1
|
Zhou X, Xie J, Xu C, Cao X, Zou LH, Zhou M. Artificial optimization of bamboo Ppmar2 transposase and host factors effects on Ppmar2 transposition in yeast. FRONTIERS IN PLANT SCIENCE 2022; 13:1004732. [PMID: 36340339 PMCID: PMC9632168 DOI: 10.3389/fpls.2022.1004732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Mariner-like elements (MLEs) are promising tools for gene cloning, gene expression, and gene tagging. We have characterized two MLE transposons from moso bamboo, Ppmar1 and Ppmar2. Ppmar2, is smaller in size and has higher natural activities, thus making it a more potential genomic tool compared to Ppmar1. Using a two-component system consisting of a transposase expression cassette and a non-autonomous transposon cotransformed in yeast, we investigated the transposition activity of Ppmar2 and created hyperactive transposases. Five out of 19 amino acid mutations in Ppmar2 outperformed the wild-type in terms of catalytic activities, especially with the S347R mutant having 6.7-fold higher transposition activity. Moreover, 36 yeast mutants with single-gene deletion were chosen to screen the effects of the host factors on Ppmar2NA transposition. Compared to the control strain (his3Δ), the mobility of Ppmar2 was greatly increased in 9 mutants and dramatically decreased in 7 mutants. The transposition ability in the efm1Δ mutant was 15-fold higher than in the control, while it was lowered to 1/66 in the rtt10Δ mutant. Transcriptomic analysis exhibited that EFM1 defection led to the significantly impaired DDR2, HSP70 expression and dramatically boosted JEN1 expression, whereas RTT10 defection resulted in significantly suppressed expression of UTP20, RPA190 and RRP5. Protein methylation, chromatin and RNA transcription may affect the Ppmar2NA transposition efficiency in yeast. Overall, the findings provided evidence for transposition regulation and offered an alternative genomic tool for moso bamboo and other plants.
Collapse
|
2
|
Sandoval-Villegas N, Nurieva W, Amberger M, Ivics Z. Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping Beauty, piggyBac and Tol2 for Genome Engineering. Int J Mol Sci 2021; 22:ijms22105084. [PMID: 34064900 PMCID: PMC8151067 DOI: 10.3390/ijms22105084] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/19/2023] Open
Abstract
Transposons are mobile genetic elements evolved to execute highly efficient integration of their genes into the genomes of their host cells. These natural DNA transfer vehicles have been harnessed as experimental tools for stably introducing a wide variety of foreign DNA sequences, including selectable marker genes, reporters, shRNA expression cassettes, mutagenic gene trap cassettes, and therapeutic gene constructs into the genomes of target cells in a regulated and highly efficient manner. Given that transposon components are typically supplied as naked nucleic acids (DNA and RNA) or recombinant protein, their use is simple, safe, and economically competitive. Thus, transposons enable several avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture comprising the generation of pluripotent stem cells, the production of germline-transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species and therapy of genetic disorders in humans. This review describes the molecular mechanisms involved in transposition reactions of the three most widely used transposon systems currently available (Sleeping Beauty, piggyBac, and Tol2), and discusses the various parameters and considerations pertinent to their experimental use, highlighting the state-of-the-art in transposon technology in diverse genetic applications.
Collapse
Affiliation(s)
| | | | | | - Zoltán Ivics
- Correspondence: ; Tel.: +49-6103-77-6000; Fax: +49-6103-77-1280
| |
Collapse
|
3
|
Ochmann MT, Ivics Z. Jumping Ahead with Sleeping Beauty: Mechanistic Insights into Cut-and-Paste Transposition. Viruses 2021; 13:76. [PMID: 33429848 PMCID: PMC7827188 DOI: 10.3390/v13010076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Sleeping Beauty (SB) is a transposon system that has been widely used as a genetic engineering tool. Central to the development of any transposon as a research tool is the ability to integrate a foreign piece of DNA into the cellular genome. Driven by the need for efficient transposon-based gene vector systems, extensive studies have largely elucidated the molecular actors and actions taking place during SB transposition. Close transposon relatives and other recombination enzymes, including retroviral integrases, have served as useful models to infer functional information relevant to SB. Recently obtained structural data on the SB transposase enable a direct insight into the workings of this enzyme. These efforts cumulatively allowed the development of novel variants of SB that offer advanced possibilities for genetic engineering due to their hyperactivity, integration deficiency, or targeting capacity. However, many aspects of the process of transposition remain poorly understood and require further investigation. We anticipate that continued investigations into the structure-function relationships of SB transposition will enable the development of new generations of transposition-based vector systems, thereby facilitating the use of SB in preclinical studies and clinical trials.
Collapse
Affiliation(s)
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany;
| |
Collapse
|
4
|
Kesselring L, Miskey C, Zuliani C, Querques I, Kapitonov V, Laukó A, Fehér A, Palazzo A, Diem T, Lustig J, Sebe A, Wang Y, Dinnyés A, Izsvák Z, Barabas O, Ivics Z. A single amino acid switch converts the Sleeping Beauty transposase into an efficient unidirectional excisionase with utility in stem cell reprogramming. Nucleic Acids Res 2020; 48:316-331. [PMID: 31777924 PMCID: PMC6943129 DOI: 10.1093/nar/gkz1119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022] Open
Abstract
The Sleeping Beauty (SB) transposon is an advanced tool for genetic engineering and a useful model to investigate cut-and-paste DNA transposition in vertebrate cells. Here, we identify novel SB transposase mutants that display efficient and canonical excision but practically unmeasurable genomic re-integration. Based on phylogenetic analyses, we establish compensating amino acid replacements that fully rescue the integration defect of these mutants, suggesting epistasis between these amino acid residues. We further show that the transposons excised by the exc+/int− transposase mutants form extrachromosomal circles that cannot undergo a further round of transposition, thereby representing dead-end products of the excision reaction. Finally, we demonstrate the utility of the exc+/int− transposase in cassette removal for the generation of reprogramming factor-free induced pluripotent stem cells. Lack of genomic integration and formation of transposon circles following excision is reminiscent of signal sequence removal during V(D)J recombination, and implies that cut-and-paste DNA transposition can be converted to a unidirectional process by a single amino acid change.
Collapse
Affiliation(s)
- Lisa Kesselring
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Csaba Miskey
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Cecilia Zuliani
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Irma Querques
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Vladimir Kapitonov
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | | - Anita Fehér
- BioTalentum Ltd, Gödöllő, 2100 Gödöllő, Hungary
| | - Antonio Palazzo
- Department of Biology, University of Bari 'Aldo Moro', Italy
| | - Tanja Diem
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Janna Lustig
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Attila Sebe
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Yongming Wang
- Mobile DNA, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Zoltán Ivics
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| |
Collapse
|
5
|
Tellier M, Chalmers R. Compensating for over-production inhibition of the Hsmar1 transposon in Escherichia coli using a series of constitutive promoters. Mob DNA 2020; 11:5. [PMID: 31938044 PMCID: PMC6954556 DOI: 10.1186/s13100-020-0200-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/01/2020] [Indexed: 01/03/2023] Open
Abstract
Background Transposable elements (TEs) are a diverse group of self-mobilizing DNA elements. Transposition has been exploited as a powerful tool for molecular biology and genomics. However, transposition is sometimes limited because of auto-regulatory mechanisms that presumably allow them to cohabit within their hosts without causing excessive genomic damage. The papillation assay provides a powerful visual screen for hyperactive transposases. Transposition is revealed by the activation of a promoter-less lacZ gene when the transposon integrates into a non-essential gene on the host chromosome. Transposition events are detected as small blue speckles, or papillae, on the white background of the main Escherichia coli colony. Results We analysed the parameters of the papillation assay including the strength of the transposase transcriptional and translational signals. To overcome certain limitations of inducible promoters, we constructed a set of vectors based on constitutive promoters of different strengths to widen the range of transposase expression. We characterized and validated our expression vectors with Hsmar1, a member of the mariner transposon family. The highest rate of transposition was observed with the weakest promoters. We then took advantage of our approach to investigate how the level of transposition responds to selected point mutations and the effect of joining the transposase monomers into a single-chain dimer. Conclusions We generated a set of vectors to provide a wide range of transposase expression which will be useful for screening libraries of transposase mutants. The use of weak promoters should allow screening for truly hyperactive transposases rather than those that are simply resistant to auto-regulatory mechanisms, such as overproduction inhibition (OPI). We also found that mutations in the Hsmar1 dimer interface provide resistance to OPI in bacteria, which could be valuable for improving bacterial transposon mutagenesis techniques.
