1
|
Zhou H, Zhong J, Peng S, Liu Y, Tang P, Cai Z, Wang L, Xu H, Hu K. Synthesis and preclinical evaluation of novel 18F-labeled fibroblast activation protein tracers for positron emission tomography imaging of cancer-associated fibroblasts. Eur J Med Chem 2024; 264:115993. [PMID: 38039792 DOI: 10.1016/j.ejmech.2023.115993] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Fibroblast activation protein (FAP) is overexpressed in cancer-associated fibroblasts in more than 90% of epithelial tumors. Several radiotracers targeting FAPs have been used in clinical settings in recent years. However, the number of 18F-labeled FAP tracers is still limited. Herein, we aimed to develop 18F-labeled FAP tracers with optimized pharmacokinetics. Labeling precursors (NOTA-DD-FAPI and NOTA-PD-FAPI) were synthesized and labeled with fluorine-18. The precursors NOTA-DD-FAPI (IC50 = 0.21 ± 0.06 nM) and NOTA -PD-FAPI (IC50 = 0.13 ± 0.07 nM) showed a higher affinity for FAP compared to NOTA-FAPI-42 (IC50 = 0.66 ± 0.19 nM). Novel 18F-labeled FAP tracers showed a specific uptake, high internalized fraction, and low cellular efflux in vitro. Compared to the clinically used tracer [18F]AlF-FAPI-42, both the novel 18F-labeled FAP tracers, and especially the [18F]AlF-PD-FAPI tracer with a higher tumor-to-background ratio demonstrated rapid renal excretion and higher tumor uptake during preclinical evaluation, resulting in images with higher contrast. Thus, [18F]AlF-PD-FAPI shows promise for use as a FAP-targeting tracer for clinical translation.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jiawei Zhong
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Simin Peng
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yang Liu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peipei Tang
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhikai Cai
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Hao Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Kongzhen Hu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Poplawski SE, Hallett RM, Dornan MH, Novakowski KE, Pan S, Belanger AP, Nguyen QD, Wu W, Felten AE, Liu Y, Ahn SH, Hergott VS, Jones B, Lai JH, McCann JAB, Bachovchin WW. Preclinical Development of PNT6555, a Boronic Acid-Based, Fibroblast Activation Protein-α (FAP)-Targeted Radiotheranostic for Imaging and Treatment of FAP-Positive Tumors. J Nucl Med 2024; 65:100-108. [PMID: 38050111 DOI: 10.2967/jnumed.123.266345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/17/2023] [Indexed: 12/06/2023] Open
Abstract
The overexpression of fibroblast activation protein-α (FAP) in solid cancers relative to levels in normal tissues has led to its recognition as a target for delivering agents directly to tumors. Radiolabeled quinoline-based FAP ligands have established clinical feasibility for tumor imaging, but their therapeutic potential is limited due to suboptimal tumor retention, which has prompted the search for alternative pharmacophores. One such pharmacophore is the boronic acid derivative N-(pyridine-4-carbonyl)-d-Ala-boroPro, a potent and selective FAP inhibitor (FAPI). In this study, the diagnostic and therapeutic (theranostic) potential of N-(pyridine-4-carbonyl)-d-Ala-boroPro-based metal-chelating DOTA-FAPIs was evaluated. Methods: Three DOTA-FAPIs, PNT6555, PNT6952, and PNT6522, were synthesized and characterized with respect to potency and selectivity toward soluble and cell membrane FAP; cellular uptake of the Lu-chelated analogs; biodistribution and pharmacokinetics in mice xenografted with human embryonic kidney cell-derived tumors expressing mouse FAP; the diagnostic potential of 68Ga-chelated DOTA-FAPIs by direct organ assay and small-animal PET; the antitumor activity of 177Lu-, 225Ac-, or 161Tb-chelated analogs using human embryonic kidney cell-derived tumors expressing mouse FAP; and the tumor-selective delivery of 177Lu-chelated DOTA-FAPIs via direct organ assay and SPECT. Results: DOTA-FAPIs and their natGa and natLu chelates exhibited potent inhibition of human and mouse sources of FAP and greatly reduced activity toward closely related prolyl endopeptidase and dipeptidyl peptidase 4. 68Ga-PNT6555 and 68Ga-PNT6952 showed rapid renal clearance and continuous accumulation in tumors, resulting in tumor-selective exposure at 60 min after administration. 177Lu-PNT6555 was distinguished from 177Lu-PNT6952 and 177Lu-PNT6522 by significantly higher tumor accumulation over 168 h. In therapeutic studies, all 3 177Lu-DOTA-FAPIs exhibited significant antitumor activity at well-tolerated doses, with 177Lu-PNT6555 producing the greatest tumor growth delay and animal survival. 225Ac-PNT6555 and 161Tb-PNT6555 were similarly efficacious, producing 80% and 100% survival at optimal doses, respectively. Conclusion: PNT6555 has potential for clinical translation as a theranostic agent in FAP-positive cancer.
Collapse
Affiliation(s)
- Sarah E Poplawski
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | | | | | | | - Shuang Pan
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | - Anthony P Belanger
- Harvard Medical School, Boston, Massachusetts
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, Massachusetts; and
| | - Quang-De Nguyen
- Harvard Medical School, Boston, Massachusetts
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wengen Wu
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | | | - Yuxin Liu
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | - Shin Hye Ahn
- Harvard Medical School, Boston, Massachusetts
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, Massachusetts; and
| | | | - Barry Jones
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | - Jack H Lai
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | | | - William W Bachovchin
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts;
| |
Collapse
|
3
|
Bukhari M, Patel N, Fontana R, Santiago-Medina M, Jiang Y, Li D, Pestonjamasp K, Christiansen VJ, Jackson KW, McKee PA, Yang J. Fibroblast activation protein drives tumor metastasis via a protease-independent role in invadopodia stabilization. Cell Rep 2023; 42:113302. [PMID: 37862167 PMCID: PMC10742343 DOI: 10.1016/j.celrep.2023.113302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/09/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
During metastasis, tumor cells invade through the basement membrane and intravasate into blood vessels and then extravasate into distant organs to establish metastases. Here, we report a critical role of a transmembrane serine protease fibroblast activation protein (FAP) in tumor metastasis. Expression of FAP and TWIST1, a metastasis driver, is significantly correlated in several types of human carcinomas, and FAP is required for TWIST1-induced breast cancer metastasis to the lung. Mechanistically, FAP is localized at invadopodia and required for invadopodia-mediated extracellular matrix degradation independent of its proteolytic activity. Live cell imaging shows that association of invadopodia precursors with FAP at the cell membrane promotes the stabilization and growth of invadopodia precursors into mature invadopodia. Together, our study identified FAP as a functional target of TWIST1 in driving tumor metastasis via promoting invadopodia-mediated matrix degradation and uncovered a proteolytic activity-independent role of FAP in stabilizing invadopodia precursors for maturation.
Collapse
Affiliation(s)
- Maurish Bukhari
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Navneeta Patel
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Rosa Fontana
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Miguel Santiago-Medina
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Yike Jiang
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Dongmei Li
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Kersi Pestonjamasp
- Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Victoria J Christiansen
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kenneth W Jackson
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Patrick A McKee
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jing Yang
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Zubaľ M, Výmolová B, Matrasová I, Výmola P, Vepřková J, Syrůček M, Tomáš R, Vaníčková Z, Křepela E, Konečná D, Bušek P, Šedo A. Fibroblast activation protein as a potential theranostic target in brain metastases of diverse solid tumours. Pathology 2023; 55:806-817. [PMID: 37419841 DOI: 10.1016/j.pathol.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 07/09/2023]
Abstract
Brain metastases are a very common and serious complication of oncological diseases. Despite the vast progress in multimodality treatment, brain metastases significantly decrease the quality of life and prognosis of patients. Therefore, identifying new targets in the microenvironment of brain metastases is desirable. Fibroblast activation protein (FAP) is a transmembrane serine protease typically expressed in tumour-associated stromal cells. Due to its characteristic presence in the tumour microenvironment, FAP represents an attractive theranostic target in oncology. However, there is little information on FAP expression in brain metastases. In this study, we quantified FAP expression in samples of brain metastases of various primary origin and characterised FAP-expressing cells. We have shown that FAP expression is significantly higher in brain metastases in comparison to non-tumorous brain tissues, both at the protein and enzymatic activity levels. FAP immunopositivity was localised in regions rich in collagen and containing blood vessels. We have further shown that FAP is predominantly confined to stromal cells expressing markers typical of cancer-associated fibroblasts (CAFs). We have also observed FAP immunopositivity on tumour cells in a portion of brain metastases, mainly originating from melanoma, lung, breast, and renal cancer, and sarcoma. There were no significant differences in the quantity of FAP protein, enzymatic activity, and FAP+ stromal cells among brain metastasis samples of various origins, suggesting that there is no association of FAP expression and/or presence of FAP+ stromal cells with the histological type of brain metastases. In summary, we are the first to establish the expression of FAP and characterise FAP-expressing cells in the microenvironment of brain metastases. The frequent upregulation of FAP and its presence on both stromal and tumour cells support the use of FAP as a promising theranostic target in brain metastases.
Collapse
Affiliation(s)
- Michal Zubaľ
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Výmolová
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Matrasová
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Výmola
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Vepřková
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Syrůček
- Department of Pathology, Na Homolce Hospital, Prague, Czech Republic
| | - Robert Tomáš
- Department of Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Zdislava Vaníčková
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Evžen Křepela
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dora Konečná
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic; Departments of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic
| | - Petr Bušek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Aleksi Šedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Benramdane S, De Loose J, Filippi N, Espadinha M, Beyens O, Rymenant YV, Dirkx L, Bozdag M, Feijens PB, Augustyns K, Caljon G, De Winter H, De Meester I, Van der Veken P. Highly Selective Inhibitors of Dipeptidyl Peptidase 9 (DPP9) Derived from the Clinically Used DPP4-Inhibitor Vildagliptin. J Med Chem 2023; 66:12717-12738. [PMID: 37721854 DOI: 10.1021/acs.jmedchem.3c00609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Dipeptidyl peptidase 9 (DPP9) is a proline-selective serine protease that plays a key role in NLRP1- and CARD8-mediated inflammatory cell death (pyroptosis). No selective inhibitors have hitherto been reported for the enzyme: all published molecules have grossly comparable affinities for DPP8 and 9 because of the highly similar architecture of these enzymes' active sites. Selective DPP9 inhibitors would be highly instrumental to address unanswered research questions on the enzyme's role in pyroptosis, and they could also be investigated as therapeutics for acute myeloid leukemias. Compounds presented in this manuscript (42 and 47) combine low nanomolar DPP9 affinities with unprecedented DPP9-to-DPP8 selectivity indices up to 175 and selectivity indices >1000 toward all other proline-selective proteases. To rationalize experimentally obtained data, a molecular dynamics study was performed. We also provide in vivo pharmacokinetics data for compound 42.
