1
|
Pandurangan S, Easwaramoorthi S, Ayyadurai N. Engineering proteins with catechol chemistry for biotechnological applications. Crit Rev Biotechnol 2025; 45:606-624. [PMID: 39198031 DOI: 10.1080/07388551.2024.2387165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/01/2023] [Accepted: 06/27/2023] [Indexed: 09/01/2024]
Abstract
Developing proteins with increased chemical space by expanding the amino acids alphabet has been an emerging technique to compete for the obstacle encountered by their need in various applications. 3,4-Dihydroxyphenylalanine (L-DOPA) catecholic unnatural amino acid is abundantly present in mussels foot proteins through post-translational modification of tyrosine to give a strong adhesion toward wet rocks. L-DOPA forms: bidentate coordination, H-bonding, metal-ligand complexes, long-ranged electrostatic, and van der Waals interactions via a pair of donor hydroxyl groups. Incorporating catechol in proteins through genetic code expansion paved the way for developing: protein-based bio-sensor, implant coating, bio-conjugation, adhesive bio-materials, biocatalyst, metal interaction and nano-biotechnological applications. The increased chemical spaces boost the protein properties by offering a new chemically active interaction ability to the protein. Here, we review the technique employed to develop a genetically expanded organism with catechol to provide novel properties and functionalities; and we highlight the importance of L-DOPA incorporated proteins in biomedical and industrial fields.
Collapse
Affiliation(s)
- Suryalakshmi Pandurangan
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shanmugam Easwaramoorthi
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Department of Inorganic and Physical Chemistry, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
2
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
3
|
Heininen J, Erbacher C, Kotiaho T, Kostiainen R, Teppo J. Enzymatic Phosphorylation of Oxidized Tyrosine Residues. J Proteome Res 2023. [PMID: 37146082 DOI: 10.1021/acs.jproteome.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Post-translational modifications (PTMs) alter the function and fate of proteins and cells in almost every conceivable way. Protein modifications can occur as a result of specific regulating actions of enzymes, such as tyrosine kinases phosphorylating tyrosine residues or by nonenzymatic reactions, such as oxidation related to oxidative stress and diseases. While many studies have addressed the multisite, dynamic, and network-like properties of PTMs, only little is known of the interplay of the same site modifications. In this work, we studied the enzymatic phosphorylation of oxidized tyrosine (l-DOPA) residues using synthetic insulin receptor peptides, in which tyrosine residues were replaced with l-DOPA. The phosphorylated peptides were identified by liquid chromatography-high-resolution mass spectrometry and the site of phosphorylation by tandem mass spectrometry. The results clearly show that the oxidized tyrosine residues are phosphorylated, displaying a specific immonium ion peak in the MS2 spectra. Furthermore, we detected this modification in our reanalysis (MassIVE ID: MSV000090106) of published bottom-up phosphoproteomics data. The modification, where both oxidation and phosphorylation take place at the same amino acid, has not yet been published in PTM databases. Our data indicate that there can be multiple PTMs that do not exclude each other at the same modification site.
Collapse
Affiliation(s)
- Juho Heininen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Catharina Erbacher
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Tapio Kotiaho
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Risto Kostiainen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Jaakko Teppo
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| |
Collapse
|
4
|
Steele JR, Strange N, Rodgers KJ, Padula MP. A Novel Method for Creating a Synthetic L-DOPA Proteome and In Vitro Evidence of Incorporation. Proteomes 2021; 9:24. [PMID: 34073856 PMCID: PMC8162537 DOI: 10.3390/proteomes9020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Proteinopathies are protein misfolding diseases that have an underlying factor that affects the conformation of proteoforms. A factor hypothesised to play a role in these diseases is the incorporation of non-protein amino acids into proteins, with a key example being the therapeutic drug levodopa. The presence of levodopa as a protein constituent has been explored in several studies, but it has not been examined in a global proteomic manner. This paper provides a proof-of-concept method for enzymatically creating levodopa-containing proteins using the enzyme tyrosinase and provides spectral evidence of in vitro incorporation in addition to the induction of the unfolded protein response due to levodopa.
Collapse
Affiliation(s)
- Joel Ricky Steele
- Proteomics Core Facility and School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Natalie Strange
- School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Kenneth J. Rodgers
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- Proteomics Core Facility and School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| |
Collapse
|
5
|
Giannopoulos S, Samardzic K, Raymond BBA, Djordjevic SP, Rodgers KJ. L-DOPA causes mitochondrial dysfunction in vitro: A novel mechanism of L-DOPA toxicity uncovered. Int J Biochem Cell Biol 2019; 117:105624. [PMID: 31654750 DOI: 10.1016/j.biocel.2019.105624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 01/31/2023]
Abstract
In Parkinson's disease (PD), as in many other neurodegenerative disorders, mitochondrial dysfunction, protein misfolding, and proteotoxic stress underly the disease process. For decades, the primary symptomatic treatment for PD has been the dopamine precursor L-DOPA (Levodopa). L-DOPA however can initiate protein misfolding through its ability to mimic the protein amino acid L-tyrosine, resulting in random errors in aminoacylation and L-DOPA becoming mistakenly inserted into the polypeptide chain of proteins in place of L-tyrosine. In the present study we examined the impact that the generation of DOPA-containing proteins had on human neuroblastoma cell (SH-SY5Y) function in vitro. We showed that even in the presence of antioxidants there was a significant accumulation of cytosolic ubiquitin in DOPA-treated cells, an upregulation in the endosomal-lysosomal degradation system, deleterious changes to mitochondrial morphology and a marked decline in mitochondrial function.The effects of L-DOPA on mitochondrial function were not observed with D-DOPA, the stereoisomer of L-DOPA that cannot be inserted into proteins so did not result from oxidative stress. We could fully protect against these effects by co-treatment with L-tyrosine, supporting the view that misincorporation of L-DOPA into proteins contributed to these cytotoxic effects, leading us to suggest that co-treatment with L-tyrosine could be beneficial therapeutically.
