1
|
Petitprez F, Ayadi M, de Reyniès A, Fridman WH, Sautès-Fridman C, Job S. Review of Prognostic Expression Markers for Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:643065. [PMID: 33996558 PMCID: PMC8113694 DOI: 10.3389/fonc.2021.643065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Context: The number of prognostic markers for clear cell renal cell carcinoma (ccRCC) has been increasing regularly over the last 15 years, without being integrated and compared. Objective: Our goal was to perform a review of prognostic markers for ccRCC to lay the ground for their use in the clinics. Evidence Acquisition: PubMed database was searched to identify RNA and protein markers whose expression level was reported as associated with survival of ccRCC patients. Relevant studies were selected through cross-reading by two readers. Evidence Synthesis: We selected 249 studies reporting an association with prognostic of either single markers or multiple-marker models. Altogether, these studies were based on a total of 341 distinct markers and 13 multiple-marker models. Twenty percent of these markers were involved in four biological pathways altered in ccRCC: cell cycle, angiogenesis, hypoxia, and immune response. The main genes (VHL, PBRM1, BAP1, and SETD2) involved in ccRCC carcinogenesis are not the most relevant for assessing survival. Conclusion: Among single markers, the most validated markers were KI67, BIRC5, TP53, CXCR4, and CA9. Of the multiple-marker models, the most famous model, ClearCode34, has been highly validated on several independent datasets, but its clinical utility has not yet been investigated. Patient Summary: Over the years, the prognosis studies have evolved from single markers to multiple-marker models. Our review highlights the highly validated prognostic markers and multiple-marker models and discusses their clinical utility for better therapeutic care.
Collapse
Affiliation(s)
- Florent Petitprez
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Mira Ayadi
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Wolf H. Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Inflammation, Complément et Cancer, Paris, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Inflammation, Complément et Cancer, Paris, France
| | - Sylvie Job
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
2
|
Kearns AC, Robinson JA, Shekarabi M, Liu F, Qin X, Burdo TH. Caspase-1-associated immune activation in an accelerated SIV-infected rhesus macaque model. J Neurovirol 2018; 24:420-431. [PMID: 29611111 DOI: 10.1007/s13365-018-0630-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
Abstract
In the antiretroviral therapy (ART) era, chronic HIV infection is primarily associated with chronic inflammation driving comorbidities such as cardiovascular disease and neurocognitive impairment. Caspase-1 activation in leukocytes has been documented in HIV infection; however, whether caspase-1 activation and the downstream pro-inflammatory cytokines interleukin-1beta (IL-1β) and interleukin-18 (IL-18) contribute to chronic inflammation in HIV comorbidities remains undetermined. The relationship between the caspase-1 cascade and persistent inflammation in HIV has not been investigated. Here, we used an accelerated simian immunodeficiency virus (SIV)-infected rhesus macaque model with or without ART to investigate the dynamics of caspase-1 and immune cell activation before infection, 21 days post infection (dpi), and necropsy. Caspase-1, IL-18, IL-1β, and immune markers were measured both in the circulation and lymphoid tissues. We found a significant increase in caspase-1 and IL-18 in SIV infection that positively correlated with inflammatory monocytes and negatively correlated with CD4+ T cell counts. ART attenuated these effects at necropsy in the circulation. Further, lymph nodes from SIV+ or SIV+ART animals had increased activation of caspase-1 and potential upstream priming of the NF-κB pathway, indicating that tissue-specific immune activation persists with ART. Together, these results shed light on the interconnectedness of the caspase-1 pathway and peripheral immune activation and further indicate that ART is not sufficient for suppressing inflammation. The caspase-1 pathway may provide novel therapeutic targets to improve HIV-associated comorbidities and health outcomes in the context of viral suppression.
Collapse
Affiliation(s)
- Alison C Kearns
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, MERB 755, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Jake A Robinson
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, MERB 755, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Masoud Shekarabi
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, MERB 755, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Fengming Liu
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, MERB 755, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Xuebin Qin
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, MERB 755, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Tricia H Burdo
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, MERB 755, 3500 North Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Abstract
Despite major advances in antiretroviral therapy against HIV-1, an effective HIV vaccine is urgently required to reduce the number of new cases of HIV infections in the world. Vaccines are the ultimate tool in the medical arsenal to control and prevent the spread of infectious diseases such as HIV/AIDS. Several failed phase-IIb to –III clinical vaccine trials against HIV-1 in the past generated a plethora of information that could be used for better designing of an effective HIV vaccine in the future. Most of the tested vaccine candidates produced strong humoral responses against the HIV proteins; however, failed to protect due to: 1) the low levels and the narrow breadth of the HIV-1 neutralizing antibodies and the HIV-specific antibody-dependent Fc-mediated effector activities, 2) the low levels and the poor quality of the anti-HIV T-cell responses, and 3) the excessive responses to immunodominant non-protective HIV epitopes, which in some cases blocked the protective immunity and/or enhanced HIV infection. The B-cell epitopes on HIV for producing broadly neutralizing antibodies (bNAbs) against HIV have been extensively characterized, and the next step is to develop bNAb epitope immunogen for HIV vaccine. The bNAb epitopes are often conformational epitopes and therefore more difficult to construct as vaccine immunogen and likely to include immunodominant non-protective HIV epitopes. In comparison, T-cell epitopes are short linear peptides which are easier to construct into vaccine immunogen free of immunodominant non-protective epitopes. However, its difficulty lies in identifying the T-cell epitopes conserved among HIV subtypes and induce long-lasting, potent polyfunctional T-cell and cytotoxic T lymphocyte (CTL) activities against HIV. In addition, these protective T-cell epitopes must be recognized by the HLA prevalent in the country(s) targeted for the vaccine trial. In conclusion, extending from the findings from previous vaccine trials, future vaccines should combine both T- and B-cell epitopes as vaccine immunogen to induce multitude of broad and potent immune effector activities required for sterilizing protection against global HIV subtypes.
