1
|
Larisch R, Hamker FH. A systematic analysis of the joint effects of ganglion cells, lagged LGN cells, and intercortical inhibition on spatiotemporal processing and direction selectivity. Neural Netw 2025; 186:107273. [PMID: 40020308 DOI: 10.1016/j.neunet.2025.107273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/30/2024] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Simple cells in the visual cortex process spatial as well as temporal information of the visual stream and enable the perception of motion information. Previous work suggests different mechanisms associated with direction selectivity, such as a temporal offset in thalamocortical input stream through lagged and non-lagged cells of the lateral geniculate nucleus (LGN), or solely from intercortical inhibition, or through a baseline selectivity provided by the thalamocortical connection tuned by intercortical inhibition. While there exists a large corpus of models for spatiotemporal receptive fields, the majority of them built-in the spatiotemporal dynamics by utilizing a combination of spatial and temporal functions and thus, do not explain the emergence of spatiotemporal dynamics on basis of network dynamics emerging in the retina and the LGN. In order to better comprehend the emergence of spatiotemporal processing and direction selectivity, we used a spiking neural network to implement the visual pathway from the retina to the primary visual cortex. By varying different functional parts in our network, we demonstrate how the direction selectivity of simple cells emerges through the interplay between two components: tuned intercortical inhibition and a temporal offset in the feedforward path through lagged LGN cells. In contrast to previous findings, our model simulations suggest an alternative dynamic between these two mechanisms: While intercortical inhibition alone leads to bidirectional selectivity, a temporal shift in the thalamocortical pathway breaks this symmetry in favor of one direction, leading to unidirectional selectivity.
Collapse
Affiliation(s)
- René Larisch
- Chemnitz University of Technology, Str. der Nationen, 62, 09111, Chemnitz, Germany.
| | - Fred H Hamker
- Chemnitz University of Technology, Str. der Nationen, 62, 09111, Chemnitz, Germany.
| |
Collapse
|
2
|
Boff JM, Shrestha AP, Madireddy S, Viswaprakash N, Della Santina L, Vaithianathan T. The Interplay between Neurotransmitters and Calcium Dynamics in Retinal Synapses during Development, Health, and Disease. Int J Mol Sci 2024; 25:2226. [PMID: 38396913 PMCID: PMC10889697 DOI: 10.3390/ijms25042226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The intricate functionality of the vertebrate retina relies on the interplay between neurotransmitter activity and calcium (Ca2+) dynamics, offering important insights into developmental processes, physiological functioning, and disease progression. Neurotransmitters orchestrate cellular processes to shape the behavior of the retina under diverse circumstances. Despite research to elucidate the roles of individual neurotransmitters in the visual system, there remains a gap in our understanding of the holistic integration of their interplay with Ca2+ dynamics in the broader context of neuronal development, health, and disease. To address this gap, the present review explores the mechanisms used by the neurotransmitters glutamate, gamma-aminobutyric acid (GABA), glycine, dopamine, and acetylcholine (ACh) and their interplay with Ca2+ dynamics. This conceptual outline is intended to inform and guide future research, underpinning novel therapeutic avenues for retinal-associated disorders.
Collapse
Affiliation(s)
- Johane M. Boff
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
| | - Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
| | - Saivikram Madireddy
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Nilmini Viswaprakash
- Department of Medical Education, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | | | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Méndez CA, Celeghin A, Diano M, Orsenigo D, Ocak B, Tamietto M. A deep neural network model of the primate superior colliculus for emotion recognition. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210512. [PMID: 36126660 PMCID: PMC9489290 DOI: 10.1098/rstb.2021.0512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Although sensory processing is pivotal to nearly every theory of emotion, the evaluation of the visual input as 'emotional' (e.g. a smile as signalling happiness) has been traditionally assumed to take place in supramodal 'limbic' brain regions. Accordingly, subcortical structures of ancient evolutionary origin that receive direct input from the retina, such as the superior colliculus (SC), are traditionally conceptualized as passive relay centres. However, mounting evidence suggests that the SC is endowed with the necessary infrastructure and computational capabilities for the innate recognition and initial categorization of emotionally salient features from retinal information. Here, we built a neurobiologically inspired convolutional deep neural network (DNN) model that approximates physiological, anatomical and connectional properties of the retino-collicular circuit. This enabled us to characterize and isolate the initial computations and discriminations that the DNN model of the SC can perform on facial expressions, based uniquely on the information it directly receives from the virtual retina. Trained to discriminate facial expressions of basic emotions, our model matches human error patterns and above chance, yet suboptimal, classification accuracy analogous to that reported in patients with V1 damage, who rely on retino-collicular pathways for non-conscious vision of emotional attributes. When presented with gratings of different spatial frequencies and orientations never 'seen' before, the SC model exhibits spontaneous tuning to low spatial frequencies and reduced orientation discrimination, as can be expected from the prevalence of the magnocellular (M) over parvocellular (P) projections. Likewise, face manipulation that biases processing towards the M or P pathway affects expression recognition in the SC model accordingly, an effect that dovetails with variations of activity in the human SC purposely measured with ultra-high field functional magnetic resonance imaging. Lastly, the DNN generates saliency maps and extracts visual features, demonstrating that certain face parts, like the mouth or the eyes, provide higher discriminative information than other parts as a function of emotional expressions like happiness and sadness. The present findings support the contention that the SC possesses the necessary infrastructure to analyse the visual features that define facial emotional stimuli also without additional processing stages in the visual cortex or in 'limbic' areas. This article is part of the theme issue 'Cracking the laugh code: laughter through the lens of biology, psychology and neuroscience'.
Collapse
Affiliation(s)
- Carlos Andrés Méndez
- Department of Psychology, University of Torino, Via Verdi 10, Torino 10124, Italy
| | - Alessia Celeghin
- Department of Psychology, University of Torino, Via Verdi 10, Torino 10124, Italy
| | - Matteo Diano
- Department of Psychology, University of Torino, Via Verdi 10, Torino 10124, Italy
| | - Davide Orsenigo
- Department of Psychology, University of Torino, Via Verdi 10, Torino 10124, Italy
| | - Brian Ocak
- Department of Psychology, University of Torino, Via Verdi 10, Torino 10124, Italy
- Section of Cognitive Neurophysiology and Imaging, National Institute of Mental Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | - Marco Tamietto
- Department of Psychology, University of Torino, Via Verdi 10, Torino 10124, Italy
- Department of Medical and Clinical Psychology, and CoRPS - Center of Research on Psychology in Somatic diseases, Tilburg University, PO Box 90153, 5000 LE Tilburg, The Netherlands
| |
Collapse
|
5
|
Cao J, Mangel SC. Interactions of cone cannabinoid CB1 and dopamine D4 receptors increase day/night difference in rod-cone gap junction coupling in goldfish retina. J Physiol 2021; 599:4085-4100. [PMID: 34252195 DOI: 10.1113/jp281308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/30/2021] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS Although cone and rod photoreceptor cells in the retina have a type of cannabinoid receptor called a CB1 receptor, little is known about how cannabinoids, the active component in marijuana, affect retinal function. Studies have shown that a circadian (24-h) clock in the retina uses dopamine receptors, which are also on photoreceptors, to regulate gap junctions (a type of cell-to-cell communication) between rods and cones, so that they are functional (open) at night but closed in the day. We show that CB1 receptors have opposite effects on rod-cone gap junctions in day and night, decreasing communication in the day when dopamine receptors are active and increasing communication when dopamine receptors are inactive. CB1 and dopamine receptors thus work together to enhance the day/night difference in rod-cone gap junction communication. The increased rod-cone communication at night due to cannabinoid CB1 receptors may help improve night vision. ABSTRACT Cannabinoid CB1 receptors and dopamine D4 receptors in the brain form receptor complexes that interact but the physiological function of these interactions in intact tissue remains unclear. In vertebrate retina, rods and cones, which are connected by gap junctions, express both CB1 and D4 receptors. Because the retinal circadian clock uses cone D4 receptors to decrease rod-cone gap junction coupling in the day and to increase it at night, we studied whether an interaction between cone CB1 and D4 receptors increases the day/night difference in rod-cone coupling compared to D4 receptors acting alone. Using electrical recording and injections of Neurobiotin tracer into individual cones in intact goldfish retinas, we found that SR141716A (a CB1 receptor antagonist) application alone in the day increased both the extent of rod-cone tracer coupling and rod input to cones, which reaches cones via open gap junctions. Conversely, SR141716A application alone at night or SR141716A application in the day following 30-min spiperone (a D4 receptor antagonist) application decreased both rod-cone tracer coupling and rod input to cones. These results show that endogenous activation of cone CB1 receptors decreases rod-cone coupling in the day when D4 receptors are activated but increases it at night when D4 receptors are not activated. Therefore, the D4 receptor-dependent day/night switch in the effects of CB1 receptor activation results in an enhancement of the day/night difference in rod-cone coupling. This synergistic interaction increases detection of very dim large objects at night and fine spatial details in the day.