Collapse
Affiliation(s)
- Siham Benramdane
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Joni De Loose
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Nicolò Filippi
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Margarida Espadinha
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Olivier Beyens
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Yentl Van Rymenant
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laura Dirkx
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Murat Bozdag
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Pim-Bart Feijens
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Pieter Van der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
6
|
Kiritani S, Ono Y, Takamatsu M, Oba A, Sato T, Ito H, Inoue Y, Takahashi Y. Diabetogenic liver metastasis from pancreatic cancer: a case report. Surg Case Rep 2022; 8:224. [PMID: 36576596 PMCID: PMC9797629 DOI: 10.1186/s40792-022-01582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Although new-onset diabetes has been described in up to 20% of patients with newly diagnosed pancreatic cancer, reports regarding new-onset diabetes associated with newly developed liver metastasis from pancreatic cancer are limited. CASE PRESENTATION A 60-year-old man was diagnosed with pancreatic tail cancer without impaired glycemic control. A curative-intent distal pancreatectomy with adjuvant S-1 chemotherapy was performed. Two years after surgery, a high HbA1c concentration and solitary liver metastasis were identified on follow-up examination. Two major chemotherapy regimens, gemcitabine/nab-paclitaxel and modified FOLFIRINOX, were sequentially administered to the patient; however, his carbohydrate 19-9 concentration continued to increase. Because the patient's glycemic control rapidly worsened in synchrony with the tumor growth, insulin therapy was initiated. Although the liver metastasis was refractory to chemotherapy, curative-intent left hepatectomy was performed because only one tumor remained. His impaired glycemic control improved immediately after surgery, and insulin therapy was terminated. When writing this report (2 years after hepatectomy), the patient was alive and recurrence-free. CONCLUSIONS New-onset diabetes appeared with the progression of metachronous liver metastasis from pancreatic cancer, without recurrence at any other site. The patient's diabetic state was improved by resection of the liver tumor, and liver metastasis itself was proven to have caused the glucometabolic disorder by increasing insulin resistance.
Collapse
Affiliation(s)
- Sho Kiritani
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital of the Japanese Foundation for Clinical Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Yoshihiro Ono
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital of the Japanese Foundation for Clinical Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan.
| | - Manabu Takamatsu
- Department of Pathology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Atsushi Oba
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital of the Japanese Foundation for Clinical Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Takafumi Sato
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital of the Japanese Foundation for Clinical Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Hiromichi Ito
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital of the Japanese Foundation for Clinical Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Yosuke Inoue
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital of the Japanese Foundation for Clinical Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Yu Takahashi
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital of the Japanese Foundation for Clinical Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| |
Collapse
|
7
|
Li Z, Lin C, Zhou J, Cai X, Zhu X, Hu S, Lv F, Yang W, Ji L. Dipeptidyl peptidase 4-inhibitor treatment was associated with a reduced incidence of neoplasm in patients with type 2 diabetes: a meta-analysis of 115 randomized controlled trials with 121961 participants. Expert Opin Investig Drugs 2022; 31:957-964. [DOI: 10.1080/13543784.2022.2113056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Zonglin Li
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Chu Lin
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Jinyu Zhou
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Xingyun Zhu
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Suiyuan Hu
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
8
|
Benramdane S, De Loose J, Beyens O, Van Rymenant Y, Vliegen G, Augustyns K, De Winter H, De Meester I, Van der Veken P. Vildagliptin‐Derived Dipeptidyl Peptidase 9 (DPP9) Inhibitors: Identification of a DPP8/9‐Specific Lead. ChemMedChem 2022; 17:e202200097. [DOI: 10.1002/cmdc.202200097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Siham Benramdane
- Laboratory of Medicinal Chemistry Department of Pharmaceutical Sciences University of Antwerp Universiteitsplein 1 2610 Antwerp Belgium
| | - Joni De Loose
- Laboratory of Medical Biochemistry Department of Pharmaceutical Sciences University of Antwerp Universiteitsplein 1 2610 Antwerp Belgium
| | - Olivier Beyens
- Laboratory of Medicinal Chemistry Department of Pharmaceutical Sciences University of Antwerp Universiteitsplein 1 2610 Antwerp Belgium
| | - Yentl Van Rymenant
- Laboratory of Medical Biochemistry Department of Pharmaceutical Sciences University of Antwerp Universiteitsplein 1 2610 Antwerp Belgium
| | - Gwendolyn Vliegen
- Laboratory of Medical Biochemistry Department of Pharmaceutical Sciences University of Antwerp Universiteitsplein 1 2610 Antwerp Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry Department of Pharmaceutical Sciences University of Antwerp Universiteitsplein 1 2610 Antwerp Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry Department of Pharmaceutical Sciences University of Antwerp Universiteitsplein 1 2610 Antwerp Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry Department of Pharmaceutical Sciences University of Antwerp Universiteitsplein 1 2610 Antwerp Belgium
| | - Pieter Van der Veken
- Laboratory of Medicinal Chemistry Department of Pharmaceutical Sciences University of Antwerp Universiteitsplein 1 2610 Antwerp Belgium
| |
Collapse
|
9
|
Hu K, Li L, Huang Y, Ye S, Zhong J, Yan Q, Zhong Y, Fu L, Feng P, Li H. Radiosynthesis and Preclinical Evaluation of Bispecific PSMA/FAP Heterodimers for Tumor Imaging. Pharmaceuticals (Basel) 2022; 15:ph15030383. [PMID: 35337180 PMCID: PMC8949503 DOI: 10.3390/ph15030383] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
Due to tumor heterogeneity and complex tumor–stromal interactions in multicellular systems, the efficiency of monospecific tracers for tumor diagnosis and therapy is currently limited. In light of the evidence of prostate-specific membrane antigen (PSMA) overexpression in tumor cells and fibroblast activation protein (FAP) upregulation in the tumor stroma, heterodimer dual targeting PSMA and FAP may have the potential to improve tumor diagnosis. Herein, we described the radiosynthesis, in vitro characterization, and micro-PET/CT imaging of two novel 18F-labeled bispecific PSMA/FAP heterodimers. 18F-labeled heterodimers showed high specificity and affinity targeting to PSMA and FAP in vitro and in vivo. Compared with the monospecific tracers [18F]AlF-PSMA-BCH and [18F]FAPI-42, both 18F-labeled heterodimers exhibited better tumor uptake in tumor-bearing mice. Their favorable characterizations such as convenient synthesis, high tumor uptake, and favorable pharmacokinetic profile could lead to their future applications as bispecific radiotracers for clinical cancer imaging.
Collapse
Affiliation(s)
- Kongzhen Hu
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China; (K.H.); (L.L.); (S.Y.); (J.Z.); (Q.Y.); (L.F.)
| | - Li Li
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China; (K.H.); (L.L.); (S.Y.); (J.Z.); (Q.Y.); (L.F.)
| | - Yong Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China;
| | - Shimin Ye
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China; (K.H.); (L.L.); (S.Y.); (J.Z.); (Q.Y.); (L.F.)
| | - Jiawei Zhong
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China; (K.H.); (L.L.); (S.Y.); (J.Z.); (Q.Y.); (L.F.)
- Department of Chemistry, Jinan University, Guangzhou 510632, China;
| | - Qingsong Yan
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China; (K.H.); (L.L.); (S.Y.); (J.Z.); (Q.Y.); (L.F.)
- Department of Chemistry, Jinan University, Guangzhou 510632, China;
| | - Yuhua Zhong
- Department of Rehabilitation Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China;
| | - Lilan Fu
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China; (K.H.); (L.L.); (S.Y.); (J.Z.); (Q.Y.); (L.F.)
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou 510632, China;
| | - Hongsheng Li
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China; (K.H.); (L.L.); (S.Y.); (J.Z.); (Q.Y.); (L.F.)
- Correspondence:
| |
Collapse
|
10
|
18F- or 177Lu-labeled bivalent ligand of fibroblast activation protein with high tumor uptake and retention. Eur J Nucl Med Mol Imaging 2022; 49:2705-2715. [PMID: 35290473 DOI: 10.1007/s00259-022-05757-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Fibroblast activation protein (FAP) has become a promising cancer-related target for diagnosis and therapy. The aim of this study was to develop a bivalent FAP ligand for both diagnostic PET imaging and endoradiotherapy. METHODS We synthesized a bivalent FAP ligand (ND-bisFAP) and labeled it with 18F or 177Lu. FAP-positive A549-FAP cells were used to study competitive binding to FAP, cellular internalization, and efflux properties in vitro. Micro-PET imaging with [18F]AlF-ND-bisFAPI was conducted in mice bearing A549-FAP or U87MG tumors. Biodistribution and therapeutic efficacy of [177Lu]Lu-ND-bisFAPI were conducted in mice bearing A549-FAP tumors. RESULTS The FAP binding affinity of ND-bisFAPI is 0.25 ± 0.05 nM, eightfold higher in potency than the monomeric DOTA-FAPI-04 (IC50 = 2.0 ± 0.18 nM). In A549-FAP cells, ND-bisFAPI showed specific uptake, a high internalized fraction, and slow cellular efflux. Compared to the monomeric [18F]AlF-FAPI-42, micro-PET imaging with [18F]AlF-ND-bisFAPI showed higher specific tumor uptake and retention for at least 6 h. Biodistribution studies showed that [177Lu]Lu-ND-bisFAPI had higher tumor uptake than [177Lu]Lu-FAPI-04 at the 24, 72, 120, and 168 h time points (all P < 0.01). [177Lu]Lu-ND-bisFAPI delivered fourfold higher radiation than [177Lu]Lu-FAPI-04 to A549-FAP tumors. For the endoradiotherapy study, 37 MBq of [177Lu]Lu-ND-bisFAPI significantly reduced tumor growth compared to the same dose of [177Lu]Lu-FAPI-04. Half of the dose of [177Lu]Lu-ND-bisFAPI (18.5 MBq) has comparable median survival as 37 MBq of [177Lu]Lu-FAPI-04 (37 vs 36 days). CONCLUSION The novel bivalent FAP ligand was developed as a theranostic radiopharmaceutical and showed promising properties including higher tumor uptake and retention compared to the established radioligands [18F]AlF-FAPI-42 and [177Lu]Lu-FAPI-04. Preliminary experiments with 18F- or 177Lu-labeled ND-bisFAPI showed promising imaging properties and favorable anti-tumor responses.
Collapse
|
11
|
Hu K, Wang L, Wu H, Huang S, Tian Y, Wang Q, Xiao C, Han Y, Tang G. [ 18F]FAPI-42 PET imaging in cancer patients: optimal acquisition time, biodistribution, and comparison with [ 68Ga]Ga-FAPI-04. Eur J Nucl Med Mol Imaging 2021; 49:2833-2843. [PMID: 34893920 DOI: 10.1007/s00259-021-05646-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE [18F]FAPI-42 is a new fibroblast activation protein (FAP)-specific tracer used for cancer imaging. Here, we describe the optimal acquisition time and in vivo evaluation of [18F]FAPI-42 and compared intra-individual biodistribution, tumor uptake, and detection ability to [68Ga]Ga-FAPI-04. METHODS A total of 22 patients with various types of cancer received [18F]FAPI-42 whole-body positron emission tomography/computed tomography (PET/CT). Among them, 4 patients underwent PET/CT scans, including an early dynamic 20-min, static 1-h, and static 2-h scans. The in vivo biodistribution in normal organs and tumor uptake were semiquantitatively evaluated using the standardized uptake value (SUV) and tumor-to-background ratio (TBR). Furthermore, both [18F]FAPI-42 and [68Ga]Ga-FAPI-04 PET/CT were performed in 12 patients to compare biodistribution, tumor uptake, and tumor detection ability. RESULTS [18F]FAPI-42 uptake in the tumors was rapid and reached a high level with an average SUVmax of 15.8 at 18 min, which stayed at a similarly high level to 2 h. The optimal image acquisition time for [18F]FAPI-42 was determined to be 1 h postinjection. For tumor detection, [18F]FAPI-42 had a high uptake and could be clearly visualized in the lesions. Compared to [68Ga]Ga-FAPI-04, [18F]FAPI-42 had the same detectability for 144 positive lesions. In addition, [18F]FAPI-42 showed a higher SUVmax in liver and bone lesions (P < 0.05) and higher TBRs in liver, bone, lymph node, pleura, and peritoneal lesions (all P < 0.05). CONCLUSION The present study demonstrates that the optimal image acquisition time of [18F]FAPI-42 is 1 h postinjection and that [18F]FAPI-42 exhibits comparable lesion detectability to [68Ga]Ga-FAPI-04. TRIAL REGISTRATION Chinese Clinical Trial Registry (ChiCTR2100045757).