Collapse
Affiliation(s)
- Bikash Sahay
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - Janet K Yamamoto
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| |
Collapse
|
4
|
Zhang X, Li X, Tan F, Yu N, Pei H. STAT1 Inhibits MiR-181a Expression to Suppress Colorectal Cancer Cell Proliferation Through PTEN/Akt. J Cell Biochem 2017; 118:3435-3443. [PMID: 28322462 DOI: 10.1002/jcb.26000] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/17/2017] [Indexed: 11/08/2022]
Abstract
Signal transducers and activators of transcription 1 (STAT1) exhibits tumor-suppressor properties by inhibiting oncogenic pathways and promoting tumor immunosurveillance. MicroRNAs, a group of non-coding endogenous ones, may regulate gene expression and plays specific roles in tumorigenesis. Recently, miR-181a has been reported to be associated with poor prognosis of colorectal cancer (CRC). Using human colorectal cancer cell lines, we demonstrated that STAT1 suppresses both LoVo and SW480 cell growth by down-regulating miR-181a. STAT1 regulates the expression of miR-181a through binding to the elements in the miR-181a's promoter region. Further, we revealed that miR-181a accelerates CRC cell proliferation through phosphatase and tensin homolog on chromosome ten (PTEN). In addition, PTEN protein was upregulated in response to STAT1 overexpression or miR-181a inhibition, downregulated in response to STAT1 knockdown or miR-181a overexpression. Without changes on the AKT protein level, p-AKT was downregulated by STAT1 overexpression or miR-181a inhibition while upregulated by STAT1 knockdown or miR-181a overexpression, indicating PTEN/Akt pathway activated in STAT1/miR-181a regulation of CRC cell proliferation. Taken together, our findings shed new light on the STAT1/miR-181a/PTEN pathway in colorectal cancer and add new insight regarding the carcinogenesis of colorectal cancer. J. Cell. Biochem. 118: 3435-3443, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xingwen Zhang
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Department of Emergency, Hunan Provincial People's Hospital, P.R. China
| | - Xiang Li
- Department of Emergency, Hunan Provincial People's Hospital, P.R. China
| | - Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Nanhui Yu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Haiping Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| |
Collapse
|
5
|
Nuclear factor-κB–dependent microRNA-130a upregulation promotes cervical cancer cell growth by targeting phosphatase and tensin homolog. Arch Biochem Biophys 2016; 598:57-65. [DOI: 10.1016/j.abb.2016.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 12/13/2022]
|
6
|
Neurotropic arboviruses induce interferon regulatory factor 3-mediated neuronal responses that are cytoprotective, interferon independent, and inhibited by Western equine encephalitis virus capsid. J Virol 2012. [PMID: 23192868 DOI: 10.1128/jvi.02858-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cell-intrinsic innate immune responses mediated by the transcription factor interferon regulatory factor 3 (IRF-3) are often vital for early pathogen control, and effective responses in neurons may be crucial to prevent the irreversible loss of these critical central nervous system cells after infection with neurotropic pathogens. To investigate this hypothesis, we used targeted molecular and genetic approaches with cultured neurons to study cell-intrinsic host defense pathways primarily using the neurotropic alphavirus western equine encephalitis virus (WEEV). We found that WEEV activated IRF-3-mediated neuronal innate immune pathways in a replication-dependent manner, and abrogation of IRF-3 function enhanced virus-mediated injury by WEEV and the unrelated flavivirus St. Louis encephalitis virus. Furthermore, IRF-3-dependent neuronal protection from virus-mediated cytopathology occurred independently of autocrine or paracrine type I interferon activity. Despite being partially controlled by IRF-3-dependent signals, WEEV also disrupted antiviral responses by inhibiting pattern recognition receptor pathways. This antagonist activity was mapped to the WEEV capsid gene, which disrupted signal transduction downstream of IRF-3 activation and was independent of capsid-mediated inhibition of host macromolecular synthesis. Overall, these results indicate that innate immune pathways have important cytoprotective activity in neurons and contribute to limiting injury associated with infection by neurotropic arboviruses.
Collapse
|
7
|
Nicoletti F, Lapenta C, Lamenta C, Donati S, Spada M, Ranazzi A, Cacopardo B, Mangano K, Belardelli F, Perno C, Aquaro S. Inhibition of human immunodeficiency virus (HIV-1) infection in human peripheral blood leucocytes-SCID reconstituted mice by rapamycin. Clin Exp Immunol 2009; 155:28-34. [PMID: 19076826 DOI: 10.1111/j.1365-2249.2008.03780.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The capacity of the immunomodulatory drug rapamycin (RAPA) to inhibit replication of the CCR5 strain of human immunodeficiency virus (HIV) in vitro prompted us to test its effects in a murine preclinical model of HIV infection. RAPA (0.6 or 6 mg/kg body weight) or its vehicle were administered daily, per os, to SCID mice reconstituted with human peripheral blood leucocytes (hu-PBL) starting 2 days before the intraperitoneal challenge with the R5 tropic SF162 strain of HIV-1 (1000 50% tissue culture infective dose/ml). Relative to hu-PBL-SCID mice that received no treatment, HIV-infected hu-PBL-SCID mice treated with the vehicle control for 3 weeks exhibited a severe depletion of CD4(+) cells (90%), an increase in CD8(+) cells and an inversion of the CD4(+)/CD8(+) cell ratio. In contrast, treatment of HIV-infected mice with RAPA prevented a decrease in CD4(+) cells and the increase of CD8(+) cells, thereby preserving the original CD4(+):CD8(+) cell ratio. Viral infection also resulted in the detection of HIV-DNA within peritoneal cells and spleen, and lymph node tissues of the vehicle-treated mice within 3 weeks of the viral challenge. In contrast, treatment with RAPA decreased cellular provirus integration and reduced HIV-RNA levels in the blood. Furthermore, in co-cultivation assays, spleens from RAPA-treated mice exhibited a reduced capacity for infecting allogeneic T cells which was dose-dependent. These data show that RAPA possesses powerful anti-viral activity against R5 strains of HIV in vivo and support the use of additional studies to evaluate the potential application of this drug in the management of HIV patients.