Collapse
Affiliation(s)
- Jiexin Cao
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, USA.,Department of Neuroscience, Ohio State University College of Medicine, Columbus, OH, USA
| | - Stuart C Mangel
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, USA.,Department of Neuroscience, Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
6
|
Archer DR, Alitto HJ, Usrey WM. Stimulus Contrast Affects Spatial Integration in the Lateral Geniculate Nucleus of Macaque Monkeys. J Neurosci 2021; 41:6246-6256. [PMID: 34103362 PMCID: PMC8287990 DOI: 10.1523/jneurosci.2946-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022] Open
Abstract
Gain-control mechanisms adjust neuronal responses to accommodate the wide range of stimulus conditions in the natural environment. Contrast gain control and extraclassical surround suppression are two manifestations of gain control that govern the responses of neurons in the early visual system. Understanding how these two forms of gain control interact has important implications for the detection and discrimination of stimuli across a range of contrast conditions. Here, we report that stimulus contrast affects spatial integration in the lateral geniculate nucleus of alert macaque monkeys (male and female), whereby neurons exhibit a reduction in the strength of extraclassical surround suppression and an expansion in the preferred stimulus size with low-contrast stimuli compared with high-contrast stimuli. Effects were greater for magnocellular neurons than for parvocellular neurons, indicating stream-specific interactions between stimulus contrast and stimulus size. Within the magnocellular pathway, contrast-dependent effects were comparable for ON-center and OFF-center neurons, despite ON neurons having larger receptive fields, less pronounced surround suppression, and more pronounced contrast gain control than OFF neurons. Together, these findings suggest that the parallel streams delivering visual information from retina to primary visual cortex, serve not only to broaden the range of signals delivered to cortex, but also to provide a substrate for differential interactions between stimulus contrast and stimulus size that may serve to improve stimulus detection and stimulus discrimination under pathway-specific lower and higher contrast conditions, respectively.SIGNIFICANCE STATEMENT Stimulus contrast is a salient feature of visual scenes. Here we examine the influence of stimulus contrast on spatial integration in the lateral geniculate nucleus (LGN). Our results demonstrate that increases in contrast generally increase extraclassical suppression and decrease the size of optimal stimuli, indicating a reduction in the extent of visual space from which LGN neurons integrate signals. Differences between magnocellular and parvocellular neurons are noteworthy and further demonstrate that the feedforward parallel pathways to cortex increase the range of information conveyed for downstream cortical processing, a range broadened by diversity in the ON and OFF pathways. These results have important implications for more complex visual processing that underly the detection and discrimination of stimuli under varying natural conditions.
Collapse
Affiliation(s)
- Darlene R Archer
- Center for Neuroscience, University of California, Davis, Davis, California 95616
- SUNY College of Optometry, New York, New York 10036
- Center for Neural Science, New York University, New York, New York 10003
| | - Henry J Alitto
- Center for Neuroscience, University of California, Davis, Davis, California 95616
| | - W Martin Usrey
- Center for Neuroscience, University of California, Davis, Davis, California 95616
| |
Collapse
|
7
|
Tao X, Sabharwal J, Wu SM, Frankfort BJ. Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation. Invest Ophthalmol Vis Sci 2021; 61:15. [PMID: 33064129 PMCID: PMC7571289 DOI: 10.1167/iovs.61.12.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose Functional adaptation to ambient light is a key characteristic of retinal ganglion cells (RGCs), but little is known about how adaptation is affected by factors that are harmful to RGC health. We explored adaptation-induced changes to RGC physiology when exposed to increased intraocular pressure (IOP), a major risk factor for glaucoma. Methods Wild-type mice of both sexes were subjected to 2 weeks of IOP elevation using the bead model. Retinas were assessed using a multielectrode array to record RGC responses to checkerboard white noise stimulation under both scotopic and photopic light levels. This information was used to calculate a spike-triggered average (STA) for each RGC with which to compare between lighting levels. Results Low but not high IOP elevation resulted in several distinct RGC functional changes: (1) diminished adaptation-dependent receptive field (RF) center-surround interactions; (2) increased likelihood of a scotopic STA; and (3) increased spontaneous firing rate. Center RF size change with lighting level varied among RGCs, and both the center and surround STA peak times were consistently increased under scotopic illumination, although none of these properties were impacted by IOP level. Conclusions These findings provide novel evidence that RGCs exhibit reduced light-dependent adaptation and increased excitability when IOP is elevated to low but not high levels. These results may reveal functional changes that occur early in glaucoma, which can potentially be used to identify patients with glaucoma at earlier stages when intervention is most beneficial.
Collapse
Affiliation(s)
- Xiaofeng Tao
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Jasdeep Sabharwal
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Benjamin J Frankfort
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
8
|
Goel M, Mangel SC. Dopamine-Mediated Circadian and Light/Dark-Adaptive Modulation of Chemical and Electrical Synapses in the Outer Retina. Front Cell Neurosci 2021; 15:647541. [PMID: 34025356 PMCID: PMC8131545 DOI: 10.3389/fncel.2021.647541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
The vertebrate retina, like most other brain regions, undergoes relatively slow alterations in neural signaling in response to gradual changes in physiological conditions (e.g., activity changes to rest), or in response to gradual changes in environmental conditions (e.g., day changes into night). As occurs elsewhere in the brain, the modulatory processes that mediate slow adaptation in the retina are driven by extrinsic signals (e.g., changes in ambient light level) and/or by intrinsic signals such as those of the circadian (24-h) clock in the retina. This review article describes and discusses the extrinsic and intrinsic modulatory processes that enable neural circuits in the retina to optimize their visual performance throughout day and night as the ambient light level changes by ~10 billion-fold. In the first synaptic layer of the retina, cone photoreceptor cells form gap junctions with rods and signal cone-bipolar and horizontal cells (HCs). Distinct extrinsic and intrinsic modulatory processes in this synaptic layer are mediated by long-range feedback of the neuromodulator dopamine. Dopamine is released by dopaminergic cells, interneurons whose cell bodies are located in the second synaptic layer of the retina. Distinct actions of dopamine modulate chemical and electrical synapses in day and night. The retinal circadian clock increases dopamine release in the day compared to night, activating high-affinity dopamine D4 receptors on cones. This clock effect controls electrical synapses between rods and cones so that rod-cone electrical coupling is minimal in the day and robust at night. The increase in rod-cone coupling at night improves the signal-to-noise ratio and the reliability of very dim multi-photon light responses, thereby enhancing detection of large dim objects on moonless nights.Conversely, maintained (30 min) bright illumination in the day compared to maintained darkness releases sufficient dopamine to activate low-affinity dopamine D1 receptors on cone-bipolar cell dendrites. This non-circadian light/dark adaptive process regulates the function of GABAA receptors on ON-cone-bipolar cell dendrites so that the receptive field (RF) surround of the cells is strong following maintained bright illumination but minimal following maintained darkness. The increase in surround strength in the day following maintained bright illumination enhances the detection of edges and fine spatial details.
Collapse
Affiliation(s)
- Manvi Goel
- Department of Neuroscience, Ohio State University College of Medicine, Columbus, OH, United States
| | - Stuart C Mangel
- Department of Neuroscience, Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
9
|
Harris E, Mihai D, Hare J. How Convolutional Neural Network Architecture Biases Learned Opponency and Color Tuning. Neural Comput 2021; 33:858-898. [PMID: 33400902 DOI: 10.1162/neco_a_01356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/06/2020] [Indexed: 11/04/2022]
Abstract
Recent work suggests that changing convolutional neural network (CNN) architecture by introducing a bottleneck in the second layer can yield changes in learned function. To understand this relationship fully requires a way of quantitatively comparing trained networks. The fields of electrophysiology and psychophysics have developed a wealth of methods for characterizing visual systems that permit such comparisons. Inspired by these methods, we propose an approach to obtaining spatial and color tuning curves for convolutional neurons that can be used to classify cells in terms of their spatial and color opponency. We perform these classifications for a range of CNNs with different depths and bottleneck widths. Our key finding is that networks with a bottleneck show a strong functional organization: almost all cells in the bottleneck layer become both spatially and color opponent, and cells in the layer following the bottleneck become nonopponent. The color tuning data can further be used to form a rich understanding of how color a network encodes color. As a concrete demonstration, we show that shallower networks without a bottleneck learn a complex nonlinear color system, whereas deeper networks with tight bottlenecks learn a simple channel opponent code in the bottleneck layer. We develop a method of obtaining a hue sensitivity curve for a trained CNN that enables high-level insights that complement the low-level findings from the color tuning data. We go on to train a series of networks under different conditions to ascertain the robustness of the discussed results. Ultimately our methods and findings coalesce with prior art, strengthening our ability to interpret trained CNNs and furthering our understanding of the connection between architecture and learned representation. Trained models and code for all experiments are available at https://github.com/ecs-vlc/opponency.