Collapse
Affiliation(s)
- Michael Tellier
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH UK.,2Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH UK
| |
Collapse
|
6
|
Bhatt S, Chalmers R. Targeted DNA transposition in vitro using a dCas9-transposase fusion protein. Nucleic Acids Res 2019; 47:8126-8135. [PMID: 31429873 PMCID: PMC6735945 DOI: 10.1093/nar/gkz552] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Homology-directed genome engineering is limited by transgene size. Although DNA transposons are more efficient with large transgenes, random integrations are potentially mutagenic. Here we present an in vitro mechanistic study that demonstrates efficient Cas9 targeting of the mariner transposon Hsmar1. Integrations were unidirectional and tightly constrained to one side of the sgRNA binding site. Further analysis of the nucleoprotein intermediates demonstrated that the transposase and Cas9 moieties can bind their respective substrates independently or in concert. Kinetic analysis of the reaction in the presence of the Cas9 target-DNA revealed a delay between first and second strand cleavage at the transposon end. This step involves a significant conformational change that may be hindered by the properties of the interdomainal linker. Otherwise, the transposase moiety behaved normally and was proficient for integration in vitro and in Escherichia coli. Specific integration into the lacZ gene in E. coli was obscured by a high background of random integrations. Nevertheless, Cas9 is an attractive candidate for transposon-targeting because it has a high affinity and long dwell-time at its target site. This will facilitate a future optogenetic strategy for the temporal control of integration, which will increase the ratio of targeted to untargeted events.
Collapse
Affiliation(s)
- Shivam Bhatt
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
7
|
Liu C, Yang Y, Schatz DG. Structures of a RAG-like transposase during cut-and-paste transposition. Nature 2019; 575:540-544. [PMID: 31723264 PMCID: PMC6872938 DOI: 10.1038/s41586-019-1753-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
Transposons have had a pivotal role in genome evolution1 and are believed to be the evolutionary progenitors of the RAG1-RAG2 recombinase2, an essential component of the adaptive immune system in jawed vertebrates3. Here we report one crystal structure and five cryo-electron microscopy structures of Transib4,5, a RAG1-like transposase from Helicoverpa zea, that capture the entire transposition process from the apo enzyme to the terminal strand transfer complex with transposon ends covalently joined to target DNA, at resolutions of 3.0-4.6 Å. These structures reveal a butterfly-shaped complex that undergoes two cycles of marked conformational changes in which the 'wings' of the transposase unfurl to bind substrate DNA, close to execute cleavage, open to release the flanking DNA and close again to capture and attack target DNA. Transib possesses unique structural elements that compensate for the absence of a RAG2 partner, including a loop that interacts with the transposition target site and an accordion-like C-terminal tail that elongates and contracts to help to control the opening and closing of the enzyme and assembly of the active site. Our findings reveal the detailed reaction pathway of a eukaryotic cut-and-paste transposase and illuminate some of the earliest steps in the evolution of the RAG recombinase.
Collapse
Affiliation(s)
- Chang Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yang Yang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Claeys Bouuaert C, Chalmers R. A single active site in the mariner transposase cleaves DNA strands of opposite polarity. Nucleic Acids Res 2017; 45:11467-11478. [PMID: 29036477 PMCID: PMC5714172 DOI: 10.1093/nar/gkx826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023] Open
Abstract
The RNase H structural fold defines a large family of nucleic acid metabolizing enzymes that catalyze phosphoryl transfer reactions using two divalent metal ions in the active site. Almost all of these reactions involve only one strand of the nucleic acid substrates. In contrast, cut-and-paste transposases cleave two DNA strands of opposite polarity, which is usually achieved via an elegant hairpin mechanism. In the mariner transposons, the hairpin intermediate is absent and key aspects of the mechanism by which the transposon ends are cleaved remained unknown. Here, we characterize complexes involved prior to catalysis, which define an asymmetric pathway for transpososome assembly. Using mixtures of wild-type and catalytically inactive transposases, we show that all the catalytic steps of transposition occur within the context of a dimeric transpososome. Crucially, we find that each active site of a transposase dimer is responsible for two hydrolysis and one transesterification reaction at the same transposon end. These results provide the first strong evidence that a DDE/D active site can hydrolyze DNA strands of opposite polarity, a mechanism that has rarely been observed with any type of nuclease.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
9
|
Zhou MB, Hu H, Miskey C, Lazarow K, Ivics Z, Kunze R, Yang G, Izsvák Z, Tang DQ. Transposition of the bamboo Mariner-like element Ppmar1 in yeast. Mol Phylogenet Evol 2017; 109:367-374. [PMID: 28189615 DOI: 10.1016/j.ympev.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/30/2022]
Abstract
The moso bamboo genome contains the two structurally intact and thus potentially functional mariner-like elements Ppmar1 and Ppmar2. Both elements contain perfect terminal inverted repeats (TIRs) and a full-length intact transposase gene. Here we investigated whether Ppmar1 is functional in yeast (Saccharomyces cerevisiae). We have designed a two-component system consisting of a transposase expression cassette and a non-autonomous transposon on two separate plasmids. We demonstrate that the Ppmar1 transposase Pptpase1 catalyses excision of the non-autonomous Ppmar1NA element from the plasmid and reintegration at TA dinucleotide sequences in the yeast chromosomes. In addition, we generated 14 hyperactive Ppmar1 transposase variants by systematic single amino acid substitutions. The most active transposase variant, S171A, induces 10-fold more frequent Ppmar1NA excisions in yeast than the wild type transposase. The Ppmar1 transposon is a promising tool for insertion mutagenesis in moso bamboo and may be used in other plants as an alternative to the established transposon tagging systems.
Collapse
Affiliation(s)
- Ming-Bing Zhou
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, China
| | - Hui Hu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, China
| | - Csaba Miskey
- Paul Ehrlich Institute, Paul Ehrlich Str. 51-59, 63225 Langen, Germany
| | - Katina Lazarow
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Zoltán Ivics
- Paul Ehrlich Institute, Paul Ehrlich Str. 51-59, 63225 Langen, Germany
| | - Reinhard Kunze
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Guojun Yang
- Department of Biology, University of Toronto, Mississauga, ON, Canada
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany.
| | - Ding-Qin Tang
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, China.
| |
Collapse
|
10
|
Unlocking Tn3-family transposase activity in vitro unveils an asymetric pathway for transposome assembly. Proc Natl Acad Sci U S A 2017; 114:E669-E678. [PMID: 28096365 DOI: 10.1073/pnas.1611701114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Tn3 family is a widespread group of replicative transposons that are notorious for their contribution to the dissemination of antibiotic resistance and the emergence of multiresistant pathogens worldwide. The TnpA transposase of these elements catalyzes DNA breakage and rejoining reactions required for transposition. It also is responsible for target immunity, a phenomenon that prevents multiple insertions of the transposon into the same genomic region. However, the molecular mechanisms whereby TnpA acts in both processes remain unknown. Here, we have developed sensitive biochemical assays for the TnpA transposase of the Tn3-family transposon Tn4430 and used these assays to characterize previously isolated TnpA mutants that are selectively affected in immunity. Compared with wild-type TnpA, these mutants exhibit deregulated activities. They spontaneously assemble a unique asymmetric synaptic complex in which one TnpA molecule simultaneously binds two transposon ends. In this complex, TnpA is in an activated state competent for DNA cleavage and strand transfer. Wild-type TnpA can form this complex only on precleaved ends mimicking the initial step of transposition. The data suggest that transposition is controlled at an early stage of transpososome assembly, before DNA cleavage, and that mutations affecting immunity have unlocked TnpA by stabilizing the protein in a monomeric activated synaptic configuration. We propose an asymmetric pathway for coupling active transpososome assembly with proper target recruitment and discuss this model with respect to possible immunity mechanisms.
Collapse
|
11
|
Wang Y, Pryputniewicz-Dobrinska D, Nagy EÉ, Kaufman CD, Singh M, Yant S, Wang J, Dalda A, Kay MA, Ivics Z, Izsvák Z. Regulated complex assembly safeguards the fidelity of Sleeping Beauty transposition. Nucleic Acids Res 2016; 45:311-326. [PMID: 27913727 PMCID: PMC5224488 DOI: 10.1093/nar/gkw1164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 01/21/2023] Open
Abstract
The functional relevance of the inverted repeat structure (IR/DR) in a subgroup of the Tc1/mariner superfamily of transposons has been enigmatic. In contrast to mariner transposition, where a topological filter suppresses single-ended reactions, the IR/DR orchestrates a regulatory mechanism to enforce synapsis of the transposon ends before cleavage by the transposase occurs. This ordered assembly process shepherds primary transposase binding to the inner 12DRs (where cleavage does not occur), followed by capture of the 12DR of the other transposon end. This extra layer of regulation suppresses aberrant, potentially genotoxic recombination activities, and the mobilization of internally deleted copies in the IR/DR subgroup, including Sleeping Beauty (SB). In contrast, internally deleted sequences (MITEs) are preferred substrates of mariner transposition, and this process is associated with the emergence of Hsmar1-derived miRNA genes in the human genome. Translating IR/DR regulation to in vitro evolution yielded an SB transposon version with optimized substrate recognition (pT4). The ends of SB transposons excised by a K248A excision+/integration- transposase variant are processed by hairpin resolution, representing a link between phylogenetically, and mechanistically different recombination reactions, such as V(D)J recombination and transposition. Such variants generated by random mutation might stabilize transposon-host interactions or prepare the transposon for a horizontal transfer.
