; and that the ligase IIIα-XRCC1-nucleosome complex decays when ligation is complete, allowing the host nucleosome to return to its native configuration. Taken together, our results illustrate ways in which dynamic properties intrinsic to nucleosomes may contribute to the discovery and efficient repair of base damage in chromatin.
Collapse
Affiliation(s)
- Wendy J Cannan
- From the Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405 and
| | - Ishtiaque Rashid
- the University of New Mexico Cancer Center and Departments of Internal Medicine and Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Alan E Tomkinson
- the University of New Mexico Cancer Center and Departments of Internal Medicine and Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Susan S Wallace
- From the Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405 and
| | - David S Pederson
- From the Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405 and
| |
Collapse
|
8
|
Makowski Ł, Donczew R, Weigel C, Zawilak-Pawlik A, Zakrzewska-Czerwińska J. Initiation of Chromosomal Replication in Predatory Bacterium Bdellovibrio bacteriovorus. Front Microbiol 2016; 7:1898. [PMID: 27965633 PMCID: PMC5124646 DOI: 10.3389/fmicb.2016.01898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/11/2016] [Indexed: 11/18/2022] Open
Abstract
Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase) and replicating cells (the intracellular-growth phase). The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although, we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication - DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC) is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box [5'-NN(A/T)TCCACA-3']. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus). We compared the architecture of the DnaA-oriC complexes (orisomes) in homologous (oriC and DnaA from B. bacteriovorus) and heterologous (BdoriC and DnaA from prey, Escherichia coli or Pseudomonas aeruginosa) systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium.
Collapse
Affiliation(s)
- Łukasz Makowski
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy – Polish Academy of SciencesWrocław, Poland
| | - Rafał Donczew
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy – Polish Academy of SciencesWrocław, Poland
| | | | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy – Polish Academy of SciencesWrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy – Polish Academy of SciencesWrocław, Poland
- Department of Molecular Microbiology, Faculty of Biotechnology, University of WrocławWrocław, Poland
| |
Collapse
|
9
|
Gerbi SA. The path from student to mentor and from chromosomes to replication to genomics. Mol Biol Cell 2016; 27:3194-3196. [PMID: 27799493 PMCID: PMC5170850 DOI: 10.1091/mbc.e16-07-0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The American Society for Cell Biology Women in Cell Biology Sandra Masur Senior Award recognizes leadership in scientific accomplishments and in mentoring, which are intertwined. My development as a scientist reflects important mentors in my life, including my father and Joe Gall, who is my “Doktor Vater.” In turn, as an established investigator, my scientific successes in researching 1) chromosomes, their replication and genomics, and 2) ribosomes, their structure, evolution, and biogenesis, reflects the hard work of my students and postdocs, for whom I act as a mentor, guiding them in their research and along their career paths.
Collapse
Affiliation(s)
- Susan A Gerbi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912
| |
Collapse
|
10
|
Abstract
DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Superieure, PSL Research University, Paris, France
| |
Collapse
|
11
|
Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing. Proc Natl Acad Sci U S A 2015; 112:10908-13. [PMID: 26286988 DOI: 10.1073/pnas.1514809112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poxviruses reproduce in the host cytoplasm and encode most or all of the enzymes and factors needed for expression and synthesis of their double-stranded DNA genomes. Nevertheless, the mode of poxvirus DNA replication and the nature and location of the replication origins remain unknown. A current but unsubstantiated model posits only leading strand synthesis starting at a nick near one covalently closed end of the genome and continuing around the other end to generate a concatemer that is subsequently resolved into unit genomes. The existence of specific origins has been questioned because any plasmid can replicate in cells infected by vaccinia virus (VACV), the prototype poxvirus. We applied directional deep sequencing of short single-stranded DNA fragments enriched for RNA-primed nascent strands isolated from the cytoplasm of VACV-infected cells to pinpoint replication origins. The origins were identified as the switching points of the fragment directions, which correspond to the transition from continuous to discontinuous DNA synthesis. Origins containing a prominent initiation point mapped to a sequence within the hairpin loop at one end of the VACV genome and to the same sequence within the concatemeric junction of replication intermediates. These findings support a model for poxvirus genome replication that involves leading and lagging strand synthesis and is consistent with the requirements for primase and ligase activities as well as earlier electron microscopic and biochemical studies implicating a replication origin at the end of the VACV genome.
Collapse
|
12
|
Duzdevich D, Warner MD, Ticau S, Ivica NA, Bell SP, Greene EC. The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level. Mol Cell 2015; 58:483-94. [PMID: 25921072 DOI: 10.1016/j.molcel.2015.03.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/20/2015] [Accepted: 03/11/2015] [Indexed: 12/23/2022]
Abstract
Eukaryotic replication initiation is highly regulated and dynamic. It begins with the origin recognition complex (ORC) binding DNA sites called origins of replication. ORC, together with Cdc6 and Cdt1, mediate pre-replicative complex (pre-RC) assembly by loading a double hexamer of Mcm2-7: the core of the replicative helicase. Here, we use single-molecule imaging to directly visualize Saccharomyces cerevisiae pre-RC assembly and replisome firing in real time. We show that ORC can locate and stably bind origins within large tracts of non-origin DNA and that Cdc6 drives ordered pre-RC assembly. We further show that the dynamics of the ORC-Cdc6 interaction dictate Mcm2-7 loading specificity and that Mcm2-7 double hexamers form preferentially at a native origin sequence. Finally, we demonstrate that single Mcm2-7 hexamers propagate bidirectionally, monotonically, and processively as constituents of active replisomes.
Collapse
Affiliation(s)
- Daniel Duzdevich
- Department of Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Megan D Warner
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Simina Ticau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nikola A Ivica
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephen P Bell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, and the Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
13
|
Urban JM, Foulk MS, Casella C, Gerbi SA. The hunt for origins of DNA replication in multicellular eukaryotes. F1000PRIME REPORTS 2015; 7:30. [PMID: 25926981 PMCID: PMC4371235 DOI: 10.12703/p7-30] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Origins of DNA replication (ORIs) occur at defined regions in the genome. Although DNA sequence defines the position of ORIs in budding yeast, the factors for ORI specification remain elusive in metazoa. Several methods have been used recently to map ORIs in metazoan genomes with the hope that features for ORI specification might emerge. These methods are reviewed here with analysis of their advantages and shortcomings. The various factors that may influence ORI selection for initiation of DNA replication are discussed.
Collapse
Affiliation(s)
- John M. Urban
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
| | - Michael S. Foulk
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
- Department of Biology, Mercyhurst University501 East 38th Street, Erie, PA 16546USA
| | - Cinzia Casella
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
- Institute for Molecular Medicine, University of Southern DenmarkJB Winsloews Vej 25, 5000 Odense CDenmark
| | - Susan A. Gerbi
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
| |
Collapse
|
14
|
Clausen AR, Lujan SA, Burkholder AB, Orebaugh CD, Williams JS, Clausen MF, Malc EP, Mieczkowski PA, Fargo DC, Smith DJ, Kunkel TA. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat Struct Mol Biol 2015; 22:185-91. [PMID: 25622295 PMCID: PMC4351163 DOI: 10.1038/nsmb.2957] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022]
Abstract
Ribonucleotides are frequently incorporated into DNA during replication in eukaryotes. Here we map genome-wide distribution of these ribonucleotides as markers of replication enzymology in budding yeast, using a new 5' DNA end-mapping method, hydrolytic end sequencing (HydEn-seq). HydEn-seq of DNA from ribonucleotide excision repair-deficient strains reveals replicase- and strand-specific patterns of ribonucleotides in the nuclear genome. These patterns support the roles of DNA polymerases α and δ in lagging-strand replication and of DNA polymerase ɛ in leading-strand replication. They identify replication origins, termination zones and variations in ribonucleotide incorporation frequency across the genome that exceed three orders of magnitude. HydEn-seq also reveals strand-specific 5' DNA ends at mitochondrial replication origins, thus suggesting unidirectional replication of a circular genome. Given the conservation of enzymes that incorporate and process ribonucleotides in DNA, HydEn-seq can be used to track replication enzymology in other organisms.
