1
|
Mueller BL, Molden TA, Hammock J, Kolpashchikov DM. Tailed molecular beacon probes: an approach for the detection of structured DNA and RNA analytes. Chem Commun (Camb) 2025; 61:2095-2098. [PMID: 39792394 DOI: 10.1039/d4cc05984k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Molecular beacon (MB) probes have been extensively used for nucleic acid analysis. However, MB probes fail to hybridize with folded DNA or RNA. Here, we demonstrate that MB probes equipped with extra sequences complementary to the analyte, named 'tail', can increase the signal-to-background ratio by ∼40-fold and hybridization rates by ∼800-fold compared to conventional MB probes. Tailed MB probes can be used as mismatched-tolerant alternatives to traditional hairpin probes for fast assays.
Collapse
Affiliation(s)
- Brittany L Mueller
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, USA.
| | - Tatiana A Molden
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, USA.
| | - Jordan Hammock
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, USA.
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, USA.
- National Center for Forensic Science University of Central Florida, Orlando, Florida 32816, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
2
|
Hu M, Cheng M, Wang N, Sang Y, Dong Y, Wang L. A Label Free Fluorescent Aptamer Sensor Based on the Combined Action of Graphene Oxide and SYBR Green I for the Detection of Aflatoxin B1. IEEE Trans Nanobioscience 2025; 24:37-45. [PMID: 38768008 DOI: 10.1109/tnb.2024.3403158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Here, based on the characteristics of Graphene oxide(GO) and SYBR Green I(SGI) dye, an enzyme-free and label-free fluorescent biosensor with signal amplification through DNA strand reaction is proposed for the detection of Aflatoxin B1(AFB1) in food safety. Firstly, without the addition of AFB1, the substrate in the system includes a double stranded Apt-S with a long sticky end and two hairpins H1 and H2. Although the complementary pairing of bases may exhibit fluorescence due to the insertion of SGI dyes, the use of GO, which is highly capable of adsorbing single stranded parts and quenching fluorescence, cleverly reduces the background fluorescence. Adding the target AFB1 triggers DNA inter chain reactions, generating a large amount of long double stranded DNA H1-H2, thereby generating strong fluorescence signals under the action of SGI. More importantly, logical theory verification and computer simulation were conducted before biological experiments, providing a theoretical basis for the implementation of the biosensor. After analysis, the fluorescence biosensor exhibits a good linear relationship with AFB1 concentration in the range of 5-50nM, with a detection limit of 0.76nM. It also has good specificity, anti-interference ability, and practical application ability, and has broad application prospects in the field of food safety.
Collapse
|
3
|
Völker J, Gindikin V, Breslauer KJ. Higher-Order DNA Secondary Structures and Their Transformations: The Hidden Complexities of Tetrad and Quadruplex DNA Structures, Complexes, and Modulatory Interactions Induced by Strand Invasion Events. Biomolecules 2024; 14:1532. [PMID: 39766239 PMCID: PMC11673204 DOI: 10.3390/biom14121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
We demonstrate that a short oligonucleotide complementary to a G-quadruplex domain can invade this iconic, noncanonical DNA secondary structure in ways that profoundly influence the properties and differential occupancies of the resulting DNA polymorphic products. Our spectroscopic mapping of the conformational space of the associated reactants and products, both before and after strand invasion, yield unanticipated outcomes which reveal several overarching features. First, strand invasion induces the disruption of DNA secondary structural elements in both the invading strand (which can assume an iDNA tetrad structure) and the invaded species (a G-quadruplex). The resultant cascade of coupled alterations represents a potential pathway for the controlled unfolding of kinetically trapped DNA states, a feature that may be characteristic of biological regulatory mechanisms. Furthermore, the addition of selectively designed, exogenous invading oligonucleotides can enable the manipulation of noncanonical DNA conformations for biomedical applications. Secondly, our results highlight the importance of metastability, including the interplay between slower and faster kinetic processes in determining preferentially populated DNA states. Collectively, our data reveal the importance of sample history in defining state populations, which, in turn, determine preferred pathways for further folding steps, irrespective of the position of the thermodynamic equilibrium. Finally, our spectroscopic data reveal the impact of topological constraints on the differential stabilities of base-paired domains. We discuss how our collective observations yield insights into the coupled and uncoupled cascade of strand-invasion-induced transformations between noncanonical DNA forms, potentially as components of molecular wiring diagrams that regulate biological processes.
