1
|
Briday M, Carvalho N, Oganesyan N, Chang MJ, Lees A, Brier S, Chenal A. Comparative analysis of the structural dynamics of diphtheria toxin and CRM 197 carrier proteins used in the development of conjugate vaccines. Int J Pharm 2025; 675:125535. [PMID: 40169064 DOI: 10.1016/j.ijpharm.2025.125535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Carrier proteins are chemically linked to poorly immunogenic antigens to generate conjugate vaccines, significantly improving immunogenicity. CRM197, a genetically detoxified diphtheria toxin (DT) mutant carrying the G52E mutation, is a widely used carrier protein as it retains lysine residues for antigen conjugation. In the past, CRM197 has been expressed in Corynebacterium diphtheriae, but low yields and high costs have prompted the exploration of alternative expression systems. Although high-yield expression and native refolding of CRM197 in E. coli are challenging due to its reducing cytoplasm, recent advances have enabled the production of soluble and well-folded recombinant CRM197 proteins, namely EcoCRM® and EcoCRM®(-Met). In this study, we use Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) to compare the structural dynamics of EcoCRM and EcoCRM(-Met) with DT wild-type. Our HDX-MS data show that the presence or the absence of the N-terminal methionine does not affect the structural dynamics of the two recombinant EcoCRM proteins. Furthermore, our results elucidate the molecular mechanism underlying the lack of toxicity of CRM197 compared to DT wild-type: the G52E mutation in the CRM197 proteins exclusively alters the stability of the NAD-binding pocket and induces allosteric effects within the receptor-binding domain. Altogether, these insights support the substitution of CRM197 produced by C. diphtheriae with the recombinant EcoCRM and EcoCRM(-Met) proteins produced in E. coli, offering a cost-effective solution for use in conjugate vaccines. Data are available via ProteomeXchange with identifier PXD057388.
Collapse
Affiliation(s)
- Mathilde Briday
- Institut Pasteur, Université Paris Cité, BioNMR and HDX-MS Facility, Centre for Technological Resources and Research, Chemistry and Structural Biology Department, UMR CNRS 3528, F-75015 Paris, France
| | - Nicolas Carvalho
- Institut Pasteur, Université Paris Cité, Biochemistry of Macromolecular Interactions Unit, Chemistry and Structural Biology Department, UMR CNRS 3528, F-75015 Paris, France
| | - Natalia Oganesyan
- Fina BioSolutions LLC, 9430 Key West Avenue, Suite 200, Rockville, MD 20850, USA
| | - Min-Ju Chang
- Fina BioSolutions LLC, 9430 Key West Avenue, Suite 200, Rockville, MD 20850, USA
| | - Andrew Lees
- Fina BioSolutions LLC, 9430 Key West Avenue, Suite 200, Rockville, MD 20850, USA
| | - Sébastien Brier
- Institut Pasteur, Université Paris Cité, BioNMR and HDX-MS Facility, Centre for Technological Resources and Research, Chemistry and Structural Biology Department, UMR CNRS 3528, F-75015 Paris, France.
| | - Alexandre Chenal
- Institut Pasteur, Université Paris Cité, Biochemistry of Macromolecular Interactions Unit, Chemistry and Structural Biology Department, UMR CNRS 3528, F-75015 Paris, France.
| |
Collapse
|
2
|
Masuyer G, Taverner A, MacKay J, Lima Marques AR, Wang Y, Hunter T, Liu K, Mrsny RJ. Discovery of mono-ADP ribosylating toxins with high structural homology to Pseudomonas exotoxin A. Commun Biol 2025; 8:413. [PMID: 40069285 PMCID: PMC11897225 DOI: 10.1038/s42003-025-07845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
Mono-ADP-ribosyl transferase (mART) proteins are secreted virulence factors produced by several human pathogens, the founding member being diphtheria toxin (DT). Pseudomonas aeruginosa can also secrete a mART toxin, known as exotoxin A (PE), but with an organization of its three functional domains (receptor, translocation, and enzymatic elements) that is opposite to DT. Two additional PE-like toxins (PLTs) have been identified from Vibrio cholerae and Aeromonas hydrophila, suggesting more PLT family members may exist. Database mining discovered six additional putative homologues, considerably extending this group of PLTs across a wide range of bacterial species. Here, we examine sequence and structural information for these new family members with respect to previously identified PLTs. The X-ray crystal structures of four new homologues show the conservation of critical features responsible for structure and function. This study shows the potential of these newly described toxins for the development of novel drug delivery platforms. Additionally, genomic analysis suggests horizontal gene transfer to account for the wide distribution of PLTs across a range of eubacteria species, highlighting the need to monitor emerging pathogens and their virulence factors.