Collapse
Affiliation(s)
- Anders R Clausen
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Scott A Lujan
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Adam B Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Clinton D Orebaugh
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Jessica S Williams
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Maryam F Clausen
- Department of Genetics, High Throughput Sequencing Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ewa P Malc
- Department of Genetics, High Throughput Sequencing Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Piotr A Mieczkowski
- Department of Genetics, High Throughput Sequencing Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David C Fargo
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, USA
| | - Thomas A Kunkel
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| |
Collapse
|
15
|
Hyrien O. Peaks cloaked in the mist: the landscape of mammalian replication origins. J Cell Biol 2015; 208:147-60. [PMID: 25601401 PMCID: PMC4298691 DOI: 10.1083/jcb.201407004] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/16/2014] [Indexed: 12/23/2022] Open
Abstract
Replication of mammalian genomes starts at sites termed replication origins, which historically have been difficult to locate as a result of large genome sizes, limited power of genetic identification schemes, and rareness and fragility of initiation intermediates. However, origins are now mapped by the thousands using microarrays and sequencing techniques. Independent studies show modest concordance, suggesting that mammalian origins can form at any DNA sequence but are suppressed by read-through transcription or that they can overlap the 5' end or even the entire gene. These results require a critical reevaluation of whether origins form at specific DNA elements and/or epigenetic signals or require no such determinants.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique UMR8197 and Institut National de la Santé et de la Recherche Médicale U1024, 75005 Paris, France
| |
Collapse
|
16
|
Budd ME, Campbell JL. Dna2 is involved in CA strand resection and nascent lagging strand completion at native yeast telomeres. J Biol Chem 2013; 288:29414-29. [PMID: 23963457 DOI: 10.1074/jbc.m113.472456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Post-replicational telomere end processing involves both extension by telomerase and resection to produce 3'-GT-overhangs that extend beyond the complementary 5'-CA-rich strand. Resection must be carefully controlled to maintain telomere length. At short de novo telomeres generated artificially by HO endonuclease in the G2 phase, we show that dna2-defective strains are impaired in both telomere elongation and sequential 5'-CA resection. At native telomeres in dna2 mutants, GT-overhangs do clearly elongate during late S phase but are shorter than in wild type, suggesting a role for Dna2 in 5'-CA resection but also indicating significant redundancy with other nucleases. Surprisingly, elimination of Mre11 nuclease or Exo1, which are complementary to Dna2 in resection of internal double strand breaks, does not lead to further shortening of GT-overhangs in dna2 mutants. A second step in end processing involves filling in of the CA-strand to maintain appropriate telomere length. We show that Dna2 is required for normal telomeric CA-strand fill-in. Yeast dna2 mutants, like mutants in DNA ligase 1 (cdc9), accumulate low molecular weight, nascent lagging strand DNA replication intermediates at telomeres. Based on this and other results, we propose that FEN1 is not sufficient and that either Dna2 or Exo1 is required to supplement FEN1 in maturing lagging strands at telomeres. Telomeres may be among the subset of genomic locations where Dna2 helicase/nuclease is essential for the two-nuclease pathway of primer processing on lagging strands.
Collapse
Affiliation(s)
- Martin E Budd
- From Braun Laboratories, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
17
|
Yanga W, Lib X. Next-generation sequencing of Okazaki fragments extracted from Saccharomyces cerevisiae. FEBS Lett 2013; 587:2441-7. [PMID: 23792162 DOI: 10.1016/j.febslet.2013.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/11/2013] [Indexed: 11/19/2022]
Abstract
Genome-wide Okazaki fragment distribution can differentiate the discontinuous from the semi-discontinuous DNA replication model. Here, we investigated the genome-wide Okazaki fragment distribution in Saccharomyces cerevisiae S288C. We improved the method based upon lambda exonuclease digestion to purify Okazaki fragments from S288C yeast cells, followed by Illumina sequencing. The distribution of Okazaki fragments around confirmed replication origins, including two highly efficient replication origins, supported the discontinuous DNA replication model. In S. cerevisiae mitochondria, Okazaki fragments were overrepresented in the transcribed regions, indicating the interplay between transcription and DNA replication.
Collapse
Affiliation(s)
- Wenchao Yanga
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | | |
Collapse
|
18
|
Nguyen HD, Becker J, Thu YM, Costanzo M, Koch EN, Smith S, Myung K, Myers CL, Boone C, Bielinsky AK. Unligated Okazaki Fragments Induce PCNA Ubiquitination and a Requirement for Rad59-Dependent Replication Fork Progression. PLoS One 2013; 8:e66379. [PMID: 23824283 PMCID: PMC3688925 DOI: 10.1371/journal.pone.0066379] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 05/07/2013] [Indexed: 11/28/2022] Open
Abstract
Deficiency in DNA ligase I, encoded by CDC9 in budding yeast, leads to the accumulation of unligated Okazaki fragments and triggers PCNA ubiquitination at a non-canonical lysine residue. This signal is crucial to activate the S phase checkpoint, which promotes cell cycle delay. We report here that a pol30-K107 mutation alleviated cell cycle delay in cdc9 mutants, consistent with the idea that the modification of PCNA at K107 affects the rate of DNA synthesis at replication forks. To determine whether PCNA ubiquitination occurred in response to nicks or was triggered by the lack of PCNA-DNA ligase interaction, we complemented cdc9 cells with either wild-type DNA ligase I or a mutant form, which fails to interact with PCNA. Both enzymes reversed PCNA ubiquitination, arguing that the modification is likely an integral part of a novel nick-sensory mechanism and not due to non-specific secondary mutations that could have occurred spontaneously in cdc9 mutants. To further understand how cells cope with the accumulation of nicks during DNA replication, we utilized cdc9-1 in a genome-wide synthetic lethality screen, which identified RAD59 as a strong negative interactor. In comparison to cdc9 single mutants, cdc9 rad59Δ double mutants did not alter PCNA ubiquitination but enhanced phosphorylation of the mediator of the replication checkpoint, Mrc1. Since Mrc1 resides at the replication fork and is phosphorylated in response to fork stalling, these results indicate that Rad59 alleviates nick-induced replication fork slowdown. Thus, we propose that Rad59 promotes fork progression when Okazaki fragment processing is compromised and counteracts PCNA-K107 mediated cell cycle arrest.