Collapse
Affiliation(s)
- Jens Völker
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (J.V.); (V.G.)
| | - Vera Gindikin
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (J.V.); (V.G.)
| | - Kenneth J. Breslauer
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (J.V.); (V.G.)
- The Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
4
|
Marpaung DSS, Sinaga AOY, Damayanti D, Taharuddin T. Bridging biological samples to functional nucleic acid biosensor applications: current enzymatic-based strategies for single-stranded DNA generation. ANAL SCI 2024; 40:1225-1237. [PMID: 38607600 DOI: 10.1007/s44211-024-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
The escalating threat of emerging diseases, often stemming from contaminants and lethal pathogens, has precipitated a heightened demand for sophisticated diagnostic tools. Within this landscape, the functional nucleic acid (FNA) biosensor, harnessing the power of single-stranded DNA (ssDNA), has emerged as a preeminent choice for target analyte detection. However, the dependence on ssDNA has raised difficulties in realizing it in biological samples. Therefore, the production of high-quality ssDNA from biological samples is critical. This review aims to discuss strategies for generating ssDNA from biological samples for integration into biosensors. Several innovative strategies for ssDNA generation have been deployed, encompassing techniques, such as asymmetric PCR, Exonuclease-PCR, isothermal amplification, biotin-streptavidin PCR, transcription-reverse transcription, ssDNA overhang generation, and urea denaturation PAGE. These approaches have been seamlessly integrated with biosensors for biological sample analysis, ushering in a new era of disease detection and monitoring. This amalgamation of ssDNA generation techniques with biosensing applications holds significant promise, not only in improving the speed and accuracy of diagnostic processes but also in fortifying the global response to deadly diseases, thereby underlining the pivotal role of cutting-edge biotechnology in public health and disease prevention.
Collapse
Affiliation(s)
- David Septian Sumanto Marpaung
- Department of Biosystems Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia.
| | - Ayu Oshin Yap Sinaga
- Department of Biology, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Damayanti Damayanti
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Taharuddin Taharuddin
- Department of Chemical Engineering, University of Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No.1, Gedong Meneng, Kec. Rajabasa, Kota Bandar Lampung, Lampung, 35141, Indonesia
| |
Collapse
|
5
|
Kim SK, Lee JB, Lee HT, Han D, Yoon JW. Development of antisense peptide-peptide nucleic acids against fluoroquinolone-resistant Escherichia coli. J Antimicrob Chemother 2023:dkad203. [PMID: 37390375 DOI: 10.1093/jac/dkad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Fluoroquinolones (FQs) are potent and broad-spectrum antibiotics commonly used to treat MDR bacterial infections, but bacterial resistance to FQs has emerged and spread rapidly around the world. The mechanisms for FQ resistance have been revealed, including one or more mutations in FQ target genes such as DNA gyrase (gyrA) and topoisomerase IV (parC). Because therapeutic treatments for FQ-resistant bacterial infections are limited, it is necessary to develop novel antibiotic alternatives to minimize or inhibit FQ-resistant bacteria. OBJECTIVES To examine the bactericidal effect of antisense peptide-peptide nucleic acids (P-PNAs) that can block the expression of DNA gyrase or topoisomerase IV in FQ-resistant Escherichia coli (FRE). METHODS A set of antisense P-PNA conjugates with a bacterial penetration peptide were designed to inhibit the expression of gyrA and parC and were evaluated for their antibacterial activities. RESULTS Antisense P-PNAs, ASP-gyrA1 and ASP-parC1, targeting the translational initiation sites of their respective target genes significantly inhibited the growth of the FRE isolates. In addition, ASP-gyrA3 and ASP-parC2, which bind to the FRE-specific coding sequence within the gyrA and parC structural genes, respectively, showed selective bactericidal effects against FRE isolates. CONCLUSIONS Our results demonstrate the potential of targeted antisense P-PNAs as antibiotic alternatives against FQ-resistance bacteria.