Collapse
Affiliation(s)
- Steven Giannopoulos
- Neurotoxin Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Kate Samardzic
- Neurotoxin Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Benjamin B A Raymond
- I3 institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Steven P Djordjevic
- I3 institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Kenneth J Rodgers
- Neurotoxin Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia.
| |
Collapse
|
6
|
Ilamaran M, Sriram Raghavan S, Karthik S, Sanjay Nalawade K, Samvedna S, Routray W, Kamini NR, Saravanan P, Ayyadurai N. A facile method for high level dual expression of recombinant and congener protein in a single expression system. Protein Expr Purif 2018; 156:1-7. [PMID: 30562573 DOI: 10.1016/j.pep.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
Protein engineering is an emerging field for developing novel therapeutic proteins and commercial enzymes, along with a major impact on the global market. In recent decades, advanced methods employing protein modification through expansion of the genetic code have led to the development of proteins with new biochemical and physical properties. These techniques have produced engineered proteins with improved attribute comprising substrate relaxation, protein drug conjugation and high stability under extreme conditions of high temperatures, pH and organic solvents. Furthermore, residue specific incorporation is the simplest method for the global incorporation of non-canonical amino acid (NCAA) for protein modification; however it has the major drawbacks of high production cost and manpower requirement. In the present study, we developed a method for the incorporation of single NCAA in two different proteins by using Escherichia coli (E. coli) expression system. For that, the dual protein expressing Escherichia coli JW2581 strain was constructed by transforming pQE80L and pD881-PpiBT vectors with different promoters, selectable markers and AnnexinV, GFPHS gene. To modify the protein, the 3,4 dihydroxy phenyl alanine (DOPA) was globally incorporated into the GFPHS and Annexin V protein using dual protein expression system. The incorporation efficiency during the dual protein expression was achieved through optimized concentrations of amino acids, carbohydrate and inducers in minimal medium. This method for the incorporation of single NCAA into two different proteins using a single expression host system saves the production cost, manpower and time substantially.
Collapse
Affiliation(s)
- M Ilamaran
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India
| | - S Sriram Raghavan
- Department of Crystallography and Biophysics, Madras University, Chennai, India
| | - S Karthik
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India
| | | | - S Samvedna
- Department of Biotechnology, Rajalakshmi Engineering Collage, Chennai, India
| | - W Routray
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India
| | - N R Kamini
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India
| | - P Saravanan
- Department of Biotechnology, Rajalakshmi Engineering Collage, Chennai, India
| | - N Ayyadurai
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India.
| |
Collapse
|
7
|
Zou H, Li L, Zhang T, Shi M, Zhang N, Huang J, Xian M. Biosynthesis and biotechnological application of non-canonical amino acids: Complex and unclear. Biotechnol Adv 2018; 36:1917-1927. [PMID: 30063950 DOI: 10.1016/j.biotechadv.2018.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/22/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023]
Abstract
Compared with the better-studied canonical amino acids, the distribution, metabolism and functions of natural non-canonical amino acids remain relatively obscure. Natural non-canonical amino acids have been mainly discovered in plants as secondary metabolites that perform diversified physiological functions. Due to their specific characteristics, a broader range of natural and artificial non-canonical amino acids have recently been applied in the development of functional materials and pharmaceutical products. With the rapid development of advanced methods in biotechnology, non-canonical amino acids can be incorporated into peptides, proteins and enzymes to improve the function and performance relative to their natural counterparts. Therefore, biotechnological application of non-canonical amino acids in artificial bio-macromolecules follows the central goal of synthetic biology to: create novel life forms and functions. However, many of the non-canonical amino acids are synthesized via chemo- or semi-synthetic methods, and few non-canonical amino acids can be synthesized using natural in vivo pathways. Therefore, further research is needed to clarify the metabolic pathways and key enzymes of the non-canonical amino acids. This will lead to the discovery of more candidate non-canonical amino acids, especially for those that are derived from microorganisms and are naturally bio-compatible with chassis strains for in vivo biosynthesis. In this review, we summarize representative natural and artificial non-canonical amino acids, their known information regarding associated metabolic pathways, their characteristics and their practical applications. Moreover, this review summarizes current barriers in developing in vivo pathways for the synthesis of non-canonical amino acids, as well as other considerations, future trends and potential applications of non-canonical amino acids in advanced biotechnology.
Collapse
Affiliation(s)
- Huibin Zou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Lei Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tongtong Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mengxun Shi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Nan Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingling Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
8
|
Oxidised protein metabolism: recent insights. Biol Chem 2017; 398:1165-1175. [DOI: 10.1515/hsz-2017-0124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022]
Abstract
Abstract
The ‘oxygen paradox’ arises from the fact that oxygen, the molecule that aerobic life depends on, threatens its very existence. An oxygen-rich environment provided life on Earth with more efficient bioenergetics and, with it, the challenge of having to deal with a host of oxygen-derived reactive species capable of damaging proteins and other crucial cellular components. In this minireview, we explore recent insights into the metabolism of proteins that have been reversibly or irreversibly damaged by oxygen-derived species. We discuss recent data on the important roles played by the proteasomal and lysosomal systems in the proteolytic degradation of oxidatively damaged proteins and the effects of oxidative damage on the function of the proteolytic pathways themselves. Mitochondria are central to oxygen utilisation in the cell, and their ability to handle oxygen-derived radicals is an important and still emerging area of research. Current knowledge of the proteolytic machinery in the mitochondria, including the ATP-dependent AAA+ proteases and mitochondrial-derived vesicles, is also highlighted in the review. Significant progress is still being made in regard to understanding the mechanisms underlying the detection and degradation of oxidised proteins and how proteolytic pathways interact with each other. Finally, we highlight a few unanswered questions such as the possibility of oxidised amino acids released from oxidised proteins by proteolysis being re-utilised in protein synthesis thus establishing a vicious cycle of oxidation in cells.