Collapse
Affiliation(s)
- Kongzhen Hu
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Lijuan Wang
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Hubing Wu
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Shun Huang
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Ying Tian
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Qiaoyu Wang
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Caixia Xiao
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yanjiang Han
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Ganghua Tang
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Sicinski K, Montanari V, Raman VS, Doyle JR, Harwood BN, Song YC, Fagan MP, Rios M, Haines DR, Kopin AS, Beinborn M, Kumar K. A Non-Perturbative Molecular Grafting Strategy for Stable and Potent Therapeutic Peptide Ligands. ACS CENTRAL SCIENCE 2021; 7:454-466. [PMID: 33791428 PMCID: PMC8006168 DOI: 10.1021/acscentsci.0c01237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 06/12/2023]
Abstract
The gut-derived incretin hormone, glucagon-like peptide-1 (GLP1), plays an important physiological role in attenuating post-prandial blood glucose excursions in part by amplifying pancreatic insulin secretion. Native GLP1 is rapidly degraded by the serine protease, dipeptidyl peptidase-4 (DPP4); however, enzyme-resistant analogues of this 30-amino-acid peptide provide an effective therapy for type 2 diabetes (T2D) and can curb obesity via complementary functions in the brain. In addition to its medical relevance, the incretin system provides a fertile arena for exploring how to better separate agonist function at cognate receptors versus susceptibility of peptides to DPP4-induced degradation. We have discovered that novel chemical decorations can make GLP1 and its analogues completely DPP4 resistant while fully preserving GLP1 receptor activity. This strategy is also applicable to other therapeutic ligands, namely, glucose-dependent insulinotropic polypeptide (GIP), glucagon, and glucagon-like peptide-2 (GLP2), targeting the secretin family of receptors. The versatility of the approach offers hundreds of active compounds based on any template that target these receptors. These observations should allow for rapid optimization of pharmacological properties and because the appendages are in a position crucial to receptor stimulation, they proffer the possibility of conferring "biased" signaling and in turn minimizing side effects.
Collapse
Affiliation(s)
- Kathleen
M. Sicinski
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Vittorio Montanari
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Venkata S. Raman
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jamie R. Doyle
- Molecular
Cardiology Research Institute, Tufts Medical
Center, Boston, Massachusetts 02111, United States
| | - Benjamin N. Harwood
- Molecular
Cardiology Research Institute, Tufts Medical
Center, Boston, Massachusetts 02111, United States
| | - Yi Chi Song
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Micaella P. Fagan
- Department
of Neuroscience, Tufts University School
of Medicine, Boston, Massachusetts 02111, United States
| | - Maribel Rios
- Department
of Neuroscience, Tufts University School
of Medicine, Boston, Massachusetts 02111, United States
| | - David R. Haines
- Department of Chemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Alan S. Kopin
- Molecular
Cardiology Research Institute, Tufts Medical
Center, Boston, Massachusetts 02111, United States
| | - Martin Beinborn
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
- Molecular
Cardiology Research Institute, Tufts Medical
Center, Boston, Massachusetts 02111, United States
| | - Krishna Kumar
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
13
|
Elmansi AM, Awad ME, Eisa NH, Kondrikov D, Hussein KA, Aguilar-Pérez A, Herberg S, Periyasamy-Thandavan S, Fulzele S, Hamrick MW, McGee-Lawrence ME, Isales CM, Volkman BF, Hill WD. What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands. Pharmacol Ther 2019; 198:90-108. [PMID: 30759373 PMCID: PMC7883480 DOI: 10.1016/j.pharmthera.2019.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand. We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates. Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4's role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Mohamed E Awad
- Department of Oral Biology, School of Dentistry, Augusta University, Augusta, GA 30912, United States
| | - Nada H Eisa
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Khaled A Hussein
- Department of Surgery and Medicine, National Research Centre, Cairo, Egypt
| | - Alexandra Aguilar-Pérez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon, 00956, Puerto Rico; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Samuel Herberg
- Departments of Ophthalmology & Cell and Dev. Bio., SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | | | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Mark W Hamrick
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Meghan E McGee-Lawrence
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Brian F Volkman
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States.
| |
Collapse
|
14
|
Morales J, Pawle RH, Akkilic N, Luo Y, Xavierselvan M, Albokhari R, Calderon IAC, Selfridge S, Minns R, Takiff L, Mallidi S, Clark HA. DNA-Based Photoacoustic Nanosensor for Interferon Gamma Detection. ACS Sens 2019; 4:1313-1322. [PMID: 30973005 DOI: 10.1021/acssensors.9b00209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tracking protein levels in the body is vital in both research and medicine, where understanding their physiological roles provides insight into their regulation in homeostasis and diseases. In medicine, protein levels are actively sampled since they continuously fluctuate, reflecting the status of biological systems and provide insight into patient health. One such protein is interferon gamma, a clinically relevant protein with immunoregulatory functions that play critical roles against infection. New tools for continuously monitoring protein levels in vivo are invaluable in monitoring real-time conditions of patients to allow better care. Here, we developed a DNA-based nanosensor for the photoacoustic detection of interferon gamma. This work demonstrates how we transformed a simple DNA motif, receptors, and a novel phthalocyanine dye into a proof-of-concept photoacoustic nanosensor for protein detection. Surface plasmon resonance kinetic analysis demonstrated that the nanosensor is responsive and reversible to interferon gamma with an affinity in the nanomolar range, KD1 = 167 nM and KD2 = 316 nM. As a reporter, our design includes a novel phthalocyanine-based photoacoustic dye that stacks in a J-aggregate, causing a 22.5% increase in signal. Upon receptor binding, the DNA structure bends to induce phthalocyanine dye stacking, resulting in a 55% increase in photoacoustic signal in the presence of 10 μM interferon gamma. This proof-of-concept nanosensor is a novel approach to the development of a photoacoustic sensor and may be adapted for other proteins of interest in the future for in vivo tracking.
Collapse
Affiliation(s)
- Jennifer Morales
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Robert H. Pawle
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Namik Akkilic
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Yi Luo
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Marvin Xavierselvan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Rayan Albokhari
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Isen Andrew C. Calderon
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Scott Selfridge
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Richard Minns
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Larry Takiff
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Heather A. Clark
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Anderluh M, Kocic G, Tomovic K, Kocic H, Smelcerovic A. DPP-4 inhibition: А novel therapeutic approach to the treatment of pulmonary hypertension? Pharmacol Ther 2019; 201:1-7. [PMID: 31095977 DOI: 10.1016/j.pharmthera.2019.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
Pulmonary hypertension (PH) is a progressive disorder characterized by alterations of the vascular structure and function in the lungs. Despite the success in its stabilisation by targeting pulmonary vascular tone and endothelial dysfunction, the prognosis remains poor and new therapeutic approaches via neglected macromolecular targets are needed. In the pathophysiology of PH the early stages of vascular remodelling are considered to be reversible, while endothelial to mesenchymal transition and proliferation/migration of fibroblasts play a critical role in staging the irreversible phase. Dipeptidyl peptidase-4 (DPP-4)/CD26 is present and active in the lungs and is expressed constitutively on lung fibroblasts, on which it exerts proliferative effects. Further, it is a marker of migrating fibroblasts and of their functional activation, including collagen synthesis and inflammatory cytokine secretion. Inhibiting DPP-4 improves the reversible phases of vascular dysfunction in PH, but is also highly likely to attenuate endothelial to mesenchymal transition and decrease the proliferation and migration of fibroblasts, preventing fibrosis and, consequently, should prolong or even inhibit entrance to the potentially irreversible phase of PH. Proposed mechanisms that support the multifaceted aspects of DPP-4 inhibition in terms of improving PH, involve pathways and mediators in pulmonary vascular and connective tissue remodelling. The latter are affected by the inhibition of this protease resulting in the synergistic beneficial antioxidative, anti-inflammatory and antifibrotic effects. We offer here an evidence-supported hypothesis that DPP-4 inhibitors are likely to be effective in the irreversible phase of remodelling in PH. Accordingly, we propose PH as a possible novel therapeutic indication for existing and new DPP-4 inhibitors.
Collapse
Affiliation(s)
- Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, SI-1000, Slovenia.
| | - Gordana Kocic
- Institute of Biochemistry, Faculty of Medicine, University of Nis, Bulevar Dr Zorana Djindjica 81, 18000 Nis, Serbia
| | - Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Bulevar Dr Zorana Djindjica 81, 18000 Nis, Serbia
| | - Hristina Kocic
- Faculty of Medicine, University of Maribor, Magdalenski trg 5, 2000 Maribor, Slovenia
| | - Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine, University of Nis, Bulevar Dr Zorana Djindjica 81, 18000 Nis, Serbia.
| |
Collapse
|
16
|
Griswold AR, Cifani P, Rao SD, Axelrod AJ, Miele MM, Hendrickson RC, Kentsis A, Bachovchin DA. A Chemical Strategy for Protease Substrate Profiling. Cell Chem Biol 2019; 26:901-907.e6. [PMID: 31006619 DOI: 10.1016/j.chembiol.2019.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 02/14/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
The dipeptidyl peptidases (DPPs) regulate hormones, cytokines, and neuropeptides by cleaving dipeptides after proline from their amino termini. Due to technical challenges, many DPP substrates remain unknown. Here, we introduce a simple method, termed CHOPS (chemical enrichment of protease substrates), for the discovery of protease substrates. CHOPS exploits a 2-pyridinecarboxaldehyde (2PCA)-biotin probe, which selectively biotinylates protein N-termini except those with proline in the second position. CHOPS can, in theory, discover substrates for any protease, but is particularly well suited to discover canonical DPP substrates, as cleaved but not intact DPP substrates can be identified by gel electrophoresis or mass spectrometry. Using CHOPS, we show that DPP8 and DPP9, enzymes that control the Nlrp1 inflammasome through an unknown mechanism, do not directly cleave Nlrp1. We further show that DPP9 robustly cleaves short peptides but not full-length proteins. More generally, this work delineates a practical technology for identifying protease substrates, which we anticipate will complement available "N-terminomic" approaches.