Collapse
Affiliation(s)
- Yongming Wang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin 13125, Germany
| | | | - Enikö Éva Nagy
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin 13125, Germany
| | - Christopher D Kaufman
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin 13125, Germany
| | - Manvendra Singh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin 13125, Germany
| | - Steve Yant
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305-5164, USA
| | - Jichang Wang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin 13125, Germany
| | - Anna Dalda
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin 13125, Germany
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305-5164, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen 63225, Germany
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin 13125, Germany
| |
Collapse
|
12
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
13
|
Abstract
The IS630-Tc1-mariner (ITm) family of transposons is one of the most widespread in nature. The phylogenetic distribution of its members shows that they do not persist for long in a given lineage, but rely on frequent horizontal transfer to new hosts. Although they are primarily selfish genomic-parasites, ITm transposons contribute to the evolution of their hosts because they generate variation and contribute protein domains and regulatory regions. Here we review the molecular mechanism of ITm transposition and its regulation. We focus mostly on the mariner elements, which are understood in the greatest detail owing to in vitro reconstitution and structural analysis. Nevertheless, the most important characteristics are probably shared across the grouping. Members of the ITm family are mobilized by a cut-and-paste mechanism and integrate at 5'-TA dinucleotide target sites. The elements encode a single transposase protein with an N-terminal DNA-binding domain and a C-terminal catalytic domain. The phosphoryl-transferase reactions during the DNA-strand breaking and joining reactions are performed by the two metal-ion mechanism. The metal ions are coordinated by three or four acidic amino acid residues located within an RNase H-like structural fold. Although all of the strand breaking and joining events at a given transposon end are performed by a single molecule of transposase, the reaction is coordinated by close communication between transpososome components. During transpososome assembly, transposase dimers compete for free transposon ends. This helps to protect the host by dampening an otherwise exponential increase in the rate of transposition as the copy number increases.
Collapse
|
14
|
Fattash I, Lee CN, Mo K, Yang G. Efficient transposition of the youngest miniature inverted repeat transposable element family of yellow fever mosquito in yeast. FEBS J 2015; 282:1829-40. [PMID: 25754725 DOI: 10.1111/febs.13257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/13/2015] [Accepted: 03/04/2015] [Indexed: 01/16/2023]
Abstract
Miniature inverted repeat transposable elements (MITEs) are often the most numerous DNA transposons in plant and animal genomes. The dramatic amplification of MITE families during evolution is puzzling, because the transposase sources for the vast majority of MITE families are unknown. The yellow fever mosquito genome contains > 220-Mb MITE sequences; however, transposition activity has not been demonstrated for any of the MITE families. The Gnome elements are the youngest MITE family in this genome, with at least 116 identical copies. To test whether the putative autonomous element Ozma is capable of mobilizing Gnome and its two sibling MITEs, analyses were performed in a yeast transposition assay system. Whereas the wild-type transposase resulted in very low transposition activity, mutations in the region containing a putative nuclear export signal motif resulted in a dramatic (at least 4160-fold) increase in transposition frequency. We have also demonstrated that each residue of the novel DD37E motif is required for the activity of the Ozma transposase. Footprint sequences left at the donor sites suggest that the transposase may cleave between the second and the third nucleotides from the 5' ends of the elements. The excised elements reinsert specifically at dinucleotide 'TA', ~ 55% of them in yeast genes. The elements described in this article could potentially be useful as genetic tools for genetic manipulation of mosquitoes.
Collapse
Affiliation(s)
- Isam Fattash
- Department of Biology, University of Toronto Mississauga, ON, Canada
| | - Chia-Ni Lee
- Department of Biology, University of Toronto Mississauga, ON, Canada
| | - Kaiguo Mo
- Department of Biology, University of Toronto Mississauga, ON, Canada
| | - Guojun Yang
- Department of Biology, University of Toronto Mississauga, ON, Canada
| |
Collapse
|
15
|
Abstract
ABSTRACT
The number and diversity of known prokaryotic insertion sequences (IS) have increased enormously since their discovery in the late 1960s. At present the sequences of more than 4000 different IS have been deposited in the specialized ISfinder database. Over time it has become increasingly apparent that they are important actors in the evolution of their host genomes and are involved in sequestering, transmitting, mutating and activating genes, and in the rearrangement of both plasmids and chromosomes. This review presents an overview of our current understanding of these transposable elements (TE), their organization and their transposition mechanism as well as their distribution and genomic impact. In spite of their diversity, they share only a very limited number of transposition mechanisms which we outline here. Prokaryotic IS are but one example of a variety of diverse TE which are being revealed due to the advent of extensive genome sequencing projects. A major conclusion from sequence comparisons of various TE is that frontiers between the different types are becoming less clear. We detail these receding frontiers between different IS-related TE. Several, more specialized chapters in this volume include additional detailed information concerning a number of these.
In a second section of the review, we provide a detailed description of the expanding variety of IS, which we have divided into families for convenience. Our perception of these families continues to evolve and families emerge regularly as more IS are identified. This section is designed as an aid and a source of information for consultation by interested specialist readers.
Collapse
|
16
|
Abstract
DNA transposases use a limited repertoire of structurally and mechanistically distinct nuclease domains to catalyze the DNA strand breaking and rejoining reactions that comprise DNA transposition. Here, we review the mechanisms of the four known types of transposition reactions catalyzed by (1) RNase H-like transposases (also known as DD(E/D) enzymes); (2) HUH single-stranded DNA transposases; (3) serine transposases; and (4) tyrosine transposases. The large body of accumulated biochemical and structural data, particularly for the RNase H-like transposases, has revealed not only the distinguishing features of each transposon family, but also some emerging themes that appear conserved across all families. The more-recently characterized single-stranded DNA transposases provide insight into how an ancient HUH domain fold has been adapted for transposition to accomplish excision and then site-specific integration. The serine and tyrosine transposases are structurally and mechanistically related to their cousins, the serine and tyrosine site-specific recombinases, but have to date been less intensively studied. These types of enzymes are particularly intriguing as in the context of site-specific recombination they require strict homology between recombining sites, yet for transposition can catalyze the joining of transposon ends to form an excised circle and then integration into a genomic site with much relaxed sequence specificity.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Dornan J, Grey H, Richardson JM. Structural role of the flanking DNA in mariner transposon excision. Nucleic Acids Res 2015; 43:2424-32. [PMID: 25662605 PMCID: PMC4344528 DOI: 10.1093/nar/gkv096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 01/23/2023] Open
Abstract
During cut-and-paste mariner/Tc1 transposition, transposon DNA is cut precisely at its junction with flanking DNA, ensuring the transposon is neither shortened nor lengthened with each transposition event. Each transposon end is flanked by a TpA dinucleotide: the signature target site duplication of mariner/Tc1 transposition. To establish the role of this sequence in accurate DNA cleavage, we have determined the crystal structure of a pre-second strand cleavage mariner Mos1 transpososome. The structure reveals the route of an intact DNA strand through the transposase active site before second strand cleavage. The crossed architecture of this pre-second strand cleavage paired-end complex supports our proposal that second strand cleavage occurs in trans. The conserved mariner transposase WVPHEL and YSPDL motifs position the strand for accurate DNA cleavage. Base-specific recognition of the flanking DNA by conserved amino acids is revealed, defining a new role for the WVPHEL motif in mariner transposition and providing a molecular explanation for in vitro mutagenesis data. Comparison of the pre-TS cleavage and post-cleavage Mos1 transpososomes with structures of Prototype Foamy Virus intasomes suggests a binding mode for target DNA prior to Mos1 transposon integration.
Collapse
Affiliation(s)
- Jacqueline Dornan
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Heather Grey
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Julia M Richardson
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
18
|
Esnault C, Jaillet J, Delorme N, Bouchet N, Renault S, Douziech-Eyrolles L, Pilard JF, Augé-Gouillou C. Kinetic analysis of the interaction of Mos1 transposase with its inverted terminal repeats reveals new insight into the protein-DNA complex assembly. Chembiochem 2015; 16:140-8. [PMID: 25487538 DOI: 10.1002/cbic.201402466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/08/2022]
Abstract
Transposases are specific DNA-binding proteins that promote the mobility of discrete DNA segments. We used a combination of physicochemical approaches to describe the association of MOS1 (an eukaryotic transposase) with its specific target DNA, an event corresponding to the first steps of the transposition cycle. Because the kinetic constants of the reaction are still unknown, we aimed to determine them by using quartz crystal microbalance on two sources of recombinant MOS1: one produced in insect cells and the other produced in bacteria. The prokaryotic-expressed MOS1 showed no cooperativity and displayed a Kd of about 300 nM. In contrast, the eukaryotic-expressed MOS1 generated a cooperative system, with a lower Kd (∼ 2 nm). The origins of these differences were investigated by IR spectroscopy and AFM imaging. Both support the conclusion that prokaryotic- and eukaryotic-expressed MOS1 are not similarly folded, thereby resulting in differences in the early steps of transposition.