Collapse
Affiliation(s)
- Se Kye Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Bong Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyung Tae Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dalmuri Han
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jang Won Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
6
|
Del Bene A, D'Aniello A, Tomassi S, Merlino F, Mazzarella V, Russo R, Chambery A, Cosconati S, Di Maro S, Messere A. Ultrasound-assisted Peptide Nucleic Acids synthesis (US-PNAS). ULTRASONICS SONOCHEMISTRY 2023; 95:106360. [PMID: 36913782 PMCID: PMC10024050 DOI: 10.1016/j.ultsonch.2023.106360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Herein, we developed an innovative and easily accessible solid-phase synthetic protocol for Peptide Nucleic Acid (PNA) oligomers by systematically investigating the ultrasonication effects in all steps of the PNA synthesis (US-PNAS). When compared with standard protocols, the application of the so-obtained US-PNAS approach succeeded in improving the crude product purities and the isolated yields of different PNA, including small or medium-sized oligomers (5-mer and 9-mer), complex purine-rich sequences (like a 5-mer Guanine homoligomer and the telomeric sequence TEL-13) and longer oligomers (such as the 18-mer anti-IVS2-654 PNA and the 23-mer anti-mRNA 155 PNA). Noteworthy, our ultrasound-assisted strategy is compatible with the commercially available PNA monomers and well-established coupling reagents and only requires the use of an ultrasonic bath, which is a simple equipment generally available in most synthetic laboratories.
Collapse
Affiliation(s)
- Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Sandro Cosconati
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|
7
|
Ateiah M, Gandalipov ER, Rubel AA, Rubel MS, Kolpashchikov DM. DNA Nanomachine (DNM) Biplex Assay for Differentiating Bacillus cereus Species. Int J Mol Sci 2023; 24:ijms24054473. [PMID: 36901903 PMCID: PMC10003685 DOI: 10.3390/ijms24054473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Conventional methods for the detection and differentiation of Bacillus cereus group species have drawbacks mostly due to the complexity of genetic discrimination between the Bacillus cereus species. Here, we describe a simple and straightforward assay based on the detected unamplified bacterial 16S rRNA by DNA nanomachine (DNM). The assay uses a universal fluorescent reporter and four all-DNA binding fragments, three of which are responsible for "opening up" the folded rRNA while the fourth stand is responsible for detecting single nucleotide variation (SNV) with high selectivity. Binding of the DNM to 16S rRNA results in the formation of the 10-23 deoxyribozyme catalytic core that cleaves the fluorescent reporter and produces a signal, which is amplified over time due to catalytic turnover. This developed biplex assay enables the detection of B. thuringiensis 16S rRNA at fluorescein and B. mycoides at Cy5 channels with a limit of detection of 30 × 103 and 35 × 103 CFU/mL, respectively, after 1.5 h with a hands-on time of ~10 min. The new assay may simplify the analysis of biological RNA samples and might be useful for environmental monitoring as a simple and inexpensive alternative to amplification-based nucleic acid analysis. The DNM proposed here may become an advantageous tool for detecting SNV in clinically significant DNA or RNA samples and can easily differentiate SNV under broadly variable experimental conditions and without prior amplification.
Collapse
Affiliation(s)
- Muhannad Ateiah
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova St. 9, St. Petersburg 191002, Russia; (M.A.); (E.R.G.); (M.S.R.)
| | - Erik R. Gandalipov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova St. 9, St. Petersburg 191002, Russia; (M.A.); (E.R.G.); (M.S.R.)
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, Universitetskaya enb. 7-9, St. Petersburg 199034, Russia;
| | - Maria S. Rubel
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova St. 9, St. Petersburg 191002, Russia; (M.A.); (E.R.G.); (M.S.R.)
| | - Dmitry M. Kolpashchikov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova St. 9, St. Petersburg 191002, Russia; (M.A.); (E.R.G.); (M.S.R.)