Collapse
Affiliation(s)
- Andrew R Griswold
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA; Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paolo Cifani
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sahana D Rao
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Abram J Axelrod
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew M Miele
- Proteomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald C Hendrickson
- Proteomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alex Kentsis
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center and Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Daniel A Bachovchin
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
17
|
New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx. PLoS Comput Biol 2019; 15:e1006701. [PMID: 30835723 PMCID: PMC6420023 DOI: 10.1371/journal.pcbi.1006701] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 03/15/2019] [Accepted: 12/10/2018] [Indexed: 02/07/2023] Open
Abstract
The advent of Next-Generation Sequencing (NGS) technologies has opened new perspectives in deciphering the genetic mechanisms underlying complex diseases. Nowadays, the amount of genomic data is massive and substantial efforts and new tools are required to unveil the information hidden in the data. The Genomic Data Commons (GDC) Data Portal is a platform that contains different genomic studies including the ones from The Cancer Genome Atlas (TCGA) and the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiatives, accounting for more than 40 tumor types originating from nearly 30000 patients. Such platforms, although very attractive, must make sure the stored data are easily accessible and adequately harmonized. Moreover, they have the primary focus on the data storage in a unique place, and they do not provide a comprehensive toolkit for analyses and interpretation of the data. To fulfill this urgent need, comprehensive but easily accessible computational methods for integrative analyses of genomic data that do not renounce a robust statistical and theoretical framework are required. In this context, the R/Bioconductor package TCGAbiolinks was developed, offering a variety of bioinformatics functionalities. Here we introduce new features and enhancements of TCGAbiolinks in terms of i) more accurate and flexible pipelines for differential expression analyses, ii) different methods for tumor purity estimation and filtering, iii) integration of normal samples from other platforms iv) support for other genomics datasets, exemplified here by the TARGET data. Evidence has shown that accounting for tumor purity is essential in the study of tumorigenesis, as these factors promote confounding behavior regarding differential expression analysis. With this in mind, we implemented these filtering procedures in TCGAbiolinks. Moreover, a limitation of some of the TCGA datasets is the unavailability or paucity of corresponding normal samples. We thus integrated into TCGAbiolinks the possibility to use normal samples from the Genotype-Tissue Expression (GTEx) project, which is another large-scale repository cataloging gene expression from healthy individuals. The new functionalities are available in the TCGAbiolinks version 2.8 and higher released in Bioconductor version 3.7. The advent of Next-Generation Sequencing (NGS) technologies has been generating a massive amount of data which require continuous efforts in developing and maintain computational tool for data analyses. The Genomic Data Commons (GDC) Data Portal is a platform that contains different cancer genomic studies. Such platforms have often the primary focus on the data storage and they do not provide a comprehensive toolkit for analyses. To fulfil this urgent need, comprehensive but accessible computational protocols that do not renounce a robust statistical framework are thus required. In this context, we here present the new functions of the R/Bioconductor package TCGAbiolinks to improve the discovery of differentially expressed genes in cancer and tumor (sub)types, include the estimate of tumor purity and tumor infiltrations, use normal samples from other platforms and support more broadly other genomics datasets.
Collapse
|
18
|
Panaro BL, Coppage AL, Beaudry JL, Varin EM, Kaur K, Lai JH, Wu W, Liu Y, Bachovchin WW, Drucker DJ. Fibroblast activation protein is dispensable for control of glucose homeostasis and body weight in mice. Mol Metab 2018; 19:65-74. [PMID: 30477988 PMCID: PMC6323180 DOI: 10.1016/j.molmet.2018.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022] Open
Abstract
Objective Fibroblast Activation Protein (FAP), an enzyme structurally related to dipeptidyl peptidase-4 (DPP-4), has garnered interest as a potential metabolic drug target due to its ability to cleave and inactivate FGF-21 as well as other peptide substrates. Here we investigated the metabolic importance of FAP for control of body weight and glucose homeostasis in regular chow-fed and high fat diet-fed mice. Methods FAP enzyme activity was transiently attenuated using a highly-specific inhibitor CPD60 and permanently ablated by genetic inactivation of the mouse Fap gene. We also assessed the FAP-dependence of CPD60 and talabostat (Val-boroPro), a chemical inhibitor reportedly targeting both FAP and dipeptidyl peptidase-4 Results CPD60 robustly inhibited plasma FAP activity with no effect on DPP-4 activity. Fap gene disruption was confirmed by assessment of genomic DNA, and loss of FAP enzyme activity in plasma and tissues. CPD60 did not improve lipid tolerance but modestly improved acute oral and intraperitoneal glucose tolerance in a FAP-dependent manner. Genetic inactivation of Fap did not improve glucose or lipid tolerance nor confer resistance to weight gain in male or female Fap−/− mice fed regular chow or high-fat diets. Moreover, talabostat markedly improved glucose homeostasis in a FAP- and FGF-21-independent, DPP-4 dependent manner. Conclusion Although pharmacological FAP inhibition improves glucose tolerance, the absence of a metabolic phenotype in Fap−/−mice suggest that endogenous FAP is dispensable for the regulation of murine glucose homeostasis and body weight. These findings highlight the importance of characterizing the specificity and actions of FAP inhibitors in different species and raise important questions about the feasibility of mouse models for targeting FAP as a treatment for diabetes and related metabolic disorders. Acute inhibition of FAP enzyme activity improves glucose tolerance in mice. Fap knockout mice exhibit normal glucose and lipid tolerance. Fap knockout mice do not resist obesity after high fat feeding. Talabostat robustly lowers glucose in a FAP and FGF21-independent manner. Talabostat, but not CPD60, requires DPP4 to exert its full metabolic activity.
Collapse
Affiliation(s)
- Brandon L Panaro
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Andrew L Coppage
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Jacqueline L Beaudry
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Elodie M Varin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Kirandeep Kaur
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Jack H Lai
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Wengen Wu
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Yuxin Liu
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - William W Bachovchin
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
19
|
Karandikar S, Soni R, Soman SS, Umar S, Suresh B. 1,2-Benzisoxazole-3-acetamide derivatives as dual agents for DPP-IV inhibition and anticancer activity. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1508723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Rina Soni
- Department of Chemistry, The M. S. University of Baroda, Vadodara, India
| | - Shubhangi S. Soman
- Department of Chemistry, The M. S. University of Baroda, Vadodara, India
| | - Shweta Umar
- Department of Zoology Faculty of Science, The M. S. University of Baroda, Vadodara, India
| | - Balakrishnan Suresh
- Department of Zoology Faculty of Science, The M. S. University of Baroda, Vadodara, India
| |
Collapse
|
20
|
Guerder S, Hassel C, Carrier A. Thymus-specific serine protease, a protease that shapes the CD4 T cell repertoire. Immunogenetics 2018; 71:223-232. [PMID: 30225612 DOI: 10.1007/s00251-018-1078-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022]
Abstract
The lifespan of T cells is determined by continuous interactions of their T cell receptors (TCR) with self-peptide-MHC (self-pMHC) complexes presented by different subsets of antigen-presenting cells (APC). In the thymus, developing thymocytes are positively selected through recognition of self-pMHC presented by cortical thymic epithelial cells (cTEC). They are subsequently negatively selected by medullary thymic epithelial cells (mTEC) or thymic dendritic cells (DC) presenting self-pMHC complexes. In the periphery, the homeostasis of mature T cells is likewise controlled by the interaction of their TCR with self-pMHC complexes presented by lymph node stromal cells while they may be tolerized by DC presenting tissue-derived self-antigens. To perform these tasks, the different subsets of APC are equipped with distinct combination of antigen processing enzymes and consequently present specific repertoire of self-peptides. Here, we discuss one such antigen processing enzyme, the thymus-specific serine protease (TSSP), which is predominantly expressed by thymic stromal cells. In thymic DC and TEC, TSSP edits the repertoire of peptide presented by class II molecules and thus shapes the CD4 T cell repertoire.
Collapse
Affiliation(s)
- Sylvie Guerder
- INSERM, U1043, 31300, Toulouse, France. .,CNRS, UMR5282, 31300, Toulouse, France. .,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, 31300, Toulouse, France. .,INSERM UMR1043, Centre de Physiopathologie de Toulouse Purpan, CHU Purpan, BP 3028, 31024, Toulouse CEDEX 3, France.
| | - Chervin Hassel
- INSERM, U1043, 31300, Toulouse, France.,CNRS, UMR5282, 31300, Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, 31300, Toulouse, France
| | - Alice Carrier
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| |
Collapse
|
21
|
Juillerat-Jeanneret L, Tafelmeyer P, Golshayan D. Fibroblast activation protein-α in fibrogenic disorders and cancer: more than a prolyl-specific peptidase? Expert Opin Ther Targets 2017; 21:977-991. [DOI: 10.1080/14728222.2017.1370455] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- CHUV and UNIL, University Institute of Pathology, Lausanne, Switzerland
| | - Petra Tafelmeyer
- Hybrigenics Services, Laboratories and Headquarters, Paris, France
- Hybrigenics Corporation, Cambridge Innovation Center, Cambridge, MA, USA
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
22
|
Lei Y, Hu L, Yang G, Piao L, Jin M, Cheng X. Dipeptidyl Peptidase-IV Inhibition for the Treatment of Cardiovascular Disease - Recent Insights Focusing on Angiogenesis and Neovascularization. Circ J 2017; 81:770-776. [PMID: 28344207 DOI: 10.1253/circj.cj-16-1326] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV) is a complex enzyme that acts as a membrane-anchored cell surface exopeptidase and transmits intracellular signals through a small intracellular tail. DPP-IV exists in human blood in a soluble form, and truncates a large number of peptide hormones, chemokines, cytokines, and growth factors in vitro and in vivo. DPP-IV has gained considerable interest as a therapeutic target, and a variety of DPP-IV inhibitors that prolong the insulinotropic effects of glucagon-like peptide-1 (GLP-1) are widely used in clinical settings as antidiabetic drugs. Indeed, DPP-IV is upregulated in proinflammatory states, including obesity and cardiovascular disease with and without diabetes mellitus. Consistent with this maladaptive role, DPP-IV inhibitors seem to exert a protective role in cardiovascular disease. In addition to their GLP-1-dependent vascular protective actions, DPP-IV inhibitors exhibit GLP-1-independent beneficial effects on angiogenesis/neovascularization via several signaling pathways (e.g., stromal cell-derived factor-1α/C-X-C chemokine receptor type-4, vascular endothelial growth factor-A/endothelial nitric oxide synthase, etc.). This review focuses on recent findings in this field, highlighting the role of DPP-IV in therapeutic angiogenesis/neovascularization in ischemic heart disease and peripheral artery disease.
Collapse
Affiliation(s)
- Yanna Lei
- Department of ICU, Yanbian University Hospital
| | - Lina Hu
- Department of Public Health, Guilin Medical College
| | - Guang Yang
- Department of Cardiology, Yanbian University Hospital
| | - Limei Piao
- Department of Cardiology, Yanbian University Hospital
| | - Minggen Jin
- Department of ICU, Yanbian University Hospital
| | - Xianwu Cheng
- Department of Cardiology, Yanbian University Hospital.,Institute of Innovation for Future Society, Nagoya University.,Department of Cardiovascular Internal Medicine, Kyung Hee University Hospital, Kyung Hee University
| |
Collapse
|
23
|
Sromova L, Busek P, Posova H, Potockova J, Skrha P, Andel M, Sedo A. The effect of dipeptidyl peptidase-IV inhibition on circulating T cell subpopulations in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2016; 118:183-92. [PMID: 27388675 DOI: 10.1016/j.diabres.2016.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/23/2016] [Accepted: 06/05/2016] [Indexed: 02/06/2023]
Abstract
AIM To assess intraindividually the effects of DPP-IV inhibition on the subpopulations of immune cells in type 2 diabetes mellitus (DM2) patients during the course of treatment with sitagliptin. METHODS In this open label non-randomized observational study with a control group DM2 patients were examined before the initiation of the DPP-IV inhibitor administration (sitagliptin 100mg once daily) and then after 4weeks and 12months. Inhibition of the blood plasma DPP-IV enzymatic activity was determined by a chromogenic assay, the immunophenotyping of the blood cell subpopulations was performed using flow cytometry and blood plasma cytokine concentrations were quantified using an array-based multiplex ELISA. All parameters were evaluated in relation to the entry values in individual patients. RESULTS The blood plasma DPP-IV enzymatic activity was effectively inhibited during the sitagliptin treatment. A significant decrease of the proportion of Treg cells (to 86±31% (median±SD) of entry values, p=0.001) and an increase of Th1 cells (to 120±103% (median±SD) of entry values, p=0.004) were observed after 4weeks but not after one year of the sitagliptin treatment. No changes were observed in the ratio of CD4(+)/CD8(+) cells, in the quantity of NK and Th2 cells and blood plasma cytokine levels. CONCLUSIONS Sitagliptin treatment may cause temporary changes of the proportion of lymphocyte subpopulations in patients with DM2. The consequent deregulation of the immune system should be considered as a possible cause of the eventual side effects of long term DPP-IV inhibition.
Collapse
Affiliation(s)
- Lucie Sromova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague, U nemocnice 5, 12853 Prague 2, Czech Republic.
