1
|
Navalho S, Ferrer-Ledo N, Barbosa MJ, Varela J. Nannochloropsis Lipids and Polyunsaturated Fatty Acids: Potential Applications and Strain Improvement. Mar Drugs 2025; 23:128. [PMID: 40137314 PMCID: PMC11943726 DOI: 10.3390/md23030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
The genus Nannochloropsis comprises a group of oleaginous microalgae that accumulate polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA). These molecules are essential for the correct development and health of humans and animals. Thanks to their attractive lipid profile, Nannochloropsis is mainly marketed as a feed ingredient in aquaculture. In microalgae of this genus, contents and cellular location of PUFAs are affected by the growth conditions and gene expression. Strain improvement through non-recombinant approaches can generate more productive strains and efficient bioprocesses for PUFA production. Nevertheless, the lack of specific markers, detection methods, and selective pressure for isolating such mutants remains a bottleneck in classical mutagenesis approaches or lipid quality assessment during cultivation. This review encompasses the importance of PUFAs and lipid classes from Nannochloropsis species and their potential applications. Additionally, a revision of the different ways to increase PUFA content in Nannochloropsis sp. by using classical mutagenesis and adaptive laboratory evolution is also presented, as well as various methods to label and quantify lipids and PUFAs from Nannochloropsis microalgae.
Collapse
Affiliation(s)
- Sofia Navalho
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (N.F.-L.); (M.J.B.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Narcis Ferrer-Ledo
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (N.F.-L.); (M.J.B.)
| | - Maria J. Barbosa
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (N.F.-L.); (M.J.B.)
| | - João Varela
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
2
|
Nor Amdan NA, Shahrulzamri NA, Hashim R, Mohamad Jamil N. Understanding the evolution of macrolides resistance: A mini review. J Glob Antimicrob Resist 2024; 38:368-375. [PMID: 39117142 DOI: 10.1016/j.jgar.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Macrolides inhibit the growth of bacterial cells by preventing the elongation of polypeptides during protein biosynthesis and include natural, synthetic, and semi-synthetic products. Elongation prevention occurs by blocking the passage of the polypeptide chain as the macrolides bind at the nascent peptide exit tunnel. OBJECTIVE Recent data of ribosome profiling via ribo-seq further proves that, other than blocking the polypeptide chain, macrolides are also able to affect the synthesis of individual proteins. Thus, this shows that the mode of action of macrolides is more complex than we initially thought. Since the discovery of macrolides in the 1950s, they have been widely used in veterinary practice, agriculture, and medicine. Due to misuse and overuse of antibiotics, bacteria have acquired resistance against them. Hence, it is of utmost importance for us to fully understand the mode of action of macrolides as well as the mechanisms of resistance against macrolides in order to mitigate antibiotic-resistance issues. RESULTS Chemical modifications can be performed to improve macrolide potency if we have a better understanding of their mode of action. Furthermore, a complete and detailed understanding of the mode of action of macrolides has remained vague, as new findings have challenged theories that are already in existence-due to this obscurity, research into macrolide modes of action continues to this day. CONCLUSION In this review, we present an overview of macrolide antibiotics, with an emphasis on the latest knowledge regarding the mode of action of macrolides as well as the mechanisms of resistance employed by bacteria against macrolides.
Collapse
Affiliation(s)
- Nur Asyura Nor Amdan
- Bacteriology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, 40170, Shah Alam, Selangor, Malaysia
| | - Nur Atikah Shahrulzamri
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Rohaidah Hashim
- Bacteriology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, 40170, Shah Alam, Selangor, Malaysia
| | - Norashirene Mohamad Jamil
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia; Molecular Microbial Pathogenicity Research Group, Pharmaceutical and Life Sciences Community of Research, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
3
|
McDonnell RT, Elcock AH. AutoRNC: An automated modeling program for building atomic models of ribosome-nascent chain complexes. Structure 2024; 32:621-629.e5. [PMID: 38428431 PMCID: PMC11073581 DOI: 10.1016/j.str.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
The interpretation of experimental studies of co-translational protein folding often benefits from the use of computational methods that seek to model or simulate the nascent chain and its interactions with the ribosome. Building realistic 3D models of ribosome-nascent chain (RNC) constructs often requires expert knowledge, so to circumvent this issue, we describe here AutoRNC, an automated modeling program capable of constructing large numbers of plausible atomic models of RNCs within minutes. AutoRNC takes input from the user specifying any regions of the nascent chain that contain secondary or tertiary structure and attempts to build conformations compatible with those specifications-and with the constraints imposed by the ribosome-by sampling and progressively piecing together dipeptide conformations extracted from the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB). Despite using only modest computational resources, we show here that AutoRNC can build plausible conformations for a wide range of RNC constructs for which experimental data have already been reported.
Collapse
Affiliation(s)
- Robert T McDonnell
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Adrian H Elcock
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Zhu G, Gao L, Sun Y, Wei W, Yan LT. Non-equilibrium structural and dynamic behaviors of active polymers in complex and crowded environments. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:054601. [PMID: 38608453 DOI: 10.1088/1361-6633/ad3e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Active matter systems, which convert internal chemical energy or energy from the environment into directed motion, are ubiquitous in nature and exhibit a range of emerging non-equilibrium behaviors. However, most of the current works on active matter have been devoted to particles, and the study of active polymers has only recently come into the spotlight due to their prevalence within living organisms. The intricate interplay between activity and conformational degrees of freedom gives rise to novel structural and dynamical behaviors of active polymers. Research in active polymers remarkably broadens diverse concepts of polymer physics, such as molecular architecture, dynamics, scaling and so on, which is of significant importance for the development of new polymer materials with unique performance. Furthermore, active polymers are often found in strongly interacting and crowded systems and in complex environments, so that the understanding of this behavior is essential for future developments of novel polymer-based biomaterials. This review thereby focuses on the study of active polymers in complex and crowded environments, and aims to provide insights into the fundamental physics underlying the adaptive and collective behaviors far from equilibrium, as well as the open challenges that the field is currently facing.
Collapse
Affiliation(s)
- Guolong Zhu
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yihang Sun
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Wenjie Wei
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
5
|
Aseev LV, Koledinskaya LS, Boni IV. Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023. Int J Mol Sci 2024; 25:2957. [PMID: 38474204 DOI: 10.3390/ijms25052957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
6
|
Cirino ICDS, de Santana CF, Bezerra MJR, Rocha IV, Luz ACDO, Coutinho HDM, de Figueiredo RCBQ, Raposo A, Lho LH, Han H, Leal-Balbino TC. Comparative transcriptomics analysis of multidrug-resistant Acinetobacter baumannii in response to treatment with the terpenic compounds thymol and carvacrol. Biomed Pharmacother 2023; 165:115189. [PMID: 37481932 DOI: 10.1016/j.biopha.2023.115189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
Acinetobacter baumannii is a gram-negative opportunistic bacterium that has become a major public health concern and a substantial medical challenge due to its ability to acquire multidrug resistance (MDR), extended-drug resistance, or pan-drug resistance. In this study, we evaluated the antibacterial activity of thymol and carvacrol alone or in combination against clinical isolates of MDR A. baumannii. Additionally, we used RNA-sequency to perform a comparative transcriptomic analysis of the effects of carvacrol and thymol on the Acb35 strain under different treatment conditions. Our results demonstrated that thymol and carvacrol alone, effectively inhibited the bacterial growth of MDR A. baumannii isolates, with a minimum inhibitory concentration (MIC) lower than 500 μg/mL. Furthermore, the combination of thymol and carvacrol exhibited either synergistic (FICI ≤ 0.5) or additive effects (0.5 < FICI ≤ 4), enhancing their antibacterial activity. Importantly, these compounds were found to be non-cytotoxic to Vero cells and did not cause hemolysis in erythrocytes at concentrations that effectively inhibited bacterial growth. Transcriptomic analysis revealed the down-regulation of mRNA associated with ribosomal subunit assemblies under all experimental conditions tested. However, the up-regulation of specific genes encoding stress response proteins and transcriptional regulators varied depending on the experimental condition, particularly in response to the treatment with carvacrol and thymol in combination. Based on our findings, thymol and carvacrol demonstrate promising potential as chemotherapeutic agents for controlling MDR A. baumannii infections. These compounds exhibit strong antibacterial activity, particularly in combination and lower cytotoxicity towards mammalian cells. The observed effects on gene expression provide insights into the underlying mechanisms of action, highlighting the regulation of stress response pathways.