Collapse
Affiliation(s)
- F Nicoletti
- Department of Biomedical Sciences, Section of Clinical Pathology and Molecular Oncology, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pons J, Evrard-Todeschi N, Bertho G, Gharbi-Benarous J, Sonois V, Benarous R, Girault JP. Structural Studies on 24P-IκBα Peptide Derived from a Human IκB-α Protein Related to the Inhibition of the Activity of the Transcription Factor NF-κB. Biochemistry 2007; 46:2958-72. [PMID: 17319651 DOI: 10.1021/bi061401f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The IkappaB-alpha protein, inhibitor of the transcription factor nuclear factor-kappaB (NF-kappaB), is a cellular substrate of beta-transducin repeat containing protein (beta-TrCP). beta-TrCP is the F-box protein component of an Skp1/Cul1/F-box (SCF)-type ubiquitin ligase complex. beta-TrCP targets the protein IkappaB-alpha for ubiquitination, followed by proteasome degradation. The SCF-beta-TrCP complex specifically recognizes an IkappaB-alpha peptide containing the DpSGXXpS motif in a phosphorylation-dependent manner. A fragment comprising 24 amino acids residues for the phosphorylated peptide at the two sites Ser32 and Ser36 and thus termed 24P-IkappaBalpha (P-IkappaBalpha21-44) was characterized conformationally by NMR spectroscopy and molecular dynamics simulation. In the free states, 24P-IkappaBalpha exhibits mainly a random coil conformation, although the presence of a nascent bend was detected between residues 30 and 36, flanked by two N- and C-terminal disordered regions. The bound conformation of the phosphorylated IkappaB-alpha peptide was obtained using transfer nuclear Overhauser effect spectroscopy (TRNOESY) experiments. To further elucidate the basis of the beta-TrCP interaction, a complex between 24P-IkappaBalpha peptide and beta-TrCP protein was studied using saturation transfer difference (STD) NMR experiments. The conformation of 24P-IkappaBalpha bound to beta-TrCP presents a bend corresponding to the 31DpSGLDpS36 motif and on both sides N- and C-terminal turn regions (Lys22-Asp31 and Met37-Glu43). The bound structure of the phosphorylated peptide suggests that these domains are crucial for the interaction of the peptide with its receptor showing the protons identified by STD NMR as exposed in close proximity to the beta-TrCP surface.
Collapse
Affiliation(s)
- Julien Pons
- Université Paris V-René Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (UMR 8601 CNRS), 45 rue des Saint-Pères, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Hertlein E, Wang J, Ladner KJ, Bakkar N, Guttridge DC. RelA/p65 regulation of IkappaBbeta. Mol Cell Biol 2005; 25:4956-68. [PMID: 15923614 PMCID: PMC1140602 DOI: 10.1128/mcb.25.12.4956-4968.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/19/2005] [Accepted: 03/17/2005] [Indexed: 01/01/2023] Open
Abstract
IkappaB inhibitor proteins are the primary regulators of NF-kappaB. In contrast to the defined regulatory interplay between NF-kappaB and IkappaBalpha, much less is known regarding the regulation of IkappaBbeta by NF-kappaB. Here, we describe in detail the regulation of IkappaBbeta by RelA/p65. Using p65(-/-) fibroblasts, we show that IkappaBbeta is profoundly reduced in these cells, but not in other NF-kappaB subunit knockouts. This regulation prevails during embryonic and postnatal development in a tissue-specific manner. Significantly, in both p65(-/-) cells and tissues, IkappaBalpha is also reduced, but not nearly to the same extent as IkappaBbeta, thus highlighting the degree to which IkappaBbeta is dependent on p65. This dependence is based on the ability of p65 to stabilize IkappaBbeta protein from the 26S proteasome, a process mediated in large part through the p65 carboxyl terminus. Furthermore, IkappaBbeta was found to exist in both a basally phosphorylated and a hyperphosphorylated form. While the hyperphosphorylated form is less abundant, it is also more stable and less dependent on p65 and its carboxyl domain. Finally, we show that in p65(-/-) fibroblasts, expression of a proteolysis-resistant form of IkappaBbeta, but not IkappaBalpha, causes a severe growth defect associated with apoptosis. Based on these findings, we propose that tight control of IkappaBbeta protein by p65 is necessary for the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Erin Hertlein
- Human Cancer Genetics Program, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
10
|
Gil J, Bermejo M, Alcamí J. HIV and apoptosis: a complex interaction between cell death and virus survival. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2004; 36:117-49. [PMID: 15171610 DOI: 10.1007/978-3-540-74264-7_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- J Gil
- Wolfson Institute for Biomedical Research, University College, London, UK
| | | | | |
Collapse
|
11
|
Benedict CA, Angulo A, Patterson G, Ha S, Huang H, Messerle M, Ware CF, Ghazal P. Neutrality of the canonical NF-kappaB-dependent pathway for human and murine cytomegalovirus transcription and replication in vitro. J Virol 2004; 78:741-50. [PMID: 14694106 PMCID: PMC368812 DOI: 10.1128/jvi.78.2.741-750.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 09/26/2003] [Indexed: 02/08/2023] Open
Abstract
Cytomegalovirus (CMV) is known to rapidly induce activation of nuclear factor kappaB (NF-kappaB) after infection of fibroblast and macrophage cells. NF-kappaB response elements are present in the enhancer region of the CMV major immediate-early promoter (MIEP), and activity of the MIEP is strongly upregulated by NF-kappaB in transient-transfection assays. Here we investigate whether the NF-kappaB-dependent pathway is required for initiating or potentiating human and murine CMV replication in vitro. We show that expression of a dominant negative mutant of the inhibitor of NF-kappaB-alpha (IkappaBalphaM) does not alter the replication kinetics of human or mouse CMV in cultured cells. In addition, mouse embryo fibroblasts genetically deficient for p65/RelA actually showed elevated levels of MCMV replication. Mutation of all NF-kappaB response elements within the enhancer of the MIEP in a recombinant mouse CMV containing the human MIEP (hMCMV-ES), which we have previously shown to replicate in murine fibroblasts with kinetics equivalent to that of wild-type mouse CMV, did not negatively affect replication in fibroblasts. Taken together, these data show that, for CMV replication in cultured fibroblasts activation of the canonical NF-kappaB pathway and binding of NF-kappaB to the MIEP are dispensable, and in the case of p65 may even interfere, thus uncovering a previously unrecognized level of complexity in the host regulatory network governing MIE gene expression in the context of a viral infection.
