1
|
Hao D, Xue JY, Wang Q, Guo L, Li XA. The Role of Scavenger Receptor BI in Sepsis. Int J Mol Sci 2024; 25:13441. [PMID: 39769206 PMCID: PMC11677381 DOI: 10.3390/ijms252413441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Sepsis is a life-threatening condition resulting from a dysregulated host response to infection. Currently, there is no effective therapy for sepsis due to an incomplete understanding of its pathogenesis. Scavenger receptor BI (SR-BI) is a high-density lipoprotein (HDL) receptor that plays a key role in HDL metabolism by modulating the selective uptake of cholesteryl ester from HDL. Recent studies, including those from our laboratory, indicate that SR-BI protects against sepsis through multiple mechanisms: (1) preventing nitric oxide-induced cytotoxicity; (2) promoting hepatic lipopolysaccharide (LPS) clearance and regulating cholesterol metabolism in the liver; (3) inhibiting LPS-induced inflammatory signaling in macrophages; and (4) mediating the uptake of cholesterol from HDL for inducible glucocorticoid (iGC) synthesis in the adrenal gland, which controls systemic inflammatory response. In this article, we review the roles of SR-BI in sepsis.
Collapse
Affiliation(s)
- Dan Hao
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jian-Yao Xue
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Qian Wang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Ling Guo
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Xiang-An Li
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Lexington VA Healthcare System, Lexington, KY 40502, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Singh H, Shyamveer, Jori C, Mahajan SD, Aalinkeel R, Kaliyappan K, Bhattacharya M, Parvez MK, Al-Dosari MS. Role of APOC3 3238C/G, APOB 12669G/A and SCARB1 1050C/T polymorphisms, their expression in patients of HIV-associated lipodystrophy. Heliyon 2024; 10:e30519. [PMID: 38742060 PMCID: PMC11089352 DOI: 10.1016/j.heliyon.2024.e30519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Apolipoproteins and Scavenger Receptor Class B1 (SCARB1) proteins are involved in the etiology of HIV-associated lipodystrophy (HIVLD). APOC3 3238C/G, APOB 12669G/A and SCARB1 1050C/T polymorphisms were linked with increased level of APOB, TG, HDL-C and risk of cardiovascular diseases (CVDs). Hence, we evaluated the genetic variations of APOC3 3238C/G, APOB 12669G/A and SCARB1 1050C/T in 187 patients of HIV (64 with HIVLD, 123 without HIVLD) and 139 healthy controls using PCR-RFLP and expression by qPCR. The genotypes of SCARB1 1050 TT and APOB 12669AA showed a risk to severe HIVLD (P = 0.23, OR = 4.95; P = 0.16, OR = 2.02). The APOC3 3238 GG genotype was associated with a lesser risk of severe HIVLD (P = 0.07, OR = 0.22). The APOB 12669 GA genotype was associated with a greater risk of HIVLD severity in patients with impaired LDL, triglyceride (TG), and cholesterol levels (P = 0.34, OR = 4.13; P = 0.25, OR = 3.64; P = 0.26, OR = 5.47). Similarly, APOB 12669AA genotypes in the presence of impaired triglyceride levels displayed the susceptibility to severity of HIVLD (P = 0.77, OR = 2.91). APOB 12669 GA genotype along with impaired HDL and cholesterol levels indicated an increased risk for HIVLD acquisition among patients without HIVLD (P = 0.42, OR = 2.42; P = 0.26, OR = 2.27). In patients with and without HIVLD, APOC3 3238CG genotypes having impaired cholesterol and glucose levels had higher risk for severity and development of HIVLD (P = 0.13, OR = 2.84, P = 0.34, OR = 1.58; P = 0.71, OR = 1.86; P = 0.14, OR = 2.30). An increased expression of APOB and SCARB1 genes were observed in patients with HIVLD (+0.51 vs. -0.93; +4.78 vs. +3.29), and decreased expression of APOC3 gene was observed in patients with HIVLD (-0.35 vs. -1.65). In conclusion, the polymorphisms mentioned above were not associated with the modulation of HIVLD. However, in the presence of impaired triglyceride, HDL, cholesterol and glucose levels, APOB 12669AA and 12669 GA, APOC3 3238CG genotypes indicated a risk for the development and severity of HIVLD.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, National AIDS Research Institute, Pune, 411026, India
| | - Shyamveer
- Department of Molecular Biology, National AIDS Research Institute, Pune, 411026, India
| | - Chandrashekhar Jori
- Department of Molecular Biology, National AIDS Research Institute, Pune, 411026, India
| | - Supriya D. Mahajan
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo's Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY14203, USA
| | - Ravikumar Aalinkeel
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo's Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY14203, USA
| | - Kathiravan Kaliyappan
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo's Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY14203, USA
| | - Meenakshi Bhattacharya
- Department of Medicine, ART PLUS CENTRE, OPD-136, Government Medical College & Hospital, University Road, Aurangabad, 431004, India
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Matteucci KC, Correa AAS, Costa DL. Recent Advances in Host-Directed Therapies for Tuberculosis and Malaria. Front Cell Infect Microbiol 2022; 12:905278. [PMID: 35669122 PMCID: PMC9163498 DOI: 10.3389/fcimb.2022.905278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, and malaria, caused by parasites from the Plasmodium genus, are two of the major causes of death due to infectious diseases in the world. Both diseases are treatable with drugs that have microbicidal properties against each of the etiologic agents. However, problems related to treatment compliance by patients and emergence of drug resistant microorganisms have been a major problem for combating TB and malaria. This factor is further complicated by the absence of highly effective vaccines that can prevent the infection with either M. tuberculosis or Plasmodium. However, certain host biological processes have been found to play a role in the promotion of infection or in the pathogenesis of each disease. These processes can be targeted by host-directed therapies (HDTs), which can be administered in conjunction with the standard drug treatments for each pathogen, aiming to accelerate their elimination or to minimize detrimental side effects resulting from exacerbated inflammation. In this review we discuss potential new targets for the development of HDTs revealed by recent advances in the knowledge of host-pathogen interaction biology, and present an overview of strategies that have been tested in vivo, either in experimental models or in patients.