Collapse
Affiliation(s)
- Isis Caroline da Silva Cirino
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil; Department of Genetics, Federal University of Pernambuco, CEP 50670-901 Recife, PE, Brazil
| | | | | | - Igor Vasconcelos Rocha
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil
| | | | | | | | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Linda Heejung Lho
- College of Business Division of Tourism and Hotel Management, Cheongju University, 298 Daesung-ro, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28503, Republic of Korea.
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-Gu, Seoul 143-747, Republic of Korea.
| | | |
Collapse
|
7
|
McDonnell RT, Elcock AH. AutoRNC: an automated modeling program for building atomic models of ribosome-nascent chain complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544999. [PMID: 37398297 PMCID: PMC10312685 DOI: 10.1101/2023.06.14.544999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The interpretation of experimental studies of co-translational protein folding often benefits from the use of computational methods that seek to model the nascent chain and its interactions with the ribosome. Ribosome-nascent chain (RNC) constructs studied experimentally can vary significantly in size and the extent to which they contain secondary and tertiary structure, and building realistic 3D models of them therefore often requires expert knowledge. To circumvent this issue, we describe here AutoRNC, an automated modeling program capable of constructing large numbers of plausible atomic models of RNCs within minutes. AutoRNC takes input from the user specifying any regions of the nascent chain that contain secondary or tertiary structure and attempts to build conformations compatible with those specifications - and with the constraints imposed by the ribosome - by sampling and progressively piecing together dipeptide conformations extracted from the RCSB. We first show that conformations of completely unfolded proteins built by AutoRNC in the absence of the ribosome have radii of gyration that match well with the corresponding experimental data. We then show that AutoRNC can build plausible conformations for a wide range of RNC constructs for which experimental data have already been reported. Since AutoRNC requires only modest computational resources, we anticipate that it will prove to be a useful hypothesis generator for experimental studies, for example, in providing indications of whether designed constructs are likely to be capable of folding, as well as providing useful starting points for downstream atomic or coarse-grained simulations of the conformational dynamics of RNCs.
Collapse
|
8
|
Wang C, Hu HX, Zhou YL, Zhao B, Luo MB. Translocation of a Self-propelled Polymer through a Narrow Pore. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Worthan SB, Franklin EA, Pham C, Yap MNF, Cruz-Vera LR. The Identity of the Constriction Region of the Ribosomal Exit Tunnel Is Important to Maintain Gene Expression in Escherichia coli. Microbiol Spectr 2022; 10:e0226121. [PMID: 35311583 PMCID: PMC9045200 DOI: 10.1128/spectrum.02261-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Mutational changes in bacterial ribosomes often affect gene expression and consequently cellular fitness. Understanding how mutant ribosomes disrupt global gene expression is critical to determining key genetic factors that affect bacterial survival. Here, we describe gene expression and phenotypic changes presented in Escherichia coli cells carrying an uL22(K90D) mutant ribosomal protein, which displayed alterations during growth. Ribosome profiling analyses revealed reduced expression of operons involved in catabolism, indole production, and lysine-dependent acid resistance. In general, translation initiation of proximal genes in several of these affected operons was substantially reduced. These reductions in expression were accompanied by increases in the expression of acid-induced membrane proteins and chaperones, the glutamate-decarboxylase regulon, and the autoinducer-2 metabolic regulon. In agreement with these changes, uL22(K90D) mutant cells had higher glutamate decarboxylase activity, survived better in extremely acidic conditions, and generated more biofilm in static cultures compared to their parental strain. Our work demonstrates that a single mutation in a non-conserved residue of a ribosomal protein affects a substantial number of genes to alter pH resistance and the formation of biofilms. IMPORTANCE All newly synthesized proteins must pass through a channel in the ribosome named the exit tunnel before emerging into the cytoplasm, membrane, and other compartments. The structural characteristics of the tunnel could govern protein folding and gene expression in a species-specific manner but how the identity of tunnel elements influences gene expression is less well-understood. Our global transcriptomics and translatome profiling demonstrate that a single substitution in a non-conserved amino acid of the E. coli tunnel protein uL22 has a profound impact on catabolism, cellular signaling, and acid resistance systems. Consequently, cells bearing the uL22 mutant ribosomes had an increased ability to survive acidic conditions and form biofilms. This work reveals a previously unrecognized link between tunnel identity and bacterial stress adaptation involving pH response and biofilm formation.
Collapse
Affiliation(s)
- Sarah B. Worthan
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Elizabeth A. Franklin
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Chi Pham
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Mee-Ngan F. Yap
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luis R. Cruz-Vera
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| |
Collapse
|
10
|
Abstract
This mini-review represents a brief, disorder-centric consideration of the interplay between order and disorder in proteins. The goal here is to show that inside the cell, folding, non-folding, and misfolding of proteins are interlinked on multiple levels. This is evidenced by the highly heterogeneous spatio-temporal structural organization of a protein molecule, where one can find differently (dis)ordered components that can undergo local or global order-to-disorder and disorder-to-order transitions needed for functionality. This is further illustrated by the fact that at particular moments of their life, most notably during their synthesis and degradation, all proteins are at least partially disordered. In addition to these intrinsic forms of disorder, proteins are constantly facing extrinsic disorder, which is intrinsic disorder in their functional partners. All this comprises the multileveled protein disorder cycle.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| |
Collapse
|
11
|
A Survey of Spontaneous Antibiotic-Resistant Mutants of the Halophilic, Thermophilic Bacterium Rhodothermus marinus. Antibiotics (Basel) 2021; 10:antibiotics10111384. [PMID: 34827322 PMCID: PMC8614978 DOI: 10.3390/antibiotics10111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Rhodothermus marinus is a halophilic extreme thermophile, with potential as a model organism for studies of the structural basis of antibiotic resistance. In order to facilitate genetic studies of this organism, we have surveyed the antibiotic sensitivity spectrum of R. marinus and identified spontaneous antibiotic-resistant mutants. R. marinus is naturally insensitive to aminoglycosides, aminocylitols and tuberactinomycins that target the 30S ribosomal subunit, but is sensitive to all 50S ribosomal subunit-targeting antibiotics examined, including macrolides, lincosamides, streptogramin B, chloramphenicol, and thiostrepton. It is also sensitive to kirromycin and fusidic acid, which target protein synthesis factors. It is sensitive to rifampicin (RNA polymerase inhibitor) and to the fluoroquinolones ofloxacin and ciprofloxacin (DNA gyrase inhibitors), but insensitive to nalidixic acid. Drug-resistant mutants were identified using rifampicin, thiostrepton, erythromycin, spiramycin, tylosin, lincomycin, and chloramphenicol. The majority of these were found to have mutations that are similar or identical to those previously found in other species, while several novel mutations were identified. This study provides potential selectable markers for genetic manipulations and demonstrates the feasibility of using R. marinus as a model system for studies of ribosome and RNA polymerase structure, function, and evolution.
Collapse
|
12
|
Laumen JGE, Manoharan-Basil SS, Verhoeven E, Abdellati S, De Baetselier I, Crucitti T, Xavier BB, Chapelle S, Lammens C, Van Dijck C, Malhotra-Kumar S, Kenyon C. Molecular pathways to high-level azithromycin resistance in Neisseria gonorrhoeae. J Antimicrob Chemother 2021; 76:1752-1758. [DOI: 10.1093/jac/dkab084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/28/2021] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
The prevalence of azithromycin resistance in Neisseria gonorrhoeae is increasing in numerous populations worldwide.
Objectives
To characterize the genetic pathways leading to high-level azithromycin resistance.
Methods
A customized morbidostat was used to subject two N. gonorrhoeae reference strains (WHO-F and WHO-X) to dynamically sustained azithromycin pressure. We tracked stepwise evolution of resistance by whole genome sequencing.
Results
Within 26 days, all cultures evolved high-level azithromycin resistance. Typically, the first step towards resistance was found in transitory mutations in genes rplD, rplV and rpmH (encoding the ribosomal proteins L4, L22 and L34 respectively), followed by mutations in the MtrCDE-encoded efflux pump and the 23S rRNA gene. Low- to high-level resistance was associated with mutations in the ribosomal proteins and MtrCDE efflux pump. However, high-level resistance was consistently associated with mutations in the 23S ribosomal RNA, mainly the well-known A2059G and C2611T mutations, but also at position A2058G.