Collapse
Affiliation(s)
- Chris A Benedict
- La Jolla Institute of Allergy and Immunology, San Diego, California 92007, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
We have previously shown that in the aged CNS there is a free radical-dependent upregulation of Bcl-2 associated with perturbations of NFkappaB function. Both Bcl-2 and NFkappaB are key players in the cellular machinery devoted to cope with stress and regulate neuronal apoptosis. To study whether effects on NFkappaB are part of the Bcl-2 anti-apoptotic mechanism, we examined the effect of Bcl-2 on NFkappaB transcriptional activity in PC12 cells and determined the role thereby of Bcl-2 phosphorylation (required for the anti-apoptotic function of Bcl-2). Our results indicate that over-expression of Bcl-2 significantly decreases NFkappaB-promoted transcription and that this effect is independent of Bcl-2 phosphorylation. We conclude that such Bcl-2 effect on NFkappaB activity is distinct from its anti-apoptotic action.
Collapse
Affiliation(s)
- Cynthia A Massaad
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | |
Collapse
|
13
|
Vanden Berghe W, De Bosscher K, Vermeulen L, De Wilde G, Haegeman G. Induction and repression of NF-kappa B-driven inflammatory genes. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2003:233-78. [PMID: 12355719 DOI: 10.1007/978-3-662-04660-9_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- W Vanden Berghe
- Unit of Eukaryotic Gene Expression and Signal Transduction, Department of Molecular Biology, University of Gent-VIB, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.
| | | | | | | | | |
Collapse
|
14
|
Olivetta E, Percario Z, Fiorucci G, Mattia G, Schiavoni I, Dennis C, Jäger J, Harris M, Romeo G, Affabris E, Federico M. HIV-1 Nef induces the release of inflammatory factors from human monocyte/macrophages: involvement of Nef endocytotic signals and NF-kappa B activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1716-27. [PMID: 12574335 DOI: 10.4049/jimmunol.170.4.1716] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been recently reported that the endogenous expression of HIV-1 Nef in human monocyte/macrophages induces the release of chemokines and other as yet unidentified soluble factors leading to multiple effects of pathogenic significance, such as the recruitment and activation of quiescent lymphocytes. However, the description of underlying molecular mechanisms remained elusive. We recently demonstrated that human monocyte-derived macrophages (MDM) efficiently internalize soluble rNef, thereby inducing effects largely resembling those observed in cells endogenously expressing Nef. By exploiting the rNef/MDM model, we sought to gain more insights on the molecular mechanisms underlying the response of MDM to Nef. Array analysis for the detection of transcripts from a large number of monokines, chemokines, cytokines, and receptors thereof showed that MDM promptly responded to rNef treatment by increasing the transcription of genes for several inflammatory factors. Analysis of supernatants revealed that rNef treatment induced the release of macrophage inflammatory proteins 1alpha and 1beta, IL-1beta, IL-6, and TNF-alpha. Conversely, rNefs mutated in domains critical for the interaction with the endocytotic machinery (i.e., EE155-156QQ, and DD174-175AA) were ineffective. Interestingly, we found that the Nef-dependent release of inflammatory factors correlated with the activation of the NF-kappaB transcription factor, mainly in its p50/p50 homodimeric form, and in a de novo protein synthesis-independent manner. Our data add new hints supporting the idea that the presence of Nef is per se heavily detrimental for monocyte/macrophages and relative cross-talking cell types.