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague, U nemocnice 5, 12853 Prague 2, Czech Republic.
| | - Helena Posova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University in Prague, Studnickova 7, 12000 Prague 2, Czech Republic.
| | - Jana Potockova
- 2nd Department of Internal Medicine, 3rd Faculty of Medicine and Faculty Hospital Královské Vinohrady, Charles University in Prague, Srobarova 1150, 10034 Prague 10, Czech Republic.
| | - Pavel Skrha
- 2nd Department of Internal Medicine, 3rd Faculty of Medicine and Faculty Hospital Královské Vinohrady, Charles University in Prague, Srobarova 1150, 10034 Prague 10, Czech Republic.
| | - Michal Andel
- 2nd Department of Internal Medicine, 3rd Faculty of Medicine and Faculty Hospital Královské Vinohrady, Charles University in Prague, Srobarova 1150, 10034 Prague 10, Czech Republic.
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague, U nemocnice 5, 12853 Prague 2, Czech Republic.
| |
Collapse
|
24
|
Liew OW, Yandle TG, Chong JPC, Ng YX, Frampton CM, Ng TP, Lam CSP, Richards AM. High-Sensitivity Sandwich ELISA for Plasma NT-proUcn2: Plasma Concentrations and Relationship to Mortality in Heart Failure. Clin Chem 2016; 62:856-65. [DOI: 10.1373/clinchem.2015.252932] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
Abstract
BACKGROUND
Urocortin 2 (Ucn2) has powerful hemodynamic, renal, and neurohormonal actions and likely participates in normal circulatory homeostasis and the compensatory response to heart failure (HF). A validated assay for endogenous circulating Ucn2 would facilitate investigations into Ucn2 physiology and elucidate its derangement and potential as a biomarker in heart disease.
METHOD
We developed a chemiluminescence-based sandwich ELISA to measure plasma N-terminal (NT)-proUcn2 in non-HF patients (control; n = 160) and HF patients with reduced (HFREF; n = 134) and preserved (HFPEF; n = 121) left ventricular ejection fraction (LVEF).
RESULTS
The ELISA had a limit of detection of 8.47 ng/L (1.52 pmol/L) and working range of 23.8–572 ng/L. Intra- and interassay CV and total error were 4.8, 16.2, and 17.7%, respectively. The median (interquartile range) plasma NT-proUcn2 concentration in controls was 112 (86–132) ng/L. HFREF, HFPEF, and all HF plasma concentrations were significantly increased [117 (98–141) ng/L, P = 0.0007; 119 (93–136) ng/L, P = 0.0376, and 119 (97–140) ng/L, P = 0.001] compared with controls but did not differ significantly between HFREF and HFPEF. NT-proUcn2 was modestly related to age (r = 0.264, P = 0.001) and cardiac troponin T (r = 0.258, P = 0.001) but not N-terminal pro-B-type natriuretic peptide, body mass index, LVEF, or estimated glomerular filtration rate. On multivariate analysis, plasma NT-proUcn2 was independently and inversely related to 2-year mortality in HF.
CONCLUSIONS
The validated ELISA measured human NT-proUcn2 in plasma and showed modest but significant increases in HF patients compared with controls. In HF, the unusual inverse relationship between plasma NT-proUcn2 and 2-year mortality portends potential prognostic value but requires further corroboration.
Collapse
Affiliation(s)
- Oi Wah Liew
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Timothy G Yandle
- Christchurch Heart Institute, University of Otago, Otago, New Zealand
| | - Jenny P C Chong
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Yan Xia Ng
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | | | - Tze Pin Ng
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Carolyn S P Lam
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Christchurch Heart Institute, University of Otago, Otago, New Zealand
| |
Collapse
|
25
|
Wagner L, Klemann C, Stephan M, von Hörsten S. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin Exp Immunol 2016; 184:265-83. [PMID: 26671446 DOI: 10.1111/cei.12757] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022] Open
Abstract
Dipeptidyl peptidase (DPP) 4 (CD26, DPP4) is a multi-functional protein involved in T cell activation by co-stimulation via its association with adenosine deaminase (ADA), caveolin-1, CARMA-1, CD45, mannose-6-phosphate/insulin growth factor-II receptor (M6P/IGFII-R) and C-X-C motif receptor 4 (CXC-R4). The proline-specific dipeptidyl peptidase also modulates the bioactivity of several chemokines. However, a number of enzymes displaying either DPP4-like activities or representing structural homologues have been discovered in the past two decades and are referred to as DPP4 activity and/or structure homologue (DASH) proteins. Apart from DPP4, DASH proteins include fibroblast activation protein alpha (FAP), DPP8, DPP9, DPP4-like protein 1 (DPL1, DPP6, DPPX L, DPPX S), DPP4-like protein 2 (DPL2, DPP10) from the DPP4-gene family S9b and structurally unrelated enzyme DPP2, displaying DPP4-like activity. In contrast, DPP6 and DPP10 lack enzymatic DPP4-like activity. These DASH proteins play important roles in the immune system involving quiescence (DPP2), proliferation (DPP8/DPP9), antigen-presenting (DPP9), co-stimulation (DPP4), T cell activation (DPP4), signal transduction (DPP4, DPP8 and DPP9), differentiation (DPP4, DPP8) and tissue remodelling (DPP4, FAP). Thus, they are involved in many pathophysiological processes and have therefore been proposed for potential biomarkers or even drug targets in various cancers (DPP4 and FAP) and inflammatory diseases (DPP4, DPP8/DPP9). However, they also pose the challenge of drug selectivity concerning other DASH members for better efficacy and/or avoidance of unwanted side effects. Therefore, this review unravels the complex roles of DASH proteins in immunology.
Collapse
Affiliation(s)
- L Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e.V, Stuttgart.,Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - C Klemann
- Centre of Paediatric Surgery.,Centre for Paediatrics and Adolescent Medicine
| | - M Stephan
- Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, Hannover
| | - S von Hörsten
- Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
26
|
Waumans Y, Baerts L, Kehoe K, Lambeir AM, De Meester I. The Dipeptidyl Peptidase Family, Prolyl Oligopeptidase, and Prolyl Carboxypeptidase in the Immune System and Inflammatory Disease, Including Atherosclerosis. Front Immunol 2015; 6:387. [PMID: 26300881 PMCID: PMC4528296 DOI: 10.3389/fimmu.2015.00387] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/13/2015] [Indexed: 12/19/2022] Open
Abstract
Research from over the past 20 years has implicated dipeptidyl peptidase (DPP) IV and its family members in many processes and different pathologies of the immune system. Most research has been focused on either DPPIV or just a few of its family members. It is, however, essential to consider the entire DPP family when discussing any one of its members. There is a substantial overlap between family members in their substrate specificity, inhibitors, and functions. In this review, we provide a comprehensive discussion on the role of prolyl-specific peptidases DPPIV, FAP, DPP8, DPP9, dipeptidyl peptidase II, prolyl carboxypeptidase, and prolyl oligopeptidase in the immune system and its diseases. We highlight possible therapeutic targets for the prevention and treatment of atherosclerosis, a condition that lies at the frontier between inflammation and cardiovascular disease.
Collapse
Affiliation(s)
- Yannick Waumans
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Lesley Baerts
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Kaat Kehoe
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| |
Collapse
|
27
|
Characterization of dedifferentiating human mature adipocytes from the visceral and subcutaneous fat compartments: fibroblast-activation protein alpha and dipeptidyl peptidase 4 as major components of matrix remodeling. PLoS One 2015; 10:e0122065. [PMID: 25816202 PMCID: PMC4376729 DOI: 10.1371/journal.pone.0122065] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 02/19/2015] [Indexed: 12/20/2022] Open
Abstract
Mature adipocytes can reverse their phenotype to become fibroblast-like cells. This is achieved by ceiling culture and the resulting cells, called dedifferentiated fat (DFAT) cells, are multipotent. Beyond the potential value of these cells for regenerative medicine, the dedifferentiation process itself raises many questions about cellular plasticity and the pathways implicated in cell behavior. This work has been performed with the objective of obtaining new information on adipocyte dedifferentiation, especially pertaining to new targets that may be involved in cellular fate changes. To do so, omental and subcutaneous mature adipocytes sampled from severely obese subjects have been dedifferentiated by ceiling culture. An experimental design with various time points along the dedifferentiation process has been utilized to better understand this process. Cell size, gene and protein expression as well as cytokine secretion were investigated. Il-6, IL-8, SerpinE1 and VEGF secretion were increased during dedifferentiation, whereas MIF-1 secretion was transiently increased. A marked decrease in expression of mature adipocyte transcripts (PPARγ2, C/EBPα, LPL and Adiponectin) was detected early in the process. In addition, some matrix remodeling transcripts (FAP, DPP4, MMP1 and TGFβ1) were rapidly and strongly up-regulated. FAP and DPP4 proteins were simultaneously induced in dedifferentiating mature adipocytes supporting a potential role for these enzymes in adipose tissue remodeling and cell plasticity.
Collapse
|
28
|
Abstract
Dipeptidyl peptidase-4 (DPP4) is a widely expressed enzyme transducing actions through an anchored transmembrane molecule and a soluble circulating protein. Both membrane-associated and soluble DPP4 exert catalytic activity, cleaving proteins containing a position 2 alanine or proline. DPP4-mediated enzymatic cleavage alternatively inactivates peptides or generates new bioactive moieties that may exert competing or novel activities. The widespread use of selective DPP4 inhibitors for the treatment of type 2 diabetes has heightened interest in the molecular mechanisms through which DPP4 inhibitors exert their pleiotropic actions. Here we review the biology of DPP4 with a focus on: 1) identification of pharmacological vs physiological DPP4 substrates; and 2) elucidation of mechanisms of actions of DPP4 in studies employing genetic elimination or chemical reduction of DPP4 activity. We review data identifying the roles of key DPP4 substrates in transducing the glucoregulatory, anti-inflammatory, and cardiometabolic actions of DPP4 inhibitors in both preclinical and clinical studies. Finally, we highlight experimental pitfalls and technical challenges encountered in studies designed to understand the mechanisms of action and downstream targets activated by inhibition of DPP4.
Collapse
Affiliation(s)
- Erin E Mulvihill
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | | |
Collapse
|
29
|
Co-expression of the homologous proteases fibroblast activation protein and dipeptidyl peptidase-IV in the adult human Langerhans islets. Histochem Cell Biol 2014; 143:497-504. [PMID: 25361590 DOI: 10.1007/s00418-014-1292-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2014] [Indexed: 02/05/2023]
Abstract
Fibroblast activation protein (FAP, seprase, EC 3.4.21.B28) and dipeptidyl peptidase-IV (DPP-IV, CD26, EC 3.4.14.5) are homologous serine proteases implicated in the modulation of the bioavailability and thus the function of a number of biologically active peptides. In spite of their generally nonoverlapping expression patterns, DPP-IV and FAP are co-expressed and probably co-regulated in certain cell types suggesting that for some biological processes their functional synergy is essential. By an in situ enzymatic activity assay, we show an abundant DPP-IV-like enzymatic activity sensitive to a highly specific DPP-IV inhibitor sitagliptin and corresponding DPP-IV immunoreactivity in the adult human islets of Langerhans. Moreover, the homologous protease FAP was present in the human endocrine pancreas and was co-expressed with DPP-IV. DPP-IV and FAP were found in the pancreatic alpha cells as determined by the co-localization with glucagon immunoreactivity. In summary, we show abundant enzymatic activity of the canonical DPP-IV (CD26) in Langerhans islets in the natural tissue context and demonstrate for the first time the co-expression of FAP and DPP-IV in pancreatic alpha cells in adult humans. Given their ability to proteolytically modify several biologically active peptides, both proteases have the potential to modulate the paracrine signaling in the human Langerhans islets.