Collapse
Affiliation(s)
- Ethan Harris
- Vision Learning and Control, Electronics and Computer Science, University of Southampton, Southampton SO17 1B J, U.K.,
| | - Daniela Mihai
- Vision Learning and Control, Electronics and Computer Science, University of Southampton, Southampton SO17 1B J, U.K.,
| | - Jonathon Hare
- Vision Learning and Control, Electronics and Computer Science, University of Southampton, Southampton SO17 1B J, U.K.,
| |
Collapse
|
10
|
Johnson NP, Gregorich SM, Passaglia CL. Spatiotemporal Contrast Sensitivity of Brown-Norway Rats under Scotopic and Photopic Illumination. Neuroscience 2020; 449:63-73. [PMID: 33035619 DOI: 10.1016/j.neuroscience.2020.09.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022]
Abstract
Rats are a popular animal model for vision research and for investigating disorders of the visual system. The study aimed to quantify the spatiotemporal contrast sensitivity function (CSF) of healthy adult Brown-Norway rats under scotopic and photopic illumination. Animals were trained to jump onto the one of two adjacent platforms behind which was displayed a sinewave grating pattern. Contrast thresholds of light- and dark-adapted rats were determined using a staircase method of adjustment for gratings that varied in spatial frequency (sf) and temporal frequency (tf) and ranged several log-units in mean luminance. Photopic CSFs showed strong bandpass spatial tuning, consistent with prior measurements, and weak bandpass temporal tuning. CSFs were parameterized by a truncated log-parabola model, yielding a peak contrast sensitivity of 52 ± 9, peak sf of 0.17 ± 0.05 cycles/degree, sf limit of 1.6 ± 0.3 cycles/degree, low sf attenuation of 85 ± 9%, peak tf of 1.7 ± 1.1 Hz, extrapolated tf limit of 166 ± 44 Hz, and low tf attenuation of 55 ± 12%. CSFs became more lowpass and decreased systematically in contrast sensitivity and spatiotemporal acuity as mean luminance was reduced. CSFs were also measured via the visual head-tracking reflex. Photopic contrast sensitivity, spatial acuity, and temporal acuity were all markedly below that of the grating detection task and optomotor findings for other rat strains. The CSF data provide a comprehensive and quantitative description of rat spatial and temporal vision and a benchmark for evaluating effects of ocular diseases on their ability to see.
Collapse
Affiliation(s)
- Nicholas P Johnson
- University of South Florida, Molecular Pharmacology & Physiology Department, 12901 Bruce B Downs Boulevard MDC 40, Tampa, FL 33612, United States
| | - Sarah M Gregorich
- University of South Florida, Medical Engineering Department, 4202 E Fowler Avenue, Tampa, FL 33620, United States
| | - Christopher L Passaglia
- University of South Florida, Molecular Pharmacology & Physiology Department, 12901 Bruce B Downs Boulevard MDC 40, Tampa, FL 33612, United States; University of South Florida, Medical Engineering Department, 4202 E Fowler Avenue, Tampa, FL 33620, United States; University of South Florida, Ophthalmology Department, 12901 Bruce B Downs Boulevard MDC21, Tampa, FL 33612, United States.
| |
Collapse
|
11
|
Murphy AJ, Hasse JM, Briggs F. Physiological characterization of a rare subpopulation of doublet-spiking neurons in the ferret lateral geniculate nucleus. J Neurophysiol 2020; 124:432-442. [PMID: 32667229 DOI: 10.1152/jn.00191.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interest in exploring homologies in the early visual pathways of rodents, carnivores, and primates has recently grown. Retinas of these species contain morphologically and physiologically heterogeneous retinal ganglion cells that form the basis for parallel visual information processing streams. Whether rare retinal ganglion cells with unusual visual response properties in carnivores and primates project to the visual thalamus and drive unusual visual responses among thalamic relay neurons is poorly understood. We surveyed neurophysiological responses among hundreds of lateral geniculate nucleus (LGN) neurons in ferrets and observed a novel subpopulation of LGN neurons displaying doublet-spiking waveforms. Some visual response properties of doublet-spiking LGN neurons, like contrast and temporal frequency tuning, were intermediate to those of X and Y LGN neurons. Interestingly, most doublet-spiking LGN neurons were tuned for orientation and displayed direction selectivity for horizontal motion. Spatiotemporal receptive fields of doublet-spiking neurons were diverse and included center/surround organization, On/Off responses, and elongated separate On and Off subregions. Optogenetic activation of corticogeniculate feedback did not alter the tuning or spatiotemporal receptive fields of doublet-spiking neurons, suggesting that their unusual tuning properties were inherited from retinal inputs. The doublet-spiking LGN neurons were found throughout the depth of LGN recording penetrations. Together these findings suggest that while extremely rare (<2% of recorded LGN neurons), unique subpopulations of LGN neurons in carnivores receive retinal inputs that confer them with nonstandard visual response properties like direction selectivity. These results suggest that neuronal circuits for nonstandard visual computations are common across a variety of species, even though their proportions vary.NEW & NOTEWORTHY Interest in visual system homologies across species has recently increased. Across species, retinas contain diverse retinal ganglion cells including cells with unusual visual response properties. It is unclear whether rare retinal ganglion cells in carnivores project to and drive similarly unique visual responses in the visual thalamus. We discovered a rare subpopulation of thalamic neurons defined by unique spike shape and visual response properties, suggesting that nonstandard visual computations are common to many species.
Collapse
Affiliation(s)
- Allison J Murphy
- Neuroscience Graduate Program, University of Rochester, Rochester, New York.,Center for Visual Science, University of Rochester, Rochester, New York
| | - J Michael Hasse
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, New York.,Center for Neural Science, New York University, New York, New York
| | - Farran Briggs
- Neuroscience Graduate Program, University of Rochester, Rochester, New York.,Center for Visual Science, University of Rochester, Rochester, New York.,Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, New York.,Department of Neuroscience, University of Rochester School of Medicine, Rochester, New York.,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York
| |
Collapse
|
12
|
Shi Q, Gupta P, Boukhvalova AK, Singer JH, Butts DA. Functional characterization of retinal ganglion cells using tailored nonlinear modeling. Sci Rep 2019; 9:8713. [PMID: 31213620 PMCID: PMC6581951 DOI: 10.1038/s41598-019-45048-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/31/2019] [Indexed: 01/30/2023] Open
Abstract
The mammalian retina encodes the visual world in action potentials generated by 20-50 functionally and anatomically-distinct types of retinal ganglion cell (RGC). Individual RGC types receive synaptic input from distinct presynaptic circuits; therefore, their responsiveness to specific features in the visual scene arises from the information encoded in synaptic input and shaped by postsynaptic signal integration and spike generation. Unfortunately, there is a dearth of tools for characterizing the computations reflected in RGC spike output. Therefore, we developed a statistical model, the separable Nonlinear Input Model, to characterize the excitatory and suppressive components of RGC receptive fields. We recorded RGC responses to a correlated noise ("cloud") stimulus in an in vitro preparation of mouse retina and found that our model accurately predicted RGC responses at high spatiotemporal resolution. It identified multiple receptive fields reflecting the main excitatory and suppressive components of the response of each neuron. Significantly, our model accurately identified ON-OFF cells and distinguished their distinct ON and OFF receptive fields, and it demonstrated a diversity of suppressive receptive fields in the RGC population. In total, our method offers a rich description of RGC computation and sets a foundation for relating it to retinal circuitry.
Collapse
Affiliation(s)
- Qing Shi
- Department of Biology, University of Maryland, College Park, MD, United States.
| | - Pranjal Gupta
- Department of Biology, University of Maryland, College Park, MD, United States
| | | | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, MD, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| | - Daniel A Butts
- Department of Biology, University of Maryland, College Park, MD, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| |
Collapse
|
13
|
Pathway-Specific Asymmetries between ON and OFF Visual Signals. J Neurosci 2018; 38:9728-9740. [PMID: 30249795 DOI: 10.1523/jneurosci.2008-18.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 01/07/2023] Open
Abstract
Visual processing is largely organized into ON and OFF pathways that signal stimulus increments and decrements, respectively. These pathways exhibit natural pairings based on morphological and physiological similarities, such as ON and OFF α-ganglion cells in the mammalian retina. Several studies have noted asymmetries in the properties of ON and OFF pathways. For example, the spatial receptive fields (RFs) of OFF α-cells are systematically smaller than ON α-cells. Analysis of natural scenes suggests that these asymmetries are optimal for visual encoding. To test the generality of ON/OFF asymmetries, we measured the spatiotemporal RF properties of multiple RGC types in rat retina. Through a quantitative and serial classification, we identified three functional pairs of ON and OFF RGCs. We analyzed the structure of their RFs and compared spatial integration, temporal integration, and gain across ON and OFF pairs. Similar to previous results from the cat and primate, RGC types with larger spatial RFs exhibited briefer temporal integration and higher gain. However, each pair of ON and OFF RGC types exhibited distinct asymmetric relationships between RF properties, some of which were opposite to the findings of previous reports. These results reveal the functional organization of six RGC types in the rodent retina and indicate that ON/OFF asymmetries are pathway specific.SIGNIFICANCE STATEMENT Circuits that process sensory input frequently process increments separately from decrements, so-called ON and OFF responses. Theoretical studies indicate that this separation, and associated asymmetries in ON and OFF pathways, may be beneficial for encoding natural stimuli. However, the generality of ON and OFF pathway asymmetries has not been tested. Here we compare the functional properties of three distinct pairs of ON and OFF pathways in the rodent retina and show that their asymmetries are pathway specific. These results provide a new view on the partitioning of vision across diverse ON and OFF signaling pathways.
Collapse
|
14
|
Onda M, Sansawa K, Osakada F. [Viral and Electrophysiological Approaches for Elucidating the Structure and Function of Retinal Circuits]. YAKUGAKU ZASSHI 2018; 138:669-678. [PMID: 29710012 DOI: 10.1248/yakushi.17-00200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian retina consists of five classes of neurons: photoreceptor, horizontal, bipolar, amacrine, and ganglion cells. Based on cell morphology, electrophysiological properties, connectivity, and gene expression patterns, each class of retinal neurons is further subdivided into many distinct cell types. Each type of photoreceptor, bipolar, and ganglion cell tiles the retina, collectively providing a complete representation across the visual scene. Visual signals are processed by at least 80 distinct cell types and at least 20 separate circuits in the retina. These circuits comprise parallel pathways from the photoreceptor cells to ganglion cells, each forming a channel of visual information. Feed-forward and feedback inhibition of horizontal and amacrine cells shape these parallel pathways. However, the cell-type-specific roles of inhibitory circuits in retinal information processing remain unknown. Here we summarize parallel processing strategies in the retina, and then introduce our viral and electrophysiological approaches that reveal the roles of genetically defined subtypes of amacrine cells in retinal circuits.