Collapse
|
9
|
Struck AW, Bennett MR, Shepherd SA, Law BJC, Zhuo Y, Wong LS, Micklefield J. An Enzyme Cascade for Selective Modification of Tyrosine Residues in Structurally Diverse Peptides and Proteins. J Am Chem Soc 2016; 138:3038-45. [DOI: 10.1021/jacs.5b10928] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anna-Winona Struck
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Matthew R. Bennett
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Sarah A. Shepherd
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Brian J. C. Law
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Ying Zhuo
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Lu Shin Wong
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Jason Micklefield
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
10
|
Kaushik NK, Kaushik N, Pardeshi S, Sharma JG, Lee SH, Choi EH. Biomedical and Clinical Importance of Mussel-Inspired Polymers and Materials. Mar Drugs 2015; 13:6792-817. [PMID: 26569266 PMCID: PMC4663554 DOI: 10.3390/md13116792] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 12/14/2022] Open
Abstract
The substance secreted by mussels, also known as nature's glue, is a type of liquid protein that hardens rapidly into a solid water-resistant adhesive material. While in seawater or saline conditions, mussels can adhere to all types of surfaces, sustaining its bonds via mussel adhesive proteins (MAPs), a group of proteins containing 3,4-dihydroxyphenylalanine (DOPA) and catecholic amino acid. Several aspects of this adhesion process have inspired the development of various types of synthetic materials for biomedical applications. Further, there is an urgent need to utilize biologically inspired strategies to develop new biocompatible materials for medical applications. Consequently, many researchers have recently reported bio-inspired techniques and materials that show results similar to or better than those shown by MAPs for a range of medical applications. However, the susceptibility to oxidation of 3,4-dihydroxyphenylalanine poses major challenges with regard to the practical translation of mussel adhesion. In this review, various strategies are discussed to provide an option for DOPA/metal ion chelation and to compensate for the limitations imposed by facile 3,4-dihydroxyphenylalanine autoxidation. We discuss the anti-proliferative, anti-inflammatory, anti-microbial activity, and adhesive behaviors of mussel bio-products and mussel-inspired materials (MIMs) that make them attractive for synthetic adaptation. The development of biologically inspired adhesive interfaces, bioactive mussel products, MIMs, and arising areas of research leading to biomedical applications are considered in this review.
Collapse
Affiliation(s)
| | - Neha Kaushik
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea.
| | - Sunil Pardeshi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea.
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India.
| | - Seung Hyun Lee
- Graduate School of Information Contents, Kwangwoon University, Seoul 139701, Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea.
| |
Collapse
|
11
|
Jones LH, Narayanan A, Hett EC. Understanding and applying tyrosine biochemical diversity. MOLECULAR BIOSYSTEMS 2014; 10:952-69. [PMID: 24623162 DOI: 10.1039/c4mb00018h] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review highlights some of the recent advances made in our understanding of the diversity of tyrosine biochemistry and shows how this has inspired novel applications in numerous areas of molecular design and synthesis, including chemical biology and bioconjugation. The pathophysiological implications of tyrosine biochemistry will be presented from a molecular perspective and the opportunities for therapeutic intervention explored.
Collapse
Affiliation(s)
- Lyn H Jones
- Pfizer R&D, Chemical Biology Group, BioTherapeutics Chemistry, WorldWide Medicinal Chemistry, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | | | | |
Collapse
|
12
|
|
13
|
Morris G, Robertson I, Tatko CD. Iron binding β-hairpin peptides. Biometals 2013; 26:667-75. [DOI: 10.1007/s10534-013-9638-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 05/26/2013] [Indexed: 10/26/2022]
|
14
|
Moor N, Klipcan L, Safro MG. Bacterial and eukaryotic phenylalanyl-tRNA synthetases catalyze misaminoacylation of tRNA(Phe) with 3,4-dihydroxy-L-phenylalanine. ACTA ACUST UNITED AC 2012; 18:1221-9. [PMID: 22035791 DOI: 10.1016/j.chembiol.2011.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 10/15/2022]
Abstract
Aminoacyl-tRNA synthetases exert control over the accuracy of translation by selective pairing the correct amino acids with their cognate tRNAs, and proofreading the misacylated products. Here we show that three existing, structurally different phenylalanyl-tRNA synthetases-human mitochondrial (HsmtPheRS), human cytoplasmic (HsctPheRS), and eubacterial from Thermus thermophilus (TtPheRS), catalyze mischarging of tRNA(Phe) with an oxidized analog of tyrosine-L-dopa. The lowest level of L-dopa discrimination over the cognate amino acid, exhibited by HsmtPheRS, is comparable to that of tyrosyl-tRNA synthetase. HsmtPheRS and TtPheRS complexes with L-dopa revealed in the active sites an electron density shaping this ligand. HsctPheRS and TtPheRS possessing editing activity are capable of hydrolyzing the exogenous L-dopa-tRNA(Phe) as efficiently as Tyr-tRNA(Phe). However, editing activity of PheRS does not guarantee reduction of the aminoacylation error rate to escape misincorporation of L-dopa into polypeptide chains.