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| |
Collapse
|
8
|
Hendrikse SIS, Contreras-Montoya R, Ellis AV, Thordarson P, Steed JW. Biofunctionality with a twist: the importance of molecular organisation, handedness and configuration in synthetic biomaterial design. Chem Soc Rev 2021; 51:28-42. [PMID: 34846055 DOI: 10.1039/d1cs00896j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The building blocks of life - nucleotides, amino acids and saccharides - give rise to a large variety of components and make up the hierarchical structures found in Nature. Driven by chirality and non-covalent interactions, helical and highly organised structures are formed and the way in which they fold correlates with specific recognition and hence function. A great amount of effort is being put into mimicking these highly specialised biosystems as biomaterials for biomedical applications, ranging from drug discovery to regenerative medicine. However, as well as lacking the complexity found in Nature, their bio-activity is sometimes low and hierarchical ordering is missing or underdeveloped. Moreover, small differences in folding in natural biomolecules (e.g., caused by mutations) can have a catastrophic effect on the function they perform. In order to develop biomaterials that are more efficient in interacting with biomolecules, such as proteins, DNA and cells, we speculate that incorporating order and handedness into biomaterial design is necessary. In this review, we first focus on order and handedness found in Nature in peptides, nucleotides and saccharides, followed by selected examples of synthetic biomimetic systems based on these components that aim to capture some aspects of these ordered features. Computational simulations are very helpful in predicting atomic orientation and molecular organisation, and can provide invaluable information on how to further improve on biomaterial designs. In the last part of the review, a critical perspective is provided along with considerations that can be implemented in next-generation biomaterial designs.
Collapse
Affiliation(s)
- Simone I S Hendrikse
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia. .,School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Pall Thordarson
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | |
Collapse
|
9
|
Yang L, Toh DFK, Krishna MS, Zhong Z, Liu Y, Wang S, Gong Y, Chen G. Tertiary Base Triple Formation in the SRV-1 Frameshifting Pseudoknot Stabilizes Secondary Structure Components. Biochemistry 2020; 59:4429-4438. [PMID: 33166472 DOI: 10.1021/acs.biochem.0c00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Minor-groove base triples formed between stem 1 and loop 2 of the simian retrovirus type 1 (SRV-1) mRNA frameshifting pseudoknot are essential in stimulating -1 ribosomal frameshifting. How tertiary base triple formation affects the local stabilities of secondary structures (stem 1 and stem 2) and thus ribosomal frameshifting efficiency is not well understood. We made a short peptide nucleic acid (PNA) that is expected to invade stem 1 of the SRV-1 pseudoknot by PNA-RNA duplex formation to mimic the stem 1 unwinding process by a translating ribosome. In addition, we used a PNA for invading stem 2 in the SRV-1 pseudoknot. Our nondenaturing polyacrylamide gel electrophoresis data for the binding of PNA to the SRV-1 pseudoknot and mutants reveal that mutations in loop 2 disrupting base triple formation between loop 2 and stem 1 in the SRV-1 pseudoknot result in enhanced invasion by both PNAs. Our data suggest that tertiary stem 1-loop 2 base triple interactions in the SRV-1 pseudoknot can stabilize both of the secondary structural components, stem 1 and stem 2. Stem 2 stability is thus coupled to the structural stability of stem 1-loop 2 base triples, mediated through a long-range effect. The apparent dissociation constants of both PNAs are positively correlated with the pseudoknot mechanical stabilities and frameshifting efficiencies. The relatively simple PNA local invasion experiment may be used to characterize the energetic contribution of tertiary interactions and ligand binding in many other RNA and DNA structures.
Collapse
Affiliation(s)
- Lixia Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhensheng Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Shaomeng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Yubin Gong
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Gang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
10
|
Ong AAL, Tan J, Bhadra M, Dezanet C, Patil KM, Chong MS, Kierzek R, Decout JL, Roca X, Chen G. RNA Secondary Structure-Based Design of Antisense Peptide Nucleic Acids for Modulating Disease-Associated Aberrant Tau Pre-mRNA Alternative Splicing. Molecules 2019; 24:molecules24163020. [PMID: 31434312 PMCID: PMC6720520 DOI: 10.3390/molecules24163020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Alternative splicing of tau pre-mRNA is regulated by a 5' splice site (5'ss) hairpin present at the exon 10-intron 10 junction. Single mutations within the hairpin sequence alter hairpin structural stability and/or the binding of splicing factors, resulting in disease-causing aberrant splicing of exon 10. The hairpin structure contains about seven stably formed base pairs and thus may be suitable for targeting through antisense strands. Here, we used antisense peptide nucleic acids (asPNAs) to probe and target the tau pre-mRNA exon 10 5'ss hairpin structure through strand invasion. We characterized by electrophoretic mobility shift assay the binding of the designed asPNAs to model tau splice site hairpins. The relatively short (10-15 mer) asPNAs showed nanomolar binding to wild-type hairpins as well as a disease-causing mutant hairpin C+19G, albeit with reduced binding strength. Thus, the structural stabilizing effect of C+19G mutation could be revealed by asPNA binding. In addition, our cell culture minigene splicing assay data revealed that application of an asPNA targeting the 3' arm of the hairpin resulted in an increased exon 10 inclusion level for the disease-associated mutant C+19G, probably by exposing the 5'ss as well as inhibiting the binding of protein factors to the intronic spicing silencer. On the contrary, the application of asPNAs targeting the 5' arm of the hairpin caused an increased exon 10 exclusion for a disease-associated mutant C+14U, mainly by blocking the 5'ss. PNAs could enter cells through conjugation with amino sugar neamine or by cotransfection with minigene plasmids using a commercially available transfection reagent.