Collapse
Affiliation(s)
- Masanari Onda
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Kouki Sansawa
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University.,Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University.,Systems Neurobiology Laboratory, The Salk Institute for Biological Studies.,PRESTO, Japan Science and Technology Agency
| |
Collapse
|
15
|
Chaffiol A, Ishii M, Cao Y, Mangel SC. Dopamine Regulation of GABA A Receptors Contributes to Light/Dark Modulation of the ON-Cone Bipolar Cell Receptive Field Surround in the Retina. Curr Biol 2017; 27:2600-2609.e4. [PMID: 28844643 DOI: 10.1016/j.cub.2017.07.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/22/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
Cone bipolar cells are interneurons that receive synaptic input from cone photoreceptor cells and provide the output of the first synaptic layer of the retina. These cells exhibit center-surround receptive fields, a prototype of lateral inhibition between neighboring sensory cells in which stimulation of the receptive field center excites the cell whereas stimulation of the surrounding region laterally inhibits the cell. This fundamental sensory coding mechanism facilitates spatial discrimination and detection of stimulus edges. However, although it is well established that the receptive field surround is strongest when ambient or background illumination is most intense, e.g., at midday, and that the surround is minimal following maintained darkness, the synaptic mechanisms that produce and modulate the surround have not been resolved. Using electrical recording of bipolar cells under experimental conditions in which the cells exhibited surround light responses, and light and electron microscopic immunocytochemistry, we show in the rabbit retina that bright-light-induced activation of dopamine D1 receptors located on ON-center cone bipolar cell dendrites increases the expression and activity of GABAA receptors on the dendrites of the cells and that surround light responses depend on endogenous GABAA receptor activation. We also show that maintained darkness and D1 receptor blockade following maintained illumination and D1 receptor activation result in minimal GABAA receptor expression and activity and greatly diminished surrounds. Modulation of the D1/GABAA receptor signaling pathway of ON-cBC dendrites by the ambient light level facilitates detection of spatial details on bright days and large dim objects on moonless nights.
Collapse
Affiliation(s)
- Antoine Chaffiol
- Department of Neuroscience, The Ohio State University College Of Medicine, Columbus, OH 43210, USA
| | - Masaaki Ishii
- Department of Neuroscience, The Ohio State University College Of Medicine, Columbus, OH 43210, USA
| | - Yu Cao
- Department of Neuroscience, The Ohio State University College Of Medicine, Columbus, OH 43210, USA
| | - Stuart C Mangel
- Department of Neuroscience, The Ohio State University College Of Medicine, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Yan RJ, Gong HQ, Zhang PM, Liang PJ. Coding Properties of Mouse Retinal Ganglion Cells with Dual-Peak Patterns with Respect to Stimulus Intervals. Front Comput Neurosci 2016; 10:75. [PMID: 27486396 PMCID: PMC4949255 DOI: 10.3389/fncom.2016.00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/05/2016] [Indexed: 11/16/2022] Open
Abstract
How visual information is encoded in spikes of retinal ganglion cells (RGCs) is essential in visual neuroscience. In the present study, we investigated the coding properties of mouse RGCs with dual-peak patterns with respect to visual stimulus intervals. We first analyzed the response properties, and observed that the latencies and spike counts of the two response peaks in the dual-peak pattern exhibited systematic changes with the preceding light-OFF interval. We then applied linear discriminant analysis (LDA) to assess the relative contributions of response characteristics of both peaks in information coding regarding the preceding stimulus interval. It was found that for each peak, the discrimination results were far better than chance level based on either latency or spike count, and were further improved by using the combination of the two parameters. Furthermore, the best discrimination results were obtained when latencies and spike counts of both peaks were considered in combination. In addition, the correct rate for stimulation discrimination was higher when RGC population activity was considered as compare to single neuron's activity, and the correct rate was increased with the group size. These results suggest that rate coding, temporal coding, and population coding are all involved in encoding the different stimulus-interval patterns, and the two response peaks in the dual-peak pattern carry complementary information about stimulus interval.
Collapse
Affiliation(s)
- Ru-Jia Yan
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai, China
| | - Hai-Qing Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai, China
| | - Pu-Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai, China
| | - Pei-Ji Liang
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
17
|
Nguyen HT, Tangutooru SM, Rountree CM, Kantzos AJK, Tarlochan F, Yoon WJ, Troy JB. Thalamic Visual Prosthesis. IEEE Trans Biomed Eng 2016; 63:1573-80. [DOI: 10.1109/tbme.2016.2567300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
V1 neurons respond to luminance changes faster than contrast changes. Sci Rep 2015; 5:17173. [PMID: 26634691 PMCID: PMC4669454 DOI: 10.1038/srep17173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022] Open
Abstract
Luminance and contrast are two major attributes of objects in the visual scene. Luminance and contrast information received by visual neurons are often updated simultaneously. We examined the temporal response properties of neurons in the primary visual cortex (V1) to stimuli whose luminance and contrast were simultaneously changed by 50 Hz. We found that response tuning to luminance changes precedes tuning to contrast changes in V1. For most V1 neurons, the onset time of response tuning to luminance changes was shorter than that to contrast changes. Most neurons carried luminance information in the early response stage, while all neurons carried both contrast and luminance information in the late response stage. The early luminance response suggests that cortical processing for luminance is not as slow as previously thought.
Collapse
|
19
|
Abstract
This paper traces the history of the visual receptive field (RF) from Hartline to Hubel and Wiesel. Hartline (1938, 1940) found that an isolated optic nerve fiber in the frog could be excited by light falling on a small circular area of the retina. He called this area the RF, using a term first introduced by Sherrington (1906) in the tactile domain. In 1953 Kuffler discovered the antagonistic center-surround organization of cat RFs, and Barlow, Fitzhugh, and Kuffler (1957) extended this work to stimulus size and state of adaptation. Shortly thereafter, Lettvin and colleagues (1959) in an iconic paper asked "what the frog's eye tells the frog's brain". Meanwhile, Jung and colleagues (1952-1973) searched for the perceptual correlates of neuronal responses, and Jung and Spillmann (1970) proposed the term perceptive field (PF) as a psychophysical correlate of the RF. The Westheimer function (1967) enabled psychophysical measurements of the PF center and surround in human and monkey, which correlated closely with the underlying RF organization. The sixties and seventies were marked by rapid progress in RF research. Hubel and Wiesel (1959-1974), recording from neurons in the visual cortex of the cat and monkey, found elongated RFs selective for the shape, orientation, and position of the stimulus, as well as for movement direction and ocularity. These findings prompted the emergence in visual psychophysics of the concept of feature detectors selective for lines, bars, and edges, and contributed to a model of the RF in terms of difference of Gaussians (DOG) and Fourier channels. The distinction between simple, complex, and hypercomplex neurons followed. Although RF size increases towards the peripheral retina, its cortical representation remains constant due to the reciprocal relationship with the cortical magnification factor (M). This constitutes a uniform yardstick for M-scaled stimuli across the retina. Developmental studies have shown that RF properties are not fixed. RFs possess their full response inventory already at birth, but require the interaction with appropriate stimuli within a critical time window for refinement and consolidation. Taken together these findings paved the way for a better understanding of how objective properties of the external world are encoded to become subjective properties of the subjective, perceptual world.