Conclusions
This study enabled us to track previously reported mutations and identify novel mutations in ribosomal proteins (L4, L22 and L34) that may play a role in the genesis of azithromycin resistance in N. gonorrhoeae.
Collapse
Affiliation(s)
- J G E Laumen
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - S S Manoharan-Basil
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
| | - E Verhoeven
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- Pfizer, Puurs, Belgium
| | - S Abdellati
- Institute of Tropical Medicine, Department of Clinical Sciences, Clinical Reference Laboratory, Antwerp, Belgium
| | - I De Baetselier
- Institute of Tropical Medicine, Department of Clinical Sciences, Clinical Reference Laboratory, Antwerp, Belgium
| | - T Crucitti
- Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - B B Xavier
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - S Chapelle
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - C Lammens
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - C Van Dijck
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - S Malhotra-Kumar
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - C Kenyon
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Salehi N, Attaran B, Zare-Mirakabad F, Ghadiri B, Esmaeili M, Shakaram M, Tashakoripour M, Eshagh Hosseini M, Mohammadi M. The outward shift of clarithromycin binding to the ribosome in mutant Helicobacter pylori strains. Helicobacter 2020; 25:e12731. [PMID: 32794288 DOI: 10.1111/hel.12731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Disruption of protein synthesis, by drug-mediated restriction of the ribosomal nascent peptide exit tunnel (NPET), may inhibit bacterial growth. Here, we have studied the secondary and tertiary structures of domain V of the 23S rRNA in the wild-type and mutant (resistant) H. pylori strains and their mechanisms of interaction with clarithromycin (CLA). METHODS H pylori strains, isolated from cultured gastric biopsies, underwent CLA susceptibility testing by E test, followed by PCR amplification and sequencing of domain V of 23S rRNA. The homology model of this domain in H pylori, in complex with L4 and L22 accessory proteins, was determined based on the E. coli ribosome 3D structure. The interactions between CLA and 23S rRNA complex were determined by molecular docking studies. RESULTS Of the 70 H pylori strains, isolated from 200 dyspeptic patients, 11 (16%) were CLA-resistant. DNA sequencing identified categories with no (A), A2142G (B), and A2143G (C) mutations. Docking studies of our homology model of 23S rRNA complex with CLA showed deviated positions for categories B and C, in reference to category A, with 12.19 Å and 7.92 Å RMSD values, respectively. In both mutant categories, CLA lost its interactions at positions 2142 and 2587 and gained two new bonds with the L4 accessory protein. CONCLUSION Our data suggest that, in mutant H pylori strains, once the nucleotides at positions 2142 and 2587 are detached from the drug, CLA interacts with and is peeled back by the L4 accessory protein, removing the drug-imposed spatial restriction of the NPET.
Collapse
Affiliation(s)
- Najmeh Salehi
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bahareh Attaran
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Fatemeh Zare-Mirakabad
- Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
| | - Bahareh Ghadiri
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Esmaeili
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohadeseh Shakaram
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Tashakoripour
- Gastroenterology Department, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Eshagh Hosseini
- Gastroenterology Department, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Mohammadi
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Co-Translational Protein Folding and Sorting in Chloroplasts. PLANTS 2020; 9:plants9020214. [PMID: 32045984 PMCID: PMC7076657 DOI: 10.3390/plants9020214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/22/2023]
Abstract
Cells depend on the continuous renewal of their proteome composition during the cell cycle and in order to replace aberrant proteins or to react to changing environmental conditions. In higher eukaryotes, protein synthesis is achieved by up to five million ribosomes per cell. With the fast kinetics of translation, the large number of newly made proteins generates a substantial burden for protein homeostasis and requires a highly orchestrated cascade of factors promoting folding, sorting and final maturation. Several of the involved factors directly bind to translating ribosomes for the early processing of emerging nascent polypeptides and the translocation of ribosome nascent chain complexes to target membranes. In plant cells, protein synthesis also occurs in chloroplasts serving the expression of a relatively small set of 60–100 protein-coding genes. However, most of these proteins, together with nucleus-derived subunits, form central complexes majorly involved in the essential processes of photosynthetic light reaction, carbon fixation, metabolism and gene expression. Biogenesis of these heterogenic complexes adds an additional level of complexity for protein biogenesis. In this review, we summarize the current knowledge about co-translationally binding factors in chloroplasts and discuss their role in protein folding and ribosome translocation to thylakoid membranes.
Collapse
|
15
|
Karasev V. A model of molecular vector machine of proteins. Biosystems 2019; 180:7-18. [PMID: 30878497 DOI: 10.1016/j.biosystems.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/15/2019] [Accepted: 02/02/2019] [Indexed: 01/10/2023]
Abstract
Based on the analysis of NiH⋯Oi-4C bond region of the proteins pentafragments using the quantum chemistry representations, a group of 20 vectors of action has been isolated. These vectors of action are reconstructed by a group of 20 side chains of amino acids being the irreducible representations of vectors. As a result, a model of molecular vector machine of proteins (MVM) has been proposed. This machine includes proteins pentafragments, a system of 20 vectors inside dodecahedron coming out of the Oi-4 atom as from the center and tetrahedral αi-carbon atom with the side chains of amino acids that change as the polypeptide chain grows. A model with the structured canonical set of amino acids based on the principles of antisymmetry was transferred onto the dodecahedron as an MVM element (Karasev et al., 2005; Karasev et al., 2007). The perspective of MVM application for predicting and designing the secondary structure of proteins has been discussed.
Collapse
Affiliation(s)
- Vladimir Karasev
- St. Petersburg State Electrotechnical University, Prof. Popov str. 5, 197376, St. Petersburg, Russia.
| |
Collapse
|
16
|
Increased freedom of movement in the nascent chain results in dynamic changes in the structure of the SecM arrest motif. Biosci Rep 2019; 39:BSR20181246. [PMID: 30563926 PMCID: PMC6340945 DOI: 10.1042/bsr20181246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
Ribosomes are responsible for the synthesis of all cellular proteins. Due to the diversity of sequence and properties, it was initially believed that translating nascent chains would travel unhindered through the ribosome exit tunnel, however a small but increasing number of proteins have been identified that interact with the exit tunnel to induce translational arrest, Escherichia coli (E. coli) secretion monitor (SecM) is one such stalling peptide. How and why these peptides interact with the exit tunnel is not fully understood, however key features required for stalling appear to be an essential peptide arrest motif at the C-terminus and compaction of the nascent chain within the exit tunnel upon stalling. Mutagenesis of the SecM arrest sequence has identified three conservative point mutations that can retain a degree of stalling in this highly conserved sequence. This level of stalling is further increased when coupled with mutation of a non-essential arrest motif residue P153A. Further analysis of these mutants by pegylation assays indicates that this increase in stalling activity during translation is due to the ability of the P153A mutation to reintroduce compaction of the nascent chain within the exit tunnel possibly due to the improved flexibility of the nascent chain provided by the removal of a restrictive proline residue. The data presented here suggest that arrest sequences may be more prevalent and less highly conserved than previously thought, and highlight the significance of the interactions between the nascent chain and the exit tunnel to affecting translation arrest.
Collapse
|
17
|
Abstract
Ribosomes are biological nanomachine that synthesise all proteins within a cell. It took decades to reveal the architecture of this essential cellular component. To understand the structure -function relationship of this nanomachine needed the utilisisation of different biochemical, biophysical and structural techniques. Structural studies combined with mutagenesis of the different ribosomal complexes comprising various RNAs and proteins enabled us to understand how this machine works inside a cell. Nowadays quite a number of ribosomal structures were published that confirmed biochemical studies on particular steps of protein synthesis by the ribosome . Four major steps were identified: initiation , elongation, termination and recycling. These steps lead us to the important question how the ribosome function can be regulated. Advances in technology for cryo electron microscopy: sample preparations, image recording, developments in algorithms for image analysis and processing significantly helped in revelation of structural details of the ribosome . We now have a library of ribosome structures from prokaryotes to eukaryotes that enable us to understand the complex mechanics of this nanomachine. As this structural library continues to grow, we gradually improve our understanding of this process and how it can be regulated and how the specific ribosomes can be stalled or activated, or completely disabled. This article provides a comprehensive overview of ribosomal structures that represent structural snapshots of the ribosome at its different functional states. Better understanding rises more particular questions that have to be addressed by determination structures of more complexes.Synopsis: Structural biology of the ribosome.