Collapse
Affiliation(s)
- Hai Dang Nguyen
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, Minnesota, United States of America
| | - Jordan Becker
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, Minnesota, United States of America
| | - Yee Mon Thu
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, Minnesota, United States of America
| | - Michael Costanzo
- Banting and Best Department of Medical Research, The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth N. Koch
- University of Minnesota, Department of Computer Science and Engineering, Minneapolis, Minnesota, United States of America
| | - Stephanie Smith
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kyungjae Myung
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chad L. Myers
- University of Minnesota, Department of Computer Science and Engineering, Minneapolis, Minnesota, United States of America
| | - Charles Boone
- Banting and Best Department of Medical Research, The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Anja-Katrin Bielinsky
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
19
|
Donczew R, Weigel C, Lurz R, Zakrzewska-Czerwinska J, Zawilak-Pawlik A. Helicobacter pylori oriC--the first bipartite origin of chromosome replication in Gram-negative bacteria. Nucleic Acids Res 2012; 40:9647-60. [PMID: 22904070 PMCID: PMC3479198 DOI: 10.1093/nar/gks742] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Binding of the DnaA protein to oriC leads to DNA melting within the DNA unwinding element (DUE) and initiates replication of the bacterial chromosome. Helicobacter pylori oriC was previously identified as a region localized upstream of dnaA and containing a cluster of DnaA boxes bound by DnaA protein with a high affinity. However, no unwinding within the oriC sequence has been detected. Comprehensive in silico analysis presented in this work allowed us to identify an additional region (oriC2), separated from the original one (oriC1) by the dnaA gene. DnaA specifically binds both regions, but DnaA-dependent DNA unwinding occurs only within oriC2. Surprisingly, oriC2 is bound exclusively as supercoiled DNA, which directly shows the importance of the DNA topology in DnaA-oriC interactions, similarly as previously presented only for initiator-origin interactions in Archaea and some Eukaryota. We conclude that H. pylori oriC exhibits bipartite structure, being the first such origin discovered in a Gram-negative bacterium. The H. pylori mode of initiator-oriC interactions, with the loop formation between the subcomplexes of the discontinuous origin, resembles those discovered in Bacillus subtilis chromosome and in many plasmids, which might suggest a similar way of controlling initiation of replication.
Collapse
Affiliation(s)
- Rafał Donczew
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland
| | | | | | | | | |
Collapse
|
20
|
Chow TT, Zhao Y, Mak SS, Shay JW, Wright WE. Early and late steps in telomere overhang processing in normal human cells: the position of the final RNA primer drives telomere shortening. Genes Dev 2012; 26:1167-78. [PMID: 22661228 PMCID: PMC3371406 DOI: 10.1101/gad.187211.112] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/19/2012] [Indexed: 11/24/2022]
Abstract
Telomere overhangs are essential for telomere end protection and telomerase extension, but how telomere overhangs are generated is unknown. Leading daughter strands synthesized by conventional semiconservation DNA replication are initially blunt, while lagging daughter strands are shorter by at least the size of the final RNA primer, which is thought to be located at extreme chromosome ends. We developed a variety of new approaches to define the steps in the processing of these overhangs. We show that the final lagging RNA primer is not terminal but is randomly positioned ~70-100 nucleotides from the ends and is not removed for more than an hour. This identifies an important intrinsic step in replicative aging. Telomeric termini are processed in two distinct phases. During the early phase, which occupies 1-2 h following replication of the duplex telomeric DNA, several steps occur on both leading and lagging daughters. Leading telomere processing remains incomplete until late S/G2, when the C-terminal nucleotide is specified-referred to as the late phase. These observations suggest the presence of previously unsuspected complexes and signaling events required for the replication of the ends of human chromosomes.
Collapse
Affiliation(s)
- Tracy T. Chow
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yong Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Sabrina S. Mak
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jerry W. Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Woodring E. Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
21
|
Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 2012; 483:434-8. [PMID: 22419157 DOI: 10.1038/nature10895] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/24/2012] [Indexed: 11/08/2022]
Abstract
Fifty per cent of the genome is discontinuously replicated on the lagging strand as Okazaki fragments. Eukaryotic Okazaki fragments remain poorly characterized and, because nucleosomes are rapidly deposited on nascent DNA, Okazaki fragment processing and nucleosome assembly potentially affect one another. Here we show that ligation-competent Okazaki fragments in Saccharomyces cerevisiae are sized according to the nucleosome repeat. Using deep sequencing, we demonstrate that ligation junctions preferentially occur near nucleosome midpoints rather than in internucleosomal linker regions. Disrupting chromatin assembly or lagging-strand polymerase processivity affects both the size and the distribution of Okazaki fragments, suggesting a role for nascent chromatin, assembled immediately after the passage of the replication fork, in the termination of Okazaki fragment synthesis. Our studies represent the first high-resolution analysis--to our knowledge--of eukaryotic Okazaki fragments in vivo, and reveal the interconnection between lagging-strand synthesis and chromatin assembly.
Collapse
|
22
|
Rajewska M, Wegrzyn K, Konieczny I. AT-rich region and repeated sequences - the essential elements of replication origins of bacterial replicons. FEMS Microbiol Rev 2011; 36:408-34. [PMID: 22092310 DOI: 10.1111/j.1574-6976.2011.00300.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/07/2011] [Indexed: 11/27/2022] Open
Abstract
Repeated sequences are commonly present in the sites for DNA replication initiation in bacterial, archaeal, and eukaryotic replicons. Those motifs are usually the binding places for replication initiation proteins or replication regulatory factors. In prokaryotic replication origins, the most abundant repeated sequences are DnaA boxes which are the binding sites for chromosomal replication initiation protein DnaA, iterons which bind plasmid or phage DNA replication initiators, defined motifs for site-specific DNA methylation, and 13-nucleotide-long motifs of a not too well-characterized function, which are present within a specific region of replication origin containing higher than average content of adenine and thymine residues. In this review, we specify methods allowing identification of a replication origin, basing on the localization of an AT-rich region and the arrangement of the origin's structural elements. We describe the regularity of the position and structure of the AT-rich regions in bacterial chromosomes and plasmids. The importance of 13-nucleotide-long repeats present at the AT-rich region, as well as other motifs overlapping them, was pointed out to be essential for DNA replication initiation including origin opening, helicase loading and replication complex assembly. We also summarize the role of AT-rich region repeated sequences for DNA replication regulation.
Collapse
Affiliation(s)
- Magdalena Rajewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | |
Collapse
|
23
|
Budd ME, Antoshechkin IA, Reis C, Wold BJ, Campbell JL. Inviability of a DNA2 deletion mutant is due to the DNA damage checkpoint. Cell Cycle 2011; 10:1690-8. [PMID: 21508669 DOI: 10.4161/cc.10.10.15643] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dna2 is a dual polarity exo/endonuclease, and 5' to 3' DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27 (scFEN1) , encoding a 5' to 3' exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5' to 3' helicase involved in mitochondrial recombination, telomerase inhibition and OFP. Mapping of a novel, spontaneously arising suppressor of dna2Δ now reveals that mutation of rad9 and double mutation of rad9 mrc1 can also suppress the lethality of dna2Δ mutants. Interaction of dna2Δ and DNA damage checkpoint mutations provides insight as to why dna2Δ is lethal but rad27Δ is not, even though evidence shows that Rad27 (ScFEN1) processes most of the Okazaki fragments, while Dna2 processes only a subset.
Collapse
Affiliation(s)
- Martin E Budd
- California Institute of Technology, Pasadena, CA USA
| | | | | | | | | |
Collapse
|
24
|
Lubelsky Y, Sasaki T, Kuipers MA, Lucas I, Le Beau MM, Carignon S, Debatisse M, Prinz JA, Dennis JH, Gilbert DM. Pre-replication complex proteins assemble at regions of low nucleosome occupancy within the Chinese hamster dihydrofolate reductase initiation zone. Nucleic Acids Res 2010; 39:3141-55. [PMID: 21148149 PMCID: PMC3082903 DOI: 10.1093/nar/gkq1276] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genome-scale mapping of pre-replication complex proteins has not been reported in mammalian cells. Poor enrichment of these proteins at specific sites may be due to dispersed binding, poor epitope availability or cell cycle stage-specific binding. Here, we have mapped sites of biotin-tagged ORC and MCM protein binding in G1-synchronized populations of Chinese hamster cells harboring amplified copies of the dihydrofolate reductase (DHFR) locus, using avidin-affinity purification of biotinylated chromatin followed by high-density microarray analysis across the DHFR locus. We have identified several sites of significant enrichment for both complexes distributed throughout the previously identified initiation zone. Analysis of the frequency of initiations across stretched DNA fibers from the DHFR locus confirmed a broad zone of de-localized initiation activity surrounding the sites of ORC and MCM enrichment. Mapping positions of mononucleosomal DNA empirically and computing nucleosome-positioning information in silico revealed that ORC and MCM map to regions of low measured and predicted nucleosome occupancy. Our results demonstrate that specific sites of ORC and MCM enrichment can be detected within a mammalian intitiation zone, and suggest that initiation zones may be regions of generally low nucleosome occupancy where flexible nucleosome positioning permits flexible pre-RC assembly sites.