Collapse
Affiliation(s)
- Kely C. Matteucci
- Plataforma de Medicina Translacional Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André A. S. Correa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Diego L. Costa,
| |
Collapse
|
4
|
Axmann M, Plochberger B, Mikula M, Weber F, Strobl WM, Stangl H. Plasma Membrane Lipids: An Important Binding Site for All Lipoprotein Classes. MEMBRANES 2021; 11:membranes11110882. [PMID: 34832111 PMCID: PMC8622984 DOI: 10.3390/membranes11110882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/23/2022]
Abstract
Cholesterol is one of the main constituents of plasma membranes; thus, its supply is of utmost importance. This review covers the known mechanisms of cholesterol transfer from circulating lipoprotein particles to the plasma membrane, and vice versa. To achieve homeostasis, the human body utilizes cellular de novo synthesis and extracellular transport particles for supply of cholesterol and other lipids via the blood stream. These lipoprotein particles can be classified according to their density: chylomicrons, very low, low, and high-density lipoprotein (VLDL, LDL, and HDL, respectively). They deliver and receive their lipid loads, most importantly cholesterol, to and from cells by several redundant routes. Defects in one of these pathways (e.g., due to mutations in receptors) usually are not immediately fatal. Several redundant pathways, at least temporarily, compensate for the loss of one or more of them, but the defects trigger systemic diseases, such as atherosclerosis later on. Recently, intracellular membrane–membrane contact sites were shown to be involved in intracellular cholesterol transfer and the plasma membrane itself has been proposed to act as a binding site for lipoprotein-mediated cargo unloading.
Collapse
Affiliation(s)
- Markus Axmann
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstrasse 21, 4020 Linz, Austria; (M.A.); (B.P.); (F.W.)
| | - Birgit Plochberger
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstrasse 21, 4020 Linz, Austria; (M.A.); (B.P.); (F.W.)
| | - Mario Mikula
- Center for Pathobiochemistry and Genetics, Institute for Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090 Vienna, Austria;
| | - Florian Weber
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstrasse 21, 4020 Linz, Austria; (M.A.); (B.P.); (F.W.)
| | - Witta Monika Strobl
- Center for Pathobiochemistry and Genetics, Institute for Medical Chemistry, Medical University of Vienna, Währingerstrasse 10, 1090 Vienna, Austria;
| | - Herbert Stangl
- Center for Pathobiochemistry and Genetics, Institute for Medical Chemistry, Medical University of Vienna, Währingerstrasse 10, 1090 Vienna, Austria;
- Correspondence:
| |
Collapse
|
5
|
Lavker RM, Kaplan N, McMahon KM, Calvert AE, Henrich SE, Onay UV, Lu KQ, Peng H, Thaxton CS. Synthetic high-density lipoprotein nanoparticles: Good things in small packages. Ocul Surf 2021; 21:19-26. [PMID: 33894397 PMCID: PMC8328934 DOI: 10.1016/j.jtos.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/26/2021] [Accepted: 03/06/2021] [Indexed: 12/26/2022]
Abstract
Medicine has been a great beneficiary of the nanotechnology revolution. Nanotechnology involves the synthesis of functional materials with at least one size dimension between 1 and 100 nm. Advances in the field have enabled the synthesis of bio-nanoparticles that can interface with physiological systems to modulate fundamental cellular processes. One example of a diverse acting nanoparticle-based therapeutic is synthetic high-density lipoprotein (HDL) nanoparticles (NP), which have great potential for treating diseases of the ocular surface. Our group has developed a spherical HDL NP using a gold nanoparticle core. HDL NPs: (i) closely mimic the physical and chemical features of natural HDLs; (ii) contain apoA-I; (iii) bind with high-affinity to SR-B1, which is the major receptor through which HDL modulates cell cholesterol metabolism and controls the selective uptake of HDL cargo into cells; (iv) are non-toxic to cells and tissues; and (v) can be chemically engineered to display nearly any surface or core composition desired. With respect to the ocular surface, topical application of HDL NPs accelerates re-epithelization of the cornea following wounding, attenuates inflammation resulting from chemical burns and/or other stresses, and effectively delivers microRNAs with biological activity to corneal cells and tissues. HDL NPs will be the foundation of a new class of topical eye drops with great translational potential and exemplify the impact that nanoparticles can have in medicine.