Collapse
Affiliation(s)
- Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Department of Life Sciences, University of Bath, Bath, UK.
- Centre for Therapeutic Innovation, University of Bath, Bath, UK.
| | | | - Julia MacKay
- Department of Life Sciences, University of Bath, Bath, UK
| | | | - Yuye Wang
- Department of Life Sciences, University of Bath, Bath, UK
| | - Tom Hunter
- Applied Molecular Transport Inc., South San Francisco, CA, USA
| | - Keyi Liu
- Applied Molecular Transport Inc., South San Francisco, CA, USA
| | - Randall J Mrsny
- Department of Life Sciences, University of Bath, Bath, UK.
- Centre for Therapeutic Innovation, University of Bath, Bath, UK.
| |
Collapse
|
3
|
Intestinal Transcytosis of a Protein Cargo and Nanoparticles Mediated by a Non-Toxic Form of Pseudomonas aeruginosa Exotoxin A. Pharmaceutics 2021; 13:pharmaceutics13081171. [PMID: 34452131 PMCID: PMC8402016 DOI: 10.3390/pharmaceutics13081171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
The low permeability of nanoparticles (NPs) across the intestinal epithelium remains a major challenge for their application of delivering macromolecular therapeutic agents via the oral route. Previous studies have demonstrated the epithelial transcytosis capacity of a non-toxic version of Pseudomonas aeruginosa exotoxin A (ntPE). Here, we show that ntPE can be used to deliver the protein cargo green fluorescent protein (GFP) or human growth hormone (hGH), as genetic fusions, across intact rat jejunum in a model where the material is administered by direct intra-luminal injection (ILI) in vivo in a transcytosis process that required less than 15 min. Next, ntPE chemically coupled onto biodegradable alginate/chitosan condensate nanoparticles (AC NPs-ntPE) were shown to transport similarly to ntPE-GFP and ntPE-hGH across rat jejunum. Finally, AC NPs-ntPE loaded with GFP as a model cargo were demonstrated to undergo a similar transcytosis process that resulted in GFP being colocalized with CD11c+ cells in the lamina propria after 30 min. Control NP preparations, not decorated with ntPE, were not observed within polarized epithelial cells or within the cells of the lamina propria. These studies demonstrate the capacity of ntPE to facilitate the transcytosis of a covalently associated protein cargo as well as a biodegradable NP that can undergo transcytosis across the intestinal epithelium to deliver a noncovalently associated protein cargo. In sum, these studies support the potential applications of ntPE to facilitate the oral delivery of macromolecular therapeutics under conditions of covalent or non-covalent association.
Collapse
|
4
|
Masuyer G. Crystal Structure of Exotoxin A from Aeromonas Pathogenic Species. Toxins (Basel) 2020; 12:toxins12060397. [PMID: 32549399 PMCID: PMC7354439 DOI: 10.3390/toxins12060397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Aeromonas exotoxin A (AE) is a bacterial virulence factor recently discovered in a clinical case of necrotising fasciitis caused by the flesh-eating Aeromonas hydrophila. Here, database mining shows that AE is present in the genome of several emerging Aeromonas pathogenic species. The X-ray crystal structure of AE was solved at 2.3 Å and presents all the hallmarks common to diphthamide-specific mono-ADP-ribosylating toxins, suggesting AE is a fourth member of this family alongside the diphtheria toxin, Pseudomonas exotoxin A and cholix. Structural homology indicates AE may use a similar mechanism of cytotoxicity that targets eukaryotic elongation factor 2 and thus inhibition of protein synthesis. The structure of AE also highlights unique features including a metal binding site, and a negatively charged cleft that could play a role in interdomain interactions and may affect toxicity. This study raises new opportunities to engineer alternative toxin-based molecules with pharmaceutical potential.