Collapse
|
20
|
Popova E. GABAergic neurotransmission and retinal ganglion cell function. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:261-83. [PMID: 25656810 DOI: 10.1007/s00359-015-0981-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/13/2023]
Abstract
Ganglion cells are the output retinal neurons that convey visual information to the brain. There are ~20 different types of ganglion cells, each encoding a specific aspect of the visual scene as spatial and temporal contrast, orientation, direction of movement, presence of looming stimuli; etc. Ganglion cell functioning depends on the intrinsic properties of ganglion cell's membrane as well as on the excitatory and inhibitory inputs that these cells receive from other retinal neurons. GABA is one of the most abundant inhibitory neurotransmitters in the retina. How it modulates the activity of different types of ganglion cells and what is its significance in extracting the basic features from visual scene are questions with fundamental importance in visual neuroscience. The present review summarizes current data concerning the types of membrane receptors that mediate GABA action in proximal retina; the effects of GABA and its antagonists on the ganglion cell light-evoked postsynaptic potentials and spike discharges; the action of GABAergic agents on centre-surround organization of the receptive fields and feature related ganglion cell activity. Special emphasis is put on the GABA action regarding the ON-OFF and sustained-transient ganglion cell dichotomy in both nonmammalian and mammalian retina.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
21
|
Sajgo S, Ghinia MG, Shi M, Liu P, Dong L, Parmhans N, Popescu O, Badea TC. Dre - Cre sequential recombination provides new tools for retinal ganglion cell labeling and manipulation in mice. PLoS One 2014; 9:e91435. [PMID: 24608965 PMCID: PMC3946778 DOI: 10.1371/journal.pone.0091435] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/11/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Genetic targeting methods have greatly advanced our understanding of many of the 20 Retinal Ganglion Cell (RGC) types conveying visual information from the eyes to the brain. However, the complexity and partial overlap of gene expression patterns in RGCs call for genetic intersectional or sparse labeling strategies. Loci carrying the Cre recombinase in conjunction with conditional knock-out, reporter or other genetic tools can be used for targeted cell type ablation and functional manipulation of specific cell populations. The three members of the Pou4f family of transcription factors, Brn3a, Brn3b and Brn3c, expressed early during RGC development and in combinatorial pattern amongst RGC types are excellent candidates for such gene manipulations. METHODS AND FINDINGS We generated conditional Cre knock-in alleles at the Brn3a and Brn3b loci, Brn3a(CKOCre) and Brn3b(CKOCre). When crossed to mice expressing the Dre recombinase, the endogenous Brn3 gene expressed by Brn3a(CKOCre) or Brn3b(CKOCre) is removed and replaced with a Cre recombinase, generating Brn3a(Cre) and Brn3b(Cre) knock-in alleles. Surprisingly both Brn3a(Cre) and Brn3b(Cre) knock-in alleles induce early ubiquitous recombination, consistent with germline expression. However in later stages of development, their expression is limited to the expected endogenous pattern of the Brn3a and Brn3b genes. We use the Brn3a(Cre) and Brn3b(Cre) alleles to target a Cre dependent Adeno Associated Virus (AAV) reporter to RGCs and demonstrate its use in morphological characterization, early postnatal gene delivery and tracing the expression of Brn3 genes in RGCs. CONCLUSIONS Dre recombinase effectively recombines the Brn3a(CKOCre) and Brn3b(CKOCre) alleles containing its roxP target sites. Sequential Dre to Cre recombination reveals Brn3a and Brn3b expression in early mouse development. The generated Brn3a(Cre) and Brn3b(Cre) alleles are useful tools that can target exogenously delivered Cre dependent reagents to RGCs in early postnatal development, opening up a large range of potential applications.
Collapse
Affiliation(s)
- Szilard Sajgo
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
- Biology Department, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Miruna Georgiana Ghinia
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
- Biology Department, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Melody Shi
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
| | - Pinghu Liu
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
| | - Lijin Dong
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
| | - Nadia Parmhans
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
| | - Octavian Popescu
- Biology Department, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
- Institute of Biology, Romanian Academy, Bucharest, Romania
| | | |
Collapse
|
22
|
A model for the receptive field of retinal ganglion cells. Neural Netw 2014; 49:51-8. [DOI: 10.1016/j.neunet.2013.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 09/02/2013] [Accepted: 09/18/2013] [Indexed: 11/21/2022]
|
23
|
Neural mechanism for sensing fast motion in dim light. Sci Rep 2013; 3:3159. [PMID: 24196286 PMCID: PMC3819616 DOI: 10.1038/srep03159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/22/2013] [Indexed: 11/28/2022] Open
Abstract
Luminance is a fundamental property of visual scenes. A population of neurons in primary visual cortex (V1) is sensitive to uniform luminance. In natural vision, however, the retinal image often changes rapidly. Consequently the luminance signals visual cells receive are transiently varying. How V1 neurons respond to such luminance changes is unknown. By applying large static uniform stimuli or grating stimuli altering at 25 Hz that resemble the rapid luminance changes in the environment, we show that approximately 40% V1 cells responded to rapid luminance changes of uniform stimuli. Most of them strongly preferred luminance decrements. Importantly, when tested with drifting gratings, the preferred speeds of these cells were significantly higher than cells responsive to static grating stimuli but not to uniform stimuli. This responsiveness can be accounted for by the preferences for low spatial frequencies and high temporal frequencies. These luminance-sensitive cells subserve the detection of fast motion under the conditions of dim illumination.
Collapse
|
24
|
Shi M, Kumar SR, Motajo O, Kretschmer F, Mu X, Badea TC. Genetic interactions between Brn3 transcription factors in retinal ganglion cell type specification. PLoS One 2013; 8:e76347. [PMID: 24116103 PMCID: PMC3792956 DOI: 10.1371/journal.pone.0076347] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022] Open
Abstract
Background Visual information is conveyed from the retina to the brain via 15–20 Retinal Ganglion Cell (RGC) types. The developmental mechanisms by which RGC types acquire their distinct molecular, morphological, physiological and circuit properties are essentially unknown, but may involve combinatorial transcriptional regulation. Brn3 transcription factors are expressed in RGCs from early developmental stages, and are restricted in adults to distinct, partially overlapping populations of RGC types. Previously, we described cell autonomous effects of Brn3b (Pou4f2) and Brn3a (Pou4f1) on RGC axon and dendrites development. Methods and Findings We now have investigated genetic interactions between Brn3 transcription factors with respect to RGC development, by crossing conventional knock-out alleles of each Brn3 gene with conditional knock-in reporter alleles of a second Brn3 gene, and analyzing the effects of single or double Brn3 knockouts on RGC survival and morphology. We find that Brn3b loss results in axon defects and dendritic arbor area and lamination defects in Brn3a positive RGCs, and selectively affects survival and morphology of specific Brn3c (Pou4f3) positive RGC types. Brn3a and Brn3b interact synergistically to control RGC numbers. Melanopsin positive ipRGCs are resistant to combined Brn3 loss but are under the transcriptional control of Isl1, expanding the combinatorial code of RGC specification. Conclusions Taken together these results complete our knowledge on the mechanisms of transcriptional control of RGC type specification. They demonstrate that Brn3b is required for the correct development of more RGC cell types than suggested by its expression pattern in the adult, but that several cell types, including some Brn3a, Brn3c or Melanopsin positive RGCs are Brn3b independent.
Collapse
Affiliation(s)
- Melody Shi
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sumit R. Kumar
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Oluwaseyi Motajo
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Friedrich Kretschmer
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, Developmental Genomics Group, and Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York, United States of America
- SUNY Eye Institute, Buffalo, New York, United States of America
- CCSG Genetics Program, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Tudor C. Badea
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Feng L, Zhao Y, Yoshida M, Chen H, Yang JF, Kim TS, Cang J, Troy JB, Liu X. Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. Invest Ophthalmol Vis Sci 2013; 54:1106-17. [PMID: 23322576 DOI: 10.1167/iovs.12-10791] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Glaucoma is characterized by retinal ganglion cell (RGC) death and frequently associated with elevated IOP. How RGCs degenerate before death is little understood, so we sought to investigate RGC degeneration in a mouse model of ocular hypertension. METHODS A laser-induced mouse model of chronic ocular hypertension mimicked human high-tension glaucoma. Immunohistochemistry was used to characterize overall RGC loss and an optomotor behavioral test to measure corresponding changes in visual capacity. Changes in RGC functional properties were characterized by a large-scale multielectrode array (MEA). The transgenic Thy-1-YFP mouse line, in which a small number of RGCs are labeled with yellow fluorescent protein (YFP), permitted investigation of whether subtypes of RGCs or RGCs from particular retinal areas were differentially vulnerable to elevated IOP. RESULTS Sustained IOP elevation in mice was achieved by laser photocoagulation. We confirmed RGC loss and decreased visual acuity in ocular hypertensive mice. Furthermore, these mice had fewer visually responsive cells with smaller receptive field sizes compared to controls. We demonstrated that RGC dendritic shrinkage started from the vertical axis of hypertensive eyes and that mono-laminated ON cells were more susceptible to IOP elevation than bi-laminated ON-OFF cells. Moreover, a subgroup of ON RGCs labeled by the SMI-32 antibody exhibited significant dendritic atrophy in the superior quadrant of the hypertensive eyes. CONCLUSIONS RGC degeneration depends on subtype and location in hypertensive eyes. This study introduces a valuable model to investigate how the structural and functional degeneration of RGCs leads to visual impairments.
Collapse
Affiliation(s)
- Liang Feng
- Department of Ophthalmology, Northwestern University, Evanston, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Thoreson WB, Mangel SC. Lateral interactions in the outer retina. Prog Retin Eye Res 2012; 31:407-41. [PMID: 22580106 PMCID: PMC3401171 DOI: 10.1016/j.preteyeres.2012.04.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (I(Ca)) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones.
Collapse
Affiliation(s)
- Wallace B. Thoreson
- Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Stuart C. Mangel
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| |
Collapse
|
27
|
Abstract
The rat is a popular animal model for vision research, yet there is little quantitative information about the physiological properties of the cells that provide its brain with visual input, the retinal ganglion cells. It is not clear whether rats even possess the full complement of ganglion cell types found in other mammals. Since such information is important for evaluating rodent models of visual disease and elucidating the function of homologous and heterologous cells in different animals, we recorded from rat ganglion cells in vivo and systematically measured their spatial receptive field (RF) properties using spot, annulus, and grating patterns. Most of the recorded cells bore likeness to cat X and Y cells, exhibiting brisk responses, center-surround RFs, and linear or nonlinear spatial summation. The others resembled various types of mammalian W cell, including local-edge-detector cells, suppressed-by-contrast cells, and an unusual type with an ON-OFF surround. They generally exhibited sluggish responses, larger RFs, and lower responsiveness. The peak responsivity of brisk-nonlinear (Y-type) cells was around twice that of brisk-linear (X-type) cells and several fold that of sluggish cells. The RF size of brisk-linear and brisk-nonlinear cells was indistinguishable, with average center and surround diameters of 5.6 ± 1.3 and 26.4 ± 11.3 deg, respectively. In contrast, the center diameter of recorded sluggish cells averaged 12.8 ± 7.9 deg. The homogeneous RF size of rat brisk cells is unlike that of cat X and Y cells, and its implication regarding the putative roles of these two ganglion cell types in visual signaling is discussed.