Collapse
Affiliation(s)
- Nina Moor
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | | | | |
Collapse
|
15
|
Abstract
L-DOPA is the most commonly prescribed drug for the treatment of Parkinson's disease. Here, Moor et al. (2011) report that phenylalanyl-tRNA synthetase catalyzes the misacylation of tRNA(Phe) by L-DOPA, suggesting that it may contribute to the elevated levels of L-DOPA-containing proteins found in patients treated with this drug.
Collapse
Affiliation(s)
- Eric A First
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71130, USA.
| |
Collapse
|
16
|
L-DOPA is incorporated into brain proteins of patients treated for Parkinson's disease, inducing toxicity in human neuroblastoma cells in vitro. Exp Neurol 2011; 238:29-37. [PMID: 22001774 DOI: 10.1016/j.expneurol.2011.09.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 08/23/2011] [Accepted: 09/26/2011] [Indexed: 11/20/2022]
Abstract
Levodopa (L-DOPA), a close structural analogue of the protein amino acid L-tyrosine, can substitute for L-tyrosine in protein synthesis and be mistakenly incorporated into newly synthesised proteins in vitro. We show that L-DOPA-containing proteins are present in the brain in L-DOPA-treated Parkinson's disease patients and accumulate in specific brain regions. In vitro studies demonstrate that substitution of L-tyrosine residues in proteins with L-DOPA causes protein misfolding and promotes protein aggregation in SH-SY5Y neuroblastoma cells resulting in the appearance of autofluorescent bodies. We show that the presence of L-DOPA-containing proteins causes profound changes in mitochondria and stimulates the formation of autophagic vacuoles in cells. Unlike L-DOPA, which is toxic to cells through its ability to generate radicals, proteins containing incorporated L-DOPA are toxic to SH-SY5Y cells by a mechanism independent of oxidative stress and resistant to antioxidants. These data suggest that the accumulation of L-DOPA-containing proteins in vulnerable cells might negatively impact on cell function.
Collapse
|
17
|
Paik MJ, Nguyen DT, Yoon JH, Cho IS, Shim WY, Kim KR, Cho KH, Choi SD, Lee G. Selective 3,4-Dihydroxyphenylalanine Analysis in Human Urine as Ethoxycarbonyltert-butyldimethylsilyl Derivatives by Gas Chromatography-Mass Spectrometry. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.3.977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Kurz T, Eaton JW, Brunk UT. Redox activity within the lysosomal compartment: implications for aging and apoptosis. Antioxid Redox Signal 2010; 13:511-23. [PMID: 20039839 DOI: 10.1089/ars.2009.3005] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lysosome is a redox-active compartment containing low-mass iron and copper liberated by autophagic degradation of metalloproteins. The acidic milieu and high concentration of thiols within lysosomes will keep iron in a reduced (ferrous) state, which can react with endogenous or exogenous hydrogen peroxide. Consequent intralysosomal Fenton reactions may give rise to the formation of lipofuscin or "age pigment" that accumulates in long-lived postmitotic cells that cannot dilute it by division. Extensive accumulation of lipofuscin seems to hinder normal autophagy and may be an important factor behind aging and age-related pathologies. Enhanced oxidative stress causes lysosomal membrane permeabilization, with ensuing relocation to the cytosol of iron and lysosomal hydrolytic enzymes, with resulting apoptosis or necrosis. Lysosomal copper is normally not redox active because it will form non-redox-active complexes with various thiols. However, if cells are exposed to lysosomotropic chelators that do not bind all the copper coordinates, highly redox-active complexes may form, with ensuing extensive lysosomal Fenton-type reactions and loss of lysosomal stability. Because many malignancies seem to have increased amounts of copper-containing macromolecules that are turned over by autophagy, it is conceivable that lysosomotropic copper chelators may be used in the future in ROS-based anticancer therapies.
Collapse
Affiliation(s)
- Tino Kurz
- Division of Pharmacology, Linköping University, Linköping, Sweden .
| | | | | |
Collapse
|
19
|
Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 2010; 12:503-35. [PMID: 19650712 PMCID: PMC2861545 DOI: 10.1089/ars.2009.2598] [Citation(s) in RCA: 363] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 07/22/2009] [Accepted: 08/02/2009] [Indexed: 12/19/2022]
Abstract
It is now generally accepted that aging and eventual death of multicellular organisms is to a large extent related to macromolecular damage by mitochondrially produced reactive oxygen species, mostly affecting long-lived postmitotic cells, such as neurons and cardiac myocytes. These cells are rarely or not at all replaced during life and can be as old as the whole organism. The inherent inability of autophagy and other cellular-degradation mechanisms to remove damaged structures completely results in the progressive accumulation of garbage, including cytosolic protein aggregates, defective mitochondria, and lipofuscin, an intralysosomal indigestible material. In this review, we stress the importance of crosstalk between mitochondria and lysosomes in aging. The slow accumulation of lipofuscin within lysosomes seems to depress autophagy, resulting in reduced turnover of effective mitochondria. The latter not only are functionally deficient but also produce increased amounts of reactive oxygen species, prompting lipofuscinogenesis. Moreover, defective and enlarged mitochondria are poorly autophagocytosed and constitute a growing population of badly functioning organelles that do not fuse and exchange their contents with normal mitochondria. The progress of these changes seems to result in enhanced oxidative stress, decreased ATP production, and collapse of the cellular catabolic machinery, which eventually is incompatible with survival.