Collapse
Affiliation(s)
- Geoffrey Masuyer
- Department of Pharmacy and Pharmacology, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
5
|
Taverner A, MacKay J, Laurent F, Hunter T, Liu K, Mangat K, Song L, Seto E, Postlethwaite S, Alam A, Chandalia A, Seung M, Saberi M, Feng W, Mrsny RJ. Cholix protein domain I functions as a carrier element for efficient apical to basal epithelial transcytosis. Tissue Barriers 2020; 8:1710429. [PMID: 31928299 PMCID: PMC7063863 DOI: 10.1080/21688370.2019.1710429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cholix (Chx) is expressed by the intestinal pathogen Vibrio cholerae as a single chain of 634 amino acids (~70.7 kDa protein) that folds into three distinct domains, with elements of the second and third domains being involved in accessing the cytoplasm of nonpolarized cells and inciting cell death via ADP-ribosylation of elongation factor 2, respectively. In order to reach nonpolarized cells within the intestinal lamina propria, however, Chx must cross the polarized epithelial barrier in an intact form. Here, we provide in vitro and in vivo demonstrations that a nontoxic Chx transports across intestinal epithelium via a vesicular trafficking pathway that rapidly achieves vesicular apical to basal (A→B) transcytosis and avoids routing to lysosomes. Specifically, Chx traffics in apical endocytic Rab7+ vesicles and in basal exocytic Rab11+ vesicles with a transition between these domains occurring in the ER-Golgi intermediate compartment (ERGIC) through interactions with the lectin mannose-binding protein 1 (LMAN1) protein that undergoes an intracellular re-distribution that coincides with the re-organization of COPI+ and COPII+ vesicular structures. Truncation studies demonstrated that domain I of Chx alone was sufficient to efficiently complete A→B transcytosis and capable of ferrying genetically conjoined human growth hormone (hGH). These studies provide evidence for a pathophysiological strategy where native Chx exotoxin secreted in the intestinal lumen by nonpandemic V. cholerae can reach nonpolarized cells within the lamina propria in an intact form by using a nondestructive pathway to cross in the intestinal epithelial that appears useful for oral delivery of biopharmaceuticals.One-Sentence Summary: Elements within the first domain of the Cholix exotoxin protein are essential and sufficient for the apical to basal transcytosis of this Vibrio cholerae-derived virulence factor across polarized intestinal epithelial cells.
Collapse
Affiliation(s)
- Alistair Taverner
- Department of Pharmacy and Pharmacology, University of Bath, Bath, England
| | - Julia MacKay
- Department of Pharmacy and Pharmacology, University of Bath, Bath, England
| | - Floriane Laurent
- Department of Pharmacy and Pharmacology, University of Bath, Bath, England
| | - Tom Hunter
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Keyi Liu
- Applied Molecular Transport, South San Francisco, CA, USA
| | | | - Lisa Song
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Elbert Seto
- Applied Molecular Transport, South San Francisco, CA, USA
| | | | - Aatif Alam
- Applied Molecular Transport, South San Francisco, CA, USA
| | | | - Minji Seung
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Mazi Saberi
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Weijun Feng
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Randall J Mrsny
- Department of Pharmacy and Pharmacology, University of Bath, Bath, England.,Applied Molecular Transport, South San Francisco, CA, USA
| |
Collapse
|
6
|
Gu H, Liao Y, Zhang J, Wang Y, Liu Z, Cheng P, Wang X, Zou Q, Gu J. Rational Design and Evaluation of an Artificial Escherichia coli K1 Protein Vaccine Candidate Based on the Structure of OmpA. Front Cell Infect Microbiol 2018; 8:172. [PMID: 29876324 PMCID: PMC5974202 DOI: 10.3389/fcimb.2018.00172] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/04/2018] [Indexed: 12/12/2022] Open
Abstract
Escherichia coli (E. coli) K1 causes meningitis and remains an unsolved problem in neonates, despite the application of antibiotics and supportive care. The cross-reactivity of bacterial capsular polysaccharides with human antigens hinders their application as vaccine candidates. Thus, protein antigens could be an alternative strategy for the development of an E. coli K1 vaccine. Outer membrane protein A (OmpA) of E. coli K1 is a potential vaccine candidate because of its predominant contribution to bacterial pathogenesis and sub-cellular localization. However, little progress has been made regarding the use of OmpA for this purpose due to difficulties in OmpA production. In the present study, we first investigated the immunogenicity of the four extracellular loops of OmpA. Using the structure of OmpA, we rationally designed and successfully generated the artificial protein OmpAVac, composed of connected loops from OmpA. Recombinant OmpAVac was successfully produced in E. coli BL21 and behaved as a soluble homogenous monomer in the aqueous phase. Vaccination with OmpAVac induced Th1, Th2, and Th17 immune responses and conferred effective protection in mice. In addition, OmpAVac-specific antibodies were able to mediate opsonophagocytosis and inhibit bacterial invasion, thereby conferring prophylactic protection in E. coli K1-challenged adult mice and neonatal mice. These results suggest that OmpAVac could be a good vaccine candidate for the control of E. coli K1 infection and provide an additional example of structure-based vaccine design.