Collapse
Affiliation(s)
- Charles Esnault
- Groupe Instabilité Génétique et Transposases, EA 6306, Fédération GICC, UFR Sciences Pharmaceutiques, Université François Rabelais, 31 Avenue Monge, 37200 Tours (France)
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hickman AB, Ewis HE, Li X, Knapp JA, Laver T, Doss AL, Tolun G, Steven AC, Grishaev A, Bax A, Atkinson PW, Craig NL, Dyda F. Structural basis of hAT transposon end recognition by Hermes, an octameric DNA transposase from Musca domestica. Cell 2014; 158:353-367. [PMID: 25036632 DOI: 10.1016/j.cell.2014.05.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/10/2014] [Accepted: 05/12/2014] [Indexed: 11/25/2022]
Abstract
Hermes is a member of the hAT transposon superfamily that has active representatives, including McClintock's archetypal Ac mobile genetic element, in many eukaryotic species. The crystal structure of the Hermes transposase-DNA complex reveals that Hermes forms an octameric ring organized as a tetramer of dimers. Although isolated dimers are active in vitro for all the chemical steps of transposition, only octamers are active in vivo. The octamer can provide not only multiple specific DNA-binding domains to recognize repeated subterminal sequences within the transposon ends, which are important for activity, but also multiple nonspecific DNA binding surfaces for target capture. The unusual assembly explains the basis of bipartite DNA recognition at hAT transposon ends, provides a rationale for transposon end asymmetry, and suggests how the avidity provided by multiple sites of interaction could allow a transposase to locate its transposon ends amidst a sea of chromosomal DNA.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hosam E Ewis
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xianghong Li
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joshua A Knapp
- Graduate Program in Biochemistry and Molecular Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Thomas Laver
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California Riverside, Riverside, CA 92521, USA
| | - Anna-Louise Doss
- Graduate Program in Cell, Molecular, and Developmental Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Gökhan Tolun
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander Grishaev
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter W Atkinson
- Graduate Program in Biochemistry and Molecular Biology, University of California Riverside, Riverside, CA 92521, USA; Graduate Program in Genetics, Genomics, and Bioinformatics, University of California Riverside, Riverside, CA 92521, USA; Graduate Program in Cell, Molecular, and Developmental Biology, University of California Riverside, Riverside, CA 92521, USA; Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Nancy L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Claeys Bouuaert C, Walker N, Liu D, Chalmers R. Crosstalk between transposase subunits during cleavage of the mariner transposon. Nucleic Acids Res 2014; 42:5799-808. [PMID: 24623810 PMCID: PMC4027188 DOI: 10.1093/nar/gku172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/18/2022] Open
Abstract
Mariner transposition is a complex reaction that involves three recombination sites and six strand breaking and joining reactions. This requires precise spatial and temporal coordination between the different components to ensure a productive outcome and minimize genomic instability. We have investigated how the cleavage events are orchestrated within the mariner transpososome. We find that cleavage of the non-transferred strand is completed at both transposon ends before the transferred strand is cleaved at either end. By introducing transposon-end mutations that interfere with cleavage, but leave transpososome assembly unaffected, we demonstrate that a structural transition preceding transferred strand cleavage is coordinated between the two halves of the transpososome. Since mariner lacks the DNA hairpin intermediate, this transition probably reflects a reorganization of the transpososome to allow the access of different monomers onto the second pair of strands, or the relocation of the DNA within the same active site between two successive hydrolysis events. Communication between transposase subunits also provides a failsafe mechanism that restricts the generation of potentially deleterious double-strand breaks at isolated sites. Finally, we identify transposase mutants that reveal that the conserved WVPHEL motif provides a structural determinant of the coordination mechanism.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Neil Walker
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Danxu Liu
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
21
|
Bouuaert CC, Tellier M, Chalmers R. One to rule them all: A highly conserved motif in mariner transposase controls multiple steps of transposition. Mob Genet Elements 2014; 4:e28807. [PMID: 24812590 PMCID: PMC4013102 DOI: 10.4161/mge.28807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/01/2014] [Accepted: 04/07/2014] [Indexed: 01/16/2023] Open
Abstract
The development of transposon-based genome manipulation tools can benefit greatly from understanding transposons’ inherent regulatory mechanisms. The Tc1-mariner transposons, which are being widely used in biotechnological applications, are subject to a self-inhibitory mechanism whereby increasing transposase expression beyond a certain point decreases the rate of transposition. In a recent paper, Liu and Chalmers performed saturating mutagenesis on the highly conserved WVPHEL motif in the mariner-family transposase from the Hsmar1 element. Curiously, they found that the majority of all possible single mutations were hyperactive. Biochemical characterizations of the mutants revealed that the hyperactivity is due to a defect in communication between transposase subunits, which normally regulates transposition by reducing the rate of synapsis. This provides important clues for improving transposon-based tools. However, some WVPHEL mutants also showed features that would be undesirable for most biotechnological applications: they showed uncontrolled DNA cleavage activities and defects in the coordination of cleavage between the two transposon ends. The study illustrates how the knowledge of inhibitory mechanisms can help improve transposon tools but also highlights an important challenge, which is to specifically target a regulatory mechanism without affecting other important functions of the transposase.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- Molecular Biology Program; Howard Hughes Medical Institute; Memorial Sloan Kettering Cancer Center; New York, NY USA
| | - Michael Tellier
- School of Life Sciences; University of Nottingham; Queen's Medical Centre; Nottingham, UK
| | - Ronald Chalmers
- School of Life Sciences; University of Nottingham; Queen's Medical Centre; Nottingham, UK
| |
Collapse
|
22
|
Backfisch B, Kozin VV, Kirchmaier S, Tessmar-Raible K, Raible F. Tools for gene-regulatory analyses in the marine annelid Platynereis dumerilii. PLoS One 2014; 9:e93076. [PMID: 24714200 PMCID: PMC3979674 DOI: 10.1371/journal.pone.0093076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 03/03/2014] [Indexed: 01/22/2023] Open
Abstract
The advent of high-throughput sequencing technology facilitates the exploration of a variety of reference species outside the few established molecular genetic model systems. Bioinformatic and gene expression analyses provide new ways for comparative analyses between species, for instance, in the field of evolution and development. Despite these advances, a critical bottleneck for the exploration of new model species remains the establishment of functional tools, such as the ability to experimentally express genes in specific cells of an organism. We recently established a first transgenic strain of the annelid Platynereis, using a Tc1/mariner-type Mos1 transposon vector. Here, we compare Mos1 with Tol2, a member of the hAT family of transposons. In Platynereis, Tol2-based constructs showed a higher frequency of nuclear genome insertion and sustained gene expression in the G0 generation. However, in contrast to Mos1-mediated transgenes, Tol2-mediated insertions failed to retain fluorescence in the G1 generation, suggesting a germ line-based silencing mechanism. Furthermore, we present three novel expression constructs that were generated by a simple fusion-PCR approach and allow either ubiquitous or cell-specific expression of a reporter gene. Our study indicates the versatility of Tol2 for transient transgenesis, and provides a template for transgenesis work in other emerging reference species.
Collapse
Affiliation(s)
- Benjamin Backfisch
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Vitaly V. Kozin
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Stephan Kirchmaier
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Florian Raible
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
23
|
Wolkowicz U, Morris ER, Robson M, Trubitsyna M, Richardson JM. Structural basis of Mos1 transposase inhibition by the anti-retroviral drug Raltegravir. ACS Chem Biol 2014; 9:743-51. [PMID: 24397848 PMCID: PMC3977574 DOI: 10.1021/cb400791u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/07/2014] [Indexed: 11/28/2022]
Abstract
DNA transposases catalyze the movement of transposons around genomes by a cut-and-paste mechanism related to retroviral integration. Transposases and retroviral integrases share a common RNaseH-like domain with a catalytic DDE/D triad that coordinates the divalent cations required for DNA cleavage and integration. The anti-retroviral drugs Raltegravir and Elvitegravir inhibit integrases by displacing viral DNA ends from the catalytic metal ions. We demonstrate that Raltegravir, but not Elvitegravir, binds to Mos1 transposase in the presence of Mg(2+) or Mn(2+), without the requirement for transposon DNA, and inhibits transposon cleavage and DNA integration in biochemical assays. Crystal structures at 1.7 Å resolution show Raltegravir, in common with integrases, coordinating two Mg(2+) or Mn(2+) ions in the Mos1 active site. However, in the absence of transposon ends, the drug adopts an unusual, compact binding mode distinct from that observed in the active site of the prototype foamy virus integrase.