Collapse
Affiliation(s)
- Yoav Lubelsky
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Okazaki fragment processing is an integral part of DNA replication. For a long time, we assumed that the maturation of these small RNA-primed DNA fragments did not necessarily have to occur during S phase, but could be postponed to late in S phase after the bulk of DNA synthesis had been completed. This view was primarily based on the arrest phenotype of temperature-sensitive DNA ligase I mutants in yeast, which accumulated with an almost fully duplicated set of chromosomes. However, many temperature-sensitive alleles can be leaky and the re-evaluation of DNA ligase I-deficient cells has offered new and unexpected insights into how cells keep track of lagging strand synthesis. It turns out that if Okazaki fragment joining goes awry, cells have their own alarm system in the form of ubiquitin that is conjugated to the replication clamp PCNA. Although this modification results in mono- and poly-ubiquitination of PCNA, it is genetically distinct from the known post-replicative repair mark at lysine 164. In this Extra View, we discuss the possibility that eukaryotic cells utilize different enzymatic pathways and ubiquitin attachment sites on PCNA to alert the replication machinery to the accumulation of single-stranded gaps or nicks behind the fork.
Collapse
Affiliation(s)
- Sapna Das-Bradoo
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, MN, USA
| | | | | |
Collapse
|
26
|
Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107. Nat Cell Biol 2009; 12:74-9; sup pp 1-20. [PMID: 20010813 PMCID: PMC2799194 DOI: 10.1038/ncb2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 11/11/2009] [Indexed: 01/29/2023]
Abstract
In all eukaryotes, the ligation of newly synthesized DNA, also known as Okazaki fragments, is catalyzed by DNA ligase I1. An individual with a DNA ligase I deficiency exhibited growth retardation, sunlight sensitivity and severe immunosuppression2, likely due to accumulation of DNA damage. Surprisingly, not much is known about the DNA damage response (DDR) in DNA ligase I-deficient cells. Because DNA replication and DDR pathways are highly conserved in eukaryotes, we utilized Saccharomyces cerevisiae as a model system to address this question. We uncovered a novel pathway, which facilitates ubiquitination of lysine 107 of proliferating cell nuclear antigen (PCNA). Unlike ubiquitination at lysine 164 of PCNA in response to UV irradiation, which triggers translesion synthesis3, modification of lysine 107 is not dependent on the ubiquitin conjugating enzyme (E2) Rad64 nor the ubiquitin ligase (E3) Rad185, but requires the E2 variant Mms26 in conjunction with Ubc47 and the E3 Rad58,9. Surprisingly, DNA ligase I-deficient cdc9-1 cells that carry a PCNAK107R mutation are inviable, because they cannot activate a robust DDR. Furthermore, we show that ubiquitination of PCNA in response to DNA ligase I-deficiency is conserved in humans, yet the lysine that mediates this modification remains to be determined. We propose that PCNA ubiquitination provides a “DNA damage code” that allows cells to categorize different types of defects that arise during DNA replication.
Collapse
|
27
|
Das-Bradoo S, Bielinsky AK. Replication initiation point mapping: approach and implications. Methods Mol Biol 2009; 521:105-20. [PMID: 19563103 DOI: 10.1007/978-1-60327-815-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Duplication of eukaryotic chromosomes begins from multiple sites called origins of replication, with DNA synthesis proceeding bidirectionally away from the origin. There is little detailed information available pertaining to whether replication initiates at specific sites or anywhere within a given origin. The development of replication initiation point (RIP) mapping has made it possible to map start sites for DNA synthesis at the nucleotide level. The key step in RIP mapping is the purification of nascent DNA, which is initiated by small RNA primers. For the removal of broken DNA fragments, we utilize lambda-exonuclease, which digests DNA, but leaves nascent strands intact as long as they have the RNA primer still attached. RIP mapping is a sensitive technique and has been successfully applied to single copy loci in both budding and fission yeast, archaebacteria, and human cells. Studies in yeast have shown that the binding site for the initiator, the origin recognition complex (ORC), lies immediately adjacent to the replication start point, which suggests that ORC directs the initiation machinery to a distinct site. Here, we present a detailed step-by-step protocol for RIP mapping of replication origins in budding yeast.
Collapse
Affiliation(s)
- Sapna Das-Bradoo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
28
|
Hegele H, Wuepping M, Ref C, Kenner O, Kaufmann D. Simultaneous targeted exchange of two nucleotides by single-stranded oligonucleotides clusters within a region of about fourteen nucleotides. BMC Mol Biol 2008; 9:14. [PMID: 18226192 PMCID: PMC2266939 DOI: 10.1186/1471-2199-9-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/28/2008] [Indexed: 11/23/2022] Open
Abstract
Background Transfection of cells with gene-specific, single-stranded oligonucleotides can induce the targeted exchange of one or two nucleotides in the targeted gene. To characterize the features of the DNA-repair mechanisms involved, we examined the maximal distance for the simultaneous exchange of two nucleotides by a single-stranded oligonucleotide. The chosen experimental system was the correction of a hprt-point mutation in a hamster cell line, the generation of an additional nucleotide exchange at a variable distance from the first exchange position and the investigation of the rate of simultaneous nucleotide exchanges. Results The smaller the distance between the two exchange positions, the higher was the probability of a simultaneous exchange. The detected simultaneous nucleotide exchanges were found to cluster in a region of about fourteen nucleotides upstream and downstream from the first exchange position. Conclusion We suggest that the mechanism involved in the repair of the targeted DNA strand utilizes only a short sequence of the single-stranded oligonucleotide, which may be physically incorporated into the DNA or be used as a matrix for a repair process.
Collapse
Affiliation(s)
- Heike Hegele
- Institute of Human Genetics, University of Ulm, D 89070 Ulm, Germany.
| | | | | | | | | |
Collapse
|
29
|
Abstract
The lamin B2 locus is the only mammalian origin whose replication initiation points (RIPs) have been mapped. Although this paper was published 8 years ago, no further mammalian RIP-mapping studies have been reported, largely due to technical difficulties of ligation-mediated (LM)-PCR used by the authors. Here, we report the development of a simple, one-way PCR-based protocol that allows one to accurately determine RIPs at mammalian origins. The procedure can be completed within 48 h from the time of cell lysis in the agarose gel. Nascent DNA is then isolated from the same gel after DNA is separated by alkaline gel electrophoresis. Subsequently, RIPs are determined by one-way PCR-based primer extension using labeled primers. Using this protocol, we have successfully mapped RIPs in the human DBF4 locus. As one-way PCR is routinely used by many scientists, this protocol will provide a powerful new tool for studying DNA replication in many organisms including mammalian cells.