Collapse
Affiliation(s)
- Abid Javed
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Elena V Orlova
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
18
|
Golkar T, Zieliński M, Berghuis AM. Look and Outlook on Enzyme-Mediated Macrolide Resistance. Front Microbiol 2018; 9:1942. [PMID: 30177927 PMCID: PMC6109786 DOI: 10.3389/fmicb.2018.01942] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/31/2018] [Indexed: 01/14/2023] Open
Abstract
Since their discovery in the early 1950s, macrolide antibiotics have been used in both agriculture and medicine. Specifically, macrolides such as erythromycin and azithromycin have found use as substitutes for β-lactam antibiotics in patients with penicillin allergies. Given the extensive use of this class of antibiotics it is no surprise that resistance has spread among pathogenic bacteria. In these bacteria different mechanisms of resistance have been observed. Frequently observed are alterations in the target of macrolides, i.e., the ribosome, as well as upregulation of efflux pumps. However, drug modification is also increasingly observed. Two classes of enzymes have been implicated in macrolide detoxification: macrolide phosphotransferases and macrolide esterases. In this review, we present a comprehensive overview on what is known about macrolide resistance with an emphasis on the macrolide phosphotransferase and esterase enzymes. Furthermore, we explore how this information can assist in addressing resistance to macrolide antibiotics.
Collapse
Affiliation(s)
- Tolou Golkar
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Michał Zieliński
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Nikulin AD. Structural Aspects of Ribosomal RNA Recognition by Ribosomal Proteins. BIOCHEMISTRY (MOSCOW) 2018; 83:S111-S133. [DOI: 10.1134/s0006297918140109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Wekselman I, Zimmerman E, Davidovich C, Belousoff M, Matzov D, Krupkin M, Rozenberg H, Bashan A, Friedlander G, Kjeldgaard J, Ingmer H, Lindahl L, Zengel JM, Yonath A. The Ribosomal Protein uL22 Modulates the Shape of the Protein Exit Tunnel. Structure 2017; 25:1233-1241.e3. [PMID: 28689968 DOI: 10.1016/j.str.2017.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 05/08/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
Erythromycin is a clinically useful antibiotic that binds to an rRNA pocket in the ribosomal exit tunnel. Commonly, resistance to erythromycin is acquired by alterations of rRNA nucleotides that interact with the drug. Mutations in the β hairpin of ribosomal protein uL22, which is rather distal to the erythromycin binding site, also generate resistance to the antibiotic. We have determined the crystal structure of the large ribosomal subunit from Deinococcus radiodurans with a three amino acid insertion within the β hairpin of uL22 that renders resistance to erythromycin. The structure reveals a shift of the β hairpin of the mutated uL22 toward the interior of the exit tunnel, triggering a cascade of structural alterations of rRNA nucleotides that propagate to the erythromycin binding pocket. Our findings support recent studies showing that the interactions between uL22 and specific sequences within nascent chains trigger conformational rearrangements in the exit tunnel.
Collapse
Affiliation(s)
- Itai Wekselman
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ella Zimmerman
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chen Davidovich
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Matthew Belousoff
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Donna Matzov
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miri Krupkin
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Haim Rozenberg
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Bashan
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilgi Friedlander
- The Ilana and Pascal Mantoux Institute for Bioinformatics, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jette Kjeldgaard
- Department of Veterinary Disease Biology, University of Copenhagen, 1870 Frederiksbergc, Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, University of Copenhagen, 1870 Frederiksbergc, Denmark
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Janice M Zengel
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Ada Yonath
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
21
|
Javed A, Christodoulou J, Cabrita LD, Orlova EV. The ribosome and its role in protein folding: looking through a magnifying glass. Acta Crystallogr D Struct Biol 2017; 73:509-521. [PMID: 28580913 PMCID: PMC5458493 DOI: 10.1107/s2059798317007446] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/19/2017] [Indexed: 11/21/2022] Open
Abstract
Protein folding, a process that underpins cellular activity, begins co-translationally on the ribosome. During translation, a newly synthesized polypeptide chain enters the ribosomal exit tunnel and actively interacts with the ribosome elements - the r-proteins and rRNA that line the tunnel - prior to emerging into the cellular milieu. While understanding of the structure and function of the ribosome has advanced significantly, little is known about the process of folding of the emerging nascent chain (NC). Advances in cryo-electron microscopy are enabling visualization of NCs within the exit tunnel, allowing early glimpses of the interplay between the NC and the ribosome. Once it has emerged from the exit tunnel into the cytosol, the NC (still attached to its parent ribosome) can acquire a range of conformations, which can be characterized by NMR spectroscopy. Using experimental restraints within molecular-dynamics simulations, the ensemble of NC structures can be described. In order to delineate the process of co-translational protein folding, a hybrid structural biology approach is foreseeable, potentially offering a complete atomic description of protein folding as it occurs on the ribosome.
Collapse
Affiliation(s)
- Abid Javed
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
- Institute of Structural and Molecular Biology, University College London (UCL), Gower Street, London WC1E 6BT, England
| | - John Christodoulou
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
- Institute of Structural and Molecular Biology, University College London (UCL), Gower Street, London WC1E 6BT, England
| | - Lisa D. Cabrita
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
- Institute of Structural and Molecular Biology, University College London (UCL), Gower Street, London WC1E 6BT, England
| | - Elena V. Orlova
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
| |
Collapse
|
22
|
Sorokina I, Mushegian A. Rotational restriction of nascent peptides as an essential element of co-translational protein folding: possible molecular players and structural consequences. Biol Direct 2017; 12:14. [PMID: 28569180 PMCID: PMC5452302 DOI: 10.1186/s13062-017-0186-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
Background A basic tenet of protein science is that all information about the spatial structure of proteins is present in their sequences. Nonetheless, many proteins fail to attain native structure upon experimental denaturation and refolding in vitro, raising the question of the specific role of cellular machinery in protein folding in vivo. Recently, we hypothesized that energy-dependent twisting of the protein backbone is an unappreciated essential factor guiding the protein folding process in vivo. Torque force may be applied by the ribosome co-translationally, and when accompanied by simultaneous restriction of the rotational mobility of the distal part of the growing chain, the resulting tension in the protein backbone would facilitate the formation of local secondary structure and direct the folding process. Results Our model of the early stages of protein folding in vivo postulates that the free motion of both terminal regions of the protein during its synthesis and maturation is restricted. The long-known but unexplained phenomenon of statistical overrepresentation of protein termini on the surfaces of the protein structures may be an indication of the backbone twist-based folding mechanism; sustained maintenance of a twist requires that both ends of the protein chain are anchored in space, and if the ends are released only after the majority of folding is complete, they are much more likely to remain on the surface of the molecule. We identified the molecular components that are likely to play a role in the twisting of the nascent protein chain and in the anchoring of its N-terminus. The twist may be induced at the C-terminus of the nascent polypeptide by the peptidyltransferase center of the ribosome. Several ribosome-associated proteins, including the trigger factor in bacteria and the nascent polypeptide-associated complex in archaea and eukaryotes, may restrict the rotational mobility of the N-proximal regions of the peptides. Conclusions Many experimental observations are consistent with the hypothesis of co-translational twisting of the protein backbone. Several molecular players in this hypothetical mechanism of protein folding can be suggested. In addition, the new view of protein folding in vivo opens the possibility of novel potential drug targets to combat human protein folding diseases. Reviewers This article was reviewed by Lakshminarayan Iyer and István Simon. Electronic supplementary material The online version of this article (doi:10.1186/s13062-017-0186-1) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Translocation of a Polymer through a Crowded Channel under Electrical Force. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5267185. [PMID: 28459062 PMCID: PMC5385253 DOI: 10.1155/2017/5267185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/09/2017] [Indexed: 11/18/2022]
Abstract
The translocation of a polymer chain through a crowded cylindrical channel is studied using the Langevin dynamics simulations. The influences of the field strength F, the chain length N, and the crowding extent ρ on the translocation time are evaluated, respectively. Scaling relation τ ~ F−α is observed. With the crowding extent ρ increasing, the scaling exponent α becomes large. It is found that, for noncrowded channel, translocation probability drops when the field strength becomes large. However, for high-crowded channel, it is the opposite. Moreover, the translocation time and the average translocation time for all segments both have exponential growth with the crowding extent. The investigation of shape factor 〈δ〉 shows maximum value with increasing of the number of segments outside s. At last, the number of segments inside channel Nin in the process of translocation is calculated and a peak is observed. All the information from the study may benefit protein translocation.