Collapse
Affiliation(s)
- Eleonora Olivetta
- Laboratory of Virology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161-Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sheng WS, Hu S, Lokensgard JR, Peterson PK. U50,488 inhibits HIV-1 Tat-induced monocyte chemoattractant protein-1 (CCL2) production by human astrocytes. Biochem Pharmacol 2003; 65:9-14. [PMID: 12473373 DOI: 10.1016/s0006-2952(02)01480-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Kappa-opioid receptor (KOR) ligands have been reported to alter many cell functions and to exert an immunomodulatory role in the CNS. Astrocytes, the predominant brain cell type, have been implicated in the neuropathogenesis of human immunodeficiency virus type 1 (HIV-1). HIV-1 nuclear protein Tat has been reported to induce production of the chemokine monocyte chemoattractant protein-1 (MCP-1 or CCL2) and to activate nuclear factor kappaB (NF-kappaB) in human astrocytes. In the present study, we investigated whether the synthetic KOR ligand trans-3,4-dichloro-N-methyl-N[2-(1-pyrolidinyl)cyclohexyl]benzeneacetamide methanesulfonate (U50,488) would down-regulate MCP-1 production in primary human astrocytes stimulated by Tat. Treatment of astrocytes with U50,488 inhibited Tat-induced MCP-1 production in a concentration-dependent manner. The KOR-selective antagonist nor-binaltrophimine (nor-BNI) completely blocked the inhibitory effect of U50,488, indicating involvement of KOR. While U50,488 alone had a partial inhibitory effect on constituent NF-kappaB activation, it potently suppressed Tat-induced NF-kappaB activation. These findings suggest that KOR ligands could have an anti-inflammatory effect in the CNS and thereby be beneficial in the treatment of HIV-1-associated brain disease.
Collapse
Affiliation(s)
- Wen S Sheng
- Neuroimmunology Laboratory, Minneapolis Medical Research Foundation, 914 South 8th Street, Minneapolis, MN 55404, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
The cachexia syndrome is characterised by progressive weight loss and depletion of lean body mass and has long been recognised as a poor prognostic sign. Whilst the clinical features of the wasting process are readily apparent, its pathogenesis is complex and poorly understood. There is increasing evidence that the immune system, in particular inflammatory cytokines, may play an important role in the development of cachexia. The cytokine considered to be the most relevant to this process is tumor necrosis factor alpha (TNF), although other mediators such as interleukin (IL) 1, IL-6 and interferon gamma have also been implicated. Apoptosis represents a potential pathway by which wasting can occur in chronic diseases. Cytokines and their corresponding receptors are known to be important regulators of cell death. Apoptosis has been demonstrated in the skeletal muscle of patients with chronic heart failure (CHF) and is thought to be partly responsible for the significant impairment of functional work capacity associated with this condition. An understanding of the mechanisms that regulate muscle protein breakdown is essential for the development of strategies for treating or even preventing muscle cachexia in patients. It is the aim of this article to review the role of inflammatory cytokines, particularly TNF, in the pathogenesis of wasting and also the potential for anti-cytokine therapy. Although this review will concentrate predominantly on the syndrome of CHF, other chronic illnesses such as liver disease, cancer, and sepsis will also be discussed.
Collapse
Affiliation(s)
- Rakesh Sharma
- Department of Clinical Cardiology, National Heart and Lung Institute, Imperial College School of Medicine, London, UK
| | | |
Collapse
|
17
|
Roof P, Ricci M, Genin P, Montano MA, Essex M, Wainberg MA, Gatignol A, Hiscott J. Differential regulation of HIV-1 clade-specific B, C, and E long terminal repeats by NF-kappaB and the Tat transactivator. Virology 2002; 296:77-83. [PMID: 12036319 DOI: 10.1006/viro.2001.1397] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The major group of human immunodeficiency viruses (HIV-1) that comprise the current global pandemic have diversified during their worldwide spread and may be divided into at least 10 distinct subtypes or clades, A through J. Subtype B predominates in North America and Europe, subtype E predominates in Southeast Asia, and subtype C predominates in sub-Saharan Africa. Functional distinctions in long terminal repeat (LTR) architecture among HIV subtypes have been identified, thus raising the possibility that regulatory divergence among the subtypes of HIV-1 has occurred. In addition to the transcriptional specificity of the HIV-1 LTR, productive HIV-1 replication is also dependent upon the viral Tat protein. Therefore, we sought to investigate whether interactions between host signaling pathways and the NF-kappaB regions of different HIV-1 subtypes, together with subtype-specific interactions between Tat, TAR, and cellular proteins, modulate the efficiency of HIV-1 clade-specific gene transcription. We demonstrate that the NF-kappaB sites of subtypes B and E both bind NF-kappaB-related complexes. However, the duplicated kappaB sites of the C subtype do not compete for NF-kappaB binding. Also, clade E Tat protein possesses the highest transactivation capacity, regardless of the LTR context. Furthermore, preliminary evidence suggests that the acetylation of subtype-specific Tat proteins may correlate with their transactivation efficiency.
Collapse
Affiliation(s)
- Philippe Roof
- McGill AIDS Center, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Akari H, Bour S, Kao S, Adachi A, Strebel K. The human immunodeficiency virus type 1 accessory protein Vpu induces apoptosis by suppressing the nuclear factor kappaB-dependent expression of antiapoptotic factors. J Exp Med 2001; 194:1299-311. [PMID: 11696595 PMCID: PMC2195969 DOI: 10.1084/jem.194.9.1299] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human immunodeficiency virus (HIV) type 1 Vpu is an integral membrane protein with a unique affinity for betaTrCP (TrCP), a key member of the SkpI-Cullin-F-box E3 ubiquitin ligase complex that is involved in the regulated degradation of cellular proteins, including IkappaB. Remarkably, Vpu is resistant to TrCP-mediated degradation and competitively inhibits TrCP-dependent degradation of IkappaB, resulting in the suppression of nuclear factor (NF)-kappaB activity in Vpu-expressing cells. We now report that Vpu, through its interaction with TrCP, potently contributes to the induction of apoptosis in HIV-infected T cells. Vpu-induced apoptosis is specific and independent of other viral proteins. Mutation of a TrCP-binding motif in Vpu abolishes its apoptogenic property, demonstrating a close correlation between this property of Vpu and its ability to inhibit NF-kappaB activity. The involvement of NF-kappaB in Vpu-induced apoptosis is further supported by the finding that the levels of antiapoptotic factors Bcl-xL, A1/Bfl-1, and TNF receptor-associated factor (TRAF)1, all of which are expressed in an NF-kappaB-dependent manner, are reduced and, at the same time, levels of active caspase-3 are elevated. Thus, Vpu induces apoptosis through activation of the caspase pathway by way of inhibiting the NF-kappaB-dependent expression of antiapoptotic genes.