Collapse
Affiliation(s)
- Julia Romero
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | | |
Collapse
|
30
|
Bolon YT, Bielinsky AK. The spatial arrangement of ORC binding modules determines the functionality of replication origins in budding yeast. Nucleic Acids Res 2006; 34:5069-80. [PMID: 16984967 PMCID: PMC1635292 DOI: 10.1093/nar/gkl661] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the quest to define autonomously replicating sequences (ARSs) in eukaryotic cells, an ARS consensus sequence (ACS) has emerged for budding yeast. This ACS is recognized by the replication initiator, the origin recognition complex (ORC). However, not every match to the ACS constitutes a replication origin. Here, we investigated the requirements for ORC binding to origins that carry multiple, redundant ACSs, such as ARS603. Previous studies raised the possibility that these ACSs function as individual ORC binding sites. Detailed mutational analysis of the two ACSs in ARS603 revealed that they function in concert and give rise to an initiation pattern compatible with a single bipartite ORC binding site. Consistent with this notion, deletion of one base pair between the ACS matches abolished ORC binding at ARS603. Importantly, loss of ORC binding in vitro correlated with the loss of ARS activity in vivo. Our results argue that replication origins in yeast are in general comprised of bipartite ORC binding sites that cannot function in random alignment but must conform to a configuration that permits ORC binding. These requirements help to explain why only a limited number of ACS matches in the yeast genome qualify as ORC binding sites.
Collapse
Affiliation(s)
| | - Anja-Katrin Bielinsky
- To whom correspondence should be addressed. Tel: +1 612 624 2469; Fax: +1 612 625 2163;
| |
Collapse
|
31
|
Das-Bradoo S, Ricke RM, Bielinsky AK. Interaction between PCNA and diubiquitinated Mcm10 is essential for cell growth in budding yeast. Mol Cell Biol 2006; 26:4806-17. [PMID: 16782870 PMCID: PMC1489165 DOI: 10.1128/mcb.02062-05] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The minichromosome maintenance protein 10 (Mcm10) is an evolutionarily conserved factor that is essential for replication initiation and elongation. Mcm10 is part of the eukaryotic replication fork and interacts with a variety of proteins, including the Mcm2-7 helicase and DNA polymerase alpha/primase complexes. A motif search revealed a match to the proliferating cell nuclear antigen (PCNA)-interacting protein (PIP) box in Mcm10. Here, we demonstrate a direct interaction between Mcm10 and PCNA that is alleviated by mutations in conserved residues of the PIP box. Interestingly, only the diubiquitinated form of Mcm10 binds to PCNA. Diubiquitination of Mcm10 is cell cycle regulated; it first appears in late G(1) and persists throughout S phase. During this time, diubiquitinated Mcm10 is associated with chromatin, suggesting a direct role in DNA replication. Surprisingly, a Y245A substitution in the PIP box of Mcm10 that inhibits the interaction with PCNA abolishes cell proliferation. This severe-growth phenotype, which has not been observed for analogous mutations in other PCNA-interacting proteins, is rescued by a compensatory mutation in PCNA that restores interaction with Mcm10-Y245A. Taken together, our results suggest that diubiquitinated Mcm10 interacts with PCNA to facilitate an essential step in DNA elongation.
Collapse
Affiliation(s)
- Sapna Das-Bradoo
- University of Minnesota, Biochemistry, Molecular Biology and Biophysics, 321 Church Street SE, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
32
|
Wang J, Lindner SE, Leight ER, Sugden B. Essential elements of a licensed, mammalian plasmid origin of DNA synthesis. Mol Cell Biol 2006; 26:1124-34. [PMID: 16428463 PMCID: PMC1347036 DOI: 10.1128/mcb.26.3.1124-1134.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a mammalian plasmid replicon with a formerly uncharacterized origin of DNA synthesis, 8xRep*. 8xRep* functions efficiently to support once-per-cell-cycle synthesis of plasmid DNA which initiates within Rep*. By characterizing Rep*'s requirements for acting as an origin, we have uncovered several striking properties it shares with DS, the only other well-characterized, licensed, mammalian plasmid origin of DNA synthesis. Rep* contains a pair of previously unrecognized Epstein-Barr nuclear antigen 1 (EBNA1)-binding sites that are both necessary and sufficient in cis for its origin activity. These sites have an essential 21-bp center-to-center spacing, are bent by EBNA1, and recruit the origin recognition complex. The properties shared between DS and Rep* define cis and trans characteristics of a mammalian, extrachromosomal replicon. The role of EBNA1 likely reflects its evolution from cellular factors involved in the assembly of the initiation machinery.
Collapse
Affiliation(s)
- Jindong Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin--Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
33
|
Patel PK, Arcangioli B, Baker SP, Bensimon A, Rhind N. DNA replication origins fire stochastically in fission yeast. Mol Biol Cell 2006; 17:308-16. [PMID: 16251353 PMCID: PMC1345668 DOI: 10.1091/mbc.e05-07-0657] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 10/14/2005] [Accepted: 10/18/2005] [Indexed: 11/11/2022] Open
Abstract
DNA replication initiates at discrete origins along eukaryotic chromosomes. However, in most organisms, origin firing is not efficient; a specific origin will fire in some but not all cell cycles. This observation raises the question of how individual origins are selected to fire and whether origin firing is globally coordinated to ensure an even distribution of replication initiation across the genome. We have addressed these questions by determining the location of firing origins on individual fission yeast DNA molecules using DNA combing. We show that the firing of replication origins is stochastic, leading to a random distribution of replication initiation. Furthermore, origin firing is independent between cell cycles; there is no epigenetic mechanism causing an origin that fires in one cell cycle to preferentially fire in the next. Thus, the fission yeast strategy for the initiation of replication is different from models of eukaryotic replication that propose coordinated origin firing.
Collapse
Affiliation(s)
- Prasanta K Patel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
34
|
Refsland EW, Livingston DM. Interactions among DNA ligase I, the flap endonuclease and proliferating cell nuclear antigen in the expansion and contraction of CAG repeat tracts in yeast. Genetics 2005; 171:923-34. [PMID: 16079237 PMCID: PMC1456850 DOI: 10.1534/genetics.105.043448] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among replication mutations that destabilize CAG repeat tracts, mutations of RAD27, encoding the flap endonuclease, and CDC9, encoding DNA ligase I, increase the incidence of repeat tract expansions to the greatest extent. Both enzymes bind to proliferating cell nuclear antigen (PCNA). To understand whether weakening their interactions leads to CAG repeat tract expansions, we have employed alleles named rad27-p and cdc9-p that have orthologous alterations in their respective PCNA interaction peptide (PIP) box. Also, we employed the PCNA allele pol30-90, which has changes within its hydrophobic pocket that interact with the PIP box. All three alleles destabilize a long CAG repeat tract and yield more tract contractions than expansions. Combining rad27-p with cdc9-p increases the expansion frequency above the sum of the numbers recorded in the individual mutants. A similar additive increase in tract expansions occurs in the rad27-p pol30-90 double mutant but not in the cdc9-p pol30-90 double mutant. The frequency of contractions rises in all three double mutants to nearly the same extent. These results suggest that PCNA mediates the entry of the flap endonuclease and DNA ligase I into the process of Okazaki fragment joining, and this ordered entry is necessary to prevent CAG repeat tract expansions.