Collapse
|
28
|
Al-Atabany W, McGovern B, Mehran K, Berlinguer-Palmini R, Degenaar P. A processing platform for optoelectronic/optogenetic retinal prosthesis. IEEE Trans Biomed Eng 2011; 60:781-91. [PMID: 22127992 DOI: 10.1109/tbme.2011.2177498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The field of retinal prosthesis has been steadily developing over the last two decades. Despite the many obstacles, clinical trials for electronic approaches are in progress and already demonstrating some success. Optogenetic/optoelectronic retinal prosthesis may prove to have even greater capabilities. Although resolutions are now moving beyond recognition of simple shapes, it will nevertheless be poor compared to normal vision. If we define the aim to be to return mobility and natural scene recognition to the patient, it is important to maximize the useful visual information we attempt to transfer. In this paper, we highlight a method to simplify the scene, perform spatial image compression, and then apply spike coding. We then show the potential for translation on standard consumer processors. The algorithms are applicable to all forms of visual prosthesis, but we particularly focus on optogenetic approaches.
Collapse
Affiliation(s)
- Walid Al-Atabany
- Department of Biomedical Engineering, Helwan University, Helwan 11421, Egypt.
| | | | | | | | | |
Collapse
|
29
|
Electrical synaptic input to ganglion cells underlies differences in the output and absolute sensitivity of parallel retinal circuits. J Neurosci 2011; 31:12218-28. [PMID: 21865465 DOI: 10.1523/jneurosci.3241-11.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parallel circuits throughout the CNS exhibit distinct sensitivities and responses to sensory stimuli. Ambiguities in the source and properties of signals elicited by physiological stimuli, however, frequently obscure the mechanisms underlying these distinctions. We found that differences in the degree to which activity in two classes of Off retinal ganglion cell (RGC) encode information about light stimuli near detection threshold were not due to obvious differences in the cells' intrinsic properties or the chemical synaptic input the cells received; indeed, differences in the cells' light responses were largely insensitive to block of fast ionotropic glutamate receptors. Instead, the distinct responses of the two types of RGCs likely reflect differences in light-evoked electrical synaptic input. These results highlight a surprising strategy by which the retina differentially processes and routes visual information and provide new insight into the circuits that underlie responses to stimuli near detection threshold.
Collapse
|
30
|
Taylor WR, Smith RG. Trigger features and excitation in the retina. Curr Opin Neurobiol 2011; 21:672-8. [PMID: 21821411 DOI: 10.1016/j.conb.2011.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/06/2011] [Accepted: 07/11/2011] [Indexed: 01/22/2023]
Abstract
This review focuses on recent advances in our understanding of how neural divergence and convergence give rise to complex encoding properties of retinal ganglion cells. We describe the apparent mismatch between the number of cone bipolar cell types, and the diversity of excitatory input to retinal ganglion cells, and outline two possible solutions. One proposal is for diversity in the excitatory pathways to be generated within axon terminals of cone bipolar cells, and the second invokes narrow-field glycinergic amacrine cells that can apparently act like bipolar cells by providing excitatory drive to ganglion cells. Finally we highlight two advances in technique that promise to provide future insights; automation of electron microscope data collection and analysis, and the use of the ideal observer to quantitatively compare neural performance at all levels.
Collapse
Affiliation(s)
- W R Taylor
- Casey Eye Institute, Department of Ophthalmology, Oregon Health and Science University, Portland, OR, United States.
| | | |
Collapse
|
31
|
Dai J, Wang Y. Representation of surface luminance and contrast in primary visual cortex. ACTA ACUST UNITED AC 2011; 22:776-87. [PMID: 21693782 DOI: 10.1093/cercor/bhr133] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In visual perception, object identification requires both the ability to define regions of uniform luminance and zones of luminance contrast. Neural processes underlying contrast detection have been well studied, while those defining luminance remain poorly understood and controversial. Partially because stimuli comprised of uniform luminance are relatively ineffective in driving responses of cortical neurons, little effort has been made to systematically compare responses of individual neurons to both uniform luminance and contrast. Using large static uniform luminance and contrast stimuli, modulated temporally in luminance or contrast, we found a continuum of responses ranging from a few cells modulated only by luminance (luminance-only), to many cells modulated by both luminance and contrast (luminance-contrast), and to many others modulated only by contrast (contrast-only) in primary visual cortex. Moreover, luminance-contrast cells had broader orientation tuning, larger receptive field (RF) and lower spatial frequency Preference, on average, than contrast-only cells. Contrast-only cells had contrast responses more linearly correlated to the spatial structure of their RFs than luminance-contrast cells. Taken together these results suggest that luminance and contrast are represented, to some degree, by independent mechanisms that may be shaped by different classes of subcortical and/or cortical inputs.
Collapse
Affiliation(s)
- Ji Dai
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
32
|
Abstract
Retinal prostheses aim to restore functional vision to those blinded by outer retinal diseases using electric stimulation of surviving retinal neurons. The ability to replicate the spatiotemporal pattern of ganglion cell spike trains present under normal viewing conditions is presumably an important factor for restoring high-quality vision. In order to replicate such activity with a retinal prosthesis, it is important to consider both how visual information is encoded in ganglion cell spike trains, and how retinal neurons respond to electric stimulation. The goal of the current review is to bring together these two concepts in order to guide the development of more effective stimulation strategies. We review the experiments to date that have studied how retinal neurons respond to electric stimulation and discuss these findings in the context of known retinal signaling strategies. The results from such in vitro studies reveal the advantages and disadvantages of activating the ganglion cell directly with the electric stimulus (direct activation) as compared to activation of neurons that are presynaptic to the ganglion cell (indirect activation). While direct activation allows high temporal but low spatial resolution, indirect activation yields improved spatial resolution but poor temporal resolution. Finally, we use knowledge gained from in vitro experiments to infer the patterns of elicited activity in ongoing human trials, providing insights into some of the factors limiting the quality of prosthetic vision.
Collapse
Affiliation(s)
- Daniel K Freeman
- Center for Innovative Visual Rehabilitation, Boston VA Healthcare System, 150 South Huntington Ave, Boston, MA 02130, USA.
| | | | | |
Collapse
|
33
|
Badea TC, Nathans J. Morphologies of mouse retinal ganglion cells expressing transcription factors Brn3a, Brn3b, and Brn3c: analysis of wild type and mutant cells using genetically-directed sparse labeling. Vision Res 2011; 51:269-79. [PMID: 20826176 PMCID: PMC3038626 DOI: 10.1016/j.visres.2010.08.039] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/27/2010] [Accepted: 08/30/2010] [Indexed: 11/23/2022]
Abstract
The mammalian retina contains more than 50 distinct neuronal types, which are broadly classified into several major classes: photoreceptor, bipolar, horizontal, amacrine, and ganglion cells. Although some of the developmental mechanisms involved in the differentiation of retinal ganglion cells (RGCs) are beginning to be understood, there is little information regarding the genetic and molecular determinants of the distinct morphologies of the 15-20 mammalian RGC cell types. Previous work has shown that the transcription factor Brn3b/Pou4f2 plays a major role in the development and survival of many RGCs. The roles of the closely related family members, Brn3a/Pou4f1 and Brn3c/Pou4f3 in RGC development are less clear. Using a genetically-directed method for sparse cell labeling and sparse conditional gene ablation in mice, we describe here the sets of RGC types in which each of the three Brn3/Pou4f transcription factors are expressed and the consequences of ablating these factors on the development of RGC morphologies.