Collapse
Affiliation(s)
- Alexei Terman
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
20
|
Zhang X, Monroe ME, Chen B, Chin MH, Heibeck TH, Schepmoes AA, Yang F, Petritis BO, Camp DG, Pounds JG, Jacobs JM, Smith DJ, Bigelow DJ, Smith RD, Qian WJ. Endogenous 3,4-dihydroxyphenylalanine and dopaquinone modifications on protein tyrosine: links to mitochondrially derived oxidative stress via hydroxyl radical. Mol Cell Proteomics 2010; 9:1199-208. [PMID: 20124354 DOI: 10.1074/mcp.m900321-mcp200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Oxidative modifications of protein tyrosines have been implicated in multiple human diseases. Among these modifications, elevations in levels of 3,4-dihydroxyphenylalanine (DOPA), a major product of hydroxyl radical addition to tyrosine, has been observed in a number of pathologies. Here we report the first proteome survey of endogenous site-specific modifications, i.e. DOPA and its further oxidation product dopaquinone in mouse brain and heart tissues. Results from LC-MS/MS analyses included 50 and 14 DOPA-modified tyrosine sites identified from brain and heart, respectively, whereas only a few nitrotyrosine-containing peptides, a more commonly studied marker of oxidative stress, were detectable, suggesting the much higher abundance for DOPA modification as compared with tyrosine nitration. Moreover, 20 and 12 dopaquinone-modified peptides were observed from brain and heart, respectively; nearly one-fourth of these peptides were also observed with DOPA modification on the same sites. For both tissues, these modifications are preferentially found in mitochondrial proteins with metal binding properties, consistent with metal-catalyzed hydroxyl radical formation from mitochondrial superoxide and hydrogen peroxide. These modifications also link to a number of mitochondrially associated and other signaling pathways. Furthermore, many of the modification sites were common sites of previously reported tyrosine phosphorylation, suggesting potential disruption of signaling pathways. Collectively, the results suggest that these modifications are linked with mitochondrially derived oxidative stress and may serve as sensitive markers for disease pathologies.
Collapse
Affiliation(s)
- Xu Zhang
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Exner M, Hermann M, Hofbauer R, Kapiotis S, Gmeiner BMK. Free and Peptide-bound DOPA Can Inhibit Initiation of Low Density Lipoprotein Oxidation. Free Radic Res 2009; 37:1147-56. [PMID: 14703726 DOI: 10.1080/10715760310001595766] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hydroxyl radicals have been shown to convert free tyrosine to 3,4-dihydroxyphenyl-alanine (DOPA) which has reducing properties. During protein or peptide oxidation such reducing species are also formed from tyrosine residues. Free DOPA or peptide-bound DOPA (PB-DOPA) is able to promote radical-generating events, facilitating the damage of biomolecules such as nucleic acids. Radical induced lipid oxidation in low density lipoprotein (LDL) transforms the lipoprotein into an atherogenic particle. As PB-DOPA has been found in atherosclerotic plaques, we tested the ability of free and PB-DOPA to influence LDL oxidation. Free DOPA, in contrast to tyrosine had strong inhibitory action on both, the copper-ion initiated and metal ion independent (AAPH-induced) lipid oxidation. Free DOPA also inhibited LDL oxidation induced by the copper transport protein ceruloplasmin. To test if PB-DOPA was also able to inhibit LDL oxidation, DOPA residues were generated enzymatically in the model peptides insulin and tyr-tyr-tyr, respectively. PB-DOPA formation substantially increased the ability of both molecules to inhibit LDL oxidation by copper or AAPH. We hypothesize that DOPA-peptides and -proteins may have the potential to act as efficacious antioxidants in the atherosclerotic plaque.
Collapse
Affiliation(s)
- Markus Exner
- Department of Laboratory Medicine, University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
22
|
Abstract
Oxidized protein deposition and accumulation have been implicated in the aetiology of a wide variety of age-related pathologies. Protein oxidation in vivo commonly results in the in situ modification of amino acid side chains, generating new oxidized amino acid residues in proteins. We have demonstrated previously that certain oxidized amino acids can be (mis)incorporated into cell proteins in vitro via protein synthesis. In the present study, we show that incorporation of o- and m-tyrosine resulted in increased protein catabolism, whereas dopa incorporation generated proteins that were inefficiently degraded by cells. Incorporation of higher levels of L-dopa into proteins resulted in an increase in the activity of lysosomal cathepsins, increased autofluorescence and the generation of high-molecular-mass SDS-stable complexes, indicative of protein aggregation. These effects were due to proteins containing incorporated L-dopa, since they were not seen with the stereoisomer D-dopa, which enters the cell and generates the same reactive species as L-dopa, but cannot be incorporated into proteins. The present study highlights how the nature of the oxidative modification to the protein can determine the efficiency of its removal from the cell by proteolysis. Protection against the generation of dopa and other species that promote resistance to proteolysis might prove to be critical in preventing toxicity from oxidative stress in pathologies associated with protein deposition, such as atherosclerosis, Alzheimer's disease and Parkinson's disease.
Collapse
|
23
|
Granata A, Roncone R, Monzani E, Casella L. Tyrosinase-Generated Quinones Induce Covalent Modification, Unfolding, and Aggregation of Human Holo-Myoglobin. Biomacromolecules 2007; 8:3214-23. [PMID: 17883274 DOI: 10.1021/bm070409h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study describes the pattern of protein modification undergone by human holo-myoglobin by reactive fluoroquinones enzymatically produced by oxidation of 3-fluorophenol in mild conditions (pH 7.4, 25 degrees C). The fluoroquinones react with a number of histidine residues. Surface residues H24, H36, H48, and H82 and the heme distal histidine H64 were all found to be modified to a significant extent. In contrast, cysteine C110 is not appreciably affected, possibly because it is not accessible to the fluoroquinones. The sites of protein modification were assessed by mass spectrometry analysis of the peptide fragments resulting from controlled proteolysis of the apoprotein. As a consequence of the reaction with quinones, the globular structure of myoglobin becomes more prone to denaturation by the partial loss of its secondary structure. As a more intriguing consequence, the fluoroquinones promote the formation of structured aggregates of moderate size that lack the typical morphology of fibrillar structures.