Collapse
Affiliation(s)
- Hao Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yaling Liao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jin Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China.,Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Zhiyong Liu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xingyong Wang
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
7
|
Mrsny RJ, Brayden DJ. Introduction for the special issue on recent advances in drug delivery across tissue barriers. Tissue Barriers 2016; 4:e1187981. [PMID: 27358759 DOI: 10.1080/21688370.2016.1187981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022] Open
Abstract
This special issue of Tissue Barriers contains a series of reviews with the common theme of how biological barriers established at epithelial tissues limit the uptake of macromolecular therapeutics. By improving our functional understanding of these barriers, the majority of the authors have highlighted potential strategies that might be applied to the non-invasive delivery of biopharmaceuticals that would otherwise require an injection format for administration. Half of the articles focus on the potential of particular technologies to assist oral delivery of peptides, proteins and other macromolecules. These include use of prodrug chemistry to improve molecule stability and permeability, and the related potential for oral delivery of poorly permeable agents by cell-penetrating peptides and dendrimers. Safety aspects of intestinal permeation enhancers are discussed, along with the more recent foray into drug-device combinations as represented by intestinal microneedles and externally-applied ultrasound. Other articles highlight the crossover between food research and oral delivery based on nanoparticle technology, while the final one provides a fascinating interpretation of the physiological problems associated with subcutaneous insulin delivery and how inefficient it is at targeting the liver.
Collapse
Affiliation(s)
- Randall J Mrsny
- Department of Pharmacy and Pharmacology, University of Bath Claverton Down , Bath, UK
| | - David J Brayden
- UCD School of Veterinary Medicine and Conway Institute, University College Dublin , Belfield, Dublin 4, Ireland
| |
Collapse
|
8
|
Truong-Le V, Lovalenti PM, Abdul-Fattah AM. Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems. Adv Drug Deliv Rev 2015; 93:95-108. [PMID: 26277263 DOI: 10.1016/j.addr.2015.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 12/15/2022]
Abstract
Delivery of proteins to mucosal tissues of GI tract typically utilize formulations which protect against proteolysis and target the mucosal tissues. Using case studies from literature and the authors' own work, the in-process stability and solid state storage stability of biopharmaceuticals formulated in delivery systems designed for oral delivery to the GI tract will be reviewed. Among the range of delivery systems, biodegradable polymer systems for protection and controlled release of proteins have been the most studied; hence these systems will be covered in greater depth. These delivery systems include polymeric biodegradable microspheres or nanospheres that contain proteins or vaccines, which are designed to reduce the number of administrations/inoculations and the total protein dose required to achieve the desired biological effect. Specifically, this review will include a landscape survey of the systems that have been studied, the manufacturing processes involved, stability through the manufacturing process, key pharmaceutical formulation parameters that impact stability of the encased proteins, and storage stability of the encapsulated proteins in these delivery systems.
Collapse
|
9
|
Kaloshin AA, Isakov MA, Mikhailova NA, Vertiev JV. Preparation of recombinant atoxic form of exotoxin A from Pseudomonas aeruginosa. Bull Exp Biol Med 2013; 154:346-50. [PMID: 23484197 DOI: 10.1007/s10517-013-1947-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleotide sequences encoding full-length protein of Pseudomonas aeruginosa exotoxin A and its atoxic form were cloned and expressed in Escherichia coli cells. Purified recombinant exotoxin and immune rabbit sera protected mice from exotoxin A.