Collapse
Affiliation(s)
- Urszula
M. Wolkowicz
- School of Biological Sciences, University
of Edinburgh, Mayfield
Road, Edinburgh EH9 3JR, United Kingdom
| | - Elizabeth R. Morris
- School of Biological Sciences, University
of Edinburgh, Mayfield
Road, Edinburgh EH9 3JR, United Kingdom
| | - Michael Robson
- School of Biological Sciences, University
of Edinburgh, Mayfield
Road, Edinburgh EH9 3JR, United Kingdom
| | - Maryia Trubitsyna
- School of Biological Sciences, University
of Edinburgh, Mayfield
Road, Edinburgh EH9 3JR, United Kingdom
| | - Julia M. Richardson
- School of Biological Sciences, University
of Edinburgh, Mayfield
Road, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
24
|
Kim HS, Chen Q, Kim SK, Nickoloff JA, Hromas R, Georgiadis MM, Lee SH. The DDN catalytic motif is required for Metnase functions in non-homologous end joining (NHEJ) repair and replication restart. J Biol Chem 2014; 289:10930-10938. [PMID: 24573677 PMCID: PMC4036204 DOI: 10.1074/jbc.m113.533216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metnase (or SETMAR) arose from a chimeric fusion of the Hsmar1 transposase downstream of a protein methylase in anthropoid primates. Although the Metnase transposase domain has been largely conserved, its catalytic motif (DDN) differs from the DDD motif of related transposases, which may be important for its role as a DNA repair factor and its enzymatic activities. Here, we show that substitution of DDN610 with either DDD610 or DDE610 significantly reduced in vivo functions of Metnase in NHEJ repair and accelerated restart of replication forks. We next tested whether the DDD or DDE mutants cleave single-strand extensions and flaps in partial duplex DNA and pseudo-Tyr structures that mimic stalled replication forks. Neither substrate is cleaved by the DDD or DDE mutant, under the conditions where wild-type Metnase effectively cleaves ssDNA overhangs. We then characterized the ssDNA-binding activity of the Metnase transposase domain and found that the catalytic domain binds ssDNA but not dsDNA, whereas dsDNA binding activity resides in the helix-turn-helix DNA binding domain. Substitution of Asn-610 with either Asp or Glu within the transposase domain significantly reduces ssDNA binding activity. Collectively, our results suggest that a single mutation DDN610 → DDD610, which restores the ancestral catalytic site, results in loss of function in Metnase.
Collapse
Affiliation(s)
- Hyun-Suk Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Qiujia Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Sung-Kyung Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Robert Hromas
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610
| | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - Suk-Hee Lee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
25
|
Trubitsyna M, Morris ER, Finnegan DJ, Richardson JM. Biochemical characterization and comparison of two closely related active mariner transposases. Biochemistry 2014; 53:682-9. [PMID: 24404958 PMCID: PMC3922039 DOI: 10.1021/bi401193w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
![]()
Most DNA transposons move from one
genomic location to another
by a cut-and-paste mechanism and are useful tools for genomic manipulations.
Short inverted repeat (IR) DNA sequences marking each end of the transposon
are recognized by a DNA transposase (encoded by the transposon itself).
This enzyme cleaves the transposon ends and integrates them at a new
genomic location. We report here a comparison of the biophysical and
biochemical properties of two closely related and active mariner/Tc1 family DNA transposases: Mboumar-9 and Mos1. We compared the in vitro cleavage activities of the enzymes on their own
IR sequences, as well as cross-recognition of their inverted repeat
sequences. We found that, like Mos1, untagged recombinant Mboumar-9
transposase is a dimer and forms a stable complex with inverted repeat
DNA in the presence of Mg2+ ions. Mboumar-9 transposase
cleaves its inverted repeat DNA in the manner observed for Mos1 transposase.
There was minimal cross-recognition of IR sequences between Mos1 and
Mboumar-9 transposases, despite these enzymes having 68% identical
amino acid sequences. Transposases sharing common biophysical and
biochemical properties, but retaining recognition specificity toward
their own IR, are a promising platform for the design of chimeric
transposases with predicted and improved sequence recognition.
Collapse
Affiliation(s)
- Maryia Trubitsyna
- School of Biological Sciences, University of Edinburgh , The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, United Kingdom
| | | | | | | |
Collapse
|
26
|
Pflieger A, Jaillet J, Petit A, Augé-Gouillou C, Renault S. Target capture during Mos1 transposition. J Biol Chem 2013; 289:100-11. [PMID: 24269942 DOI: 10.1074/jbc.m113.523894] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA transposition contributes to genomic plasticity. Target capture is a key step in the transposition process, because it contributes to the selection of new insertion sites. Nothing or little is known about how eukaryotic mariner DNA transposons trigger this step. In the case of Mos1, biochemistry and crystallography have deciphered several inverted terminal repeat-transposase complexes that are intermediates during transposition. However, the target capture complex is still unknown. Here, we show that the preintegration complex (i.e., the excised transposon) is the only complex able to capture a target DNA. Mos1 transposase does not support target commitment, which has been proposed to explain Mos1 random genomic integrations within host genomes. We demonstrate that the TA dinucleotide used as the target is crucial both to target recognition and in the chemistry of the strand transfer reaction. Bent DNA molecules are better targets for the capture when the target DNA is nicked two nucleotides apart from the TA. They improve strand transfer when the target DNA contains a mismatch near the TA dinucleotide.
Collapse
Affiliation(s)
- Aude Pflieger
- From the EA 6306 Innovation Moléculaire et Thérapeutique, Université François Rabelais, UFR des Sciences et Techniques, UFR de Pharmacie, 37200 Tours, France
| | | | | | | | | |
Collapse
|
27
|
Abstract
DNA transposases are enzymes that catalyze the movement of discrete pieces of DNA from one location in the genome to another. Transposition occurs through a series of controlled DNA strand cleavage and subsequent integration reactions that are carried out by nucleoprotein complexes known as transpososomes. Transpososomes are dynamic assemblies which must undergo conformational changes that control DNA breaks and ensure that, once started, the transposition reaction goes to completion. They provide a precise architecture within which the chemical reactions involved in transposon movement occur, but adopt different conformational states as transposition progresses. Their components also vary as they must, at some stage, include target DNA and sometimes even host-encoded proteins. A very limited number of transpososome states have been crystallographically captured, and here we provide an overview of the various structures determined to date. These structures include examples of DNA transposases that catalyze transposition by a cut-and-paste mechanism using an RNaseH-like nuclease catalytic domain, those that transpose using only single-stranded DNA substrates and targets, and the retroviral integrases that carry out an integration reaction very similar to DNA transposition. Given that there are a number of common functional requirements for transposition, it is remarkable how these are satisfied by complex assemblies that are so architecturally different.
Collapse
|
28
|
Claeys Bouuaert C, Lipkow K, Andrews SS, Liu D, Chalmers R. The autoregulation of a eukaryotic DNA transposon. eLife 2013; 2:e00668. [PMID: 23795293 PMCID: PMC3687335 DOI: 10.7554/elife.00668] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/13/2013] [Indexed: 01/03/2023] Open
Abstract
How do DNA transposons live in harmony with their hosts? Bacteria provide the only documented mechanisms for autoregulation, but these are incompatible with eukaryotic cell biology. Here we show that autoregulation of Hsmar1 operates during assembly of the transpososome and arises from the multimeric state of the transposase, mediated by a competition for binding sites. We explore the dynamics of a genomic invasion using a computer model, supported by in vitro and in vivo experiments, and show that amplification accelerates at first but then achieves a constant rate. The rate is proportional to the genome size and inversely proportional to transposase expression and its affinity for the transposon ends. Mariner transposons may therefore resist post-transcriptional silencing. Because regulation is an emergent property of the reaction it is resistant to selfish exploitation. The behavior of distantly related eukaryotic transposons is consistent with the same mechanism, which may therefore be widely applicable. DOI:http://dx.doi.org/10.7554/eLife.00668.001 Transposons are regions of mobile DNA that can jump from one location in the genome to another. This represents a genetic burden to the host because there is always the risk that the transposon will inactivate a cellular gene. However, a greater problem is that transposition is accompanied by an increase in the number of copies of the transposon. Since each new copy will be a source of further new copies, amplification of transposons is necessarily exponential. The fact that eukaryotic cells are able to tolerate DNA transposons suggests the existence of regulatory mechanisms to defuse the inevitable genomic melt-down. Host-mediated epigenetic modifications and RNA interference will provide some level of protection. However, they are by no means completely effective and a well-adapted genomic parasite, such as a transposon, might be expected to have its own mechanism of regulation. Now, Claeys Bouuaert, Lipkow and colleagues have used a computer model in combination with in vivo and in vitro experiments to search for this mechanism. Their experiments reveal how a DNA transposon is down-regulated by its own transposase. The transposase is the enzyme that catalyzes the ‘jump’ or transposition. It binds to specific sites at either end of the transposon and brings these together to make up a nucleoprotein complex called the transpososome. It is within this complex that the chemical steps of the reaction take place. When the number of transposons increases, so does the concentration of transposase. Claeys Bouuaert et al. show that the binding sites become saturated at a relatively low transposase concentration and that negative regulation arises from the resulting competition. Thus, the rate of transposition decreases as the number of transposons increases. They further use the computer model to explore how the amplification of the transposon is affected by transposon-specific and cellular-specific factors. Claeys Bouuaert, Lipkow and colleagues based their study predominantly on a resurrected copy of the Hsmar1 transposon, which was active in the human genome 50 million years ago. However, they also tested two distantly related eukaryotic transposons and observed that their behavior was similar, which suggests that this could be a general mechanism that controls the activity of jumping genes. They also note that their competition mechanism is conceptually similar to the immunological ‘prozone effect’. This is a recurrent theme in protein chemistry and demonstrates once again that less is in fact sometimes more. DOI:http://dx.doi.org/10.7554/eLife.00668.002
Collapse
|
29
|
Cuypers MG, Trubitsyna M, Callow P, Forsyth VT, Richardson JM. Solution conformations of early intermediates in Mos1 transposition. Nucleic Acids Res 2012; 41:2020-33. [PMID: 23262225 PMCID: PMC3561948 DOI: 10.1093/nar/gks1295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA transposases facilitate genome rearrangements by moving DNA transposons around and between genomes by a cut-and-paste mechanism. DNA transposition proceeds in an ordered series of nucleoprotein complexes that coordinate pairing and cleavage of the transposon ends and integration of the cleaved ends at a new genomic site. Transposition is initiated by transposase recognition of the inverted repeat sequences marking each transposon end. Using a combination of solution scattering and biochemical techniques, we have determined the solution conformations and stoichiometries of DNA-free Mos1 transposase and of the transposase bound to a single transposon end. We show that Mos1 transposase is an elongated homodimer in the absence of DNA and that the N-terminal 55 residues, containing the first helix-turn-helix motif, are required for dimerization. This arrangement is remarkably different from the compact, crossed architecture of the dimer in the Mos1 paired-end complex (PEC). The transposase remains elongated when bound to a single-transposon end in a pre-cleavage complex, and the DNA is bound predominantly to one transposase monomer. We propose that a conformational change in the single-end complex, involving rotation of one half of the transposase along with binding of a second transposon end, could facilitate PEC assembly.