Collapse
Affiliation(s)
- Alessandro Granata
- Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | | | | | | |
Collapse
|
24
|
Nelson M, Foxwell AR, Tyrer P, Dean RT. Protein-bound 3,4-dihydroxy-phenylanine (DOPA), a redox-active product of protein oxidation, as a trigger for antioxidant defences. Int J Biochem Cell Biol 2006; 39:879-89. [PMID: 17098462 DOI: 10.1016/j.biocel.2006.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/01/2006] [Accepted: 10/02/2006] [Indexed: 11/20/2022]
Abstract
Protein hydroperoxides and protein-bound 3,4-dihydroxy-phenylanine are amongst the major long-lived redox-active products during free radical attack on proteins. Protein-bound 3,4-dihydroxy-phenylanine can redox cycle between catechol and quinone form, and bind transition metals, whereas hydroperoxides are converted to stable hydroxides. The free amino acid 3,4-dihydroxy-phenylanine is a normal metabolite, an oxidation product of tyrosine, involved in pathways of dopamine and melanin production, and we have shown that it may be incorporated into protein-by-protein synthesis. However, physiological levels of protein-bound 3,4-dihydroxy-phenylanine are very low; yet remarkably elevated levels occur in some pathologies. We propose that, unlike free 3,4-dihydroxy-phenylanine, protein-bound 3,4-dihydroxy-phenylanine is a signal for the activation of cellular defences both against the oxidative fluxes during oxidative stress and against the oxidative damage which sometimes ensues. Unlike free 3,4-dihydroxy-phenylanine, the levels of protein-bound 3,4-dihydroxy-phenylanine can change 5-10-fold during oxidative damage in vivo, an appropriate property for a signalling molecule. We suggest mechanisms by which protein-bound 3,4-dihydroxy-phenylanine might trigger oxidative defences, via NF-kappaB and other transcription factors. Little evidence yet bears directly on this, but we discuss some implications of observations on free 3,4-dihydroxy-phenylanine supply to cells in vitro, to Parkinson's patients, and to animal models of the disease. Several of the effects of 3,4-dihydroxy-phenylanine in these situations may be mediated by the production and actions of protein-bound 3,4-dihydroxy-phenylanine. Some experimental tests of the hypothesis are outlined and some possible therapeutic implications.
Collapse
Affiliation(s)
- Michelle Nelson
- Gadi Research Group, University of Canberra, ACT 2601, Australia
| | | | | | | |
Collapse
|
25
|
Wakamatsu K, Ito S. Evaluation of melanin-related metabolites as markers of solar ultraviolet-B radiation. ACTA ACUST UNITED AC 2006; 19:460-4. [PMID: 16965276 DOI: 10.1111/j.1600-0749.2006.00324.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ultraviolet-B (UVB) radiation due sunlight can result in sunburns and/or suntans. Sunburn occurs only several hours after solar UVB radiation, while a suntan requires several days to several weeks to develop. In the present study, we measured serum and urine levels of melanin-related metabolites, 5-S-cysteinyldopa (5-S-CD) and 6-hydroxy-5-methoxyindole-2-carboxylic acid (6H5MI2C), in nine subjects exposed to normal sunlight over the course of 12 months. We collected samples in the middle of each month and examined the variation of the markers, the correlation between them, and their correlation with solar UVB radiation. Those markers exhibited a seasonal variation with lower values in the winter and higher values in the summer. Levels of 5-S-CD and 6H5MI2C in the serum showed 48% and 54% increases in the summer compared with those in the winter, respectively. Comparison of 5-S-CD in the serum and urine showed the highest correlation (r2 = 0.344), followed by the pair of 5-S-CD and 6H5MI2C in the serum. Levels of 5-S-CD in the serum showed the highest correlation (r2 = 0.729) with the mean solar UVB radiation during the first 10 d of the month, while 6H5MI2C in the serum was highly correlated (r2 = 0.483) with solar UVB radiation during the previous month. Levels of 5-S-CD and 6H5MI2C in the serum appear to reflect the degrees of skin injury and pigmentation in the skin, respectively.
Collapse
Affiliation(s)
- Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan.
| | | |
Collapse
|
26
|
Winyard PG, Moody CJ, Jacob C. Oxidative activation of antioxidant defence. Trends Biochem Sci 2006; 30:453-61. [PMID: 15996871 DOI: 10.1016/j.tibs.2005.06.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/19/2005] [Accepted: 06/21/2005] [Indexed: 02/02/2023]
Abstract
Living cells maintain a delicate balance between oxidizing and reducing species, and many disorders such as rheumatoid arthritis and Alzheimer's disease have been associated with a disturbed intracellular 'redox equilibrium'. The past few years have witnessed accelerated research into how natural redox responses and antioxidant defence systems are activated and how they restore a healthy redox balance. To function properly, many of these processes rely on a powerful sulfur redox chemistry, which is best exemplified by the complex, newly emerging cysteine-based redox regulation of the glutathione and thioredoxin pathways. Other redox systems based on oxidatively activated amino acid side chains in proteins are also becoming increasingly important, but are still barely understood or explored.