Collapse
|
24
|
Gomes C, Martínez-Puchol S, Palma N, Horna G, Ruiz-Roldán L, Pons MJ, Ruiz J. Macrolide resistance mechanisms in Enterobacteriaceae: Focus on azithromycin. Crit Rev Microbiol 2016; 43:1-30. [DOI: 10.3109/1040841x.2015.1136261] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cláudia Gomes
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| | - Sandra Martínez-Puchol
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| | - Noemí Palma
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| | - Gertrudis Horna
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Maria J Pons
- Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Joaquim Ruiz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| |
Collapse
|
25
|
Effenberger KA, Urabe VK, Jurica MS. Modulating splicing with small molecular inhibitors of the spliceosome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27440103 DOI: 10.1002/wrna.1381] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/06/2016] [Accepted: 06/28/2016] [Indexed: 12/23/2022]
Abstract
Small molecule inhibitors that target components of the spliceosome have great potential as tools to probe splicing mechanism and dissect splicing regulatory networks in cells. These compounds also hold promise as drug leads for diseases in which splicing regulation plays a critical role, including many cancers. Because the spliceosome is a complicated and dynamic macromolecular machine comprised of many RNA and protein components, a variety of compounds that interfere with different aspects of spliceosome assembly is needed to probe its function. By screening chemical libraries with high-throughput splicing assays, several labs have added to the collection of splicing inhibitors, although the mechanistic insight into splicing yielded from the initial compound hits is somewhat limited so far. In contrast, SF3B1 inhibitors stand out as a great example of what can be accomplished with small molecule tools. This group of compounds were first discovered as natural products that are cytotoxic to cancer cells, and then later shown to target the core spliceosome protein SF3B1. The inhibitors have since been used to uncover details of SF3B1 mechanism in the spliceosome and its impact on gene expression in cells. Continuing structure activity relationship analysis of the compounds is also making progress in identifying chemical features key to their function, which is critical in understanding the mechanism of SF3B1 inhibition. The knowledge is also important for the design of analogs with new and useful features for both splicing researchers and clinicians hoping to exploit splicing as pressure point to target in cancer therapy. WIREs RNA 2017, 8:e1381. doi: 10.1002/wrna.1381 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kerstin A Effenberger
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.,Center for Molecular Biology of RNA, University of California, Santa Cruz, CA, USA
| | - Veronica K Urabe
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.,Center for Molecular Biology of RNA, University of California, Santa Cruz, CA, USA
| | - Melissa S Jurica
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.,Center for Molecular Biology of RNA, University of California, Santa Cruz, CA, USA
| |
Collapse
|
26
|
Lawrence MG, Shamsuzzaman M, Kondopaka M, Pascual C, Zengel JM, Lindahl L. The extended loops of ribosomal proteins uL4 and uL22 of Escherichia coli contribute to ribosome assembly and protein translation. Nucleic Acids Res 2016; 44:5798-810. [PMID: 27257065 PMCID: PMC4937340 DOI: 10.1093/nar/gkw493] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 05/21/2016] [Indexed: 11/13/2022] Open
Abstract
Nearly half of ribosomal proteins are composed of a domain on the ribosome surface and a loop or extension that penetrates into the organelle's RNA core. Our previous work showed that ribosomes lacking the loops of ribosomal proteins uL4 or uL22 are still capable of entering polysomes. However, in those experiments we could not address the formation of mutant ribosomes, because we used strains that also expressed wild-type uL4 and uL22. Here, we have focused on ribosome assembly and function in strains in which loop deletion mutant genes are the only sources of uL4 or uL22 protein. The uL4 and uL22 loop deletions have different effects, but both mutations result in accumulation of immature particles that do not accumulate in detectable amounts in wild-type strains. Thus, our results suggest that deleting the loops creates kinetic barriers in the normal assembly pathway, possibly resulting in assembly via alternate pathway(s). Furthermore, deletion of the uL4 loop results in cold-sensitive ribosome assembly and function. Finally, ribosomes carrying either of the loop-deleted proteins responded normally to the secM translation pausing peptide, but the uL4 mutant responded very inefficiently to the cmlAcrb pause peptide.
Collapse
Affiliation(s)
- Marlon G Lawrence
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Md Shamsuzzaman
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Maithri Kondopaka
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Clarence Pascual
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Janice M Zengel
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
27
|
Huang CK, Shen YL, Huang LF, Wu SJ, Yeh CH, Lu CA. The DEAD-Box RNA Helicase AtRH7/PRH75 Participates in Pre-rRNA Processing, Plant Development and Cold Tolerance in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:174-91. [PMID: 26637537 DOI: 10.1093/pcp/pcv188] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/18/2015] [Indexed: 05/18/2023]
Abstract
DEAD-box RNA helicases belong to an RNA helicase family that plays specific roles in various RNA metabolism processes, including ribosome biogenesis, mRNA splicing, RNA export, mRNA translation and RNA decay. This study investigated a DEAD-box RNA helicase, AtRH7/PRH75, in Arabidopsis. Expression of AtRH7/PRH75 was ubiquitous; however, the levels of mRNA accumulation were increased in cell division regions and were induced by cold stress. The phenotypes of two allelic AtRH7/PRH75-knockout mutants, atrh7-2 and atrh7-3, resembled auxin-related developmental defects that were exhibited in several ribosomal protein mutants, and were more severe under cold stress. Northern blot and circular reverse transcription-PCR (RT-PCR) analyses indicated that unprocessed 18S pre-rRNAs accumulated in the atrh7 mutants. The atrh7 mutants were hyposensitive to the antibiotic streptomycin, which targets ribosomal small subunits, suggesting that AtRH7 was also involved in ribosome assembly. In addition, the atrh7-2 and atrh7-3 mutants displayed cold hypersensitivity and decreased expression of CBF1, CBF2 and CBF3, which might be responsible for the cold intolerance. The present study indicated that AtRH7 participates in rRNA biogenesis and is also involved in plant development and cold tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC These authors contributed equally to this work
| | - Yu-Lien Shen
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC These authors contributed equally to this work
| | - Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Shaw-Jye Wu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Chin-Hui Yeh
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| |
Collapse
|
28
|
Abstract
BACKGROUND During protein synthesis, the nascent peptide chain emerges from the ribosome through the ribosomal exit tunnel. Biochemical interactions between the nascent peptide and the tunnel may stall the ribosome movement and thus affect the expression level of the protein being synthesized. Earlier studies focused on one model organism (S. cerevisiae), have suggested that certain amino acid sequences may be responsible for ribosome stalling; however, the stalling effect at the individual amino acid level across many organisms has not yet been quantified. RESULTS By analyzing multiple ribosome profiling datasets from different organisms (including prokaryotes and eukaryotes), we report for the first time the organism-specific amino acids that significantly lead to ribosome stalling. We show that the identity of the stalling amino acids vary across the tree of life. In agreement with previous studies, we observed a remarkable stalling signal of proline and arginine in S. cerevisiae. In addition, our analysis supports the conjecture that the stalling effect of positively charged amino acids is not universal and that in certain conditions, negative charge may also induce ribosome stalling. Finally, we show that the beginning part of the tunnel tends to undergo more interactions with the translated amino acids than other positions along the tunnel. CONCLUSIONS The reported results support the conjecture that the ribosomal exit tunnel interacts with various amino acids and that the nature of these interactions varies among different organisms. Our findings should contribute towards better understanding of transcript and proteomic evolution and translation elongation regulation.
Collapse
Affiliation(s)
- Renana Sabi
- Department of Biomedical Engineering, Tel Aviv University (TAU), Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University (TAU), Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel-Aviv University (TAU), Tel-Aviv, Israel
| |
Collapse
|
29
|
Doris SM, Smith DR, Beamesderfer JN, Raphael BJ, Nathanson JA, Gerbi SA. Universal and domain-specific sequences in 23S-28S ribosomal RNA identified by computational phylogenetics. RNA (NEW YORK, N.Y.) 2015; 21:1719-1730. [PMID: 26283689 PMCID: PMC4574749 DOI: 10.1261/rna.051144.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/07/2015] [Indexed: 06/01/2023]
Abstract
Comparative analysis of ribosomal RNA (rRNA) sequences has elucidated phylogenetic relationships. However, this powerful approach has not been fully exploited to address ribosome function. Here we identify stretches of evolutionarily conserved sequences, which correspond with regions of high functional importance. For this, we developed a structurally aligned database, FLORA (full-length organismal rRNA alignment) to identify highly conserved nucleotide elements (CNEs) in 23S-28S rRNA from each phylogenetic domain (Eukarya, Bacteria, and Archaea). Universal CNEs (uCNEs) are conserved in sequence and structural position in all three domains. Those in regions known to be essential for translation validate our approach. Importantly, some uCNEs reside in areas of unknown function, thus identifying novel sequences of likely great importance. In contrast to uCNEs, domain-specific CNEs (dsCNEs) are conserved in just one phylogenetic domain. This is the first report of conserved sequence elements in rRNA that are domain-specific; they are largely a eukaryotic phenomenon. The locations of the eukaryotic dsCNEs within the structure of the ribosome suggest they may function in nascent polypeptide transit through the ribosome tunnel and in tRNA exit from the ribosome. Our findings provide insights and a resource for ribosome function studies.