Collapse
Affiliation(s)
- Eric W Refsland
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
35
|
Mori Y, Yamamoto T, Sakaguchi N, Ishibashi T, Furukawa T, Kadota Y, Kuchitsu K, Hashimoto J, Kimura S, Sakaguchi K. Characterization of the origin recognition complex (ORC) from a higher plant, rice (Oryza sativa L.). Gene 2005; 353:23-30. [PMID: 15939553 DOI: 10.1016/j.gene.2005.03.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 03/11/2005] [Accepted: 03/22/2005] [Indexed: 11/20/2022]
Abstract
The origin recognition complex (ORC) protein plays a critical role in DNA replication through binding to sites (origins) where replication commences. The protein is composed of six subunits (ORC1 to 6) in animals and yeasts. Our knowledge of the ORC protein in plants is, however, much less complete. We have performed cDNA cloning and characterization of ORC subunits in rice (Oryza sativa L. cv. Nipponbare) in order to facilitate study of plant DNA replication mechanisms. Our previous report provided a description of a gene, ORC1 (OsORC1), that encodes one of the protein subunits. The present report extends this initial analysis to include the genes that encode four other rice ORC subunits, OsORC2, 3, 4 and 5. Northern hybridization analyses demonstrated the presence of abundant transcripts for all OsORC subunits in shoot apical meristems (SAM) and cultured cells, but not in mature leaves. Interestingly, only OsORC5 showed high levels of expression in organs in which cell proliferation is not active, such as flag leaves, the ears and the non-tip roots. The pattern of expression of OsORC2 also differed from other OsORC subunits. When cell proliferation was temporarily halted for 6-10 days by removal of sucrose from the growth medium, expression of OsORC1, OsORC3, OsORC4 and OsORC5 was substantially reduced. However, the level of expression of OsORC2 remained constant. We suggest from these results that expression of OsORC1, 3, 4 and 5 are correlated with cell proliferation, but the expression of OsORC2 is not.
Collapse
MESH Headings
- Biolistics
- Blotting, Northern
- Cell Nucleus/metabolism
- Cell Proliferation
- Cells, Cultured
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- Exons
- Gene Expression Profiling
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant/genetics
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Introns
- Microscopy, Confocal
- Molecular Sequence Data
- Origin Recognition Complex
- Oryza/genetics
- Phylogeny
- Plant Proteins/genetics
- Protein Subunits/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Analysis, DNA
- Sucrose/pharmacology
Collapse
Affiliation(s)
- Yoko Mori
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nedelcheva MN, Roguev A, Dolapchiev LB, Shevchenko A, Taskov HB, Shevchenko A, Stewart AF, Stoynov SS. Uncoupling of unwinding from DNA synthesis implies regulation of MCM helicase by Tof1/Mrc1/Csm3 checkpoint complex. J Mol Biol 2005; 347:509-21. [PMID: 15755447 DOI: 10.1016/j.jmb.2005.01.041] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 01/11/2005] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
The replicative DNA helicases can unwind DNA in the absence of polymerase activity in vitro. In contrast, replicative unwinding is coupled with DNA synthesis in vivo. The temperature-sensitive yeast polymerase alpha/primase mutants cdc17-1, pri2-1 and pri1-m4, which fail to execute the early step of DNA replication, have been used to investigate the interaction between replicative unwinding and DNA synthesis in vivo. We report that some of the plasmid molecules in these mutant strains became extensively negatively supercoiled when DNA synthesis is prevented. In contrast, additional negative supercoiling was not detected during formation of DNA initiation complex or hydroxyurea replication fork arrest. Together, these results indicate that the extensive negative supercoiling of DNA is a result of replicative unwinding, which is not followed by DNA synthesis. The limited number of unwound plasmid molecules and synthetic lethality of polymerase alpha or primase with checkpoint mutants suggest a checkpoint regulation of the replicative unwinding. In concordance with this suggestion, we found that the Tof1/Csm3/Mrc1 checkpoint complex interacts directly with the MCM helicase during both replication fork progression and when the replication fork is stalled.
Collapse
Affiliation(s)
- Marina N Nedelcheva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Françon P, Lemaître JM, Dreyer C, Maiorano D, Cuvier O, Méchali M. A hypophosphorylated form of RPA34 is a specific component of pre-replication centers. J Cell Sci 2005; 117:4909-20. [PMID: 15456845 DOI: 10.1242/jcs.01361] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Replication protein A (RPA) is a three subunit single-stranded DNA-binding protein required for DNA replication. In Xenopus, RPA assembles in nuclear foci that form before DNA synthesis, but their significance in the assembly of replication initiation complexes has been questioned. Here we show that the RPA34 regulatory subunit is dephosphorylated at the exit of mitosis and binds to chromatin at detergent-resistant replication foci that co-localize with the catalytic RPA70 subunit, at both the initiation and elongation stages of DNA replication. By contrast, the RPA34 phosphorylated form present at mitosis is not chromatin bound. We further demonstrate that RPA foci assemble on chromatin before initiation of DNA replication at sites functionally defined as initiation replication sites. Association of RPA with these sites does not require nuclear membrane formation, and is sensitive to the S-CDK inhibitor p21. We also provide evidence that RPA34 is present at initiation complexes formed in the absence of MCM3, but which contain MCM4. In such conditions, replication foci can form, and short RNA-primed nascent DNAs of discrete size are synthesized. These data show that in Xenopus, the hypophosphorylated form of RPA34 is a component of the pre-initiation complex.
Collapse
Affiliation(s)
- Patricia Françon
- Institute of Human Genetics, CNRS, Genome Dynamics and Development, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France
| | | | | | | | | | | |
Collapse
|
38
|
Breier AM, Weier HUG, Cozzarelli NR. Independence of replisomes in Escherichia coli chromosomal replication. Proc Natl Acad Sci U S A 2005; 102:3942-7. [PMID: 15738384 PMCID: PMC552787 DOI: 10.1073/pnas.0500812102] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Escherichia coli DNA replication is carried out by the coordinated action of the proteins within a replisome. After replication initiation, the two bidirectionally oriented replisomes from a single origin are colocalized into higher-order structures termed replication factories. The factory model postulated that the two replisomes are also functionally coupled. We tested this hypothesis by using DNA combing and whole-genome microarrays. Nascent DNA surrounding oriC in single, combed chromosomes showed instead that one replisome, usually the leftward one, was significantly ahead of the other 70% of the time. We next used microarrays to follow replication throughout the genome by measuring DNA copy number. We found in multiple E. coli strains that the replisomes are independent, with the leftward replisome ahead of the rightward one. The size of the bias was strain-specific, varying from 50 to 130 kb in the array results. When we artificially blocked one replisome, the other continued unabated, again demonstrating independence. We suggest an improved version of the factory model that retains the advantages of threading DNA through colocalized replisomes at about equal rates, but allows the cell flexibility to overcome obstacles encountered during elongation.
Collapse
Affiliation(s)
- Adam M Breier
- Graduate Group in Biophysics and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
39
|
Kemp MG, Ghosh M, Liu G, Leffak M. The histone deacetylase inhibitor trichostatin A alters the pattern of DNA replication origin activity in human cells. Nucleic Acids Res 2005; 33:325-36. [PMID: 15653633 PMCID: PMC546162 DOI: 10.1093/nar/gki177] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Eukaryotic chromatin structure limits the initiation of DNA replication spatially to chromosomal origin zones and temporally to the ordered firing of origins during S phase. Here, we show that the level of histone H4 acetylation correlates with the frequency of replication initiation as measured by the abundance of short nascent DNA strands within the human c-myc and lamin B2 origins, but less well with the frequency of initiation across the β-globin locus. Treatment of HeLa cells with trichostatin A (TSA) reversibly increased the acetylation level of histone H4 globally and at these initiation sites. At all three origins, TSA treatment transiently promoted a more dispersive pattern of initiations, decreasing the abundance of nascent DNA at previously preferred initiation sites while increasing the nascent strand abundance at lower frequency genomic initiation sites. When cells arrested in late G1 were released into TSA, they completed S phase more rapidly than untreated cells, possibly due to the earlier initiation from late-firing origins, as exemplified by the β-globin origin. Thus, TSA may modulate replication origin activity through its effects on chromatin structure, by changing the selection of initiation sites, and by advancing the time at which DNA synthesis can begin at some initiation sites.