Collapse
Affiliation(s)
- Tudor Constantin Badea
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
34
|
Cantrell DR, Cang J, Troy JB, Liu X. Non-centered spike-triggered covariance analysis reveals neurotrophin-3 as a developmental regulator of receptive field properties of ON-OFF retinal ganglion cells. PLoS Comput Biol 2010; 6:e1000967. [PMID: 20975932 PMCID: PMC2958799 DOI: 10.1371/journal.pcbi.1000967] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/21/2010] [Indexed: 01/11/2023] Open
Abstract
The functional separation of ON and OFF pathways, one of the fundamental features of the visual system, starts in the retina. During postnatal development, some retinal ganglion cells (RGCs) whose dendrites arborize in both ON and OFF sublaminae of the inner plexiform layer transform into RGCs with dendrites that monostratify in either the ON or OFF sublamina, acquiring final dendritic morphology in a subtype-dependent manner. Little is known about how the receptive field (RF) properties of ON, OFF, and ON-OFF RGCs mature during this time because of the lack of a reliable and efficient method to classify RGCs into these subtypes. To address this deficiency, we developed an innovative variant of Spike Triggered Covariance (STC) analysis, which we term Spike Triggered Covariance – Non-Centered (STC-NC) analysis. Using a multi-electrode array (MEA), we recorded the responses of a large population of mouse RGCs to a Gaussian white noise stimulus. As expected, the Spike-Triggered Average (STA) fails to identify responses driven by symmetric static nonlinearities such as those that underlie ON-OFF center RGC behavior. The STC-NC technique, in contrast, provides an efficient means to identify ON-OFF responses and quantify their RF center sizes accurately. Using this new tool, we find that RGCs gradually develop sensitivity to focal stimulation after eye opening, that the percentage of ON-OFF center cells decreases with age, and that RF centers of ON and ON-OFF cells become smaller. Importantly, we demonstrate for the first time that neurotrophin-3 (NT-3) regulates the development of physiological properties of ON-OFF center RGCs. Overexpression of NT-3 leads to the precocious maturation of RGC responsiveness and accelerates the developmental decrease of RF center size in ON-OFF cells. In summary, our study introduces STC-NC analysis which successfully identifies subtype RGCs and demonstrates how RF development relates to a neurotrophic driver in the retina. The developmental separation of ON and OFF pathways is one of the fundamental features of the visual system. In the mouse retina, some bi-stratified ON-OFF RGCs are refined into mono-stratified ON or OFF RGCs during the first postnatal month. However, the process by which the RGCs' physiological receptive field properties mature remains incompletely characterized, mainly due to the lack of a reliable and efficient method to classify RGCs into different subtypes. Here we have developed an innovative analysis, Spike Triggered Covariance – Non-Centered (STC-NC), and demonstrated that this technique can accurately characterize the receptive field properties of ON, OFF and ON-OFF center cells. We show that, in wildtype mouse, RGCs gradually develop sensitivity to focal stimulation after eye opening, and the development of ON-OFF receptive field center properties correlates well with their dendritic laminar refinement. Furthermore, overexpression of NT-3 accelerates the developmental decrease of receptive field center size in ON-OFF cells. Our study is the first to establish the STC-NC analysis which can successfully identify ON-OFF subtype RGCs and to demonstrate how receptive field development relates to a neurotrophic driver in the retina.
Collapse
Affiliation(s)
- Donald R. Cantrell
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Jianhua Cang
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - John B. Troy
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (JBT); (XL)
| | - Xiaorong Liu
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (JBT); (XL)
| |
Collapse
|
35
|
Freeman DK, Graña G, Passaglia CL. Retinal ganglion cell adaptation to small luminance fluctuations. J Neurophysiol 2010; 104:704-12. [PMID: 20538771 DOI: 10.1152/jn.00767.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To accommodate the wide input range over which the visual system operates within the narrow output range of spiking neurons, the retina adjusts its sensitivity to the mean light level so that retinal ganglion cells can faithfully signal contrast, or relative deviations from the mean luminance. Given the large operating range of the visual system, the majority of work on luminance adaptation has involved logarithmic changes in light level. We report that luminance gain controls are recruited for remarkably small fluctuations in luminance as well. Using spike recordings from the rat optic tract, we show that ganglion cell responses to a brief flash of light are modulated in amplitude by local background fluctuations as little as 15% contrast. The time scale of the gain control is rapid (<125 ms), at least for on cells. The retinal locus of adaptation precedes the ganglion cell spike generator because response gain changes of on cells were uncorrelated with firing rate. The mechanism seems to reside within the inner retinal network and not in the photoreceptors, because the adaptation profiles of on and off cells differed markedly. The response gain changes follow Weber's law, suggesting that network mechanisms of luminance adaptation described in previous work modulates retinal ganglion cell sensitivity, not just when we move between different lighting environments, but also as our eyes scan a visual scene. Finally, we show that response amplitude is uniformly reduced for flashes on a modulated background that has spatial contrast, indicating that another gain control that integrates luminance signals nonlinearly over space operates within the receptive field center of rat ganglion cells.
Collapse
Affiliation(s)
- Daniel K Freeman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
36
|
Yao H, Lu H, Wang W. Visual neuroscience research in China. SCIENCE CHINA-LIFE SCIENCES 2010; 53:363-373. [DOI: 10.1007/s11427-010-0071-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 01/19/2010] [Indexed: 11/28/2022]
|
37
|
Perge JA, Koch K, Miller R, Sterling P, Balasubramanian V. How the optic nerve allocates space, energy capacity, and information. J Neurosci 2009; 29:7917-28. [PMID: 19535603 PMCID: PMC2928227 DOI: 10.1523/jneurosci.5200-08.2009] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 05/07/2009] [Accepted: 05/12/2009] [Indexed: 11/21/2022] Open
Abstract
Fiber tracts should use space and energy efficiently, because both resources constrain neural computation. We found for a myelinated tract (optic nerve) that astrocytes use nearly 30% of the space and >70% of the mitochondria, establishing the significance of astrocytes for the brain's space and energy budgets. Axons are mostly thin with a skewed distribution peaking at 0.7 microm, near the lower limit set by channel noise. This distribution is matched closely by the distribution of mean firing rates measured under naturalistic conditions, suggesting that firing rate increases proportionally with axon diameter. In axons thicker than 0.7 microm, mitochondria occupy a constant fraction of axonal volume--thus, mitochondrial volumes rise as the diameter squared. These results imply a law of diminishing returns: twice the information rate requires more than twice the space and energy capacity. We conclude that the optic nerve conserves space and energy by sending most information at low rates over fine axons with small terminal arbors and sending some information at higher rates over thicker axons with larger terminal arbors but only where more bits per second are needed for a specific purpose. Thicker axons seem to be needed, not for their greater conduction velocity (nor other intrinsic electrophysiological purpose), but instead to support larger terminal arbors and more active zones that transfer information synaptically at higher rates.
Collapse
Affiliation(s)
- János A Perge
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Abstract
Action potentials were recorded from rat retinal ganglion cell fibers in the presence of a uniform field, and the maintained discharge pattern was characterized. Spike trains recorded under ketaminexylazine. The majority of cells had multimodal interval distributions, with the first peak in the range of 25.00.97). Both ON and OFF cells show serial correlations between adjacent interspike intervals, while ON cells also showed second-order correlations. Cells with multimodal interval distribution showed a strong peak at high frequencies in the power spectra in the range of 28.9-41.4 Hz. Oscillations were present under both anesthetic conditions and persisted in the dark at a slightly lower frequency, implying that the oscillations are generated independent of any light stimulus but can be modulated by light level. The oscillation frequency varied slightly between cells of the same type and in the same eye, suggesting that multiple oscillatory generating mechanisms exist within the retina. Cells with high-frequency oscillations were described well by an integrate-and-fire model with the input consisting of Gaussian noise plus a sinusoid where the phase was jittered randomly to account for the bandwidth present in the oscillations.
Collapse
Affiliation(s)
- Daniel K Freeman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
40
|
Mante V, Bonin V, Carandini M. Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli. Neuron 2008; 58:625-38. [PMID: 18498742 DOI: 10.1016/j.neuron.2008.03.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/29/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
Abstract
Functional models of the early visual system should predict responses not only to simple artificial stimuli but also to sequences of complex natural scenes. An ideal testbed for such models is the lateral geniculate nucleus (LGN). Mechanisms shaping LGN responses include the linear receptive field and two fast adaptation processes, sensitive to luminance and contrast. We propose a compact functional model for these mechanisms that operates on sequences of arbitrary images. With the same parameters that fit the firing rate responses to simple stimuli, it predicts the bulk of the firing rate responses to complex stimuli, including natural scenes. Further improvements could result by adding a spiking mechanism, possibly one capable of bursts, but not by adding mechanisms of slow adaptation. We conclude that up to the LGN the responses to natural scenes can be largely explained through insights gained with simple artificial stimuli.
Collapse
Affiliation(s)
- Valerio Mante
- The Smith-Kettlewell Eye Research Institute, 2318 Fillmore Street, San Francisco, CA 94115, USA.
| | | | | |
Collapse
|
41
|
Niu WQ, Yuan JQ. A two pathway model for tonic suppressed-by-contrast cells in the cat retina. Brain Res Bull 2008; 75:655-62. [PMID: 18355642 DOI: 10.1016/j.brainresbull.2007.10.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 10/22/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
Abstract
A two pathway spatiotemporal model is proposed to describe the function of tonic suppressed-by-contrast cells of the cat retina. The model is able to describe the experimentally determined responses of such neurons to drifting sinusoidal gratings. It is also able to predict their responses to alternating sinusoidal gratings and flashing or moving spots of light, and these predictions resemble experimental observations, at least qualitatively. The model is physiologically plausible, it can be used to summarize the dynamic responses of the tonic suppressed-by-contrast cells of the cat and potentially to account for the responses of the suppressed-by-contrast cells of other species.
Collapse
Affiliation(s)
- Wang-Qiang Niu
- Department of Automation, Shanghai Jiao Tong University, 800 Dongchuan Lu, Shanghai, PR China.
| | | |
Collapse
|
42
|
Xu Y, Vasudeva V, Vardi N, Sterling P, Freed MA. Different types of ganglion cell share a synaptic pattern. J Comp Neurol 2008; 507:1871-8. [PMID: 18271025 DOI: 10.1002/cne.21644] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retinal ganglion cells comprise about 10 morphological types that also differ functionally. To determine whether functional differences might arise partially from differences in excitatory input, we quantified the distributions of ribbon contacts to four mammalian ganglion cell types [brisk-transient (BT), brisk-sustained (BS), local edge (LE), directionally selective (DS)], comparing small vs. large and "sluggish" vs. "brisk." Cells in guinea pig retina were filled with fluorescent dye, immunostained for synaptic ribbons, and reconstructed with their ribbon contacts by confocal microscopy. False-positive contacts were corrected by performing the same analysis on processes that lack synapses: glial stalks and rod bipolar axons. All types shared a domed distribution of membrane that was well fit by a Gaussian function (R(2) = 0.96 +/- 0.01); they also shared a constant density of contacts on the dendritic membrane, both across each arbor and across cell types (19 +/- 1 contacts/100 microm(2) membrane). However, the distributions of membrane across the retina differed markedly in width (BT > DS approximately BS > LE) and peak density (BS > DS > LE > BT). Correspondingly, types differed in peak density of contacts (BS > DS approximately LE > BT) and total number (BS approximately BT > DS > LE). These differences between cell types in spatial extent and local concentration of membrane and synapses help to explain certain functional differences.