Collapse
Affiliation(s)
- Stephen M Doris
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island 02912, USA
| | - Deborah R Smith
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island 02912, USA
| | - Julia N Beamesderfer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island 02912, USA
| | - Benjamin J Raphael
- Department of Computer Science and Center for Computational Molecular Biology, Brown University Division of Biology and Medicine, Providence, Rhode Island 02912, USA
| | - Judith A Nathanson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island 02912, USA
| | - Susan A Gerbi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island 02912, USA
| |
Collapse
|
30
|
Rodriguez de Evgrafov M, Gumpert H, Munck C, Thomsen TT, Sommer MOA. Collateral Resistance and Sensitivity Modulate Evolution of High-Level Resistance to Drug Combination Treatment in Staphylococcus aureus. Mol Biol Evol 2015; 32:1175-85. [PMID: 25618457 DOI: 10.1093/molbev/msv006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
As drug-resistant pathogens continue to emerge, combination therapy will increasingly be relied upon to treat infections and to help combat further development of multidrug resistance. At present a dichotomy exists between clinical practice, which favors therapeutically synergistic combinations, and the scientific model emerging from in vitro experimental work, which maintains that this interaction provides greater selective pressure toward resistance development than other interaction types. We sought to extend the current paradigm, based on work below or near minimum inhibitory concentration levels, to reflect drug concentrations more likely to be encountered during treatment. We performed a series of adaptive evolution experiments using Staphylococcus aureus. Interestingly, no relationship between drug interaction type and resistance evolution was found as resistance increased significantly beyond wild-type levels. All drug combinations, irrespective of interaction types, effectively limited resistance evolution compared with monotreatment. Cross-resistance and collateral sensitivity were found to be important factors in the extent of resistance evolution toward a combination. Comparative genomic analyses revealed that resistance to drug combinations was mediated largely by mutations in the same genes as single-drug-evolved lineages highlighting the importance of the component drugs in determining the rate of resistance evolution. Results of this work suggest that the mechanisms of resistance to constituent drugs should be the focus of future resistance evolution work.
Collapse
Affiliation(s)
| | - Heidi Gumpert
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Christian Munck
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Thomas T Thomsen
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Morten O A Sommer
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
31
|
Gamalinda M, Woolford JL. Deletion of L4 domains reveals insights into the importance of ribosomal protein extensions in eukaryotic ribosome assembly. RNA (NEW YORK, N.Y.) 2014; 20:1725-31. [PMID: 25246649 PMCID: PMC4201825 DOI: 10.1261/rna.046649.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Numerous ribosomal proteins have a striking bipartite architecture: a globular body positioned on the ribosomal exterior and an internal loop buried deep into the rRNA core. In eukaryotes, a significant number of conserved r-proteins have evolved extra amino- or carboxy-terminal tail sequences, which thread across the solvent-exposed surface. The biological importance of these extended domains remains to be established. In this study, we have investigated the universally conserved internal loop and the eukaryote-specific extensions of yeast L4. We show that in contrast to findings with bacterial L4, deleting the internal loop of yeast L4 causes severely impaired growth and reduced levels of large ribosomal subunits. We further report that while depleting the entire L4 protein blocks early assembly steps in yeast, deletion of only its extended internal loop affects later steps in assembly, revealing a second role for L4 during ribosome biogenesis. Surprisingly, deletion of the entire eukaryote-specific carboxy-terminal tail of L4 has no effect on viability, production of 60S subunits, or translation. These unexpected observations provide impetus to further investigate the functions of ribosomal protein extensions, especially eukaryote-specific examples, in ribosome assembly and function.
Collapse
Affiliation(s)
- Michael Gamalinda
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
32
|
Lu J, Deutsch C. Regional discrimination and propagation of local rearrangements along the ribosomal exit tunnel. J Mol Biol 2014; 426:4061-4073. [PMID: 25308341 DOI: 10.1016/j.jmb.2014.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 11/25/2022]
Abstract
All proteins, from bacteria to man, are made in the ribosome and are elongated, one residue at a time, at the peptidyl transferase center. This growing peptide chain wends its way through the ribosomal tunnel to the exit port, ~100Å from the peptidyl transferase center. We have identified locations in the tunnel that sense and respond to single side chains of the nascent peptide to induce local conformational changes. Moreover, side-chain sterics and rearrangements deep in the tunnel influence the disposition of residues 45Å away at the exit port and are consistent with side-chain-induced axial retraction of the peptide backbone. These coupled responses are neither haphazard nor uniform along the tunnel. Rather, they are confined to discriminating zones in the tunnel and are sequence specific. Such discerning communication may contribute to folding events and mechanisms governing sequence-specific signaling between different regions of the tunnel during translation.
Collapse
Affiliation(s)
- Jianli Lu
- Department of Physiology, University of Pennsylvania, PA 19104, USA
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
33
|
Parker MS, Sah R, Balasubramaniam A, Sallee FR, Park EA, Parker SL. On the expansion of ribosomal proteins and RNAs in eukaryotes. Amino Acids 2014; 46:1589-604. [PMID: 24633358 DOI: 10.1007/s00726-014-1704-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 01/11/2023]
Abstract
While the ribosome constitution is similar in all biota, there is a considerable increase in size of both ribosomal proteins (RPs) and RNAs in eukaryotes as compared to archaea and bacteria. This is pronounced in the large (60S) ribosomal subunit (LSU). In addition to enlargement (apparently maximized already in lower eukarya), the RP changes include increases in fraction, segregation and clustering of basic residues, and decrease in hydrophobicity. The acidic fraction is lower in eukaryote as compared to prokaryote RPs. In all eukaryote groups tested, the LSU RPs have significantly higher content of basic residues and homobasic segments than the SSU RPs. The vertebrate LSU RPs have much higher sequestration of basic residues than those of bacteria, archaea and even of the lower eukarya. The basic clusters are highly aligned in the vertebrate, but less in the lower eukarya, and only within families in archaea and bacteria. Increase in the basicity of RPs, besides helping transport to the nucleus, should promote stability of the assembled ribosome as well as the association with translocons and other intracellular matrix proteins. The size and GC nucleotide bias of the expansion segments of large LSU rRNAs also culminate in the vertebrate, and should support ribosome association with the endoplasmic reticulum and other intracellular networks. However, the expansion and nucleotide bias of eukaryote LSU rRNAs do not clearly correlate with changes in ionic parameters of LSU ribosomal proteins.