Collapse
Affiliation(s)
| | | | | | - Michael Leffak
- To whom correspondence should be addressed. Tel: +1 937 775 3125; Fax: +1 937 775 3730;
| |
Collapse
|
40
|
Ricke RM, Bielinsky AK. Mcm10 regulates the stability and chromatin association of DNA polymerase-alpha. Mol Cell 2004; 16:173-85. [PMID: 15494305 DOI: 10.1016/j.molcel.2004.09.017] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 08/02/2004] [Accepted: 08/17/2004] [Indexed: 10/26/2022]
Abstract
Mcm10 is a conserved eukaryotic DNA replication factor whose function has remained elusive. We report here that Mcm10 binding to replication origins in budding yeast is cell cycle regulated and dependent on the putative helicase, Mcm2-7. Mcm10 is also an essential component of the replication fork. A fraction of Mcm10 binds to DNA, as shown by histone association assays that allow for the study of chromatin binding in vivo. However, Mcm10 is also required to maintain steady-state levels of DNA polymerase-alpha (polalpha). In temperature-sensitive mcm10-td mutants, depletion of Mcm10 during S phase results in degradation of the catalytic subunit of polalpha, without affecting other fork components such as Cdc45. We propose that Mcm10 stabilizes polalpha and recruits the complex to replication origins. During elongation, Mcm10 is required for the presence of polalpha at replication forks and may coordinate DNA synthesis with DNA unwinding by the Mcm2-7 complex.
Collapse
Affiliation(s)
- Robin M Ricke
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
41
|
Chang VK, Donato JJ, Chan CS, Tye BK. Mcm1 promotes replication initiation by binding specific elements at replication origins. Mol Cell Biol 2004; 24:6514-24. [PMID: 15226450 PMCID: PMC434236 DOI: 10.1128/mcb.24.14.6514-6524.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Minichromosome maintenance protein 1 (Mcm1) is required for efficient replication of autonomously replicating sequence (ARS)-containing plasmids in yeast cells. Reduced DNA binding activity in the Mcm1-1 mutant protein (P97L) results in selective initiation of a subset of replication origins and causes instability of ARS-containing plasmids. This plasmid instability in the mcm1-1 mutant can be overcome for a subset of ARSs by the inclusion of flanking sequences. Previous work showed that Mcm1 binds sequences flanking the minimal functional domains of ARSs. Here, we dissected two conserved telomeric X ARSs, ARS120 (XARS6L) and ARS131a (XARS7R), that replicate with different efficiencies in the mcm1-1 mutant. We found that additional Mcm1 binding sites in the C domain of ARS120 that are missing in ARS131a are responsible for efficient replication of ARS120 in the mcm1-1 mutant. Mutating a conserved Mcm1 binding site in the C domain diminished replication efficiency in ARS120 in wild-type cells, and increasing the number of Mcm1 binding sites stimulated replication efficiency. Our results suggest that threshold occupancy of Mcm1 in the C domain of telomeric ARSs is required for efficient initiation. We propose that origin usage in Saccharomyces cerevisiae may be regulated by the occupancy of Mcm1 at replication origins.
Collapse
Affiliation(s)
- Victoria K Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
42
|
Altman AL, Fanning E. Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin. Mol Cell Biol 2004; 24:4138-50. [PMID: 15121836 PMCID: PMC400449 DOI: 10.1128/mcb.24.10.4138-4150.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 08/12/2003] [Accepted: 02/19/2004] [Indexed: 01/01/2023] Open
Abstract
A small DNA fragment containing the high-frequency initiation region (IR) ori-beta from the hamster dihydrofolate reductase locus functions as an independent replicator in ectopic locations in both hamster and human cells. Conversely, a fragment of the human lamin B2 locus containing the previously mapped IR serves as an independent replicator at ectopic chromosomal sites in hamster cells. At least four defined sequence elements are specifically required for full activity of ectopic ori-beta in hamster cells. These include an AT-rich element, a 4-bp sequence located within the mapped IR, a region of intrinsically bent DNA located between these two elements, and a RIP60 protein binding site adjacent to the bent region. The ori-beta AT-rich element is critical for initiation activity in human, as well as hamster, cells and can be functionally substituted for by an AT-rich region from the human lamin B2 IR that differs in nucleotide sequence and length. Taken together, the results demonstrate that two mammalian replicators can be activated at ectopic sites in chromosomes of another mammal and lead us to speculate that they may share functionally related elements.
Collapse
Affiliation(s)
- Amy L Altman
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
43
|
Affiliation(s)
- Isabelle A Lucas
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
44
|
Biamonti G, Paixão S, Montecucco A, Peverali FA, Riva S, Falaschi A. Is DNA sequence sufficient to specify DNA replication origins in metazoan cells? Chromosome Res 2004; 11:403-12. [PMID: 12971717 DOI: 10.1023/a:1024910307162] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA replication occupies a central position in the cell cycle and, therefore, in the development and life of multicellular organisms. During the last 10 years, our comprehension of this important process has considerably improved. Although the mechanisms that coordinate DNA replication with the other moments of the cell cycle are not yet fully understood, it is known that they mainly operate through DNA replication origins and the protein complexes bound to them. In eukaryotes, the packaging status of chromatin seems to be part of the mechanism that controls whether or not and when during the S-phase a particular origin will be activated. Intriguingly, the protein complexes bound to DNA replication origins appear to be directly involved in controlling chromatin packaging. In this manner they can also affect gene expression. In this review we focus on DNA replication origins in metazoan cells and on the relationship between these elements and the structural and functional organization of the genome.
Collapse
Affiliation(s)
- Giuseppe Biamonti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Paixão S, Colaluca IN, Cubells M, Peverali FA, Destro A, Giadrossi S, Giacca M, Falaschi A, Riva S, Biamonti G. Modular structure of the human lamin B2 replicator. Mol Cell Biol 2004; 24:2958-67. [PMID: 15024083 PMCID: PMC371099 DOI: 10.1128/mcb.24.7.2958-2967.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 09/07/2003] [Accepted: 12/22/2003] [Indexed: 11/20/2022] Open
Abstract
The cis-acting elements necessary for the activity of DNA replication origins in metazoan cells are still poorly understood. Here we report a thorough characterization of the DNA sequence requirements of the origin associated with the human lamin B2 gene. A 1.2-kb DNA segment, comprising the start site of DNA replication and located within a large protein-bound region, as well as a CpG island, displays origin activity when moved to different ectopic positions. Genomic footprinting analysis of both the endogenous and the ectopic origins indicates that the large protein complex is assembled in both cases around the replication start site. Replacement of this footprinted region with an unrelated sequence, maintaining the CpG island intact, abolishes origin activity and the interaction with hORC2, a subunit of the origin recognition complex. Conversely, the replacement of 17 bp within the protected region reduces the extension of the protection without affecting the interaction with hORC2. This substitution does not abolish the origin activity but makes it more sensitive to the integration site. Finally, the nearby CpG island positively affects the efficiency of initiation. This analysis reveals the modular structure of the lamin B2 origin and supports the idea that sequence elements close to the replication start site play an important role in origin activation.