Collapse
Affiliation(s)
- Ying Xu
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
The function of any neural circuit is governed by connectivity of neurons in the circuit and the computations performed by the neurons. Recent research on retinal function has substantially advanced understanding in both areas. First, visual information is transmitted to the brain by at least 17 distinct retinal ganglion cell types defined by characteristic morphology, light response properties, and central projections. These findings provide a much more accurate view of the parallel visual pathways emanating from the retina than do previous models, and they highlight the importance of identifying distinct cell types and their connectivity in other neural circuits. Second, encoding of visual information involves significant temporal structure and interactions in the spike trains of retinal neurons. The functional importance of this structure is revealed by computational analysis of encoding and decoding, an approach that may be applicable to understanding the function of other neural circuits.
Collapse
Affiliation(s)
- G D Field
- The Salk Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
44
|
Abstract
Vision looms large in neuroscience--it is the subject of a gigantic literature and four Nobel prizes--but there is a growing realization that there are problems with the textbook explanation of how mammalian vision works. Here we will summarize the evidence behind this disquiet. In effect, we shall present a portrait of a field that is 'stuck'. Our initial focus, because it is our area of expertise, is on evidence that the early steps of mammalian vision are more diverse and more interesting than is usually imagined, so that our understanding of the later stages is in trouble right from the start. But we will also summarize problems, raised by others, with the later stages themselves.
Collapse
Affiliation(s)
- Richard H Masland
- Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA 02114, USA
| | | |
Collapse
|
45
|
|
46
|
Resta V, Novelli E, Vozzi G, Scarpa C, Caleo M, Ahluwalia A, Solini A, Santini E, Parisi V, Di Virgilio F, Galli-Resta L. Acute retinal ganglion cell injury caused by intraocular pressure spikes is mediated by endogenous extracellular ATP. Eur J Neurosci 2007; 25:2741-54. [PMID: 17459106 DOI: 10.1111/j.1460-9568.2007.05528.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Elevated intraocular pressure may lead to retinal ganglion cell injury and consequent visual deficits. Chronic intraocular pressure increase is a major risk factor for glaucoma, a leading blinding disease, and permanent visual deficits can also occur following acute pressure increments due to trauma, acute glaucoma or refractive surgery. How pressure affects retinal neurons is not firmly established. Mechanical damage at the optic nerve head, reduced blood supply, inflammation and cytotoxic factors have all been called into play. Reasoning that the analysis of retinal neurons soon after pressure elevation would provide useful cues, we imaged individual ganglion cells in isolated rat retinas before and after short hydrostatic pressure increments. We found that slowly rising pressure to peaks observed in trauma, acute glaucoma or refractive surgery (50-90 mmHg) did not damage ganglion cells, whereas a rapid 1 min pulse to 50 mmHg injured 30% of these cells within 1 h. The severity of damage and the number of affected cells increased with stronger or repeated insults. Degrading extracellular ATP or blocking the P2X receptors for ATP prevented acute pressure-induced damage in ganglion cells. Similar effects were observed in vivo. A short intraocular pressure transient increased extracellular ATP levels in the eye fluids and damaged ganglion cells within 1 h. Reducing extracellular ATP in the eye prevented damage to ganglion cells and accelerated recovery of their response to light. These data show that rapid pressure transients induce acute ganglion cell injury and unveil the causal role of extracellular ATP elevation in such injury.
Collapse
|
47
|
Calkins DJ, Sterling P. Microcircuitry for two types of achromatic ganglion cell in primate fovea. J Neurosci 2007; 27:2646-53. [PMID: 17344402 PMCID: PMC6672494 DOI: 10.1523/jneurosci.4739-06.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 01/18/2007] [Accepted: 02/06/2007] [Indexed: 11/21/2022] Open
Abstract
Synaptic circuits in primate fovea have been quantified for midget/parvocellular ganglion cells. Here, based on partial reconstructions from serial electron micrographs, we quantify synaptic circuits for two other types of ganglion cell: the familiar parasol/magnocellular cell and a smaller type, termed "garland." The excitatory circuits both derive from two types of OFF diffuse cone bipolar cell, DB3 and DB2, which collected unselectively from at least 6 +/- 1 cones, including the S type. Cone contacts to DB3 dendrites were usually located between neighboring triads, whereas half of the cone contacts to DB2 were triad associated. Ribbon outputs were as follows: DB3, 69 +/- 5; DB2, 48 +/- 4. A complete parasol cell (30 microm dendritic field diameter) would collect from approximately 50 cones via approximately 120 bipolar and approximately 85 amacrine contacts; a complete garland cell (25 microm dendritic field) would collect from approximately 40 cones via approximately 75 bipolar and approximately 145 amacrine contacts. The bipolar types contributed differently: the parasol cell received most contacts (60%) from DB3, whereas the garland cell received most contacts (67%) from DB2. We hypothesize that DB3 is a transient bipolar cell and that DB2 is sustained. This would be consistent with their relative inputs to the brisk-transient (parasol) ganglion cell. The garland cell, with its high proportion of DB2 inputs plus its high proportion of amacrine synapses (70%) and dense mosaic, might correspond to the local-edge cell in nonprimate retinas, which serves finer acuity at low temporal frequencies. The convergence of S cones onto both types could contribute S-cone input for cortical areas primary visual cortex and the middle temporal area.
Collapse
Affiliation(s)
- David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
48
|
Koch K, McLean J, Segev R, Freed MA, Berry MJ, Balasubramanian V, Sterling P. How much the eye tells the brain. Curr Biol 2006; 16:1428-34. [PMID: 16860742 PMCID: PMC1564115 DOI: 10.1016/j.cub.2006.05.056] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 05/18/2006] [Indexed: 11/28/2022]
Abstract
In the classic "What the frog's eye tells the frog's brain," Lettvin and colleagues showed that different types of retinal ganglion cell send specific kinds of information. For example, one type responds best to a dark, convex form moving centripetally (a fly). Here we consider a complementary question: how much information does the retina send and how is it apportioned among different cell types? Recording from guinea pig retina on a multi-electrode array and presenting various types of motion in natural scenes, we measured information rates for seven types of ganglion cell. Mean rates varied across cell types (6-13 bits . s(-1)) more than across stimuli. Sluggish cells transmitted information at lower rates than brisk cells, but because of trade-offs between noise and temporal correlation, all types had the same coding efficiency. Calculating the proportions of each cell type from receptive field size and coverage factor, we conclude (assuming independence) that the approximately 10(5) ganglion cells transmit on the order of 875,000 bits . s(-1). Because sluggish cells are equally efficient but more numerous, they account for most of the information. With approximately 10(6) ganglion cells, the human retina would transmit data at roughly the rate of an Ethernet connection.
Collapse
Affiliation(s)
- Kristin Koch
- Department of Neuroscience, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Troy JB, Bohnsack DL, Chen J, Guo X, Passaglia CL. Spatiotemporal integration of light by the cat X-cell center under photopic and scotopic conditions. Vis Neurosci 2005; 22:493-500. [PMID: 16212706 PMCID: PMC1550342 DOI: 10.1017/s0952523805224100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 04/06/2005] [Indexed: 11/07/2022]
Abstract
Visual responses to stimulation at high temporal frequency are generally considered to result from signals that avoid light adaptive gain adjustment, simply reflecting linear summation of luminance. Under conditions of high photopic illuminance, the center of the receptive field of the cat X-cell has been shown to expand in size when stimulated at high temporal frequency, raising the possibility that there is spatiotemporal interaction in luminance summation. Here we show that this expansion maintains constant the product of the center's luminance summing area and the temporal period of luminance modulation, implying that spatial and temporal integration of luminance can be traded for one another by the X-cell center. As such the X-cell has a spatiotemporal window for luminance integration that fuses the classical concepts of a spatial window of luminance integration (Ricco's Law) with a temporal window of luminance integration (Bloch's Law). We were interested to determine whether this tradeoff between spatial and temporal summation of luminance occurs also at lower light levels, where the temporal-frequency bandwidth of the X-cell is narrower. We found that it does not. Center radius does not expand with temporal frequency under either low photopic or scotopic conditions. These results are discussed within the context of the known retinal circuitry that underlies the X-cell center for photopic and scotopic conditions.
Collapse
Affiliation(s)
- J B Troy
- Department of Biomedical Engineering and the Neuroscience Institute, Northwestern University, Evanston, IL 60208-3107, USA.
| | | | | | | | | |
Collapse
|
50
|
Receptive Fields of Visually Sensitive Neurons of the Extrastriate Associative Area 21b of the Cat Cerebral Cortex. NEUROPHYSIOLOGY+ 2005. [DOI: 10.1007/s11062-005-0065-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|