Collapse
|
30
|
Paz H, Pathak N, Yang J. Invading one step at a time: the role of invadopodia in tumor metastasis. Oncogene 2014; 33:4193-202. [PMID: 24077283 PMCID: PMC3969876 DOI: 10.1038/onc.2013.393] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 12/14/2022]
Abstract
The ability to degrade extracellular matrix is critical for tumor cells to invade and metastasize. Recent studies show that tumor cells use specialized actin-based membrane protrusions termed invadopodia to perform matrix degradation. Invadopodia provide an elegant way for tumor cells to precisely couple focal matrix degradation with directional movement. Here we discuss several key components and regulators of invadopodia that have been uniquely implicated in tumor invasion and metastasis. Furthermore, we discuss existing and new therapeutic opportunities to target invadopodia for anti-metastasis treatment.
Collapse
Affiliation(s)
- Helicia Paz
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Navneeta Pathak
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA, USA
| | - Jing Yang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
31
|
The nonglycemic actions of dipeptidyl peptidase-4 inhibitors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:368703. [PMID: 25140306 PMCID: PMC4129137 DOI: 10.1155/2014/368703] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/10/2014] [Indexed: 12/13/2022]
Abstract
A cell surface serine protease, dipeptidyl peptidase 4 (DPP-4), cleaves dipeptide from peptides containing proline or alanine in the N-terminal penultimate position. Two important incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), enhance meal-stimulated insulin secretion from pancreatic β-cells, but are inactivated by DPP-4. Diabetes and hyperglycemia increase the DPP-4 protein level and enzymatic activity in blood and tissues. In addition, multiple other functions of DPP-4 suggest that DPP-4 inhibitor, a new class of antidiabetic agents, may have pleiotropic effects. Studies have shown that DPP-4 itself is involved in the inflammatory signaling pathway, the stimulation of vascular smooth cell proliferation, and the stimulation of oxidative stress in various cells. DPP-4 inhibitor ameliorates these pathophysiologic processes and has been shown to have cardiovascular protective effects in both in vitro and in vivo experiments. However, in recent randomized clinical trials, DPP-4 inhibitor therapy in high risk patients with type 2 diabetes did not show cardiovascular protective effects. Some concerns on the actions of DPP-4 inhibitor include sympathetic activation and neuropeptide Y-mediated vascular responses. Further studies are required to fully characterize the cardiovascular effects of DPP-4 inhibitor.
Collapse
|
32
|
Altered peptidase activities in thyroid neoplasia and hyperplasia. DISEASE MARKERS 2013; 35:825-32. [PMID: 24379520 PMCID: PMC3860089 DOI: 10.1155/2013/970736] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 12/02/2022]
Abstract
Background. Papillary thyroid carcinoma (PTC), follicular thyroid adenoma (FTA), and thyroid nodular hyperplasia (TNH) are the most frequent diseases of the thyroid gland. Previous studies described the involvement of dipeptidyl-peptidase IV (DPPIV/CD26) in the development of thyroid neoplasia and proposed it as an additional tool in the diagnosis/prognosis of these diseases. However, very little is known about the involvement of other peptidases in neoplastic and hyperplastic processes of this gland. Methods. The catalytic activity of 10 peptidases in a series of 30 PTC, 10 FTA, and 14 TNH was measured fluorimetrically in tumour and nontumour adjacent tissues. Results. The activity of DPPIV/CD26 was markedly higher in PTC than in FTA, TNH, and nontumour tissues. Aspartyl aminopeptidase (AspAP), alanyl aminopeptidase (AlaAP), prolyl endopeptidase, pyroglutamyl peptidase I, and aminopeptidase B activities were significantly increased in thyroid neoplasms when compared to nontumour tissues. AspAP and AlaAP activities were also significantly higher in PTC than in FTA and TNH. Conclusions. These data suggest the involvement of DPPIV/CD26 and some cytosolic peptidases in the neoplastic development of PTC and FTA. Further studies will help to define the possible clinical usefulness of AlaAP and AspAP in the diagnosis/prognosis of thyroid neoplasms.
Collapse
|
33
|
Kovalenko PL, Basson MD. The correlation between the expression of differentiation markers in rat small intestinal mucosa and the transcript levels of schlafen 3. JAMA Surg 2013; 148:1013-1019. [PMID: 24005468 PMCID: PMC4590985 DOI: 10.1001/jamasurg.2013.3572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE The normal absorptive function and structural maintenance of the intestinal mucosa depend on a constant process of proliferation of enterocytic stem cells followed by progressive differentiation toward a mature phenotype. The mechanisms that govern enterocytic differentiation in the mucosa of the small intestine are poorly understood. OBJECTIVE To determine whether schlafen 3 (but not other schlafen proteins) act in vivo and whether its effects are limited to the small intestine. We have previously demonstrated in nonmalignant rat intestinal IEC-6 cells that schlafen 3 levels correlate with the expression of various differentiation markers in vitro in response to differentiation stimuli. DESIGN Randomized controlled experiment. SETTING Animal science laboratory. PARTICIPANTS Male Sprague-Dawley rats 8 to 13 weeks old. MAIN OUTCOMES AND MEASURES Messenger RNA (mRNA) from jejunal and colonic mucosa was isolated, and transcript levels of schlafen proteins 1, 2, 3, 4, 5, 13, and 14; sucrase isomaltase (SI); dipeptidyl peptidase 4 (Dpp4); glucose transporter type 2 (Glut2); and villin were measured by quantitative reverse transcriptase-polymerase chain reaction. We tested parallel variations in protein levels by Western blotting and Dpp4 enzyme activity. RESULTS The transcript level of schlafen 3 (Slfn3) correlated with the levels of the differentiation markers SI, Dpp4, Glut2, and villin. However, the expression of schlafen proteins 1, 2, 4, 5, 13, and 14 did not correlate with the expression of the differentiation markers. The mucosal mRNA levels of Slfn3, SI, Glut2, and Dpp4 were all substantially higher in the rat jejunum than in colonic mucosa by a mean (SE) factor of 51.0 (13.2) for 6 rats (P < .05), 599 (99) for 8 rats (P < .01), 12.5 (5.5) for 8 rats (P < .01), and 14.0 (3.9) for 8 rats (P < .01), respectively. In IEC-6 cells, infection with adenovirus-expressing GFP-tagged Slfn3 significantly increased Slfn3 expression and Dpp4-specific activity compared with GFP-expressing virus (in 6 rats; P < .05). CONCLUSIONS AND RELEVANCE Taken together with our previous in vitro observations, the results suggest that small intestinal enterocytic epithelial differentiation in rats may be regulated by Slfn3 in vivo, as in vitro, and that these effects may be specific to the small intestinal enterocytic phenotype as opposed to that of the mature colonocyte. Slfn3 human orthologs may be targeted to stimulate intestinal differentiation in patients with short bowel syndrome.
Collapse
|
34
|
Juillerat-Jeanneret L. Dipeptidyl peptidase IV and its inhibitors: therapeutics for type 2 diabetes and what else? J Med Chem 2013; 57:2197-212. [PMID: 24099035 DOI: 10.1021/jm400658e] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The proline-specific dipeptidyl aminopeptidase IV (DPP IV, DPP-4, CD26), widely expressed in mammalians, releases X-Pro/Ala dipeptides from the N-terminus of peptides. DPP IV is responsible of the degradation of the incretin peptide hormones regulating blood glucose levels. Several families of DPP IV inhibitors have been synthesized and evaluated. Their positive effects on the degradation of the incretins and the control of blood glucose levels have been demonstrated in biological models and in clinical trials. Presently, several DPP IV inhibitors, the "gliptins", are approved for type 2 diabetes or are under clinical evaluation. However, the gliptins may also be of therapeutic interest for other diseases beyond the inhibition of incretin degradation. In this Perspective, the biological functions and potential substrates of DPP IV enzymes are reviewed and the characteristics of the DPP IV inhibitors are discussed in view of type 2 diabetes and further therapeutic interest.
Collapse
|
35
|
Labuzek K, Kozłowski M, Szkudłapski D, Sikorska P, Kozłowska M, Okopień B. Incretin-based therapies in the treatment of type 2 diabetes--more than meets the eye? Eur J Intern Med 2013; 24:207-12. [PMID: 23375875 DOI: 10.1016/j.ejim.2013.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/29/2012] [Accepted: 01/07/2013] [Indexed: 01/02/2023]
Abstract
A lot of contradictory data regarding the serious side effects of incretin-based therapies are currently available, with more being prepared or published every month. Considering the widespread use of these drugs it should be considered a priority to establish both short- and long-term risks connected with incretin treatment. We performed an extensive literature search of the PubMed database looking for articles dealing with connections between incretin-based therapies and pancreatitis, pancreatic cancer, thyroid cancer and other neoplasms. Data obtained indicate that GLP-1 agonists and DPPIV inhibitors could increase the risk of pancreatitis and pancreatic cancer, possibly due to their capacity to increase ductal cell turnover, which has previously been found to be up-regulated in patients with obesity and T2DM. GLP-1 analogues exenatide and liraglutide seem to be connected with medullary thyroid carcinoma in rat models and, surprisingly, GLP-1 receptors have been found in papillary thyroid carcinoma, currently the most common neoplasm of the thyroid gland in humans. Changes in expression of DPPIV have been described in ovarian carcinoma, melanoma, endometrial adenocarcinoma, prostate cancer, non-small cell lung cancer and in certain haematological malignancies. In most cases loss of DPPIV activity is connected with a higher grading scale, more aggressive tumour behaviour and higher metastatic potential. In conclusion animal and human studies indicate that there could be a connection between incretin-based therapies and pancreatitis, pancreatic cancer, thyroid cancer and other neoplasms. Therefore whenever such therapy is started it would be wise to proceed with caution, especially if personal history of neoplasms is present.
Collapse
Affiliation(s)
- Krzysztof Labuzek
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, Katowice, Poland
| | | | | | | | | | | |
Collapse
|
36
|
Tarantola E, Bertone V, Milanesi G, Capelli E, Ferrigno A, Neri D, Vairetti M, Barni S, Freitas I. Dipeptidylpeptidase--IV, a key enzyme for the degradation of incretins and neuropeptides: activity and expression in the liver of lean and obese rats. Eur J Histochem 2012; 56:e41. [PMID: 23361237 PMCID: PMC3567760 DOI: 10.4081/ejh.2012.e41] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 07/02/2012] [Accepted: 07/26/2012] [Indexed: 01/19/2023] Open
Abstract
Given the scarcity of donors, moderately fatty livers (FLs) are currently being considered as possible grafts for orthotopic liver transplantation (OLT), notwithstanding their poor tolerance to conventional cold preservation. The behaviour of parenchymal and sinusoidal liver cells during transplantation is being studied worldwide. Much less attention has been paid to the biliary tree, although this is considered the Achille's heel even of normal liver transplantation. To evaluate the response of the biliary compartment of FLs to the various phases of OLT reliable markers are necessary. Previously we demonstrated that Alkaline Phosphatase was scarcely active in bile canaliculi of FLs and thus ruled it out as a marker. As an alternative, dipeptidylpeptidase-IV (DPP-IV), was investigated. This ecto-peptidase plays an important role in glucose metabolism, rapidly inactivating insulin secreting hormones (incretins) that are important regulators of glucose metabolism. DPP-IV inhibitors are indeed used to treat Type II diabetes. Neuropeptides regulating bile transport and composition are further important substrates of DPP-IV in the enterohepatic axis. DPP-IV activity was investigated with an azo-coupling method in the liver of fatty Zucker rats (fa/fa), using as controls lean Zucker (fa/+) and normal Wistar rats. Protein expression was studied by immunofluorescence with the monoclonal antibody (clone 5E8). In Wistar rat liver, DPP-IV activity and expression were high in the whole biliary tree, and moderate in sinusoid endothelial cells, in agreement with the literature. Main substrates of DPP-IV in hepatocytes and cholangiocytes could be incretins GLP-1 and GIP, and neuropeptides such as vasoactive intestinal peptide (VIP) and substance P, suggesting that these substances are inactivated or modified through the biliary route. In lean Zucker rat liver the enzyme reaction and protein expression patterns were similar to those of Wistar rat. In obese rat liver the patterns of DPP-IV activity and expression in hepatocytes reflected the morphological alterations induced by steatosis as lipid-rich hepatocytes had scarce activity, located either in deformed bile canaliculi or in the sinusoidal and lateral domains of the plasma membrane. These findings suggest that bile canaliculi in steatotic cells have an impaired capacity to inactivate incretins and neuropeptides. Incretin and/or neuropeptide deregulation is indeed thought to play important roles in obesity and insulin-resistance. No alteration in enzyme activity and expression was found in the upper segments of the biliary tree of obese respect to lean Zucker and Wistar rats. In conclusion, this research demonstrates that DPP-IV is a promising in situ marker of biliary functionality not only of normal but also of fatty rats. The approach, initially devised to investigate the behaviour of the liver during the various phases of transplantation, appears to have a much higher potentiality as it could be further exploited to investigate any pathological or stressful conditions involving the biliary tract (i.e., metabolic syndrome and cholestasis) and the response of the biliary tract to therapy and/or to surgery.