Collapse
Affiliation(s)
- Robert M Lavker
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Nihal Kaplan
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kaylin M McMahon
- Department of Dermatology Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrea E Calvert
- Department of Dermatology Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stephen E Henrich
- Department of Dermatology Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ummiye V Onay
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kurt Q Lu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Han Peng
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C Shad Thaxton
- Department of Dermatology Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
6
|
Clarkson-Townsend DA, Douglass AJ, Singh A, Allen RS, Uwaifo IN, Pardue MT. Impacts of high fat diet on ocular outcomes in rodent models of visual disease. Exp Eye Res 2021; 204:108440. [PMID: 33444582 PMCID: PMC7946735 DOI: 10.1016/j.exer.2021.108440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
High fat diets (HFD) have been utilized in rodent models of visual disease for over 50 years to model the effects of lipids, metabolic dysfunction, and diet-induced obesity on vision and ocular health. HFD treatment can recapitulate the pathologies of some of the leading causes of blindness, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) in rodent models of visual disease. However, there are many important factors to consider when using and interpreting these models. To synthesize our current understanding of the importance of lipid signaling, metabolism, and inflammation in HFD-driven visual disease processes, we systematically review the use of HFD in mouse and rat models of visual disease. The resulting literature is grouped into three clusters: models that solely focus on HFD treatment, models of diabetes that utilize both HFD and streptozotocin (STZ), and models of AMD that utilize both HFD and genetic models and/or other exposures. Our findings show that HFD profoundly affects vision, retinal function, many different ocular tissues, and multiple cell types through a variety of mechanisms. We delineate how HFD affects the cornea, lens, uvea, vitreous humor, retina, retinal pigmented epithelium (RPE), and Bruch's membrane (BM). Furthermore, we highlight how HFD impairs several retinal cell types, including glia (microglia), retinal ganglion cells, bipolar cells, photoreceptors, and vascular support cells (endothelial cells and pericytes). However, there are a number of gaps, limitations, and biases in the current literature. We highlight these gaps and discuss experimental design to help guide future studies. Very little is known about how HFD impacts the lens, ciliary bodies, and specific neuronal populations, such as rods, cones, bipolar cells, amacrine cells, and retinal ganglion cells. Additionally, sex bias is an important limitation in the current literature, with few HFD studies utilizing female rodents. Future studies should use ingredient-matched control diets (IMCD), include both sexes in experiments to evaluate sex-specific outcomes, conduct longitudinal metabolic and visual measurements, and capture acute outcomes. In conclusion, HFD is a systemic exposure with profound systemic effects, and rodent models are invaluable in understanding the impacts on visual and ocular disease.
Collapse
Affiliation(s)
- Danielle A Clarkson-Townsend
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, USA
| | - Amber J Douglass
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, USA
| | - Anayesha Singh
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, USA; Emory Center for Ethics, Emory University, Atlanta, GA, USA
| | - Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ivie N Uwaifo
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, USA; Department of Neuroscience, Emory University, Atlanta, GA, USA
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Yadav B, Prasad N. Role of high-density lipoprotein cholesterol in health and diseases. INDIAN JOURNAL OF RHEUMATOLOGY 2021. [DOI: 10.4103/injr.injr_240_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Vishnyakova TG, Bocharov AV, Baranova IN, Kurlander R, Drake SK, Chen Z, Amar M, Sviridov D, Vaisman B, Poliakov E, Remaley AT, Eggerman TL, Patterson AP. SR-BI mediates neutral lipid sorting from LDL to lipid droplets and facilitates their formation. PLoS One 2020; 15:e0240659. [PMID: 33057430 PMCID: PMC7561250 DOI: 10.1371/journal.pone.0240659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/30/2020] [Indexed: 12/30/2022] Open
Abstract
SR-BI binds various lipoproteins, including HDL, LDL as well as VLDL, and mediates selective cholesteryl ester (CE) uptake. HDL derived CE accumulates in cellular lipid droplets (LDs), which also store triacylglycerol (TAG). We hypothesized that SR-BI could significantly facilitate LD formation, in part, by directly transporting LDL derived neutral lipids (NL) such as CE and TAG into LDs without lipolysis and de novo lipid synthesis. SR-BI overexpression greatly increased LDL uptake and LD formation in stably transfected HeLa cells (SR-BI-HeLa). LDs isolated from SR-BI-HeLa contained 4- and 7-times more CE and TAG, respectively, than mock-transfected HeLa (Mock-HeLa). In contrast, LDL receptor overexpression in HeLa (LDLr-HeLa) greatly increased LDL uptake, degradation with moderate 1.5- and 2-fold increases of CE and TAG, respectively. Utilizing CE and TAG analogs, BODIPY-TAG (BP-TAG) and BODIPY-CE (BP-CE), for tracking LDL NL, we found that after initial binding of LDL to SR-BI-HeLa, apoB remained at the cell surface, while BP-CE and BP-TAG were sorted and simultaneously transported together to LDs. Both lipids demonstrated limited internalization to lysosomes or endoplasmic reticulum in SR-BI-HeLa. In LDLr-HeLa, NLs demonstrated clear lysosomal sequestration without their sorting to LDs. An inhibition of TAG and CE de novo synthesis by 90-95% only reduced TAG and CE LD content by 45-50%, and had little effect on BP-CE and BP-TAG transport to LDs in SR-BI HeLa. Furthermore, intravenous infusion of 1-2 mg of LDL increased liver LDs in normal (WT) but not in SR-BI KO mice. Mice transgenic for human SR-BI demonstrated higher liver LD accumulation than WT mice. Finally, Electro Spray Infusion Mass Spectrometry (ESI-MS) using deuterated d-CE found that LDs accumulated up to 40% of unmodified d-CE LDL. We conclude that SR-BI mediates LDL-induced LD formation in vitro and in vivo. In addition to cytosolic NL hydrolysis and de novo lipid synthesis, this process includes selective sorting and transport of LDL NL to LDs with limited lysosomal NL sequestration and the transport of LDL CE, and TAG directly to LDs independently of de novo synthesis.