Collapse
Affiliation(s)
- Paul G Winyard
- Peninsula Medical School, Universities of Exeter and Plymouth, St. Luke's Campus, UK
| | | | | |
Collapse
|
27
|
Rodgers KJ, Hume PM, Morris JGL, Dean RT. Evidence for L-dopa incorporation into cell proteins in patients treated with levodopa. J Neurochem 2006; 98:1061-7. [PMID: 16771833 DOI: 10.1111/j.1471-4159.2006.03941.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Levodopa (L-dopa) is the most widely used agent for the symptomatic relief of Parkinson's disease. There is concern that chronic L-dopa treatment may be detrimental, with some studies suggesting that L-dopa may be neurotoxic. A potentially important mechanism whereby L-dopa may exert neurotoxic effects has been overlooked: that of the incorporation of L-dopa into proteins by protein synthesis. L-Dopa competes with tyrosine as a substrate in protein synthesis in vitro. We provide evidence that L-dopa can also be incorporated into proteins in vivo. Blood from L-dopa-treated and -non-treated patients was separated into protein, erythrocyte and lymphocyte fractions and levels of protein-incorporated dopa quantified by HPLC. Levels of protein-incorporated dopa were significantly increased in lymphocyte cell proteins from L-dopa-treated patients. This has not arisen from oxidative pathways as there was no evidence of oxidative damage to proteins. In addition, there was no increase in protein-incorporated dopa in erythrocytes, which are not actively synthesizing proteins. We suggest that protein-incorporated dopa could also be generated in the CNS. The accumulation of protein-incorporated dopa in cells is associated with oxidative stress and impaired function and could contribute to some of the problems associated with long-term L-dopa treatment.
Collapse
Affiliation(s)
- Kenneth J Rodgers
- The Cell Biology Group, The Heart Research Institute, Camperdown, Sydney, New South Wales, Australia.
| | | | | | | |
Collapse
|
28
|
Sever MJ, Wilker JJ. Absorption spectroscopy and binding constants for first-row transition metal complexes of a DOPA-containing peptide. Dalton Trans 2006:813-22. [PMID: 16437176 DOI: 10.1039/b509586g] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A diverse array of biological systems incorporate 3,4-dihydroxyphenlyalanine (DOPA) into proteins and small molecules for cross-linking and material generation. Marine worm eggshells, sea squirt wound plugs, and marine mussel adhesives may all be formed by combining DOPA-containing molecules with high levels of metals. In order to provide model systems for characterizing these biomaterials, we carried out a study on metal binding to a DOPA-containing peptide. Ultraviolet-visible absorption spectra are presented for the AdopaTP peptide binding to Fe3+, V3+, VO2+, Mn3+, Ti4+, Cu2+, Co2+, and Ni2+ in mono, bis, and where applicable, tris coordination modes. Association constants were determined for selected metal ions binding to the peptide. In general, the spectroscopic and binding properties of this DOPA-containing peptide were found to be similar to those of catechol.
Collapse
Affiliation(s)
- Mary J Sever
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
29
|
Ozawa K, Headlam MJ, Mouradov D, Watt SJ, Beck JL, Rodgers KJ, Dean RT, Huber T, Otting G, Dixon NE. Translational incorporation of L-3,4-dihydroxyphenylalanine into proteins. FEBS J 2005; 272:3162-71. [PMID: 15955073 DOI: 10.1111/j.1742-4658.2005.04735.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An Escherichia coli cell-free transcription/translation system was used to explore the high-level incorporation of L-3,4-dihydroxyphenylalanine (DOPA) into proteins by replacing tyrosine with DOPA in the reaction mixtures. ESI-MS showed specific incorporation of DOPA in place of tyrosine. More than 90% DOPA incorporation at each tyrosine site was achieved, allowing the recording of clean 15N-HSQC NMR spectra. A redox-staining method specific for DOPA was shown to provide a sensitive and generally applicable method for assessing the cell-free production of proteins. Of four proteins produced in soluble form in the presence of tyrosine, two resulted in insoluble aggregates in the presence of high levels of DOPA. DOPA has been found in human proteins, often in association with various disease states that implicate protein aggregation and/or misfolding. Our results suggest that misfolded and aggregated proteins may result, in principle, from ribosome-mediated misincorporation of intracellular DOPA accumulated due to oxidative stress. High-yield cell-free protein expression systems are uniquely suited to obtain rapid information on solubility and aggregation of nascent polypeptide chains.
Collapse
Affiliation(s)
- Kiyoshi Ozawa
- Research School of Chemistry, Australian National University, Canberra, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rodgers KJ, Hume PM, Dunlop RA, Dean RT. Biosynthesis and turnover of DOPA-containing proteins by human cells. Free Radic Biol Med 2004; 37:1756-64. [PMID: 15528035 DOI: 10.1016/j.freeradbiomed.2004.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/06/2004] [Accepted: 08/12/2004] [Indexed: 10/26/2022]
Abstract
Protein-bound 3,4-dihydroxyphenylalanine (PB-DOPA) is a major product of hydroxyl radical attack on tyrosine residues of proteins. Levels of PB-DOPA in cells and tissues have been shown to be greatly elevated in age-related diseases. We demonstrate for the first time that l-DOPA (levodopa) can be biosynthetically incorporated into cell proteins by human cells (THP-1 monocytes and monocyte-derived macrophages). The DOPA-containing proteins generated were selectively visualized on PVDF membranes using a redox-cycling staining method. Many cell proteins contained DOPA and seemed to be synthesized as their full-length forms. The cellular removal of DOPA-containing proteins by THP-1 cells was by proteolysis involving both the proteasomal and the lysosomal systems. The rate of cellular proteolysis of DOPA-containing proteins increased at lower levels of DOPA incorporation but decreased at higher levels of DOPA incorporation. The decreased rate of degradation was accompanied by an increase in the activity of cathepsins B and L but the activity of cathepsin S increased only at lower levels of DOPA incorporation. These data raise the possibility that PB-DOPA could be generated in vivo from l-DOPA, which is the most widely used treatment for Parkinson disease.