Collapse
Affiliation(s)
- E Tarantola
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Structures of human DPP7 reveal the molecular basis of specific inhibition and the architectural diversity of proline-specific peptidases. PLoS One 2012; 7:e43019. [PMID: 22952628 PMCID: PMC3430648 DOI: 10.1371/journal.pone.0043019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/17/2012] [Indexed: 11/19/2022] Open
Abstract
Proline-specific dipeptidyl peptidases (DPPs) are emerging targets for drug development. DPP4 inhibitors are approved in many countries, and other dipeptidyl peptidases are often referred to as DPP4 activity- and/or structure-homologues (DASH). Members of the DASH family have overlapping substrate specificities, and, even though they share low sequence identity, therapeutic or clinical cross-reactivity is a concern. Here, we report the structure of human DPP7 and its complex with a selective inhibitor Dab-Pip (L-2,4-diaminobutyryl-piperidinamide) and compare it with that of DPP4. Both enzymes share a common catalytic domain (α/β-hydrolase). The catalytic pocket is located in the interior of DPP7, deep inside the cleft between the two domains. Substrates might access the active site via a narrow tunnel. The DPP7 catalytic triad is completely conserved and comprises Ser162, Asp418 and His443 (corresponding to Ser630, Asp708 and His740 in DPP4), while other residues lining the catalytic pockets differ considerably. The “specificity domains” are structurally also completely different exhibiting a β-propeller fold in DPP4 compared to a rare, completely helical fold in DPP7. Comparing the structures of DPP7 and DPP4 allows the design of specific inhibitors and thus the development of less cross-reactive drugs. Furthermore, the reported DPP7 structures shed some light onto the evolutionary relationship of prolyl-specific peptidases through the analysis of the architectural organization of their domains.
Collapse
|
38
|
Musante L, Saraswat M, Duriez E, Byrne B, Ravidà A, Domon B, Holthofer H. Biochemical and physical characterisation of urinary nanovesicles following CHAPS treatment. PLoS One 2012; 7:e37279. [PMID: 22808001 PMCID: PMC3395701 DOI: 10.1371/journal.pone.0037279] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/16/2012] [Indexed: 01/30/2023] Open
Abstract
Urinary exosomes represent a precious source of potential biomarkers for disease biology. Currently, the methods for vesicle isolation are severely restricted by the tendency of vesicle entrapment, e.g. by the abundant Tamm-Horsfall protein (THP) polymers. Treatment by reducing agents such as dithiothreitol (DTT) releases entrapped vesicles, thus increasing the final yield. However, this harsh treatment can cause remodelling of all those proteins which feature extra-vesicular domains stabilized by internal disulfide bridges and have detrimental effects on their biological activity. In order to optimize exosomal yield, we explore two vesicle treatment protocols - dithiothreitol (DTT) and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic (CHAPS) - applied to the differential centrifugation protocol for exosomal vesicle isolation. The results show that CHAPS treatment does not affect vesicle morphology or exosomal marker distribution, thus eliminating most of THP interference. Moreover, the recovery and preservation of catalytic activity of two trans-membrane proteases, dipeptidyl peptidase IV and nephrilysin, was examined and found to be clearly superior after CHAPS treatment compared to DTT. Finally, proteomic profiling by mass spectrometry (MS) revealed that 76.2% of proteins recovered by CHAPS are common to those seen for DTT treatment, which illustrates underlining similarities between the two approaches. In conclusion, we provide a major improvement to currently-utilized urinary vesicle isolation strategies to allow recovery of urinary vesicles without the deleterious interference of abundant urinary proteins, while preserving typical protein folding and, consequently, the precious biological activity of urinary proteins which serve as valuable biomarkers.
Collapse
Affiliation(s)
- Luca Musante
- Centre for BioAnalytical Sciences (CBAS), Dublin City University, Dublin, Ireland
| | - Mayank Saraswat
- Centre for BioAnalytical Sciences (CBAS), Dublin City University, Dublin, Ireland
| | - Elodie Duriez
- Luxembourg Clinical Proteomics Center (LCP), CRP-Santé, Strassen, Luxembourg
| | - Barry Byrne
- Centre for BioAnalytical Sciences (CBAS), Dublin City University, Dublin, Ireland
| | - Alessandra Ravidà
- Centre for BioAnalytical Sciences (CBAS), Dublin City University, Dublin, Ireland
| | - Bruno Domon
- Luxembourg Clinical Proteomics Center (LCP), CRP-Santé, Strassen, Luxembourg
| | - Harry Holthofer
- Centre for BioAnalytical Sciences (CBAS), Dublin City University, Dublin, Ireland
- * E-mail:
| |
Collapse
|
39
|
Busek P, Stremenova J, Sromova L, Hilser M, Balaziova E, Kosek D, Trylcova J, Strnad H, Krepela E, Sedo A. Dipeptidyl peptidase-IV inhibits glioma cell growth independent of its enzymatic activity. Int J Biochem Cell Biol 2012; 44:738-47. [DOI: 10.1016/j.biocel.2012.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/10/2012] [Accepted: 01/17/2012] [Indexed: 11/16/2022]
|
40
|
Van Goethem S, Matheeussen V, Joossens J, Lambeir AM, Chen X, De Meester I, Haemers A, Augustyns K, Van der Veken P. Structure-activity relationship studies on isoindoline inhibitors of dipeptidyl peptidases 8 and 9 (DPP8, DPP9): is DPP8-selectivity an attainable goal? J Med Chem 2011; 54:5737-46. [PMID: 21711053 DOI: 10.1021/jm200383j] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work represents the first directed study to identify modification points in the topology of a representative DPP8/9-inhibitor, capable of rendering selectivity for DPP8 over DPP9. The availability of a DPP8-selective compound would be highly instrumental for studying and untwining the biological roles of DPP8 and DPP9 and for the disambiguation of biological effects of nonselective DPP-inhibitors that have mainly been ascribed to blocking of DPPIV's action. The cell-permeable DPP8/9-inhibitor 7 was selected as a lead and dissected into several substructures that were modified separately for evaluating their potential to contribute to selectivity. The obtained results, together with earlier work from our group, clearly narrow down the most probable DPP8-selectivity imparting modification points in DPP8/9 inhibitors to parts of space that are topologically equivalent to the piperazine ring system in 7. This information can be considered of high value for future design of compounds with maximal DPP8 selectivity.
Collapse
Affiliation(s)
- Sebastiaan Van Goethem
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp (UA), Universiteitsplein 1, B-2610 Wilrijk, Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lu C, Tilan JU, Everhart L, Czarnecka M, Soldin SJ, Mendu DR, Jeha D, Hanafy J, Lee CK, Sun J, Izycka-Swieszewska E, Toretsky JA, Kitlinska J. Dipeptidyl peptidases as survival factors in Ewing sarcoma family of tumors: implications for tumor biology and therapy. J Biol Chem 2011; 286:27494-505. [PMID: 21680731 DOI: 10.1074/jbc.m111.224089] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ewing sarcoma family of tumors (ESFT) is a group of aggressive pediatric malignancies driven by the EWS-FLI1 fusion protein, an aberrant transcription factor up-regulating specific target genes, such as neuropeptide Y (NPY) and its Y1 and Y5 receptors (Y5Rs). Previously, we have shown that both exogenous NPY and endogenous NPY stimulate ESFT cell death via its Y1 and Y5Rs. Here, we demonstrate that this effect is prevented by dipeptidyl peptidases (DPPs), which cleave NPY to its shorter form, NPY(3-36), not active at Y1Rs. We have shown that NPY-induced cell death can be abolished by overexpression of DPPs and enhanced by their down-regulation. Both NPY treatment and DPP blockade activated the same cell death pathway mediated by poly(ADP-ribose) polymerase (PARP-1) and apoptosis-inducing factor (AIF). Moreover, the decrease in cell survival induced by DPP inhibition was blocked by Y1 and Y5R antagonists, confirming its dependence on endogenous NPY. Interestingly, similar levels of NPY-driven cell death were achieved by blocking membrane DPPIV and cytosolic DPP8 and DPP9. Thus, this is the first evidence of these intracellular DPPs cleaving releasable peptides, such as NPY, in live cells. In contrast, another membrane DPP, fibroblast activation protein (FAP), did not affect NPY actions. In conclusion, DPPs act as survival factors for ESFT cells and protect them from cell death induced by endogenous NPY. This is the first demonstration that intracellular DPPs are involved in regulation of ESFT growth and may become potential therapeutic targets for these tumors.
Collapse
Affiliation(s)
- Congyi Lu
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Balaziova E, Busek P, Stremenova J, Sromova L, Krepela E, Lizcova L, Sedo A. Coupled expression of dipeptidyl peptidase-IV and fibroblast activation protein-α in transformed astrocytic cells. Mol Cell Biochem 2011; 354:283-9. [PMID: 21526345 DOI: 10.1007/s11010-011-0828-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/15/2011] [Indexed: 12/17/2022]
Abstract
Dipeptidyl peptidase-IV (DPP-IV) and fibroblast activation protein-α (FAP) are speculated to participate in the regulation of multiple biological processes, because of their unique enzymatic activity, as well as by non-hydrolytic molecular interactions. At present, the role of DPP-IV and FAP in the development and progression of various types of tumors, including glioblastoma, is intensively studied, and their functional crosstalk is hypothesized. In this article, we describe the correlative expression of DPP-IV and FAP mRNA in primary cell cultures derived from human glioblastoma and associated expression dynamics of both molecules in astrocytoma cell lines depending on culture conditions. Although the molecular mechanisms of DPP-IV and FAP co-regulations remain unclear, uncoupled expression of transgenic DPP-IV and the endogenous FAP suggests that it occurs rather at the transcriptional than at the posttranscriptional level. Understanding of the expressional and functional coordinations of DPP-IV and FAP may help clarify the mechanisms of biological roles of both molecules in transformed astrocytic cells.