Collapse
Affiliation(s)
- Maxime G Cuypers
- Life Sciences Group, Institut Laue Langevin (ILL), 6 rue Jules Horowitz, 38042 Grenoble, France
| | | | | | | | | |
Collapse
|
30
|
Oh SA, Allen T, Kim GJ, Sidorova A, Borg M, Park SK, Twell D. Arabidopsis Fused kinase and the Kinesin-12 subfamily constitute a signalling module required for phragmoplast expansion. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:550-63. [PMID: 22448600 DOI: 10.1111/j.1365-313x.2012.05007.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The conserved Fused kinase plays vital but divergent roles in many organisms from Hedgehog signalling in Drosophila to polarization and chemotaxis in Dictyostelium. Previously we have shown that Arabidopsis Fused kinase termed TWO-IN-ONE (TIO) is essential for cytokinesis in both sporophytic and gametophytic cell types. Here using in vivo imaging of GFP-tagged microtubules in dividing microspores we show that TIO is required for expansion of the phragmoplast. We identify the phragmoplast-associated kinesins, PAKRP1/Kinesin-12A and PAKRP1L/Kinesin-12B, as TIO-interacting proteins and determine TIO-Kinesin-12 interaction domains and their requirement in male gametophytic cytokinesis. Our results support the role of TIO as a functional protein kinase that interacts with Kinesin-12 subfamily members mainly through the C-terminal ARM repeat domain, but with a contribution from the N-terminal kinase domain. The interaction of TIO with Kinesin proteins and the functional requirement of their interaction domains support the operation of a Fused kinase signalling module in phragmoplast expansion that depends upon conserved structural features in diverse Fused kinases.
Collapse
Affiliation(s)
- Sung Aeong Oh
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Jaillet J, Genty M, Cambefort J, Rouault JD, Augé-Gouillou C. Regulation of mariner transposition: the peculiar case of Mos1. PLoS One 2012; 7:e43365. [PMID: 22905263 PMCID: PMC3419177 DOI: 10.1371/journal.pone.0043365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/20/2012] [Indexed: 01/18/2023] Open
Abstract
Background Mariner elements represent the most successful family of autonomous DNA transposons, being present in various plant and animal genomes, including humans. The introduction and co-evolution of mariners within host genomes imply a strict regulation of the transposon activity. Biochemical data accumulated during the past decade have led to a convergent picture of the transposition cycle of mariner elements, suggesting that mariner transposition does not rely on host-specific factors. This model does not account for differences of transposition efficiency in human cells between mariners. We thus wondered whether apparent similarities in transposition cycle could hide differences in the intrinsic parameters that control mariner transposition. Principal Findings We find that Mos1 transposase concentrations in excess to the Mos1 ends prevent the paired-end complex assembly. However, we observe that Mos1 transposition is not impaired by transposase high concentration, dismissing the idea that transposase over production plays an obligatory role in the down-regulation of mariner transposition. Our main finding is that the paired-end complex is formed in a cooperative way, regardless of the transposase concentration. We also show that an element framed by two identical ITRs (Inverted Terminal Repeats) is more efficient in driving transposition than an element framed by two different ITRs (i.e. the natural Mos1 copy), the latter being more sensitive to transposase concentration variations. Finally, we show that the current Mos1 ITRs correspond to the ancestral ones. Conclusions We provide new insights on intrinsic properties supporting the self-regulation of the Mos1 element. These properties (transposase specific activity, aggregation, ITR sequences, transposase concentration/transposon copy number ratio…) could have played a role in the dynamics of host-genomes invasion by Mos1, accounting (at least in part) for the current low copy number of Mos1 within host genomes.
Collapse
Affiliation(s)
- Jérôme Jaillet
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Murielle Genty
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Jeanne Cambefort
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Jacques-Deric Rouault
- Laboratoire Evolution, Génomes et Spéciation – CNRS UPR9034, Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
| | - Corinne Augé-Gouillou
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
- * E-mail:
| |
Collapse
|
32
|
Montaño SP, Rice PA. Moving DNA around: DNA transposition and retroviral integration. Curr Opin Struct Biol 2011; 21:370-8. [PMID: 21439812 PMCID: PMC3112294 DOI: 10.1016/j.sbi.2011.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/08/2011] [Accepted: 03/08/2011] [Indexed: 11/16/2022]
Abstract
Mobile DNA elements are found in all kingdoms of life, and they employ numerous mechanisms to move within and between genomes. Here we review recent structural advances in understanding two very different families of DNA transposases and retroviral integrases: the DDE and Y1 groups. Even within the DDE family which shares a conserved catalytic domain, there is great diversity in the architecture of the synaptic complexes formed by the intact enzymes with their cognate element-end DNAs. However, recurring themes arise from comparing these complexes, such as stabilization by an intertwined network of protein-DNA and protein-protein contacts, and catalysis in trans, where each active subunit catalyzes the chemical steps on one DNA segment but also binds specific sequences on the other.
Collapse
Affiliation(s)
- Sherwin P. Montaño
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57 St., Chicago IL 60615
| | - Phoebe A. Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57 St., Chicago IL 60615
| |
Collapse
|
33
|
Carpentier G, Jaillet J, Pflieger A, Adet J, Renault S, Augé-Gouillou C. Transposase-transposase interactions in MOS1 complexes: a biochemical approach. J Mol Biol 2010; 405:892-908. [PMID: 21110982 DOI: 10.1016/j.jmb.2010.11.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/03/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022]
Abstract
Transposases are proteins that have assumed the mobility of class II transposable elements. In order to map the interfaces involved in transposase-transposase interactions, we have taken advantage of 12 transposase mutants that impair mariner transposase-transposase interactions taking place during transposition. Our data indicate that transposase-transposase interactions regulating Mos1 transposition are sophisticated and result from (i) active MOS1 dimerization through the first HTH of the N-terminal domain, which leads to inverted terminal repeat (ITR) binding; (ii) inactive dimerization carried by part of the C-terminal domain, which prevents ITR binding; and (iii) oligomerization. Inactive dimers are nonpermissive in organizing complexes that produce ITR binding, but the interfaces (or interactions) supplied in this state could play a role in the various rearrangements needed during transposition. Oligomerization is probably not due to a specific MOS1 domain, but rather the result of nonspecific interactions resulting from incorrect folding of the protein. Our data also suggest that the MOS1 catalytic domain is a main actor in the overall organization of MOS1, thus playing a role in MOS1 oligomerization. Finally, we propose that MOS1 behaves as predicted by the pre-equilibrium existing model, whereby proteins are found to exist simultaneously in populations with diverse conformations, monomers and active and inactive dimers for MOS1. We were able to identify several MOS1 mutants that modify this pre-existing equilibrium. According to their properties, some of these mutants will be useful tools to break down the remaining gaps in our understanding of mariner transposition.
Collapse
Affiliation(s)
- Guillaume Carpentier
- Université François Rabelais de Tours, GICC, CNRS, UMR 6239, UFR Sciences & Techniques, Parc Grandmont, 37200 Tours, France
| | | | | | | | | | | |
Collapse
|
34
|
A simple topological filter in a eukaryotic transposon as a mechanism to suppress genome instability. Mol Cell Biol 2010; 31:317-27. [PMID: 21041479 DOI: 10.1128/mcb.01066-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA transposition takes place within a higher-order complex known as the transpososome. Almost everything known about its assembly has been gleaned from bacterial transposons. Here we present a detailed analysis of transpososome assembly in the human Hsmar1 element. The transpososome is nominally symmetrical, consisting of two identical transposon ends and a dimer of transposase. However, after the transposase dimer has captured the first transposon end, an asymmetry is introduced, raising a barrier against recruitment of the second end. The barrier can be overcome by right-handed plectonemic intertwining of the transposon ends. This likely occurs mainly during transcription and episodes of nucleosome remodeling. Plectonemic intertwining favors only synapsis of closely linked transposon ends in the inverted-repeat configuration and therefore suppresses the promiscuous synapsis of distant transposon ends, which initiate McClintock's chromosomal breakage-fusion-bridge cycles in maize. We also show that synapsis of the transposon ends is a prerequisite for the first catalytic step. This provides constraints on the enzymatic mechanism of the double-strand breaks in mariner transposition, excluding the most prevalent of the current models.