Collapse
Affiliation(s)
- H Akari
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
19
|
Han Y, He T, Huang DR, Pardo CA, Ransohoff RM. TNF-alpha mediates SDF-1 alpha-induced NF-kappa B activation and cytotoxic effects in primary astrocytes. J Clin Invest 2001; 108:425-35. [PMID: 11489936 PMCID: PMC209361 DOI: 10.1172/jci12629] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Stromal-derived cell factor-1 alpha (SDF-1 alpha; CXCL12) and its receptor, CXCR4, are constitutively expressed on neuroepithelial cells and are believed to be involved in both development and pathological processes, such as AIDS-associated neurologic disorders. Here, we demonstrate that SDF-1 alpha activates NF-kappa B, stimulates production of chemokines and cytokines, and induces cell death in primary astrocytes, effects that depend on ongoing secretion of TNF-alpha. SDF-1 alpha upregulated TNF-alpha mRNA and protein secretion, as well as TNF receptor 2 expression. TNF-alpha treatment mimicked SDF-1 alpha induction of NF-kappa B, IL-1 alpha/beta, and RANTES, as well as cell death; neutralizing antibodies against TNF-alpha opposed these responses. We also found that SDF-1 alpha activated Erk1 and Erk2 (Erk1/2) MAPK in a biphasic fashion. Early Erk1/2 activation was stimulated directly by SDF-1 alpha and late activation was mediated by TNF-alpha. PD98059 suppression of early Erk1/2 activation correlated with reduction of SDF-1 alpha-induced TNF-alpha expression. Late Erk1/2 activation was involved in TNF-alpha-stimulated NF-kappa B activation and cytokine induction. SDF-1 alpha was induced in reactive CXCR4-positive astrocytes near axotomized spinal cord motor neurons, consistent with autocrine SDF-1/CXCR4 signaling in these cells. We propose that these novel effects of SDF-1 alpha are relevant to the pathogenic and developmental roles of SDF-1 alpha in the CNS.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/physiology
- Cell Death/drug effects
- Cells, Cultured
- Chemokine CCL5/genetics
- Chemokine CXCL12
- Chemokines, CXC/genetics
- Chemokines, CXC/pharmacology
- Chemokines, CXC/physiology
- DNA-Binding Proteins/metabolism
- Enzyme Activation/drug effects
- Gene Expression/drug effects
- I-kappa B Proteins
- Interleukin-1/genetics
- Mice
- Mitogen-Activated Protein Kinases/metabolism
- NF-KappaB Inhibitor alpha
- NF-kappa B/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, CXCR4/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor, Type II
- Recombinant Proteins/genetics
- Recombinant Proteins/pharmacology
- Signal Transduction
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Y Han
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
20
|
Langford D, Masliah E. Crosstalk between components of the blood brain barrier and cells of the CNS in microglial activation in AIDS. Brain Pathol 2001; 11:306-12. [PMID: 11414473 PMCID: PMC8098377 DOI: 10.1111/j.1750-3639.2001.tb00401.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During the progression of AIDS, a majority of patients develop cognitive disorders such as HIV encephalitis (HIVE) and AIDS dementia complex (ADC), which correlate closely with macrophage infiltration into the brain and microglial activation. Microglial activation occurs in response to infection, inflammation and neurological disorders including HIVE, Alzheimer's disease, Parkinson's disease and multiple sclerosis. Microglia can be activated by immunoreactive cells independent of, but enhanced by HIV infection, from at least two routes. Activation may occur from signals originating from activated monocytes and lymphocytes in the blood stream, which initiate a cascade of stimuli that ultimately reach microglia in the brain or from activated macrophages/microglia/astrocytes within the brain. Effects of microglial activation stemming from both systemic and CNS HIV infection act together to commence signaling feedback, leading to HIVE and increased neurodegeneration. Most recent data indicate that in AIDS patients, microglial activation in the brain with subsequent release of excitotoxins, cytokines and chemokines leads to neurodegeneration and cognitive impairment. Since the presence of HIV in the brain results from migration of infected monocytes and lymphocytes across the vascular boundary, the development of novel therapies aimed at protecting the integrity of the blood brain barrier (BBB) upon systemic HIV infection is critical for controlling CNS infection.
Collapse
Affiliation(s)
- D Langford
- Department of Neurosciences, University of California San Diego, La Jolla 92093, USA
| | | |
Collapse
|
21
|
Diao J, Garces R, Richardson CD. X protein of hepatitis B virus modulates cytokine and growth factor related signal transduction pathways during the course of viral infections and hepatocarcinogenesis. Cytokine Growth Factor Rev 2001; 12:189-205. [PMID: 11325602 DOI: 10.1016/s1359-6101(00)00034-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus produces chronic infections of the liver leading to cirrhosis and hepatocellular carcinoma. The X protein of hepatitis B virus (HBx) is a multifunctional protein that can interact with p53 but can also influence a variety of signal transduction pathways within the cell. In most instances this small viral protein favors cell survival and probably initiates hepatocarcinogenesis. HBx upregulates the activity of a number of transcription factors including NF-kappa B, AP-1, CREB, and TBP. However, the majority of HBx is localized to the cytoplasm where it interacts with and stimulates protein kinases such as protein kinase C, Janus kinase/STAT, IKK, PI-3-K, stress-activated protein kinase/Jun N-terminal kinase, and protein kinase B/Akt. This small viral protein can localize to the mitochondrion. HBx may act as an adaptor or kinase activator to influence signal transduction pathways. This review will attempt to analyze the involvement of HBx in signal transduction pathways during hepatitis B viral infections and hepatocellular carcinoma development.