Collapse
Affiliation(s)
- Tatyana G. Vishnyakova
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Alexander V. Bocharov
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
- * E-mail:
| | - Irina N. Baranova
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Roger Kurlander
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Steven K. Drake
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Zhigang Chen
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Marcelo Amar
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| | - Denis Sviridov
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| | - Boris Vaisman
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| | - Eugenia Poliakov
- National Eye Institute, Bethesda, Maryland, United States of
America
| | - Alan T. Remaley
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| | - Thomas L. Eggerman
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
- National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda,
Maryland, United States of America
| | - Amy P. Patterson
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| |
Collapse
|
9
|
Wang J, Calvert AE, Kaplan N, McMahon KM, Yang W, Lu KQ, Peng H, Thaxton CS, Lavker RM. HDL nanoparticles have wound healing and anti-inflammatory properties and can topically deliver miRNAs. ADVANCED THERAPEUTICS 2020; 3. [PMID: 33709017 DOI: 10.1002/adtp.202000138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
microRNAs regulate numerous biological processes, making them potential therapeutic agents. Problems with delivery and stability of these molecules have limited their usefulness as treatments. We demonstrate that synthetic high-density lipoprotein nanoparticles (HDL NPs) topically applied to the intact ocular surface are taken up by epithelial and stromal cells. microRNAs complexed to HDL NPs (miR-HDL NPs) are similarly taken up by cells and tissues and retain biological activity. Topical treatment of diabetic mice with either HDL NPs or miR-HDL NPs significantly improved corneal re-epithelialization following wounding compared with controls. Mouse corneas with alkali burn-induced inflammation, topically treated with HDL NPs, displayed clinical, morphological and immunological improvement. These results should yield a novel HDL NP-based eye drop for patients with compromised wound healing ability (diabetics) and/or corneal inflammatory diseases (e.g. dry eye).
Collapse
Affiliation(s)
- Junyi Wang
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Andrea E Calvert
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Nihal Kaplan
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kaylin M McMahon
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Wending Yang
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kurt Q Lu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Han Peng
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - C Shad Thaxton
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Robert M Lavker
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
10
|
Lizunov AV, Okunevich IV, Lebedev AA, Bychkov ER, Piotrovskiy LB, Shabanov PD. [Molecular mechanisms of the cytoprotector cramizol effect in the experimental dyslipidemia model]. BIOMEDITSINSKAIA KHIMIIA 2020; 66:326-331. [PMID: 32893822 DOI: 10.18097/pbmc20206604326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tested drug cramizol exhibits lipid-lowering and anti-atherogenic effects. Cramizol reduces blood cholesterol and triglycerides. It also increases HDL and reduces the atherogenic index in rats with the chronic dyslipidemia model induced by a hypercholesterol diet. Cramizol is effective as a hypolipidemic agent and its efficiency is comparable with the reference drug, phenofibrate. Cramizol increases expression of the ApoA1 and ApoC2 genes, and also reduces expression of the Scarb1 gene in rats with experimentally induced hyperlipidemia. These mechanisms could be the basis of its hypolipidemic and anti-atherogenic actions.