Collapse
|
35
|
Renault S, Demattéi MV, Lahouassa H, Bigot Y, Augé-Gouillou C. In vitro recombination and inverted terminal repeat binding activities of the Mcmar1 transposase. Biochemistry 2010; 49:3534-44. [PMID: 20359246 DOI: 10.1021/bi901957p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Mcmar1 mariner element (MLE) presents some intriguing features with two large, perfectly conserved, 355 bp inverted terminal repeats (ITRs) containing two 28 bp direct repeats (DRs). The presence of a complete ORF in Mcmar1 makes it possible to explore the transposition of this unusual MLE. Mcmar1 transposase (MCMAR1) was purified, and in vitro transposition assays showed that it is able to promote ITR-dependent DNA cleavages and recombination events, which correspond to plasmid fusions and transpositions with imprecise ends. Further analyses indicated that MCMAR1 is able to interact with the 355 bp ITR through two DRs: the EDR (external DR) is a high-affinity binding site for MCMAR1, whereas the IDR (internal DR) is a low-affinity binding site. The main complex detected within the EDR contained a transposase dimer and only one DNA molecule. We hypothesize that the inability of MCMAR1 to promote precise in vitro transposition events could be due to mutations in its ORF sequence or to the specific features of transposase binding to the ITR. Indeed, the ITR region spanning from EDR to IDR resembles a MITE and could be bent by specific host factors. This suggests that the assembly of the transposition complex is more complex than that of those involved in the mobility of the Mos1 and Himar1 mariner elements.
Collapse
Affiliation(s)
- Sylvaine Renault
- Université François Rabelais de Tours, GICC, CNRS, UMR 6239, UFR des Sciences & Techniques, Parc de Grandmont, 37200 Tours, France.
| | | | | | | | | |
Collapse
|
36
|
Claeys Bouuaert C, Chalmers R. Transposition of the human Hsmar1 transposon: rate-limiting steps and the importance of the flanking TA dinucleotide in second strand cleavage. Nucleic Acids Res 2009; 38:190-202. [PMID: 19858101 PMCID: PMC2800235 DOI: 10.1093/nar/gkp891] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hsmar1 is a member of the mariner family of DNA transposons. Although widespread in nature, their molecular mechanism remains obscure. Many other cut-and-paste elements use a hairpin intermediate to cleave the two strands of DNA at each transposon end. However, this intermediate is absent in mariner, suggesting that these elements use a fundamentally different mechanism for second-strand cleavage. We have taken advantage of the faithful and efficient in vitro reaction provided by Hsmar1 to characterize the products and intermediates of transposition. We report different factors that particularly affect the reaction, which are the reaction pH and the transposase concentration. Kinetic analysis revealed that first-strand nicking and integration are rapid. The rate of the reaction is limited in part by the divalent metal ion-dependent assembly of a complex between transposase and the transposon end(s) prior to the first catalytic step. Second-strand cleavage is the rate-limiting catalytic step of the reaction. We discuss our data in light of a model for the two metal ion catalytic mechanism and propose that mariner excision involves a significant conformational change between first- and second-strand cleavage at each transposon end. Furthermore, this conformational change requires specific contacts between transposase and the flanking TA dinucleotide.
Collapse
|
37
|
Physical properties of DNA components affecting the transposition efficiency of the mariner Mos1 element. Mol Genet Genomics 2009; 282:531-46. [PMID: 19774400 DOI: 10.1007/s00438-009-0484-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
Previous studies have shown that the transposase and the inverted terminal repeat (ITR) of the Mos1 mariner elements are suboptimal for transposition; and that hyperactive transposases and transposon with more efficient ITR configurations can be obtained by rational molecular engineering. In an attempt to determine the extent to which this element is suboptimal for transposition, we investigate here the impact of the three main DNA components on its transposition efficiency in bacteria and in vitro. We found that combinations of natural and synthetic ITRs obtained by systematic evolution of ligands by exponential enrichment did increase the transposition rate. We observed that when untranslated terminal regions were associated with their respective natural ITRs, they acted as transposition enhancers, probably via the early transposition steps. Finally, we demonstrated that the integrity of the Mos1 inner region was essential for transposition. These findings allowed us to propose prototypes of optimized Mos1 vectors, and to define the best sequence features of their associated marker cassettes. These vector prototypes were assayed in HeLa cells, in which Mos1 vectors had so far been found to be inactive. The results obtained revealed that using these prototypes does not circumvent this problem. However, such vectors can be expected to provide new tools for the use in genome engineering in systems such as Caenorhabditis elegans in which Mos1 is very active.
Collapse
|
38
|
Richardson JM, Colloms SD, Finnegan DJ, Walkinshaw MD. Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote. Cell 2009; 138:1096-108. [PMID: 19766564 PMCID: PMC3977044 DOI: 10.1016/j.cell.2009.07.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 04/24/2009] [Accepted: 07/02/2009] [Indexed: 11/26/2022]
Abstract
A key step in cut-and-paste DNA transposition is the pairing of transposon ends before the element is excised and inserted at a new site in its host genome. Crystallographic analyses of the paired-end complex (PEC) formed from precleaved transposon ends and the transposase of the eukaryotic element Mos1 reveals two parallel ends bound to a dimeric enzyme. The complex has a trans arrangement, with each transposon end recognized by the DNA binding region of one transposase monomer and by the active site of the other monomer. Two additional DNA duplexes in the crystal indicate likely binding sites for flanking DNA. Biochemical data provide support for a model of the target capture complex and identify Arg186 to be critical for target binding. Mixing experiments indicate that a transposase dimer initiates first-strand cleavage and suggest a pathway for PEC formation.
Collapse
Affiliation(s)
- Julia M Richardson
- School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland.
| | | | | | | |
Collapse
|
39
|
Base flipping in V(D)J recombination: insights into the mechanism of hairpin formation, the 12/23 rule, and the coordination of double-strand breaks. Mol Cell Biol 2009; 29:5889-99. [PMID: 19720743 DOI: 10.1128/mcb.00187-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tn5 transposase cleaves the transposon end using a hairpin intermediate on the transposon end. This involves a flipped base that is stacked against a tryptophan residue in the protein. However, many other members of the cut-and-paste transposase family, including the RAG1 protein, produce a hairpin on the flanking DNA. We have investigated the reversed polarity of the reaction for RAG recombination. Although the RAG proteins appear to employ a base-flipping mechanism using aromatic residues, the putatively flipped base is not at the expected location and does not appear to stack against any of the said aromatic residues. We propose an alternative model in which a flipped base is accommodated in a nonspecific pocket or cleft within the recombinase. This is consistent with the location of the flipped base at position -1 in the coding flank, which can be occupied by purine or pyrimidine bases that would be difficult to stabilize using a single, highly specific, interaction. Finally, during this work we noticed that the putative base-flipping events on either side of the 12/23 recombination signal sequence paired complex are coupled to the nicking steps and serve to coordinate the double-strand breaks on either side of the complex.
Collapse
|
40
|
Claeys Bouuaert C, Chalmers RM. Gene therapy vectors: the prospects and potentials of the cut-and-paste transposons. Genetica 2009; 138:473-84. [PMID: 19649713 DOI: 10.1007/s10709-009-9391-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/14/2009] [Indexed: 11/28/2022]
Abstract
Gene therapy applications require efficient tools for the stable delivery of genetic information into eukaryotic genomes. Most current gene delivery strategies are based on viral vectors. However, a number of drawbacks, such as the limited cargo capacity, host immune response and mutational risks, highlight the need for alternative gene delivery tools. A comprehensive gene therapy tool kit should contain a range of vectors and techniques that can be adapted to different targets and purposes. Transposons provide a potentially powerful approach. However, transposons encompass a large number of different molecular mechanisms, some of which are better suited to gene delivery applications than others. Here, we consider the range and potentials of the various mechanisms, focusing on the cut-and-paste transposons as one of the more promising avenues towards gene therapy applications. Several cut-and-paste transposition systems are currently under development. We will first consider the mechanisms of piggyBac and the hAT family elements Tol1 and Tol2, before focusing on the mariner family elements including Mos1, Himar1 and Hsmar1.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | |
Collapse
|
41
|
|
42
|
Mariner transposons as genetic tools in vertebrate cells. Genetica 2009; 137:9-17. [PMID: 19479327 DOI: 10.1007/s10709-009-9370-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 05/13/2009] [Indexed: 01/12/2023]
Abstract
Transposable elements (TEs) are being investigated as potential molecular tools in genetic engineering, for use in procedures such as transgenesis and insertional mutagenesis. Naturally active and reconstructed active TEs are both being studied to develop non-viral delivery vehicles. To date, the active elements being used include three Mariner-Like Elements (MLEs). We review below the studies that have investigated the ability of these MLEs to insert a transgene in vertebrate cells.