Collapse
Affiliation(s)
- J Diao
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | | | | |
Collapse
|
22
|
Jeang KT. Functional activities of the human T-cell leukemia virus type I Tax oncoprotein: cellular signaling through NF-kappa B. Cytokine Growth Factor Rev 2001; 12:207-17. [PMID: 11325603 DOI: 10.1016/s1359-6101(00)00028-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-I) is the etiological agent for adult T-cell leukemia (ATL), as well as for tropical spastic paraparesis (TSP) and HTLV-I associate myelopathy (HAM). A biological understanding of the involvement of HTLV-I and in ATL has focused significantly on the workings of the virally-encoded 40 kDa phospho-oncoprotein, Tax. Tax is a transcriptional activator. Its ability to modulate the expression and function of many cellular genes has been reasoned to be a major contributory mechanism explaining HTLV-I-mediated transformation of cells. In activating cellular gene expression, Tax impinges upon several cellular signal-transduction pathways, including those for CREB/ATF and NF-kappa B. In this paper, we review aspects of Tax's transcriptional potential with particular focus on recent evidence linking Tax to IKK (I kappa B-kinase)-complex and MAP3Ks (mitogen-activated protein kinase kinase kinases).
Collapse
Affiliation(s)
- K T Jeang
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Room 306, Building 4, 4 Center Drive, MSC 0460, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
23
|
Bour S, Perrin C, Akari H, Strebel K. The human immunodeficiency virus type 1 Vpu protein inhibits NF-kappa B activation by interfering with beta TrCP-mediated degradation of Ikappa B. J Biol Chem 2001; 276:15920-8. [PMID: 11278695 DOI: 10.1074/jbc.m010533200] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpu protein binds to the CD4 receptor and induces its degradation by cytosolic proteasomes. This process involves the recruitment of human betaTrCP (TrCP), a key member of the SkpI-Cdc53-F-box E3 ubiquitin ligase complex that specifically interacts with phosphorylated Vpu molecules. Interestingly, Vpu itself, unlike other TrCP-interacting proteins, is not targeted for degradation by proteasomes. We now report that, by virtue of its affinity for TrCP and resistance to degradation, Vpu, but not a phosphorylation mutant unable to interact with TrCP, has a dominant negative effect on TrCP function. As a consequence, expression of Vpu in HIV-infected T cells or in HeLa cells inhibited TNF-alpha-induced degradation of IkappaB-alpha. Vpu did not inhibit TNF-alpha-mediated activation of the IkappaB kinase but instead interfered with the subsequent TrCP-dependent degradation of phosphorylated IkappaB-alpha. This resulted in a pronounced reduction of NF-kappaB activity. We also observed that in cells producing Vpu-defective virus, NF-kappaB activity was significantly increased even in the absence of cytokine stimulation. However, in the presence of Vpu, this HIV-mediated NF-kappaB activation was markedly reduced. These results suggest that Vpu modulates both virus- and cytokine-induced activation of NF-kappaB in HIV-1-infected cells.
Collapse
Affiliation(s)
- S Bour
- Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | | | |
Collapse
|
24
|
Oitzinger W, Hofer-Warbinek R, Schmid JA, Koshelnick Y, Binder BR, de Martin R. Adenovirus-mediated expression of a mutant IkappaB kinase 2 inhibits the response of endothelial cells to inflammatory stimuli. Blood 2001; 97:1611-7. [PMID: 11238099 DOI: 10.1182/blood.v97.6.1611] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In a variety of cell types, the transcription factor nuclear factor kappaB (NF-kappaB) functions as a mediator of stress and immune responses. In endothelial cells (ECs), it controls the expression of genes encoding, eg, cytokines, cell adhesion molecules, and procoagulatory proteins. This study investigates the effect of NF-kappaB suppression on several pathophysiologic functions of ECs, including inflammation, coagulation, and angiogenesis. A recombinant adenovirus was generated for expression of a dominant negative (dn) mutant of IkappaB kinase 2 (IKK2), a kinase that acts as an upstream activator of NF-kappaB. dnIKK2 inhibited NF-kappaB, resulting in strongly reduced nuclear translocation and DNA binding activity of the transcription factor and lack of expression of several proinflammatory markers, including E-selectin, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, and interleukin-8. Concomitantly, inhibition of leukocyte binding to dnIKK2-expressing ECs could be demonstrated in a cell adhesion assay. Furthermore, expression of tissue factor as well as the ability to form capillary tubes in a matrigel assay was impaired in dnIKK2-expressing ECs. These data demonstrate that NF-kappaB is of central importance not only for the inflammatory response but also for a number of other EC functions. Therefore, this transcription factor as well as its upstream regulatory signaling molecules may represent favorable targets for therapeutic interference.