Collapse
Affiliation(s)
- A V Lizunov
- Institute of Experimental Medicine, St. Petersburg, Russia; St Petersburg University, St. Petersburg, Russia
| | - I V Okunevich
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - A A Lebedev
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - E R Bychkov
- Institute of Experimental Medicine, St. Petersburg, Russia; Kirov Military Medical Academy, Ministry of Defense of the Russian Federation, St. Petersburg, Russia
| | | | - P D Shabanov
- Institute of Experimental Medicine, St. Petersburg, Russia; Kirov Military Medical Academy, Ministry of Defense of the Russian Federation, St. Petersburg, Russia
| |
Collapse
|
11
|
Liu L, Tan L, Yao J, Yang L. Long non‑coding RNA MALAT1 regulates cholesterol accumulation in ox‑LDL‑induced macrophages via the microRNA‑17‑5p/ABCA1 axis. Mol Med Rep 2020; 21:1761-1770. [PMID: 32319624 PMCID: PMC7057819 DOI: 10.3892/mmr.2020.10987] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis (AS), a major cause of cardiovascular disease, has developed into a serious challenge to the health system. The long non-coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is associated with the pathogenesis of AS. However, whether MALAT1 can affect cholesterol accumulation in macrophages during AS progression, and the potential molecular mechanism involved in this progression have not been elucidated. In the present study, the mRNA expression level of MALAT1 was measured using reverse transcription-quantitative PCR (RT-qPCR) and the protein expression level was detected via western blot analysis. Oil Red O staining was used for detecting lipid accumulation in macrophages. Bioinformatics, dual-luciferase reporter and RT-qPCR assays were used to investigate the relationship between MALAT1 and the microRNA (miR)-17-5p/ATP-binding cassette transporter A1 (ABCA1) axis. The present results suggested that the MALAT1 expression level was significantly decreased in patients with AS and in oxidized low-density lipoprotein (ox-LDL)-stimulated macrophages. Knockdown of MALAT1 increased ox-LDL uptake, lipid accumulation and the total cholesterol (T-CHO) level in ox-LDL-induced macrophages. In addition, MALAT1 inhibition significantly decreased the mRNA and protein expression levels of scavenger receptor (SR) class B member 1, apolipoprotein E (ApoE) and ABCA1. However, MALAT1 increased the expression level of SR class A. Subsequently, the present study investigated whether MALAT1 could target miR-17-5p to regulate the expression level of ABCA1, which is involved in cholesterol efflux from macrophages. The present results suggested that inhibition of miR-17-5p reversed the effects of MALAT1 knockdown on T-CHO content, and protein expression levels of ApoE and ABCA1 in ox-LDL-stimulated macrophages. In summary, knockdown of MALAT1 may promote cholesterol accumulation by regulating the miR-17-5p/ABCA1 axis in ox-LDL-induced THP-1 macrophages.
Collapse
Affiliation(s)
- Limin Liu
- Department of Cardiology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning 110002, P.R. China
| | - Lili Tan
- Department of Cardiology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning 110002, P.R. China
| | - Jian Yao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning 110002, P.R. China
| | - Lin Yang
- Department of Cardiology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
12
|
Rodríguez M, G Rebollar P, Mattioli S, Castellini C. n-3 PUFA Sources (Precursor/Products): A Review of Current Knowledge on Rabbit. Animals (Basel) 2019; 9:ani9100806. [PMID: 31618904 PMCID: PMC6827073 DOI: 10.3390/ani9100806] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023] Open
Abstract
This review compares the effects of different n-3 polyunsaturated fatty acid (PUFA) sources on biological activity, physiological/reproductive endpoints, and health implications with a special emphasis on a rabbit case study. Linoleic acid (LA) and α-linolenic acid (ALA) are members of two classes of PUFAs, namely the n-6 and n-3 series, which are required for normal human health. Both are considered precursors of a cascade of molecules (eicosanoids), which take part in many biological processes (inflammation, vasoconstriction/vasodilation, thromboregulation, etc.). However, their biological functions are opposite and are mainly related to the form (precursor or long-chain products) in which they were administered and to the enzyme-substrate preference. ALA is widely present in common vegetable oils and foods, marine algae, and natural herbs, whereas its long-chain PUFA derivatives are available mainly in fish and animal product origins. Recent studies have shown that the accumulation of n-3 PUFAs seems mostly to be tissue-dependent and acts in a tissue-selective manner. Furthermore, dietary n-3 PUFAs widely affect the lipid oxidation susceptibility of all tissues. In conclusion, sustainable sources of n-3 PUFAs are limited and exert a different effect about (1) the form in which they are administered, precursor or derivatives; (2) their antioxidant protections; and (3) the purpose to be achieved (health improvement, physiological and reproductive traits, metabolic pathways, etc.).
Collapse
Affiliation(s)
- María Rodríguez
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Pilar G Rebollar
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Simona Mattioli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy.
| | - Cesare Castellini
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy.
| |
Collapse
|
13
|
Palmer MA, Blakeborough L, Harries M, Haslam IS. Cholesterol homeostasis: Links to hair follicle biology and hair disorders. Exp Dermatol 2019; 29:299-311. [PMID: 31260136 DOI: 10.1111/exd.13993] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/24/2019] [Accepted: 06/19/2019] [Indexed: 01/10/2023]
Abstract
Lipids and lipid metabolism are critical factors in hair follicle (HF) biology, and cholesterol has long been suspected of influencing hair growth. Altered cholesterol homeostasis is involved in the pathogenesis of primary cicatricial alopecia, mutations in a cholesterol transporter are associated with congenital hypertrichosis, and dyslipidaemia has been linked to androgenic alopecia. The underlying molecular mechanisms by which cholesterol influences pathways involved in proliferation and differentiation within HF cell populations remain largely unknown. As such, expanding our knowledge of the role for cholesterol in regulating these processes is likely to provide new leads in the development of treatments for disorders of hair growth and cycling. This review describes the current state of knowledge with respect to cholesterol homeostasis in the HF along with known and putative links to hair pathologies.