Collapse
Affiliation(s)
- Alan Ann Lerk Ong
- NTU Institute for Health Technologies (HeathTech NTU), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jiazi Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Malini Bhadra
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Clément Dezanet
- University Grenoble Alpes/CNRS, Département de Pharmacochimie Moléculaire, ICMG FR 2607, UMR 5063, 470 Rue de la Chimie, F-38041 Grenoble, France
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Mei Sian Chong
- Geriatic Education & Research Institute, 2 Yishun Central 2, Singapore 768024, Singapore
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jean-Luc Decout
- University Grenoble Alpes/CNRS, Département de Pharmacochimie Moléculaire, ICMG FR 2607, UMR 5063, 470 Rue de la Chimie, F-38041 Grenoble, France
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
11
|
Krishna MS, Toh DFK, Meng Z, Ong AAL, Wang Z, Lu Y, Xia K, Prabakaran M, Chen G. Sequence- And Structure-Specific Probing of RNAs by Short Nucleobase-Modified dsRNA-Binding PNAs Incorporating a Fluorescent Light-up Uracil Analog. Anal Chem 2019; 91:5331-5338. [PMID: 30873827 DOI: 10.1021/acs.analchem.9b00280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNAs are emerging as important biomarkers and therapeutic targets. The strategy of directly targeting double-stranded RNA (dsRNA) by triplex-formation is relatively underexplored mainly due to the weak binding at physiological conditions for the traditional triplex-forming oligonucleotides (TFOs). Compared to DNA and RNA, peptide nucleic acids (PNAs) are chemically stable and have a neutral peptide-like backbone, and thus, they show significantly enhanced binding to natural nucleic acids. We have successfully developed nucleobase-modified dsRNA-binding PNAs (dbPNAs) to facilitate structure-specific and selective recognition of dsRNA over single-stranded RNA (ssRNA) and dsDNA regions at near-physiological conditions. The triplex formation strategy facilitates the targeting of not only the sequence but also the secondary structure of RNA. Here, we report the development of novel dbPNA-based fluorescent light-up probes through the incorporation of A-U pair-recognizing 5-benzothiophene uracil (btU). The incorporation of btU into dbPNAs does not affect the binding affinity toward dsRNAs significantly, in most cases, as evidenced by our nondenaturing gel shift assay data. The blue fluorescence emission intensity of btU-modified dbPNAs is sequence- and structure-specifically enhanced by dsRNAs, including the influenza viral RNA panhandle duplex and HIV-1-1 ribosomal frameshift-inducing RNA hairpin, but not ssRNAs or DNAs, at 200 mM NaCl, pH 7.5. Thus, dbPNAs incorporating btU-modified and other further modified fluorescent nucleobases will be useful biochemical tools for probing and detecting RNA structures, interactions, and functions.