Collapse
Affiliation(s)
- Eva Balaziova
- Institute of Biochemistry and Experimental Oncology of the 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 5, Prague 2, 12853, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
43
|
Mentlein R, Hattermann K, Hemion C, Jungbluth AA, Held-Feindt J. Expression and role of the cell surface protease seprase/fibroblast activation protein-α (FAP-α) in astroglial tumors. Biol Chem 2011; 392:199-207. [PMID: 20707604 DOI: 10.1515/bc.2010.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Seprase or fibroblast activation protein-α (FAP-α) is a cell-surface serine protease that was previously described nearly exclusively on reactive and tumor stromal fibroblasts and thought to be involved in tissue remodeling. We investigated the expression and significance of FAP-α in astrocytomas/glioblastomas. As shown by quantitative reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry, FAP-α was elevated in whole glioblastoma tissues and in particular in most glioma cells in situ and in vitro. In glioma stem-like cells (gliospheres), FAP-α was detected at low levels; however, FAP-α was considerably induced upon differentiation with 10% fetal calf serum. To explore its functional role, FAP-α was silenced by siRNA transfection. In Boyden chamber assays, FAP-α silenced cells migrated similar as control cells through non-coated or Matrigel (basal lamina)-coated porous membranes, but significantly slower through membranes coated with gelatin or brevican, a major component of brain extracellular matrix. Furthermore, FAP-α-silenced glioma cells migrated through murine brain slices much slower under the conditions tested than differentially fluorescent-labeled control cells. Thus, FAP-α is highly expressed on the surface of glioma cells and contributes to diffuse glioma invasion through extracellular matrix components.
Collapse
Affiliation(s)
- Rolf Mentlein
- Department of Anatomy, University of Kiel, D-24098 Kiel, Germany.
| | | | | | | | | |
Collapse
|
44
|
Lawandi J, Gerber-Lemaire S, Juillerat-Jeanneret L, Moitessier N. Inhibitors of prolyl oligopeptidases for the therapy of human diseases: defining diseases and inhibitors. J Med Chem 2010; 53:3423-38. [PMID: 20058865 DOI: 10.1021/jm901104g] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Janice Lawandi
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
| | | | | | | |
Collapse
|
45
|
Varona A, Blanco L, Perez I, Gil J, Irazusta J, López JI, Candenas ML, Pinto FM, Larrinaga G. Expression and activity profiles of DPP IV/CD26 and NEP/CD10 glycoproteins in the human renal cancer are tumor-type dependent. BMC Cancer 2010; 10:193. [PMID: 20459800 PMCID: PMC2876082 DOI: 10.1186/1471-2407-10-193] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 05/11/2010] [Indexed: 11/11/2022] Open
Abstract
Background Cell-surface glycoproteins play critical roles in cell-to-cell recognition, signal transduction and regulation, thus being crucial in cell proliferation and cancer etiogenesis and development. DPP IV and NEP are ubiquitous glycopeptidases closely linked to tumor pathogenesis and development, and they are used as markers in some cancers. In the present study, the activity and protein and mRNA expression of these glycoproteins were analysed in a subset of clear-cell (CCRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytomas (RO). Methods Peptidase activities were measured by conventional enzymatic assays with fluorogen-derived substrates. Gene expression was quantitatively determined by qRT-PCR and membrane-bound protein expression and distribution analysis was performed by specific immunostaining. Results The activity of both glycoproteins was sharply decreased in the three histological types of renal tumors. Protein and mRNA expression was strongly downregulated in tumors from distal nephron (ChRCC and RO). Moreover, soluble DPP IV activity positively correlated with the aggressiveness of CCRCCs (higher activities in high grade tumors). Conclusions These results support the pivotal role for DPP IV and NEP in the malignant transformation pathways and point to these peptidases as potential diagnostic markers.
Collapse
Affiliation(s)
- Adolfo Varona
- Department of Physiology, Faculty of Medicine and Dentistry, University of Basque Country, Barrio Sarriena s/n, 48940-Leioa, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Stulc T, Sedo A. Inhibition of multifunctional dipeptidyl peptidase-IV: is there a risk of oncological and immunological adverse effects? Diabetes Res Clin Pract 2010; 88:125-31. [PMID: 20303610 DOI: 10.1016/j.diabres.2010.02.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/20/2010] [Accepted: 02/25/2010] [Indexed: 12/12/2022]
Abstract
Inhibitors of dipeptidyl peptidase-IV (DPP-IV) are a novel class of anti-diabetes drugs; inhibiting the breakdown of incretins, they increase their biological availability and decrease thus blood glucose levels. However, in addition to regulating glucose homeostasis, DPP-IV has many diverse functions, such as modulating cell growth, differentiation and transformation and immune function. Within the immune system, DPP-IV exerts mainly stimulating effects, while its relation to malignancies is highly variable. Therefore, long-term inhibition of this enzyme could have serious side effects including immune dysregulation or increased risk of cancer. Although the data on the effects of DPP-IV inhibitors in humans are scarce, the increased risk of infections and the tendency towards a higher incidence of some tumours fall in line with experimental evidence suggesting the possibility of their adverse immunological and oncological effects. Further research is obviously needed to clarify the effector mechanisms of DPP-IV inhibitors on immune function and tumour biology. Most important, however, is obtaining reassuring safety data from adequately powered, long-term trials of DPP-IV inhibitors in humans. In the meantime, all the potential risks of DPP-IV inhibitors should be kept in mind, and this class of drugs needs to be regarded with some degree of caution.
Collapse
Affiliation(s)
- Tomas Stulc
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
47
|
Cordero OJ, Salgado FJ, Nogueira M. On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol Immunother 2009; 58:1723-47. [PMID: 19557413 PMCID: PMC11031058 DOI: 10.1007/s00262-009-0728-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 06/02/2009] [Indexed: 12/23/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV), assigned to the CD26 cluster, is expressed on epithelial cells and lymphocytes and is a multifunctional or pleiotropic protein. Its peptidase activity causes degradation of many biologically active peptides, e.g. some incretins secreted by the enteroendocrine system. DPP-IV has, therefore, become a novel therapeutic target for inhibitors that extend endogenously produced insulin half-life in diabetics, and several reviews have appeared in recent months concerning the clinical significance of CD26/DPP-IV. Biological fluids contain relatively high levels of soluble CD26 (sCD26). The physiological role of sCD26 and its relation, if any, to CD26 functions, remain poorly understood because whether the process for CD26 secretion and/or shedding from cell membranes is regulated or not is not known. Liver epithelium and lymphocytes are often cited as the most likely source of sCD26. It is important to establish which tissue or organ is the protein source as well as the circumstances that can provoke an abnormal presence/absence or altered levels in many diseases including cancer, so that sCD26 can be validated as a clinical marker or a therapeutic target. For example, we have previously reported low levels of sCD26 in the blood of colorectal cancer patients, which indicated the potential usefulness of the protein as a biomarker for this cancer in early diagnosis, monitoring and prognosis. Through this review, we envisage a role for sCD26 and the alteration of normal peptidase capacity (in clipping enteroendocrine or other peptides) in the complex crosstalk between the lymphoid lineage and, at least, some malignant tumours.
Collapse
Affiliation(s)
- Oscar J Cordero
- Department of Biochemistry and Molecular Biology, CIBUS, University of Santiago de Compostela, r/Lopez de Marzoa s/n, Campus Sur, 15782 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
48
|
Mentlein R. Mechanisms underlying the rapid degradation and elimination of the incretin hormones GLP-1 and GIP. Best Pract Res Clin Endocrinol Metab 2009; 23:443-52. [PMID: 19748062 DOI: 10.1016/j.beem.2009.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP, gastric inhibitory peptide) are secreted from intestinal L and K cells and stimulate insulin secretion from pancreatic beta cells. However, they are immediately inactivated mainly via N-terminal degradation by dipeptidyl peptidase IV (DPP IV, CD26), a specialised enzyme located on the cell surface enzyme of endothelial, epithelial and some other cell types. Cleavage by neprilysin (neutral endopeptidase) is a minor degradation route, and renal clearance eliminates incretin/fragments, but appears of less importance for regulating incretin bioactivities. Based on these observations two novel types of drugs for the treatment of type 2 diabetes have been developed: DPP IV inhibitors and DPP IV-resistant incretin analogues. Both have distinct advantages and disadvantages. Potential side effects of DPP IV inhibitors may result from affecting the bioactivity of other hormones, neuropeptides or chemokines and also by their cross-reactivity with DPP IV-related enzymes.
Collapse
Affiliation(s)
- Rolf Mentlein
- Department of Anatomy, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| |
Collapse
|
49
|
Schade J, Schmiedl A, Stephan M, Pabst R, von Hörsten S. Transferred T cells preferentially adhere in the BALT of CD26-deficient recipient lungs during asthma. Immunobiology 2009; 215:321-31. [PMID: 19501934 DOI: 10.1016/j.imbio.2009.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/30/2009] [Accepted: 05/01/2009] [Indexed: 10/20/2022]
Abstract
The multifunctional glycoprotein CD26/dipeptidyl peptidase 4 (DP4) has a DP activity, plays a role during T-cell activation, and interacts with several proteins, including extracellular matrix (ECM)-proteins. The latter have been studied mainly in the context of experimental metastasis. The potential role of CD26 for T-cell adhesion could be of major interest. Here, a coisogenic transfer of CFSE-labelled T cells was performed after isolation from CD26-expressing or CD26-deficient F344 rat donors and subsequent cross-transfer to recipients of the other substrain. Their recovery in the lungs was quantified using flow cytometry, a histochemical activity assay, as well as immunohistochemistry and morphometry. Under naïve conditions there were neither differences in the numbers of recovered T cells nor in their preferential anatomical sites of adhesion. The induction of an asthma-like inflammation, however, led to a site-preferential adhesion of T cells in the bronchus-associated lymphatic tissue (BALT). In this compartment of the lungs, surprisingly, significantly more T cells were found in CD26-deficient recipient lungs, regardless of the origin of the transferred T cells. These findings demonstrate a negative regulatory role of the BALT-specific expression of CD26 in T-cell adhesion during an asthma-like inflammation. Considering the pattern of cellular re-distribution it is not very likely that CD26 expressed on T cells and/or endothelial cells represents a significant factor in T-cell adhesion in vivo. Instead, the present findings suggest that the lack of the CD26 peptidase function in BALT might cause an overflow of a T-cell chemoattractant, which yet remains to be identified.
Collapse
Affiliation(s)
- Jutta Schade
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
50
|
de Andrade CFCG, Bigni R, Pombo-de-Oliveira MS, Alves G, Pereira DA. CD26/DPPIV cell membrane expression and DPPIV activity in plasma of patients with acute leukemia. J Enzyme Inhib Med Chem 2009; 24:708-14. [DOI: 10.1080/14756360802334800] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Camilla F. C. G. de Andrade
- Laboratório de Genética Aplicada, Serviço de Hematologia do Hospital do Câncer I, Instituto Nacional de Câncer, Praça da Cruz Vermelha 23CEP 20230-130, Rio de Janeiro, RJ, Brazil
| | - Ricardo Bigni
- Serviço de Hematologia do Hospital do Câncer I, Instituto Nacional de Câncer, Praça da Cruz Vermelha 23CEP 20230-130, Rio de Janeiro, RJ, Brazil
| | - Maria S. Pombo-de-Oliveira
- Divisão de Medicina Experimental, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rua André Cavalcanti, 37CEP 20231-050, Rio de Janeiro, RJ, Brazil
| | - Gilda Alves
- Laboratório de Genética Aplicada, Serviço de Hematologia do Hospital do Câncer I, Instituto Nacional de Câncer, Praça da Cruz Vermelha 23CEP 20230-130, Rio de Janeiro, RJ, Brazil
| | - Denise A. Pereira
- Laboratório de Genética Aplicada, Serviço de Hematologia do Hospital do Câncer I, Instituto Nacional de Câncer, Praça da Cruz Vermelha 23CEP 20230-130, Rio de Janeiro, RJ, Brazil
| |
Collapse
|