Collapse
Affiliation(s)
- Megan A Palmer
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| | - Liam Blakeborough
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| | - Matthew Harries
- Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Iain S Haslam
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
14
|
Sahebi R, Hassanian SM, Ghayour‐Mobarhan M, Farrokhi E, Rezayi M, Samadi S, Bahramian S, Ferns GA, Avan A. Scavenger receptor Class B type I as a potential risk stratification biomarker and therapeutic target in cardiovascular disease. J Cell Physiol 2019; 234:16925-16932. [DOI: 10.1002/jcp.28393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Reza Sahebi
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Department of Molecular Medicine, School of Advanced Technologies Shahrekord University of Medical Sciences Shahrekord Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Ghayour‐Mobarhan
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Effat Farrokhi
- Department of Molecular Medicine, School of Advanced Technologies Shahrekord University of Medical Sciences Shahrekord Iran
| | - Majid Rezayi
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Sara Samadi
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Shabbou Bahramian
- Stem Cell Research Center Golestan University of Medical Sciences Gorgan Iran
| | - Gordon A. Ferns
- Division of Medical Education Brighton & Sussex Medical School, Falmer Brighton Sussex
| | - Amir Avan
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
15
|
Muresan XM, Sticozzi C, Belmonte G, Cervellati F, Ferrara F, Lila MA, Valacchi G. SR-B1 involvement in keratinocytes in vitro wound closure. Arch Biochem Biophys 2018; 658:1-6. [PMID: 30240595 DOI: 10.1016/j.abb.2018.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
Abstract
Skin represents the most extended organ of human body, having as main function the protection of our body from outdoor stressors. Its protective ability is compromised when the skin is disrupted as a consequence of mechanical insults. For this purpose, cutaneous tissue is equipped with an efficient and fine mechanism involved in repairing the wounded area. Among the numerous players that take part in the wound healing process, SR-B1 has been recently shown to have a role in keratinocyte re-epithelialization. SR-B1 is a mediator of cholesterol uptake from HDLs, whereas it is implicated in other cellular processes such as vitamins absorption, vesicle trafficking or pathogen identification. The aim of this study was to investigate the mechanisms involved in SR-B1 role in skin wound closure. Our in vitro data demonstrated that SR-B1 influenced keratinocyte proliferation and migration through a downregulation of nuclear cyclin D1 levels and active MMP9 expression respectively possibly in an NF-kB-dependent mechanism. In addition, SR-B1 was also able to modulate keratinocyte morphology into a pro-migratory cytoskeleton rearrangement. The present in vitro study suggests a new role of SRB1 as a possible new key player in cutaneous wound healing mechanism.
Collapse
Affiliation(s)
- Ximena M Muresan
- Dept. Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Claudia Sticozzi
- Dept. Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Belmonte
- Dept. Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Dept. Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Dept. Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mary Ann Lila
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, NC, USA
| | - Giuseppe Valacchi
- Dept. Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, NC, USA.
| |
Collapse
|
16
|
Di Y, Wasan EK, Cawthray J, Wasan KM. Scavenger receptor class BI (SR-BI) mediates uptake of CPX-351 into K562 leukemia cells. Drug Dev Ind Pharm 2018; 45:21-26. [DOI: 10.1080/03639045.2018.1513026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yunyun Di
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Ellen K. Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Jacqueline Cawthray
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Kishor M. Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
17
|
Kallol S, Huang X, Müller S, Ontsouka CE, Albrecht C. Novel Insights into Concepts and Directionality of Maternal⁻Fetal Cholesterol Transfer across the Human Placenta. Int J Mol Sci 2018; 19:ijms19082334. [PMID: 30096856 PMCID: PMC6121295 DOI: 10.3390/ijms19082334] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
Cholesterol is indispensable for cellular membrane composition and function. It is also a precursor for the synthesis of steroid hormones, which promote, among others, the maturation of fetal organs. A role of the ATP-binding-cassette-transporter-A1 (ABCA1) in the transport of maternal cholesterol to the fetus was suggested by transferring cholesterol to apolipoprotein-A-1 (apo-A1), but the directionality of the apoA-1/ABCA1-dependent cholesterol transport remains unclear. We isolated primary trophoblasts from term placentae to test the hypotheses that (1) apoA-1/ABCA1 dispatches cholesterol mainly towards the fetus to support fetal developmental maturation at term, and (2) differentiated syncytiotrophoblasts (STB) exert higher cholesterol transport activity than undifferentiated cytotrophoblasts (CTB). As experimental models, we used (1) trophoblast monolayers grown on Transwell® system consisting of apical (maternal-like) and basal (fetal-like) compartments, and (2) trophoblasts grown on conventional culture plates at CTB and STB stages. Surprisingly, apoA-1-mediated cholesterol efflux operated almost exclusively at the apical-maternal side, where ABCA1 was also localized by immunofluorescence. We found greater cholesterol efflux capacity in STB, which was increased by liver-X-receptor agonist treatment and decreased by ABCA1 inhibition. We conclude that at term the apoA-1/ABCA1 pathway is rather involved in cholesterol transport to the mother than in transfer to the fully developed fetus.