Collapse
Affiliation(s)
- A A Kaloshin
- I. I. Mechnikov Institute of Vaccines and Sera, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
10
|
|
11
|
Bacterial Toxin Fusion Proteins Elicit Mucosal Immunity against a Foot-and-Mouth Disease Virus Antigen When Administered Intranasally to Guinea Pigs. Adv Virol 2011; 2011:713769. [PMID: 22312350 PMCID: PMC3265312 DOI: 10.1155/2011/713769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/07/2011] [Accepted: 06/21/2011] [Indexed: 11/17/2022] Open
Abstract
Peptides corresponding to the foot-and-mouth disease virus VP1 G-H loop are capable of inducing neutralizing antibodies in some species but are considered relatively poor immunogens, especially at mucosal surfaces. However, intranasal administration of antigens along with the appropriate delivery vehicle/adjuvant has been shown to induce mucosal immune responses, and bacterial enterotoxins have long been known to be effective in this regard. In the current study, two different carrier/adjuvant approaches were used to augment mucosal immunity to the FMDV O(1) BFS G-H loop epitope, in which the G-H loop was genetically coupled to the E. coli LT-B subunit and coexpressed with the LTA2 fragment (LTA2B-GH), or the nontoxic pseudomonas exotoxin A (ntPE) was fused to LTA2B-GH at LT-A2 to enhance receptor targeting. Only guinea pigs that were inoculated intranasally with ntPE-LTA2B-GH and LTA2B-GH induced significant anti-G-H loop IgA antibodies in nasal washes at weeks 4 and 6 when compared to ovalbumin or G-H loop immunized animals. These were also the only groups that exhibited G-H loop-specific antigen-secreting cells in the nasal mucosa. These data demonstrate that fusion of nonreplicating antigens to LTA2B and ntPE-LTA2B has the potential to be used as carriers/adjuvants to induce mucosal immune responses against infectious diseases.
Collapse
|
12
|
Tseng LP, Liang HJ, Deng MC, Lee KM, Pan RN, Yang JC, Huang YY, Liu DZ. The influence of liposomal adjuvant on intranasal vaccination of chickens against Newcastle disease. Vet J 2009; 185:204-10. [PMID: 19570697 DOI: 10.1016/j.tvjl.2009.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 02/15/2009] [Accepted: 05/25/2009] [Indexed: 11/17/2022]
Abstract
The adjuvant effect of liposomes formulated with three phospholipids including phosphatidylcholine-liposomes (PC-Lip), phosphatidylserine-liposomes (PS-Lip), and stearylamine-liposomes (SA-Lip) was compared with virus alone using inactivated Newcastle disease virus (NDV) as a model antigen. The difference in adjuvanticity was evaluated using the haemagglutination-inhibition (HI) test, enzyme-linked immunosorbent assay, and a challenge study following intranasal inoculation of specific pathogen-free chickens. After two inoculations, a liposomal vaccine consisting of NDV in PC-Lip resulted in a significant increase in HI titre, up to 32-fold higher than a vaccine containing virus alone and 320-fold higher than a vaccine containing NDV in SA-Lip. PC-Lip also elicited a significant mucosal secretary immunoglobulin A response (P<0.05) in tracheal lavages and a serum IgG response (P<0.05). In response to viral challenge, all control animals died, whereas 90% of animals which received PC-Lip survived. The results suggest that PC-Lip may be suitable as an adjuvant for mucosal vaccination against NDV in chickens.
Collapse
Affiliation(s)
- Li-Ping Tseng
- Graduate Institute of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mrsny RJ. Lessons from nature: "Pathogen-Mimetic" systems for mucosal nano-medicines. Adv Drug Deliv Rev 2009; 61:172-92. [PMID: 19146895 DOI: 10.1016/j.addr.2008.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 09/22/2008] [Indexed: 12/13/2022]
Abstract
Mucosal surfaces establish an interface with external environments that provide a protective barrier with the capacity to selectively absorb and secrete materials important for homeostasis of the organism. In man, mucosal surfaces such as those in the gastrointestinal tract, respiratory tree and genitourinary system also represent significant barrier to the successful administration of certain pharmaceutical agents and the delivery of newly designed nano-scale therapeutic systems. This review examines morphological, physiological and biochemical aspects of these mucosal barriers and presents currently understood mechanisms used by a variety of virulence factors used by pathogenic bacteria to overcome various aspects of these mucosal barriers. Such information emphasizes the impediments that biologically active materials must overcome for absorption across these mucosal surfaces and provides a template for strategies to overcome these barriers for the successful delivery of nano-scale bioactive materials, also known as nano-medicines.