Collapse
Affiliation(s)
- Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Zhenyu Meng
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Alan Ann Lerk Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Zhenzhang Wang
- Temasek Life Science Laboratory , 1 Research Link, National University of Singapore , 117604 , Singapore
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Mookkan Prabakaran
- Temasek Life Science Laboratory , 1 Research Link, National University of Singapore , 117604 , Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| |
Collapse
|
12
|
Kesy J, Patil KM, Kumar SR, Shu Z, Yong HY, Zimmermann L, Ong AAL, Toh DFK, Krishna MS, Yang L, Decout JL, Luo D, Prabakaran M, Chen G, Kierzek E. A Short Chemically Modified dsRNA-Binding PNA (dbPNA) Inhibits Influenza Viral Replication by Targeting Viral RNA Panhandle Structure. Bioconjug Chem 2019; 30:931-943. [PMID: 30721034 DOI: 10.1021/acs.bioconjchem.9b00039] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNAs play critical roles in diverse catalytic and regulatory biological processes and are emerging as important disease biomarkers and therapeutic targets. Thus, developing chemical compounds for targeting any desired RNA structures has great potential in biomedical applications. The viral and cellular RNA sequence and structure databases lay the groundwork for developing RNA-binding chemical ligands through the recognition of both RNA sequence and RNA structure. Influenza A virion consists of eight segments of negative-strand viral RNA (vRNA), all of which contain a highly conserved panhandle duplex structure formed between the first 13 nucleotides at the 5' end and the last 12 nucleotides at the 3' end. Here, we report our binding and cell culture anti-influenza assays of a short 10-mer chemically modified double-stranded RNA (dsRNA)-binding peptide nucleic acid (PNA) designed to bind to the panhandle duplex structure through novel major-groove PNA·RNA2 triplex formation. We demonstrated that incorporation of chemically modified PNA residues thio-pseudoisocytosine (L) and guanidine-modified 5-methyl cytosine (Q) previously developed by us facilitates the sequence-specific recognition of Watson-Crick G-C and C-G pairs, respectively, at physiologically relevant conditions. Significantly, the chemically modified dsRNA-binding PNA (dbPNA) shows selective binding to the dsRNA region in panhandle structure over a single-stranded RNA (ssRNA) and a dsDNA containing the same sequence. The panhandle structure is not accessible to traditional antisense DNA or RNA with a similar length. Conjugation of the dbPNA with an aminosugar neamine enhances the cellular uptake. We observed that 2-5 μM dbPNA-neamine conjugate results in a significant reduction of viral replication. In addition, the 10-mer dbPNA inhibits innate immune receptor RIG-I binding to panhandle structure and thus RIG-I ATPase activity. These findings would provide the foundation for developing novel dbPNAs for the detection of influenza viral RNAs and therapeutics with optimal antiviral and immunomodulatory activities.
Collapse
Affiliation(s)
- Julita Kesy
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Noskowskiego 12/14 , 61-704 Poznan , Poland
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | | | - Zhiyu Shu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Hui Yee Yong
- Lee Kong Chian School of Medicine , Nanyang Technological University , EMB 03-07, 59 Nanyang Drive , 636921 , Singapore.,NTU Institute of Structural Biology , Nanyang Technological University , EMB 06-01, 59 Nanyang Drive , 636921 , Singapore.,School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , 636921 , Singapore
| | - Louis Zimmermann
- Département de Pharmacochimie Moléculaire , University Grenoble Alpes, CNRS, ICMG FR 2607, UMR 5063 , 470 Rue de la Chimie , F-38041 Grenoble , France
| | - Alan Ann Lerk Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Lixia Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Jean-Luc Decout
- Département de Pharmacochimie Moléculaire , University Grenoble Alpes, CNRS, ICMG FR 2607, UMR 5063 , 470 Rue de la Chimie , F-38041 Grenoble , France
| | - Dahai Luo
- Lee Kong Chian School of Medicine , Nanyang Technological University , EMB 03-07, 59 Nanyang Drive , 636921 , Singapore.,NTU Institute of Structural Biology , Nanyang Technological University , EMB 06-01, 59 Nanyang Drive , 636921 , Singapore
| | - Mookkan Prabakaran
- Temasek Life Science Laboratory, 1 Research Link , National University of Singapore , 117604 , Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Noskowskiego 12/14 , 61-704 Poznan , Poland
| |
Collapse
|
13
|
Saisuk W, Srisawat C, Yoksan S, Dharakul T. Hybridization Cascade Plus Strand-Displacement Isothermal Amplification of RNA Target with Secondary Structure Motifs and Its Application for Detecting Dengue and Zika Viruses. Anal Chem 2019; 91:3286-3293. [DOI: 10.1021/acs.analchem.8b03736] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - S. Yoksan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand, 73170
| | | |
Collapse
|
14
|