Collapse
Affiliation(s)
- W Oitzinger
- Department of Vascular Biology and Thrombosis Research, University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
25
|
Vanden Berghe W, Vermeulen L, De Wilde G, De Bosscher K, Boone E, Haegeman G. Signal transduction by tumor necrosis factor and gene regulation of the inflammatory cytokine interleukin-6. Biochem Pharmacol 2000; 60:1185-95. [PMID: 11007957 DOI: 10.1016/s0006-2952(00)00412-3] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interleukin (IL)-6 is a multifunctional cytokine that can be induced by a plethora of chemical or physiological compounds, including the inflammatory cytokines tumor necrosis factor (TNF) and IL-1. The molecule TNF has a trimeric configuration and thus binds to membrane-bound, cellular receptors to initiate cell death mechanisms and signaling pathways leading to gene induction. Previously, we showed that induced clustering of the intracellular domains of the p55 TNF receptor, or of their respective 'death domains' only, is sufficient to activate the nuclear factor kappa B (NF-kappa B) and several mitogen-activated protein kinase (MAPK) pathways. NF-kappa B is the exclusive transcription factor for induction of the IL-6 gene in response to TNF and functions as the final trigger to activate a multiprotein complex, a so-called 'enhanceosome', at the level of the IL-6 promoter. Furthermore, the enhanceosome displays histone acetylation activity, which turned out to be essential for IL-6 gene activation via NF-kappa B. However, activation of NF-kappa B alone is not sufficient for IL-6 gene induction in response to TNF, as inhibition of the coactivated extracellular signal-regulated kinase and p38 MAPK pathways blocks TNF-mediated gene expression. Nevertheless, the transactivating NF-kappa B subunit p65 is not a direct target of MAPK phosphorylation. Thus, we postulated that other components of the enhanceosome complex are sensitive to MAPK cascades and found that MAPK activity is unequivocally linked to the histone acetylation capacity of the enhanceosome to stimulate gene expression in response to TNF. In contrast, glucocorticoid repression of TNF-driven IL-6 gene expression does not depend on abrogation of histone acetyltransferase activity, but originates from interference of the liganded glucocorticoid receptor with the contacts between NF-kappa B p65 and the promoter configuration around the TATA box.
Collapse
Affiliation(s)
- W Vanden Berghe
- Department of Molecular Biology, Flanders Interuniversity Institute for Biotechnology, 9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
26
|
Verrecchia F, Pessah M, Atfi A, Mauviel A. Tumor necrosis factor-alpha inhibits transforming growth factor-beta /Smad signaling in human dermal fibroblasts via AP-1 activation. J Biol Chem 2000; 275:30226-31. [PMID: 10903323 DOI: 10.1074/jbc.m005310200] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Understanding the molecular mechanisms underlying the antagonistic activities of tumor necrosis factor-alpha (TNF-alpha) against transforming growth factor-beta (TGF-beta) is of utmost importance given the physiopathological implications of these cytokines. In this report, we demonstrate that TNF-alpha prevents TGF-beta-induced Smad-specific gene transactivation without inducing detectable levels of inhibitory Smad7 in human dermal fibroblasts. On the other hand, c-Jun and JunB, both induced by TNF-alpha, block Smad3-mediated transcription. Expression of antisense c-Jun mRNA prevents TNF-alpha inhibition of TGF-beta/Smad signaling whereas that of dominant-negative Ikappa-B kinase-alpha or antisense Smad7 does not. We provide evidence for off-DNA interactions between Smad3 and both c-Jun and JunB accompanied with reduced Smad3-DNA interactions. Finally, we show that overexpression of the transcriptional co-activator p300 prevents TNF-alpha/AP-1 inhibition of TGF-beta/Smad signaling. These data suggest that TNF-alpha interferes with Smad signaling through the induction of AP-1 components, the latter forming off-DNA complexes with Smad3 and preventing its binding to specific cis-element(s). In addition, Jun members compete with Smad3 for the common transcription co-activator p300. These two mechanisms are likely to act in concert to decrease Smad-specific transcription.
Collapse
Affiliation(s)
- F Verrecchia
- INSERM U532, Hôpital Saint-Louis, 75010 Paris and INSERM U482, Hôpital Saint-Antoine, 75012 Paris, France
| | | | | | | |
Collapse
|
27
|
Heylbroeck C, Balachandran S, Servant MJ, DeLuca C, Barber GN, Lin R, Hiscott J. The IRF-3 transcription factor mediates Sendai virus-induced apoptosis. J Virol 2000; 74:3781-92. [PMID: 10729153 PMCID: PMC111887 DOI: 10.1128/jvi.74.8.3781-3792.2000] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus infection of target cells can result in different biological outcomes: lytic infection, cellular transformation, or cell death by apoptosis. Cells respond to virus infection by the activation of specific transcription factors involved in cytokine gene regulation and cell growth control. The ubiquitously expressed interferon regulatory factor 3 (IRF-3) transcription factor is directly activated following virus infection through posttranslational modification. Phosphorylation of specific C-terminal serine residues results in IRF-3 dimerization, nuclear translocation, and activation of DNA-binding and transactivation potential. Once activated, IRF-3 transcriptionally up regulates alpha/beta interferon genes, the chemokine RANTES, and potentially other genes that inhibit viral infection. We previously generated constitutively active [IRF-3(5D)] and dominant negative (IRF-3 DeltaN) forms of IRF-3 that control target gene expression. In an effort to characterize the growth regulatory properties of IRF-3, we observed that IRF-3 is a mediator of paramyxovirus-induced apoptosis. Expression of the constitutively active form of IRF-3 is toxic, preventing the establishment of stably transfected cells. By using a tetracycline-inducible system, we show that induction of IRF-3(5D) alone is sufficient to induce apoptosis in human embryonic kidney 293 and human Jurkat T cells as measured by DNA laddering, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay, and analysis of DNA content by flow cytometry. Wild-type IRF-3 expression augments paramyxovirus-induced apoptosis, while expression of IRF-3 DeltaN blocks virus-induced apoptosis. In addition, we demonstrate an important role of caspases 8, 9, and 3 in IRF-3-induced apoptosis. These results suggest that IRF-3, in addition to potently activating cytokine genes, regulates apoptotic signalling following virus infection.
Collapse
Affiliation(s)
- C Heylbroeck
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|