Collapse
|
14
|
Challa S, Barrette R, Rood D, Zinckgraf J, French R, Silbart L. Non-toxic Pseudomonas aeruginosa exotoxin A expressing the FMDV VP1 G-H loop for mucosal vaccination of swine against foot and mouth disease virus. Vaccine 2007; 25:3328-37. [PMID: 17276557 DOI: 10.1016/j.vaccine.2007.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 01/01/2007] [Accepted: 01/03/2007] [Indexed: 11/20/2022]
Abstract
Synthetic peptides derived from the G-H loop of the foot and mouth disease virus (FMDV) capsid protein VP1 are relatively poor at recapitulating the native conformation present in the virus, and thus are often poor immunogens. We hypothesized that a candidate mucosal vaccine against FMDV could be developed using the non-toxic Pseudomonas aeruginosa exotoxin A (ntPE) to deliver the G-H loop in its native conformation. An added benefit of this approach is the potential for ntPE to serve as an effective carrier/adjuvant molecule for delivery of the fusion protein across the epithelial barrier by virtue of its capacity to bind to CD91. A chimeric protein (ntPE-GH) was generated by inserting the coding sequence of the G-H loop into an expression plasmid encoding ntPE, in place of the native Ib loop. Recombinant ntPE-GH and wild-type ntPE were each expressed in Escherichia coli, purified over a nickel resin, then administered intranasally to the pigs, with or without the mucosal adjuvant cholera toxin (CT). Both the ntPE and ntPE-GH induced mucosal and systemic immune responses against ntPE; moreover, ntPE-GH administered without CT induced anti-GH loop serum IgG antibodies. In conclusion, these data demonstrate that ntPE can be used as a mucosal carrier/adjuvant to induce an immune response against the VP1 G-H loop of FMDV.
Collapse
Affiliation(s)
- Sreerupa Challa
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | |
Collapse
|
15
|
Miyairi S, Tateda K, Fuse ET, Ueda C, Saito H, Takabatake T, Ishii Y, Horikawa M, Ishiguro M, Standiford TJ, Yamaguchi K. Immunization with 3-oxododecanoyl-L-homoserine lactone-protein conjugate protects mice from lethal Pseudomonas aeruginosa lung infection. J Med Microbiol 2006; 55:1381-1387. [PMID: 17005787 DOI: 10.1099/jmm.0.46658-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Quorum-sensing systems have been reported to play a critical role in the pathogenesis of several bacterial infections. Recent data have demonstrated that Pseudomonas N-3-oxododecanoyl-L-homoserine lactone (3-oxo-C12-homoserine lactone, 3-oxo-C12-HSL), but not N-butanoyl-L-homoserine lactone (C4-HSL), induces apoptosis in macrophages and neutrophils. In the present study, the effects of active immunization with 3-oxo-C12-HSL-carrier protein conjugate on acute P. aeruginosa lung infection in mice were investigated. Immunization with 3-oxo-C12-HSL-BSA conjugate (subcutaneous, four times, at 2-week intervals) elaborated significant amounts of specific antibody in serum. Control and immunized mice were intranasally challenged with approximately 3 x 10(6) c.f.u. P. aeruginosa PAO1, and survival was then compared. All control mice died by day 2 post bacterial challenge, while 36 % of immunized mice survived to day 4 (P<0.05). Interestingly, bacterial numbers in the lungs did not differ between control and immunized groups, whereas the levels of pulmonary tumour necrosis factor (TNF)-alpha in the immunized mice were significantly lower than those of control mice (P<0.05). Furthermore, the extractable 3-oxo-C12-HSL levels in serum and lung homogenate were also significantly diminished in the immunized mice. Immune serum completely rescued reduction of cell viability by 3-oxo-C12-HSL-mediated apoptosis in macrophages in vitro. These results demonstrated that specific antibody to 3-oxo-C12-HSL plays a protective role in acute P. aeruginosa infection, probably through blocking of host inflammatory responses, without altering lung bacterial burden. The present data identify a promising potential vaccine strategy targeting bacterial quorum-sensing molecules, including autoinducers.