Fitzpatrick CR, Lu-Irving P, Copeland J, Guttman DS, Wang PW, Baltrus DA, Dlugosch KM, Johnson MTJ. Chloroplast sequence variation and the efficacy of peptide nucleic acids for blocking host amplification in plant microbiome studies. MICROBIOME 2018; 6:144. [PMID: 30121081 PMCID: PMC6098832 DOI: 10.1186/s40168-018-0534-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/14/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND The ability to efficiently characterize microbial communities from host individuals can be limited by co-amplification of host organellar sequences (mitochondrial and/or plastid), which share a common ancestor and thus sequence similarity with extant bacterial lineages. One promising approach is the use of sequence-specific peptide nucleic acid (PNA) clamps, which bind to, and block amplification of, host-derived DNA. Universal PNA clamps have been proposed to block host plant-derived mitochondrial (mPNA) and plastid (pPNA) sequences at the V4 16S rRNA locus, but their efficacy across a wide range of host plant species has not been experimentally tested. RESULTS Using the universal PNA clamps, we amplified and sequenced root microbial communities from replicate individuals of 32 plant species with a most recent common ancestor inferred at 140 MYA. We found the average rate of host plastid contamination across plant species was 23%, however, particular lineages exhibited much higher rates (62-94%), with the highest levels of contamination occurring in the Asteraceae. We investigated chloroplast sequence variation at the V4 locus across 500 land plant species (Embryophyta) and found six lineages with mismatches between plastid and the universal pPNA sequence, including all species within the Asteraceae. Using a modified pPNA for the Asteraceae sequence, we found (1) host contamination in Asteraceae species was reduced from 65 to 23%; and (2) host contamination in non-Asteraceae species was increased from 12 to 69%. These results demonstrate that even single nucleotide mismatches can lead to drastic reductions in pPNA efficacy in blocking host amplification. Importantly, we found that pPNA type (universal or modified) had no effect on the detection of individual bacterial taxa, or estimates of within and between sample bacterial diversity, suggesting that our modification did not introduce bias against particular bacterial lineages. CONCLUSIONS When high similarity exists between host organellar DNA and PCR target sequences, PNA clamps are an important molecular tool to reduce host contamination during amplification. Here, we provide a validated framework to modify universal PNA clamps to accommodate host variation in organellar sequences.
Collapse
Affiliation(s)
- Connor R Fitzpatrick
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada.
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Patricia Lu-Irving
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Julia Copeland
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Pauline W Wang
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Katrina M Dlugosch
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Marc T J Johnson
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
15
|
Puah RY, Jia H, Maraswami M, Toh DFK, Ero R, Yang L, Patil KM, Ong AAL, Krishna MS, Sun R, Tong C, Huang M, Chen X, Loh TP, Gao YG, Liu DX, Chen G. Selective Binding to mRNA Duplex Regions by Chemically Modified Peptide Nucleic Acids Stimulates Ribosomal Frameshifting. Biochemistry 2017; 57:149-159. [PMID: 29116759 DOI: 10.1021/acs.biochem.7b00744] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Minus-one programmed ribosomal frameshifting (-1 PRF) allows the precise maintenance of the ratio between viral proteins and is involved in the regulation of the half-lives of cellular mRNAs. Minus-one ribosomal frameshifting is activated by several stimulatory elements such as a heptameric slippery sequence (X XXY YYZ) and an mRNA secondary structure (hairpin or pseudoknot) that is positioned 2-8 nucleotides downstream from the slippery site. Upon -1 RF, the ribosomal reading frame is shifted from the normal zero frame to the -1 frame with the heptameric slippery sequence decoded as XXX YYY Z instead of X XXY YYZ. Our research group has developed chemically modified peptide nucleic acid (PNA) L and Q monomers to recognize G-C and C-G Watson-Crick base pairs, respectively, through major-groove parallel PNA·RNA-RNA triplex formation. L- and Q-incorporated PNAs show selective binding to double-stranded RNAs (dsRNAs) over single-stranded RNAs (ssRNAs). The sequence specificity and structural selectivity of L- and Q-modified PNAs may allow the precise targeting of desired viral and cellular RNA structures, and thus may serve as valuable biological tools for mechanistic studies and potential therapeutics for fighting diseases. Here, for the first time, we demonstrate by cell-free in vitro translation assays using rabbit reticulocyte lysate that the dsRNA-specific chemically modified PNAs targeting model mRNA hairpins stimulate -1 RF (from 2% to 32%). An unmodified control PNA, however, shows nonspecific inhibition of translation. Our results suggest that the modified dsRNA-binding PNAs may be advantageous for targeting structured RNAs.