Collapse
Affiliation(s)
- Kenneth J Rodgers
- Cell Biology Unit, The Heart Research Institute, Camperdown, Sydney, NSW 2050, Australia.
| | | | | | | |
Collapse
|
31
|
Alfonta L, Zhang Z, Uryu S, Loo JA, Schultz PG. Site-Specific Incorporation of a Redox-Active Amino Acid into Proteins. J Am Chem Soc 2003; 125:14662-3. [PMID: 14640614 DOI: 10.1021/ja038242x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The redox-active amino acid 3,4-dihydroxy-l-phenylalanine (DHP), which can undergo two-electron oxidation to a quinone, has been incorporated selectively and efficiently into proteins in Escherichia coli in response to a TAG codon. We have demonstrated that DHP can be oxidized electrochemically within the protein. The ability to incorporate a redox-active amino acid site specifically into proteins should facilitate the study of electron transfer in proteins, as well as enable the engineering of redox proteins with novel properties.
Collapse
Affiliation(s)
- Lital Alfonta
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
32
|
van der Vlies D, Woudenberg J, Post JA. Protein oxidation in aging: endoplasmic reticulum as a target. Amino Acids 2003; 25:397-407. [PMID: 14661099 DOI: 10.1007/s00726-003-0025-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2002] [Revised: 01/01/2003] [Accepted: 05/08/2003] [Indexed: 10/26/2022]
Abstract
Oxidatively modified proteins have been shown to correlate with the age of an organism or its tissues. An increase in tissue-susceptibility to experimentally induced protein oxidation not only depends on tissue type and age, but also on the maximum lifespan potential of the species. A general, although tissue dependent, decline in anti-oxidative defenses during aging may very well be responsible for this difference in vulnerability. In addition, the level of protein modifications also depends on the nature and the subcellular localization of the proteins involved. Damage to the endoplasmic reticulum (ER), and its subsequent impaired functionality may be involved in the process of aging. This is suggested by; (1) an upregulation of ER stress-response chaperones, (2) a preferential oxidation of ER-resident proteins and, (3) a disturbance of calcium homeostasis. Therefore, this review will focus on the putative involvement of the oxidized endoplasmic reticulum in the process of aging.
Collapse
Affiliation(s)
- D van der Vlies
- Erasmus MC, Department of Internal Oncology - Josephina Nefkens Instituut, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
33
|
Rodgers KJ, Wang H, Fu S, Dean RT. Biosynthetic incorporation of oxidized amino acids into proteins and their cellular proteolysis. Free Radic Biol Med 2002; 32:766-75. [PMID: 11937302 DOI: 10.1016/s0891-5849(02)00768-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We demonstrate that oxidized amino acids can be incorporated into proteins by protein synthesis. The level of incorporation into protein was dependent on the concentration of oxidized amino acid supplied to the cells. At low levels of incorporation, the oxidized amino acids examined increased the degradation rate of the cell proteins. Degradation of certain proteins containing high levels of DOPA (but not ortho or meta tyrosine) was decreased to below the basal degradation rates suggesting that DOPA may contribute to proteins becoming resistant to proteolysis. Changes in the degradation rates of the oxidized amino acid-containing proteins was shown to have no impact on the degradation rates of native proteins, indicating that the activity of the degradative machinery was not affected. We demonstrate that oxidized proteins are selectively degraded by the proteasomes and provide evidence to suggest that the proteasomes and the endosomal-lysosomal systems may act in sequence as well as in parallel. The incorporation approach, unlike cell studies in which an exogenous oxidant is used, allows the degradation rates of the oxidatively modified proteins to be selectively measured, offering a greater sensitivity as well as greatly reducing toxicity to the cell and avoiding oxidative modification of other cell components.
Collapse
Affiliation(s)
- Kenneth J Rodgers
- The Cell Biology Group, The Heart Research Institute, Sydney, New South Wales, Australia.
| | | | | | | |
Collapse
|
34
|
Abstract
Organisms produce reactive oxygen species (ROS) throughout their lives. The activities of a number of key antioxidant enzymes, such as catalase, superoxide dismutase and glutathione peroxidase, which protect against the damaging effects of ROS, have been reported to decrease with increasing age, though this is not unequivocal. In contrast, sacrificial antioxidants such as ascorbate, thiols and tocopherol do not appear to decrease with increasing age. It is also possible that ROS production increases with age as a result of poorer coupling of electron transport components, and an increased level of redox-active metal ions that could catalyse oxidant formation. As a result of this decrease in antioxidant defences, and increased rate of ROS formation, it is possible that the impact of ROS increases with age. ROS are known to oxidise biological macromolecules, with proteins an important target. If the argument that the impact of ROS increases with age is true, then proteins would be expected to accumulate oxidised materials with age, and the rate of such accumulation should increase with time, reflecting impaired inefficiency of homeostasis. Here we review the evidence for the accumulation of oxidised, or modified, extra- and intra-cellular proteins in vivo.
Collapse
Affiliation(s)
- S Linton
- Cell Biology Group, The Heart Research Institute, 145 Missenden Road, Camperdown, Sydney, NSW 2050, Australia
| | | | | |
Collapse
|