Collapse
Affiliation(s)
- Sónia Paixão
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Breier AM, Chatterji S, Cozzarelli NR. Prediction of Saccharomyces cerevisiae replication origins. Genome Biol 2004; 5:R22. [PMID: 15059255 PMCID: PMC395781 DOI: 10.1186/gb-2004-5-4-r22] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/02/2004] [Accepted: 02/04/2004] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Autonomously replicating sequences (ARSs) function as replication origins in Saccharomyces cerevisiae. ARSs contain the 17 bp ARS consensus sequence (ACS), which binds the origin recognition complex. The yeast genome contains more than 10,000 ACS matches, but there are only a few hundred origins, and little flanking sequence similarity has been found. Thus, identification of origins by sequence alone has not been possible. RESULTS We developed an algorithm, Oriscan, to predict yeast origins using similarity to 26 characterized origins. Oriscan used 268 bp of sequence, including the T-rich ACS and a 3' A-rich region. The predictions identified the exact location of the ACS. A total of 84 of the top 100 Oriscan predictions, and 56% of the top 350, matched known ARSs or replication protein binding sites. The true accuracy was even higher because we tested 25 discrepancies, and 15 were in fact ARSs. Thus, 94% of the top 100 predictions and an estimated 70% of the top 350 were correct. We compared the predictions to corresponding sequences in related Saccharomyces species and found that the ACSs of experimentally supported predictions show significant conservation. CONCLUSIONS The high accuracy of the predictions indicates that we have defined near-sufficient conditions for ARS activity, the A-rich region is a recognizable feature of ARS elements with a probable role in replication initiation, and nucleotide sequence is a reliable predictor of yeast origins. Oriscan detected most origins in the genome, demonstrating previously unrecognized generality in yeast replication origins and significant discriminatory power in the algorithm.
Collapse
Affiliation(s)
- Adam M Breier
- Graduate Group in Biophysics, University of California-Berkeley, Berkeley, CA 94720-3204, USA
| | - Sourav Chatterji
- Department of Computer Science, University of California-Berkeley, Berkeley, CA 94720-3204, USA
| | - Nicholas R Cozzarelli
- Department of Molecular and Cellular Biology, Barker Hall, University of California-Berkeley, Berkeley, CA 94720-3204, USA
| |
Collapse
|
47
|
Weinreich M, Palacios DeBeer MA, Fox CA. The activities of eukaryotic replication origins in chromatin. ACTA ACUST UNITED AC 2004; 1677:142-57. [PMID: 15020055 DOI: 10.1016/j.bbaexp.2003.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 11/17/2003] [Indexed: 12/26/2022]
Abstract
DNA replication initiates at chromosomal positions called replication origins. This review will focus on the activity, regulation and roles of replication origins in Saccharomyces cerevisiae. All eukaryotic cells, including S. cerevisiae, depend on the initiation (activity) of hundreds of replication origins during a single cell cycle for the duplication of their genomes. However, not all origins are identical. For example, there is a temporal order to origin activation with some origins firing early during the S-phase and some origins firing later. Recent studies provide evidence that posttranslational chromatin modifications, heterochromatin-binding proteins and nucleosome positioning can control the efficiency and/or timing of chromosomal origin activity in yeast. Many more origins exist than are necessary for efficient replication. The availability of excess replication origins leaves individual origins free to evolve distinct forms of regulation and/or roles in chromosomes beyond their fundamental role in DNA synthesis. We propose that some origins have acquired roles in controlling chromatin structure and/or gene expression. These roles are not linked obligatorily to replication origin activity per se, but instead exploit multi-subunit replication proteins with the potential to form context-dependent protein-protein interactions.
Collapse
Affiliation(s)
- Michael Weinreich
- Laboratory of Chromosome Replication, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA.
| | | | | |
Collapse
|
48
|
Martin IV, MacNeill SA. Functional analysis of subcellular localization and protein-protein interaction sequences in the essential DNA ligase I protein of fission yeast. Nucleic Acids Res 2004; 32:632-42. [PMID: 14752051 PMCID: PMC373326 DOI: 10.1093/nar/gkh199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA ligase I (Lig I) has key roles in chromosomal DNA replication and repair in the eukaryotic cell nucleus. In the budding yeast Saccharomyces cerevisiae the Lig I enzyme Cdc9p is also required for mitochondrial DNA replication and repair. In this report, dual nuclear-mitochondrial localization is demonstrated to be a property of the essential Lig I enzyme Cdc17 from the distantly related fission yeast Schizosaccharomyces pombe. Expression of nuclear and mitochondrial forms of Cdc17 from separate genes shows that, whereas expression of either protein alone is insufficient to restore viability to cells lacking endogenous Cdc17, co-expression restores full viability. In the nucleus, Lig I interacts with the sliding clamp proliferating cell nuclear antigen (PCNA) via a conserved PCNA interacting sequence motif known as a PIP box. Deletion of the PIP motif from the N-terminus of the nuclear form of Cdc17 fails to abolish Cdc17 function, indicating that PCNA binding by Cdc17 is not an absolute requirement for completion of S-phase.
Collapse
Affiliation(s)
- Ina V Martin
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | | |
Collapse
|
49
|
Schaarschmidt D, Baltin J, Stehle IM, Lipps HJ, Knippers R. An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. EMBO J 2003; 23:191-201. [PMID: 14685267 PMCID: PMC1271667 DOI: 10.1038/sj.emboj.7600029] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 11/17/2003] [Indexed: 11/09/2022] Open
Abstract
An extrachromosomally replicating plasmid was used to investigate the specificity by which the origin recognition complex (ORC) interacts with DNA sequences in mammalian cells in vivo. We first showed that the plasmid pEPI-1 replicates semiconservatively in a once-per-cell-cycle manner and is stably transmitted over many cell generations in culture without selection. Chromatin immunoprecipitations and quantitative polymerase chain reaction analysis revealed that, in G1-phase cells, Orc1 and Orc2, as well as Mcm3, another component of the prereplication complex, are bound to multiple sites on the plasmid. These binding sites are functional because they show the S-phase-dependent dissociation of Orc1 and Mcm3 known to be characteristic for prereplication complexes in mammalian cells. In addition, we identified replicative nascent strands and showed that they correspond to many plasmid DNA regions. This work has implications for current models of replication origins in mammalian systems. It indicates that specific DNA sequences are not required for the chromatin binding of ORC in vivo. The conclusion is that epigenetic mechanisms determine the sites where mammalian DNA replication is initiated.
Collapse
|
50
|
Airenne TT, Torkko JM, Van den plas S, Sormunen RT, Kastaniotis AJ, Wierenga RK, Hiltunen JK. Structure-function analysis of enoyl thioester reductase involved in mitochondrial maintenance. J Mol Biol 2003; 327:47-59. [PMID: 12614607 DOI: 10.1016/s0022-2836(03)00038-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Candida tropicalis enoyl thioester reductase Etr1p and the Saccharomyces cerevisiae homologue Mrf1p catalyse the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis (FAS). Unlike prokaryotic enoyl thioester reductases (ETRs), which belong to the short-chain dehydrogenases/reductases (SDR), Etr1p and Mrf1p represent structurally distinguishable ETRs that belong to the medium-chain dehydrogenases/reductases (MDR) superfamily, indicating independent origin of two separate classes of ETRs. The crystal structures of Etr1p, the Etr1p-NADPH complex and the Etr1Y79Np mutant were refined to 1.70A, 2.25A and 2.60A resolution, respectively. The native fold of Etr1p was maintained in Etr1Y79Np, but the mutant had only 0.1% of Etr1p catalytic activity remaining and failed to rescue the respiratory deficient phenotype of the mrf1Delta strain. Mutagenesis of Tyr73 in Mrf1p, corresponding to Tyr79 in Etr1p, produced similar results. Our data indicate that the mitochondrial reductase activity is indispensable for respiratory function in yeast, emphasizing the significance of Mrf1p (Etr1p) and mitochondrial FAS for the integrity of the respiratory competent organelle.
Collapse
Affiliation(s)
- Tomi T Airenne
- Biocenter Oulu and Department of Biochemistry, P.O. Box 3000, FIN-90014 University of Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|