Collapse
|
43
|
Interactions of Transposons with the Cellular DNA Repair Machinery. TRANSPOSONS AND THE DYNAMIC GENOME 2009. [DOI: 10.1007/7050_2008_043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
44
|
Sinzelle L, Jégot G, Brillet B, Rouleux-Bonnin F, Bigot Y, Augé-Gouillou C. Factors acting on Mos1 transposition efficiency. BMC Mol Biol 2008; 9:106. [PMID: 19036139 PMCID: PMC2642840 DOI: 10.1186/1471-2199-9-106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 11/26/2008] [Indexed: 01/06/2023] Open
Abstract
Background Mariner-like elements (MLEs) are widespread DNA transposons in animal genomes. Although in vitro transposition reactions require only the transposase, various factors depending on the host, the physico-chemical environment and the transposon sequence can interfere with the MLEs transposition in vivo. Results The transposition of Mos1, first isolated from drosophila mauritiana, depends of both the nucleic acid sequence of the DNA stuffer (in terms of GC content), and its length. We provide the first in vitro experimental demonstration that MITEs of MLE origin, as small as 80 to 120-bp, are able to transpose. Excessive temperature down-regulates Mos1 transposition, yielding excision products unable to re-integrate. Finally, the super-helicity of the DNA transposon donor has a dramatic impact on the transposition efficiency. Conclusion The study highlights how experimental conditions can bias interpretation of mariner excision frequency and quality. In vitro, the auto-integration pathway markedly limits transposition efficiency to new target sites, and this phenomenon may also limit events in the natural host. We propose a model for small transposons transposition that bypasses DNA bending constraints.
Collapse
Affiliation(s)
- Ludivine Sinzelle
- Université François Rabelais de Tours, GICC, UFR des Sciences & Techniques, Parc Grandmont, 37200 Tours, France.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
We describe a protocol for mutating genes in the nematode Caenorhabditis elegans using the Mos1 transposon of Drosophila mauritiana. Mutated genes containing a Mos1 insertion are molecularly tagged by this heterologous transposable element. Mos1 insertions can therefore be identified in as little as 3 weeks using only basic molecular biology techniques. Mutagenic efficiency of Mos1 is tenfold lower than classical chemical mutagens. However, the ease and speed with which mutagenic insertions can be mapped compares favorably with the vast amount of work involved in classical genetic mapping. Therefore, Mos1 could be the tool of choice when screening procedures are efficient. In addition, Mos1 mutagenesis can greatly simplify the mapping of mutations that exhibit low penetrance, subtle or synthetic phenotypes. The recent development of targeted engineering of C. elegans loci carrying Mos1 insertions further increases the attractiveness of Mos1-mediated mutagenesis.
Collapse
|
46
|
Transposon–Host Cell Interactions in the Regulation of Sleeping Beauty Transposition. TRANSPOSONS AND THE DYNAMIC GENOME 2008. [DOI: 10.1007/7050_2008_042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
47
|
Roman Y, Oshige M, Lee YJ, Goodwin K, Georgiadis MM, Hromas RA, Lee SH. Biochemical characterization of a SET and transposase fusion protein, Metnase: its DNA binding and DNA cleavage activity. Biochemistry 2007; 46:11369-76. [PMID: 17877369 PMCID: PMC3374406 DOI: 10.1021/bi7005477] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metnase (SETMAR) is a SET and transposase fusion protein that promotes in vivo end joining activity and mediates genomic integration of foreign DNA. Recent studies showed that Metnase retained most of the transposase activities, including 5'-terminal inverted repeat (TIR)-specific binding and assembly of a paired end complex, and cleavage of the 5'-end of the TIR element. Here we show that R432 within the helix-turn-helix motif is critical for sequence-specific recognition, as the R432A mutation abolishes its TIR-specific DNA binding activity. Metnase possesses a unique DNA nicking and/or endonuclease activity that mediates cleavage of duplex DNA in the absence of the TIR sequence. While the HTH motif is essential for the Metnase-TIR interaction, it is not required for its DNA cleavage activity. The DDE-like motif is crucial for its DNA cleavage action as a point mutation at this motif (D483A) abolished its DNA cleavage activity. Together, our results suggest that Metnase's DNA cleavage activity, unlike those of other eukaryotic transposases, is not coupled to its sequence-specific DNA binding.
Collapse
Affiliation(s)
- Yaritzabel Roman
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Masahiko Oshige
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Young-Ju Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Kristie Goodwin
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Millie M. Georgiadis
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Robert A. Hromas
- Department of Internal Medicine and the Cancer Treatment and Research Center, the University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Suk-Hee Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Corresponding author: Suk-Hee Lee, IU Cancer Research Institute (Rm153), 1044 W. Walnut St., Indianapolis, Indiana 46202. Phone: +1-317-278-3464, Fax: +1-317-274-8046;
| |
Collapse
|
48
|
Feng X, Colloms SD. In vitro transposition of ISY100, a bacterial insertion sequence belonging to the Tc1/mariner family. Mol Microbiol 2007; 65:1432-43. [PMID: 17680987 PMCID: PMC2170065 DOI: 10.1111/j.1365-2958.2007.05842.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Synechocystis sp. PCC6803 insertion sequence ISY100 (ISTcSa) belongs to the Tc1/mariner/IS630 family of transposable elements. ISY100 transposase was purified and shown to promote transposition in vitro. Transposase binds specifically to ISY100 terminal inverted repeat sequences via an N-terminal DNA-binding domain containing two helix–turn–helix motifs. Transposase is the only protein required for excision and integration of ISY100. Transposase made double-strand breaks on a supercoiled DNA molecule containing a mini-ISY100 transposon, cleaving exactly at the transposon 3′ ends and two nucleotides inside the 5′ ends. Cleavage of short linear substrates containing a single transposon end was less precise. Transposase also catalysed strand transfer, covalently joining the transposon 3′ end to the target DNA. When a donor plasmid carrying a mini-ISY100 was incubated with a target plasmid and transposase, the most common products were insertions of one transposon end into the target DNA, but insertions of both ends at a single target site could be recovered after transformation into Escherichia coli. Insertions were almost exclusively into TA dinucleotides, and the target TA was duplicated on insertion. Our results demonstrate that there are no fundamental differences between the transposition mechanisms of IS630 family elements in bacteria and Tc1/mariner elements in higher eukaryotes.
Collapse
Affiliation(s)
| | - Sean D Colloms
- E-mail ; Tel. (+44) 141 330 6236; Fax (+44) 141 330 4878
| |
Collapse
|
49
|
Richardson JM, Finnegan DJ, Walkinshaw MD. Crystallization of a Mos1 transposase-inverted-repeat DNA complex: biochemical and preliminary crystallographic analyses. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:434-7. [PMID: 17565190 PMCID: PMC2335011 DOI: 10.1107/s1744309107019045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 04/17/2007] [Indexed: 11/10/2022]
Abstract
A complex formed between Mos1 transposase and its inverted-repeat DNA has been crystallized. The crystals diffract to 3.25 A resolution and exhibit monoclinic (P2(1)) symmetry, with unit-cell parameters a = 120.8, b = 85.1, c = 131.6 A, beta = 99.3 degrees . The X-ray diffraction data display noncrystallographic twofold symmetry and characteristic dsDNA diffraction at approximately 3.3 A. Biochemical analyses confirmed the presence of DNA and full-length protein in the crystals. The relationship between the axis of noncrystallographic symmetry, the unit-cell axes and the DNA diffraction pattern are discussed. The data are consistent with the previously proposed model of the paired-ends complex containing a dimer of the transposase.
Collapse
Affiliation(s)
- Julia M Richardson
- School of Biological Sciences, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland.
| | | | | |
Collapse
|
50
|
Liu D, Bischerour J, Siddique A, Buisine N, Bigot Y, Chalmers R. The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase. Mol Cell Biol 2007; 27:1125-32. [PMID: 17130240 PMCID: PMC1800679 DOI: 10.1128/mcb.01899-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 11/06/2006] [Accepted: 11/10/2006] [Indexed: 12/11/2022] Open
Abstract
Transposons have contributed protein coding sequences to a unexpectedly large number of human genes. Except for the V(D)J recombinase and telomerase, all remain of unknown function. Here we investigate the activity of the human SETMAR protein, a highly expressed fusion between a histone H3 methylase and a mariner family transposase. Although SETMAR has demonstrated methylase activity and a DNA repair phenotype, its mode of action and the role of the transposase domain remain obscure. As a starting point to address this problem, we have dissected the activity of the transposase domain in the context of the full-length protein and the isolated transposase domain. Complete transposition of an engineered Hsmar1 transposon by the transposase domain was detected, although the extent of the reaction was limited by a severe defect for cleavage at the 3' ends of the element. Despite this problem, SETMAR retains robust activity for the other stages of the Hsmar1 transposition reaction, namely, site-specific DNA binding to the transposon ends, assembly of a paired-ends complex, cleavage of the 5' end of the element in Mn(2+), and integration at a TA dinucleotide target site. SETMAR is unlikely to catalyze transposition in the human genome, although the nicking activity may have a role in the DNA repair phenotype. The key activity for the mariner domain is therefore the robust DNA-binding and looping activity which has a high potential for targeting the histone methylase domain to the many thousands of specific binding sites in the human genome provided by copies of the Hsmar1 transposon.
Collapse
Affiliation(s)
- Danxu Liu
- University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | |
Collapse
|