Collapse
Affiliation(s)
- Sampada Kallol
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
| | - Xiao Huang
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland.
| | - Stefan Müller
- Department of BioMedical Research, University of Bern, CH-3012 Bern, Switzerland.
| | - Corneille Edgar Ontsouka
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
18
|
Panchoo M, Lacko A. Scavenger receptor class B type 1 regulates neuroblastoma cell proliferation, migration and invasion. Biochem Biophys Res Commun 2018; 495:614-620. [DOI: 10.1016/j.bbrc.2017.10.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/29/2017] [Indexed: 12/18/2022]
|
19
|
Sakai-Kato K, Sakurai M, Takechi-Haraya Y, Nanjo K, Goda Y. Involvement of scavenger receptor class B type 1 and low-density lipoprotein receptor in the internalization of liposomes into HepG2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2253-2258. [DOI: 10.1016/j.bbamem.2017.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 08/06/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022]
|
20
|
Muresan XM, Sticozzi C, Belmonte G, Savelli V, Evelson P, Valacchi G. Modulation of cutaneous scavenger receptor B1 levels by exogenous stressors impairs "in vitro" wound closure. Mech Ageing Dev 2017; 172:78-85. [PMID: 29102450 DOI: 10.1016/j.mad.2017.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/30/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Abstract
Scavenger receptor B1 (SR-B1) is a trans-membrane protein, involved in tissue reverse cholesterol transport. Several studies have demonstrated that SR-B1 is also implicated in other physiological processes, such as bacteria and apoptotic cells recognition and regulation of intracellular tocopherol and carotenoids levels. Among the tissues where it is localized, SR-B1 has been shown to be significantly expressed in human epidermis. Our group has demonstrated that SR-B1 levels are down-regulated in human cultured keratinocytes by environmental stressors, such as cigarette smoke, via cellular redox imbalance. Our present study aimed to investigate whether such down-regulation was confirmed in a 3D skin model and under other environmental challengers such as particulate matter and ozone. We also investigated the association between oxidation-induced SR-B1 modulation and impaired wound closure. The data obtained showed that not only cigarette, but also the other environmental stressors reduced SR-B1 expression in epidermal cutaneous tissues and that this effect might be involved in impaired wound healing.
Collapse
Affiliation(s)
| | - Claudia Sticozzi
- Dept. of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Belmonte
- Dept. of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Vinno Savelli
- Department of Medical, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Pablo Evelson
- Institute of Biochemistry and Molecular Medicine (IBIMOL-UBA-CONICET), Pharmacy and Biochemistry School, University of Buenos Aires, Buenos Aires, Argentina
| | - Giuseppe Valacchi
- Dept. of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, NC, USA.
| |
Collapse
|
21
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 - Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017; 4:408-414. [PMID: 28959666 PMCID: PMC5615163 DOI: 10.1016/j.toxrep.2017.07.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
In this study, alterations in lipid metabolism associated with acute aflatoxin B1 (AFB1) induced hepatotoxicity and gene expression changes underlying these effects were investigated. Rats were orally administered three doses (0.25 mg/kg, 0.5 mg/kg and 1.0 mg/kg) of AFB1 for seven days; after which blood was collected and liver excised. Lipid profiles of plasma and liver were determined spectrophotometrically while the expression of genes associated with lipid and lipoprotein metabolism was assayed by reverse transcriptase polymerase chain reaction. Acute exposure to AFB1 increased the levels of plasma and liver cholesterol, triglycerides and phospholipids. AFB1 at 0.5 mg/kg and 1.0 mg/kg resulted in a dose-dependent (1.2 and 1.5 fold, respectively) downregulation of hepatic Cpt1a with a concomitant 1.2 and 1.5 fold increase in the level of plasma FFA, respectively. A similar observation of 1.2 and 1.3 fold increase was also observed in plasma triglyceride concentration, at both respective doses. AFB1 also decreased the relative expression of Ahr, Lipc and Lcat whereas, it upregulated Scarb1 in a dose dependent manner. AFB1-induced dysregulation of the expression of lipid and lipoprotein metabolizing genes may be one mechanism linking AFB1 to altered lipid metabolism and ultimately risk for coronary heart disease.
Collapse
Affiliation(s)
- Oluwakemi Anuoluwapo Rotimi
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Solomon Oladapo Rotimi
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Chibueze Uchechukwu Duru
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Ogheneworo Joel Ebebeinwe
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Anthonia Obhio Abiodun
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Boluwaji Oluwamayowa Oyeniyi
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Francis Adedayo Faduyile
- Department of Pathology and Forensic Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| |
Collapse
|
22
|
Paththinige CS, Sirisena ND, Dissanayake V. Genetic determinants of inherited susceptibility to hypercholesterolemia - a comprehensive literature review. Lipids Health Dis 2017; 16:103. [PMID: 28577571 PMCID: PMC5457620 DOI: 10.1186/s12944-017-0488-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/17/2017] [Indexed: 02/08/2023] Open
Abstract
Hypercholesterolemia is a strong determinant of mortality and morbidity associated with cardiovascular diseases and a major contributor to the global disease burden. Mutations in four genes (LDLR, APOB, PCSK9 and LDLRAP1) account for the majority of cases with familial hypercholesterolemia. However, a substantial proportion of adults with hypercholesterolemia do not have a mutation in any of these four genes. This indicates the probability of having other genes with a causative or contributory role in the pathogenesis of hypercholesterolemia and suggests a polygenic inheritance of this condition. Here in, we review the recent evidence of association of the genetic variants with hypercholesterolemia and the three lipid traits; total cholesterol (TC), HDL-cholesterol (HDL-C) and LDL-cholesterol (LDL-C), their biological pathways and the associated pathogenetic mechanisms. Nearly 80 genes involved in lipid metabolism (encoding structural components of lipoproteins, lipoprotein receptors and related proteins, enzymes, lipid transporters, lipid transfer proteins, and activators or inhibitors of protein function and gene transcription) with single nucleotide variants (SNVs) that are recognized to be associated with hypercholesterolemia and serum lipid traits in genome-wide association studies and candidate gene studies were identified. In addition, genome-wide association studies in different populations have identified SNVs associated with TC, HDL-C and LDL-C in nearly 120 genes within or in the vicinity of the genes that are not known to be involved in lipid metabolism. Over 90% of the SNVs in both these groups are located outside the coding regions of the genes. These findings indicates that there might be a considerable number of unrecognized processes and mechanisms of lipid homeostasis, which when disrupted, would lead to hypercholesterolemia. Knowledge of these molecular pathways will enable the discovery of novel treatment and preventive methods as well as identify the biochemical and molecular markers for the risk prediction and early detection of this common, yet potentially debilitating condition.