Collapse
MESH Headings
- 4-Butyrolactone/administration & dosage
- 4-Butyrolactone/analogs & derivatives
- 4-Butyrolactone/analysis
- 4-Butyrolactone/immunology
- Animals
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/pharmacology
- Apoptosis/drug effects
- Cell Line
- Colony Count, Microbial
- Homoserine/administration & dosage
- Homoserine/analogs & derivatives
- Homoserine/analysis
- Homoserine/immunology
- Immune Sera/pharmacology
- Injections, Subcutaneous
- Lung/metabolism
- Lung/microbiology
- Macrophages/drug effects
- Macrophages/pathology
- Mice
- Mice, Inbred BALB C
- Pneumonia, Bacterial/blood
- Pneumonia, Bacterial/metabolism
- Pneumonia, Bacterial/prevention & control
- Pseudomonas Infections/blood
- Pseudomonas Infections/metabolism
- Pseudomonas Infections/prevention & control
- Pseudomonas aeruginosa/immunology
- Pseudomonas aeruginosa/isolation & purification
- Serum Albumin, Bovine/administration & dosage
- Tumor Necrosis Factor-alpha/analysis
- Tumor Necrosis Factor-alpha/metabolism
- Vaccination
- Vaccines, Conjugate/administration & dosage
- Vaccines, Synthetic
Collapse
Affiliation(s)
- Shinichi Miyairi
- Laboratory of Bio-organic Chemistry, College of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Kazuhiro Tateda
- Departments of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Ohmorinishi, Ohtaku, Tokyo 143-8540, Japan
| | - Etsu T Fuse
- Departments of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Ohmorinishi, Ohtaku, Tokyo 143-8540, Japan
| | - Chihiro Ueda
- Laboratory of Bio-organic Chemistry, College of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Hiroaki Saito
- Laboratory of Bio-organic Chemistry, College of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Tohru Takabatake
- Laboratory of Bio-organic Chemistry, College of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Yoshikazu Ishii
- Departments of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Ohmorinishi, Ohtaku, Tokyo 143-8540, Japan
| | - Manabu Horikawa
- Suntory Institute for Bioorganic Research, Osaka 618-8503, Japan
| | - Masaji Ishiguro
- Suntory Institute for Bioorganic Research, Osaka 618-8503, Japan
| | - Theodore J Standiford
- Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0360, USA
| | - Keizo Yamaguchi
- Departments of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Ohmorinishi, Ohtaku, Tokyo 143-8540, Japan
| |
Collapse
|
16
|
Joseph A, Itskovitz-Cooper N, Samira S, Flasterstein O, Eliyahu H, Simberg D, Goldwaser I, Barenholz Y, Kedar E. A new intranasal influenza vaccine based on a novel polycationic lipid—ceramide carbamoyl-spermine (CCS). Vaccine 2006; 24:3990-4006. [PMID: 16516356 DOI: 10.1016/j.vaccine.2005.12.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 12/07/2005] [Indexed: 11/17/2022]
Abstract
Although most pathogens use the mucosal routes for invasion, the majority of currently available vaccines are administered parenterally. Injectable vaccines induce good systemic immunity but often unsatisfactory mucosal immunity. A non-injectable mucosal vaccine, which can be self-administered intranasally, may provide both effective systemic and mucosal immunity and can be used for vaccination of large populations within a short period of time in case of a sudden epidemic. Here, we report on a new intranasal (i.n.) influenza vaccine, based on a novel polycationic sphingolipid, N-palmitoyl D-erythro-sphingosyl carbamoyl-spermine (ceramide carbamoyl-spermine = CCS), having combined carrier and adjuvant activities, which elicits, in mice, strong systemic (serum) and local (lung and nasal) humoral and cellular responses, and provides protective immunity. In a comparative study, we show that both unmodified commercial vaccine and vaccine formulated with neutral or anionic liposomes were poorly immunogenic upon i.n. administration. Of five vaccine formulations based on well-established monocationic lipids in the form of unsized liposomes, three (DC-Chol, DDAB, and DSTAP-based) resulted in low serum and local responses, while two others (DMTAP and DOTAP-based vaccines) induced both systemic and local vigorous Th1+Th2 immune responses. However, only the vaccine formulated with CCS was equivalent or superior to the commercial vaccine co-administered with cholera toxin as an adjuvant. Furthermore, the CCS-based influenza vaccine was highly efficacious following a single or a repeated (x2) i.n. or a single i.m. administration, without an added adjuvant, in both young (2 months) and old (18 months) mice. It elicited high titers of strain cross-reactive hemagglutination inhibition (HI) antibodies, and the high antibody titers and protective immunity persisted for at least 9 months. No systemic adverse effects, and only a mild local inflammatory response, were observed in mice and rabbits vaccinated i.n. with the CCS vaccine formulation. A similar approach may prove efficacious for i.n. vaccination against other pathogens.