Collapse
Affiliation(s)
- Michael S Parker
- Department of Microbiology and Molecular Cell Sciences, University of Memphis, Memphis, TN, 38152, USA
| | | | | | | | | | | |
Collapse
|
34
|
Hsu YF, Chen YC, Hsiao YC, Wang BJ, Lin SY, Cheng WH, Jauh GY, Harada JJ, Wang CS. AtRH57, a DEAD-box RNA helicase, is involved in feedback inhibition of glucose-mediated abscisic acid accumulation during seedling development and additively affects pre-ribosomal RNA processing with high glucose. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:119-35. [PMID: 24176057 PMCID: PMC4350433 DOI: 10.1111/tpj.12371] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/28/2013] [Accepted: 10/24/2013] [Indexed: 05/04/2023]
Abstract
The Arabidopsis thaliana T-DNA insertion mutant rh57-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The other two rh57 mutants also showed Glc hypersensitivity similar to rh57-1, strongly suggesting that the Glc-hypersensitive feature of these mutants results from mutation of AtRH57. rh57-1 and rh57-3 displayed severely impaired seedling growth when grown in Glc concentrations higher than 3%. The gene, AtRH57 (At3g09720), was expressed in all Arabidopsis organs and its transcript was significantly induced by ABA, high Glc and salt. The new AtRH57 belongs to class II DEAD-box RNA helicase gene family. Transient expression of AtRH57-EGFP (enhanced green fluorescent protein) in onion cells indicated that AtRH57 was localized in the nucleus and nucleolus. Purified AtRH57-His protein was shown to unwind double-stranded RNA independent of ATP in vitro. The ABA biosynthesis inhibitor fluridone profoundly redeemed seedling growth arrest mediated by sugar. rh57-1 showed increased ABA levels when exposed to high Glc. Quantitative real time polymerase chain reaction analysis showed that AtRH57 acts in a signaling network downstream of HXK1. A feedback inhibition of ABA accumulation mediated by AtRH57 exists within the sugar-mediated ABA signaling. AtRH57 mutation and high Glc conditions additively caused a severe defect in small ribosomal subunit formation. The accumulation of abnormal pre-rRNA and resistance to protein synthesis-related antibiotics were observed in rh57 mutants and in the wild-type Col-0 under high Glc conditions. These results suggested that AtRH57 plays an important role in rRNA biogenesis in Arabidopsis and participates in response to sugar involving Glc- and ABA signaling during germination and seedling growth.
Collapse
Affiliation(s)
- Yi-Feng Hsu
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, 40227, Taiwan
| | - Yun-Chu Chen
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, 40227, Taiwan
| | - Yu-Chun Hsiao
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, 40227, Taiwan
| | - Bing-Jyun Wang
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, 40227, Taiwan
| | - Shih-Yun Lin
- Institute of Plant and Microbial Biology, Academia SinicaNankang, Taipei, 11529, Taiwan
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia SinicaNankang, Taipei, 11529, Taiwan
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia SinicaNankang, Taipei, 11529, Taiwan
| | - John J Harada
- Section of Plant Biology, College of Biological Sciences, University of CaliforniaDavis, CA, 95616, USA
| | - Co-Shine Wang
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, 40227, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, NCHU and Agricultural Biotechnology Center, NCHUTaichung, 40227, Taiwan
- *For correspondence (e-mail )
| |
Collapse
|
35
|
Uversky VN. Disorder in the lifetime of a protein. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e26782. [PMID: 28516024 PMCID: PMC5424783 DOI: 10.4161/idp.26782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 12/21/2022]
Abstract
Intrinsic disorder is everywhere and is inevitable. The non-folding propensity is inherent for numerous natural polypeptide chains, and many functional proteins and protein regions are intrinsically disordered. Furthermore, at particular moments in their life, most notably during their synthesis and degradation, all ordered proteins are at least partially unfolded (disordered). Also, there is a widely spread phenomenon of conditional (functional or transient) disorder, where functions of many ordered proteins require local or even global unfolding of their unique structures. Finally, extrinsic disorder (i.e., intrinsic disorder in functional partners of ordered proteins) should be taken into account too. Therefore, even if a protein is completely devoid of intrinsically disordered regions in its mature form (which is a rather exceptional situation), it faces different forms of disorder (intrinsic, extrinsic, or induced disorder) at all the stages of its functional life, from birth to death. The goal of this article is to briefly introduce this concept of disorder in the lifetime of a protein.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA.,Institute for Biological Instrumentation; Russian Academy of Sciences; Moscow Region, Russia
| |
Collapse
|
36
|
Zimmerman E, Bashan A, Yonath A. Antibiotics at the Ribosomal Exit Tunnel-Selected Structural Aspects. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
Mutations in the Escherichia coli ribosomal protein L22 selectively suppress the expression of a secreted bacterial virulence factor. J Bacteriol 2013; 195:2991-9. [PMID: 23625843 DOI: 10.1128/jb.00211-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations in the ribosomal protein L22 that impair peptide-mediated translation arrest in Escherichia coli have been shown to reduce the expression of several genes, including secA, which encodes an ATPase that drives protein export via the Sec pathway. Here, we used a comparative proteomic approach to obtain insight into the global effects of the L22(Δ82-84) mutation on gene expression and protein synthesis. While the mutation did not affect or modestly affected the level of most soluble proteins, it dramatically reduced the level of antigen 43 (Ag43), a secreted virulence factor that promotes autoaggregation. The reduced protein concentration correlated with a sharp decrease in the abundance and stability of Ag43 mRNA. We found that the overexpression of secA or the inactivation of genes that encode presecretory and membrane proteins restored Ag43 production in the L22 mutant strain. Furthermore, impairment of the Sec pathway in a wild-type strain reduced Ag43 production but did not significantly affect the synthesis of other presecretory proteins. Taken together, these results indicate that Ag43 gene expression is exquisitely sensitive to the status of the Sec machinery and strongly suggest that the L22 mutation decreases the Ag43 concentration indirectly by reducing secA expression. Our results imply the existence of a novel regulatory mechanism in which the efficiency of protein export is coupled to gene expression and help to explain the modulation of SecA synthesis that has been observed in response to secretion stress.
Collapse
|
38
|
Chakraborty B, Mukherjee R, Sengupta J. Structural insights into the mechanism of translational inhibition by the fungicide sordarin. J Comput Aided Mol Des 2013; 27:173-84. [PMID: 23397219 DOI: 10.1007/s10822-013-9636-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 01/25/2013] [Indexed: 11/25/2022]
Abstract
The translational machinery has been found to be the target for a number of antibiotics. One such antibiotic sordarin selectively inhibits fungal translation by impairing the function of elongation factor 2 (eEF2) while being ineffective to higher eukaryotes. Surprisingly, sordarin is not even equally effective in impairing translation for all fungal species. The binding cavity of sordarin on eEF2 has been localized by X-ray crystallographic study and its unique specificity towards sordarin has been attributed to the species specific substitutions within a stretch of amino acids (sordarin specificity region, SSR) at the entrance of the cavity. In this study, we have analyzed the sordarin-binding cavity of eEF2 from different species both in isolated and ribosome-bound forms in order to decipher the mechanism of sordarin binding selectivity. Our results reveal that the molecular architecture as well as the microenvironment of the sordarin-binding cavity changes significantly from one species to another depending on the species specific substitutions within the cavity. Moreover, eEF2 binding to ribosome aggravates the effects of these substitutions. Thus, this study, while shedding light on the molecular mechanism underpinning the selective inhibitory effects of sordarin, will also be a helpful guide for future studies aiming at developing novel antifungal drugs with broader spectrum of activity.
Collapse
Affiliation(s)
- Biprashekhar Chakraborty
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific and Industrial Research), 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | | | | |
Collapse
|
39
|
Contreras-Martinez LM, Boock JT, Kostecki JS, DeLisa MP. The ribosomal exit tunnel as a target for optimizing protein expression in Escherichia coli. Biotechnol J 2012; 7:354-60. [PMID: 22076828 PMCID: PMC3382190 DOI: 10.1002/biot.201100198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The folding of many cellular proteins occurs co-translationally immediately outside the ribosome exit tunnel, where ribosomal proteins and other associated factors coordinate the synthesis and folding of newly translated polypeptides. Here, we show that the large subunit protein L29, which forms part of the exit tunnel in Escherichia coli, is required for the productive synthesis of an array of structurally diverse recombinant proteins including the green fluorescent protein (GFP) and an intracellular single-chain Fv antibody. Surprisingly, the corresponding mRNA transcript level of these proteins was markedly less abundant in cells lacking L29, suggesting an unexpected regulatory mechanism that links defects in the exit tunnel to the expression of genetic information. To further highlight the importance of L29 in maintaining protein expression, we used mutagenesis and selection to obtain L29 variants that enhanced GFP expression. Overall, our results suggest that the ribosomal exit tunnel proteins may be key targets for optimizing the overproduction of active, structurally complex recombinant proteins in bacterial cells.