Collapse
Affiliation(s)
- C S Paththinige
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka.
| | - N D Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| | - Vhw Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| |
Collapse
|
23
|
Brodeur MR, Rhainds D, Charpentier D, Mihalache-Avram T, Mecteau M, Brand G, Chaput E, Perez A, Niesor EJ, Rhéaume E, Maugeais C, Tardif JC. Dalcetrapib and anacetrapib differently impact HDL structure and function in rabbits and monkeys. J Lipid Res 2017; 58:1282-1291. [PMID: 28515138 PMCID: PMC5496027 DOI: 10.1194/jlr.m068940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/12/2017] [Indexed: 12/21/2022] Open
Abstract
Inhibition of cholesteryl ester transfer protein (CETP) increases HDL cholesterol (HDL-C) levels. However, the circulating CETP level varies and the impact of its inhibition in species with high CETP levels on HDL structure and function remains poorly characterized. This study investigated the effects of dalcetrapib and anacetrapib, the two CETP inhibitors (CETPis) currently being tested in large clinical outcome trials, on HDL particle subclass distribution and cholesterol efflux capacity of serum in rabbits and monkeys. New Zealand White rabbits and vervet monkeys received dalcetrapib and anacetrapib. In rabbits, CETPis increased HDL-C, raised small and large α-migrating HDL, and increased ABCA1-induced cholesterol efflux. In vervet monkeys, although anacetrapib produced similar results, dalcetrapib caused opposite effects because the LDL-C level was increased by 42% and HDL-C decreased by 48% (P < 0.01). The levels of α- and preβ-HDL were reduced by 16% (P < 0.001) and 69% (P < 0.01), resulting in a decrease of the serum cholesterol efflux capacity. CETPis modulate the plasma levels of mature and small HDL in vivo and consequently the cholesterol efflux capacity. The opposite effects of dalcetrapib in different species indicate that its impact on HDL metabolism could vary greatly according to the metabolic environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anne Perez
- F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Eric Rhéaume
- Montreal Heart Institute, Montreal, Quebec, Canada; Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, Quebec, Canada; Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
24
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null,null-- kyse] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 4117=cast((chr(113)||chr(112)||chr(98)||chr(118)||chr(113))||(select (case when (4117=4117) then 1 else 0 end))::text||(chr(113)||chr(118)||chr(106)||chr(118)||chr(113)) as numeric)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
26
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null,null,null-- yenw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null,null,null,null,null,null,null-- aivx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 8520=4918-- wjtc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 2315=dbms_pipe.receive_message(chr(100)||chr(120)||chr(98)||chr(72),5)-- yhhg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 6041=(select 6041 from pg_sleep(5))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
31
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null,null,null,null-- fzfr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
|
33
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 6523=6523-- siki] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
34
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 waitfor delay '0:0:5'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
35
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 waitfor delay '0:0:5'-- jxwo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
36
|
|
37
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and sleep(5)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
38
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and (select 2086 from(select count(*),concat(0x7170627671,(select (elt(2086=2086,1))),0x71766a7671,floor(rand(0)*2))x from information_schema.character_sets group by x)a)-- ppml] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
39
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 6041=(select 6041 from pg_sleep(5))-- herh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
40
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null,null,null,null,null-- vapp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null-- fjky] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 6523=6523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
43
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null,null,null,null,null,null-- mvdf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
44
|
|
45
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 9167=7640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
46
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null-- uwyg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
47
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and (select 2086 from(select count(*),concat(0x7170627671,(select (elt(2086=2086,1))),0x71766a7671,floor(rand(0)*2))x from information_schema.character_sets group by x)a)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
48
|
|
49
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 order by 1-- sjme] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 4117=cast((chr(113)||chr(112)||chr(98)||chr(118)||chr(113))||(select (case when (4117=4117) then 1 else 0 end))::text||(chr(113)||chr(118)||chr(106)||chr(118)||chr(113)) as numeric)-- ovcz] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|