Collapse
Affiliation(s)
- Aviva Joseph
- The Lautenberg Center for General and Tumor Immunology, The Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hsieh JC, Tham DM, Feng W, Huang F, Embaie S, Liu K, Dean D, Hertle R, Fitzgerald DJ, Mrsny RJ. Intranasal immunization strategy to impede pilin-mediated binding of Pseudomonas aeruginosa to airway epithelial cells. Infect Immun 2005; 73:7705-17. [PMID: 16239575 PMCID: PMC1273878 DOI: 10.1128/iai.73.11.7705-7717.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 07/13/2005] [Accepted: 08/10/2005] [Indexed: 11/20/2022] Open
Abstract
Prevention of pulmonary Pseudomonas aeruginosa infections represents a critical unmet medical need for cystic fibrosis (CF) patients. We have examined the tenet that a mucosal immunization approach can reduce interactions of a piliated form of this opportunistic pathogen with respiratory epithelial cells. Vaccinations were performed using ntPEpilinPAK, a protein chimera composed of a nontoxic form of P. aeruginosa exotoxin A (ntPE), where the C-terminal loop amino acid sequence of the PAK strain pilin protein was inserted in place of the ntPE Ib domain. Intranasal (i.n.) immunization of BALB/c mice with ntPEpilinPAK generated both serum and saliva immune responses. A series of in vitro studies showed that diluted samples of saliva obtained from immunized mice reduced pilin-dependent P. aeruginosa binding to polarized human tracheal epithelial cells, protected human pulmonary epithelial cells from cytotoxic actions associated with bacterial challenge, and reduced exotoxin A toxicity. Overall, i.n. administration of ntPEpilinPAK induced mucosal and systemic immune responses that may be beneficial for blocking early stage adhesion and/or infection events of epithelial cell-P. aeruginosa interactions at oropharyngeal surfaces.
Collapse
Affiliation(s)
- Jennifer C Hsieh
- Trinity BioSystems, Inc., 1455 Adams Dr., Suite 1317, Menlo Park, CA 94025-1438, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Baudner BC, Giuliani MM, Verhoef JC, Rappuoli R, Junginger HE, Giudice GD. The concomitant use of the LTK63 mucosal adjuvant and of chitosan-based delivery system enhances the immunogenicity and efficacy of intranasally administered vaccines. Vaccine 2003; 21:3837-44. [PMID: 12922117 DOI: 10.1016/s0264-410x(03)00305-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this paper we evaluated chitosan microparticles as a vaccine delivery system as well as the mucosal adjuvant LTK63, a nontoxic Escherichia coli enterotoxin (LT) mutant for the intranasal immunization with the group C meningococcal conjugated vaccine (CRM-MenC). Mice receiving intranasally the CRM-MenC vaccine formulated with chitosan microparticles and the LTK63 mutant showed higher titers of systemic and mucosal antibodies specific for the group C meningococcal polysaccharide as compared to those receiving the vaccine subcutaneously. In addition, high bactericidal activity was found in serum samples of mice immunized intranasally with the conjugated vaccine formulated together with the microparticles and the LT mutant. These results demonstrate that the concomitant use of chitosan microparticles and the LTK63 mutant significantly enhances the immunogenicity and the protective efficacy of vaccines given intranasally.
Collapse
Affiliation(s)
- Barbara C Baudner
- IRIS Research Center, Chiron SpA, Via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Bowersock TL. Evolving importance of biologics and novel delivery systems in the face of microbial resistance. AAPS PHARMSCI 2003; 4:E33. [PMID: 12646005 PMCID: PMC2751322 DOI: 10.1208/ps040433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methods to control infectious diseases in livestock are growing in importance. As the size of the average farm increases - for poultry, dairy and beef cattle, swine, and fish - the risk of rapid spread of infectious diseases increases as well. This increases the need for alternative methods of control of infectious agents. Improvements in specific immunogens, adjuvants, and delivery systems are needed to meet the demand for vaccines to ensure a healthy and safe meat supply. This article explores the challenges, trends, and recent advances in the control of infectious diseases through the use of biologics.
Collapse
Affiliation(s)
- Terry L Bowersock
- Pharmacia Animal Health, 7923-190-353, 7000 Portage Road, Kalamazoo, MI 49001-0199, USA.
| |
Collapse
|