Collapse
|
40
|
Horiguchi G, Van Lijsebettens M, Candela H, Micol JL, Tsukaya H. Ribosomes and translation in plant developmental control. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 191-192:24-34. [PMID: 22682562 DOI: 10.1016/j.plantsci.2012.04.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 05/06/2023]
Abstract
Ribosomes play a basic housekeeping role in global translation. However, a number of ribosomal-protein-defective mutants show common and rare developmental phenotypes including growth defects, changes in leaf development, and auxin-related phenotypes. This suggests that translational regulation may be occurring during development. In addition, proteomic and bioinformatic analyses have demonstrated a high heterogeneity in ribosome composition. Although this might be a sign of unequal roles of individual ribosomal proteins, it does not explain every ribosomal-protein-defective phenotype. Moreover, comprehensive interpretations concerning the relationship between ribosomal-protein-defective phenotypes and molecular changes in ribosome status are lacking. In this review, we address these phenotypes based on three models, ribosome insufficiency, heterogeneity, and aberrancy, to consider how ribosomes play developmental roles. We propose that the three models are not mutually exclusive, and ribosomal-protein-defective phenotypes can be explained with one or more of these models. The three models with reference to genetic, biochemical, and bioinformatic knowledge will serve as a foundation for future studies of translational regulation.
Collapse
Affiliation(s)
- Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | | | | | | | | |
Collapse
|
41
|
Agmon IC. A model for the role of isomerization in nascent peptide movement through the ribosomal tunnel. FASEB J 2012; 26:2277-82. [DOI: 10.1096/fj.11-197657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ilana C. Agmon
- Institute for Advanced Studies in Theoretical ChemistrySchulich Faculty of Chemistry, TechnionIsrael Institute of TechnologyHaifaIsrael
- Fritz Haber Research Center for Molecular DynamicsHebrew UniversityJerusalemIsrael
| |
Collapse
|
42
|
Kostopoulou ON, Petropoulos AD, Dinos GP, Choli-Papadopoulou T, Kalpaxis DL. Investigating the entire course of telithromycin binding to Escherichia coli ribosomes. Nucleic Acids Res 2012; 40:5078-87. [PMID: 22362747 PMCID: PMC3367204 DOI: 10.1093/nar/gks174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Applying kinetics and footprinting analysis, we show that telithromycin, a ketolide antibiotic, binds to Escherichia coli ribosomes in a two-step process. During the first, rapidly equilibrated step, telithromycin binds to a low-affinity site (KT = 500 nM), in which the lactone ring is positioned at the upper portion of the peptide exit tunnel, while the alkyl–aryl side chain of the drug inserts a groove formed by nucleotides A789 and U790 of 23S rRNA. During the second step, telithromycin shifts slowly to a high-affinity site (KT* = 8.33 nM), in which the lactone ring remains essentially at the same position, while the side chain interacts with the base pair U2609:A752 and the extended loop of protein L22. Consistently, mutations perturbing either the base pair U2609:A752 or the L22-loop hinder shifting of telithromycin to the final position, without affecting the initial step of binding. In contrast, mutation Lys63Glu in protein L4 placed on the opposite side of the tunnel, exerts only a minor effect on telithromycin binding. Polyamines disfavor both sequential steps of binding. Our data correlate well with recent crystallographic data and rationalize the changes in the accessibility of ribosomes to telithromycin in response to ribosomal mutations and ionic changes.
Collapse
Affiliation(s)
- Ourania N Kostopoulou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Sun TT, Ma HZ, Deng SP. Translocation of a protein-like chain through an interacting channel. CHINESE JOURNAL OF POLYMER SCIENCE 2011. [DOI: 10.1007/s10118-011-1067-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Bogdanov AA, Sumbatyan NV, Shishkina AV, Karpenko VV, Korshunova GA. Ribosomal tunnel and translation regulation. BIOCHEMISTRY (MOSCOW) 2011; 75:1501-16. [DOI: 10.1134/s0006297910130018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
46
|
Abbasi N, Kim HB, Park NI, Kim HS, Kim YK, Park YI, Choi SB. APUM23, a nucleolar Puf domain protein, is involved in pre-ribosomal RNA processing and normal growth patterning in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:960-76. [PMID: 21143677 DOI: 10.1111/j.1365-313x.2010.04393.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pumilio, an RNA-binding protein that contains tandemly repeated Puf domains, is known to repress translational activity in early embryogenesis and polarized cells of non-plant species. Although Pumilio proteins have been characterized in many eukaryotes, their role in plants is unknown. In the present study, we characterized an Arabidopsis Pumilio-encoding gene, APUM23. APUM23 is constitutively expressed, with higher levels in metabolically active tissues, and its expression is up-regulated in the presence of either glucose or sucrose. The T-DNA insertion mutants apum23-1 and apum23-2 showed slow growth, with serrated and scrunched leaves, an abnormal venation pattern, and distorted organization of the palisade parenchyma cells - a phenotype that is reminiscent of nucleolin and ribosomal protein gene mutants. Intracellular localization studies indicate that APUM23 predominantly localizes to the nucleolus. Based on this localization, rRNA processing was examined. In apum23, 35S pre-rRNA, and unprocessed 18S and 5.8S poly(A) rRNAs, accumulated without affecting the steady-state levels of mature rRNAs, indicating that APUM23 is involved in the processing and/or degradation of 35S pre-rRNA and rRNA maturation by-products. The apum23 mutant showed increased levels of 18S rRNA biogenesis-related U3 and U14 small nucleolar RNAs (snoRNAs) and accumulated RNAs within the nucleolus. Our data suggest that APUM23 plays an important role in plant development via rRNA processing.
Collapse
Affiliation(s)
- Nazia Abbasi
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin, Kyunggi-do 449-728, South Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Lucent D, Snow CD, Aitken CE, Pande VS. Non-bulk-like solvent behavior in the ribosome exit tunnel. PLoS Comput Biol 2010; 6:e1000963. [PMID: 20975935 PMCID: PMC2958802 DOI: 10.1371/journal.pcbi.1000963] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 09/17/2010] [Indexed: 11/19/2022] Open
Abstract
As nascent proteins are synthesized by the ribosome, they depart via an exit tunnel running through the center of the large subunit. The exit tunnel likely plays an important part in various aspects of translation. Although water plays a key role in many bio-molecular processes, the nature of water confined to the exit tunnel has remained unknown. Furthermore, solvent in biological cavities has traditionally been characterized as either a continuous dielectric fluid, or a discrete tightly bound molecule. Using atomistic molecular dynamics simulations, we predict that the thermodynamic and kinetic properties of water confined within the ribosome exit tunnel are quite different from this simple two-state model. We find that the tunnel creates a complex microenvironment for the solvent resulting in perturbed rotational dynamics and heterogenous dielectric behavior. This gives rise to a very rugged solvation landscape and significantly retarded solvent diffusion. We discuss how this non-bulk-like solvent is likely to affect important biophysical processes such as sequence dependent stalling, co-translational folding, and antibiotic binding. We conclude with a discussion of the general applicability of these results to other biological cavities.
Collapse
Affiliation(s)
- Del Lucent
- Biophysics Program, Stanford University, Stanford, California, USA
| | | | | | | |
Collapse
|
48
|
Peterson JH, Woolhead CA, Bernstein HD. The conformation of a nascent polypeptide inside the ribosome tunnel affects protein targeting and protein folding. Mol Microbiol 2010; 78:203-17. [PMID: 20804452 DOI: 10.1111/j.1365-2958.2010.07325.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this report, we describe insights into the function of the ribosome tunnel that were obtained through an analysis of an unusual 25 residue N-terminal motif (EspP(1-25) ) associated with the signal peptide of the Escherichia coli EspP protein. It was previously shown that EspP(1-25) inhibits signal peptide recognition by the signal recognition particle, and we now show that fusion of EspP(1-25) to a cytoplasmic protein causes it to aggregate. We obtained two lines of evidence that both of these effects are attributable to the conformation of EspP(1-25) inside the ribosome tunnel. First, we found that mutations in EspP(1-25) that abolished its effects on protein targeting and protein folding altered the cross-linking of short nascent chains to ribosomal components. Second, we found that a mutation in L22 that distorts the tunnel mimicked the effects of the EspP(1-25) mutations on protein biogenesis. Our results provide evidence that the conformation of a polypeptide inside the ribosome tunnel can influence protein folding under physiological conditions and suggest that ribosomal mutations might increase the solubility of at least some aggregation-prone proteins produced in E. coli.
Collapse
Affiliation(s)
- Janine H Peterson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0538, USA
| | | | | |
Collapse
|
49
|
Yonath A. Winterschlafende Bären, Antibiotika und die Evolution des Ribosoms (Nobel-Aufsatz). Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Yonath A. Hibernating Bears, Antibiotics, and the Evolving Ribosome (Nobel Lecture). Angew Chem Int Ed Engl 2010; 49:4341-54. [DOI: 10.1002/anie.201001297] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|