Collapse
Affiliation(s)
| | | | | | | | - Rya Ero
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | | | | | | | | | | | | | - Mei Huang
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | | | | | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551.,Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, South China Agricultural University , Guangzhou 510642, Guangdong, People's Republic of China
| | | |
Collapse
|
16
|
Toh DFK, Patil KM, Chen G. Sequence-specific and Selective Recognition of Double-stranded RNAs over Single-stranded RNAs by Chemically Modified Peptide Nucleic Acids. J Vis Exp 2017:56221. [PMID: 28994801 PMCID: PMC5752312 DOI: 10.3791/56221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNAs are emerging as important biomarkers and therapeutic targets. Thus, there is great potential in developing chemical probes and therapeutic ligands for the recognition of RNA sequence and structure. Chemically modified Peptide Nucleic Acid (PNA) oligomers have been recently developed that can recognize RNA duplexes in a sequence-specific manner. PNAs are chemically stable with a neutral peptide-like backbone. PNAs can be synthesized relatively easily by the manual Boc-chemistry solid-phase peptide synthesis method. PNAs are purified by reverse-phase HPLC, followed by molecular weight characterization by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Non-denaturing polyacrylamide gel electrophoresis (PAGE) technique facilitates the imaging of the triplex formation, because carefully designed free RNA duplex constructs and PNA bound triplexes often show different migration rates. Non-denaturing PAGE with ethidium bromide post staining is often an easy and informative technique for characterizing the binding affinities and specificities of PNA oligomers. Typically, multiple RNA hairpins or duplexes with single base pair mutations can be used to characterize PNA binding properties, such as binding affinities and specificities. 2-Aminopurine is an isomer of adenine (6-aminopurine); the 2-aminopurine fluorescence intensity is sensitive to local structural environment changes, and is suitable for the monitoring of triplex formation with the 2-aminopurine residue incorporated near the PNA binding site. 2-Aminopurine fluorescence titration can also be used to confirm the binding selectivity of modified PNAs towards targeted double-stranded RNAs (dsRNAs) over single-stranded RNAs (ssRNAs). UV-absorbance-detected thermal melting experiments allow the measurement of the thermal stability of PNA-RNA duplexes and PNA·RNA2 triplexes. Here, we describe the synthesis and purification of PNA oligomers incorporating modified residues, and describe biochemical and biophysical methods for characterization of the recognition of RNA duplexes by the modified PNAs.
Collapse
Affiliation(s)
- Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University;
| |
Collapse
|
17
|
Toh DFK, Devi G, Patil KM, Qu Q, Maraswami M, Xiao Y, Loh TP, Zhao Y, Chen G. Incorporating a guanidine-modified cytosine base into triplex-forming PNAs for the recognition of a C-G pyrimidine-purine inversion site of an RNA duplex. Nucleic Acids Res 2016; 44:9071-9082. [PMID: 27596599 PMCID: PMC5100590 DOI: 10.1093/nar/gkw778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022] Open
Abstract
RNA duplex regions are often involved in tertiary interactions and protein binding and thus there is great potential in developing ligands that sequence-specifically bind to RNA duplexes. We have developed a convenient synthesis method for a modified peptide nucleic acid (PNA) monomer with a guanidine-modified 5-methyl cytosine base. We demonstrated by gel electrophoresis, fluorescence and thermal melting experiments that short PNAs incorporating the modified residue show high binding affinity and sequence specificity in the recognition of an RNA duplex containing an internal inverted Watson-Crick C-G base pair. Remarkably, the relatively short PNAs show no appreciable binding to DNA duplexes or single-stranded RNAs. The attached guanidine group stabilizes the base triple through hydrogen bonding with the G base in a C-G pair. Selective binding towards an RNA duplex over a single-stranded RNA can be rationalized by the fact that alkylation of the amine of a 5-methyl C base blocks the Watson-Crick edge. PNAs incorporating multiple guanidine-modified cytosine residues are able to enter HeLa cells without any transfection agent.
Collapse
Affiliation(s)
- Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gitali Devi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Qiuyu Qu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yunyun Xiao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Teck Peng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
18
|
Thipmanee O, Numnuam A, Limbut W, Buranachai C, Kanatharana P, Vilaivan T, Hirankarn N, Thavarungkul P. Enhancing capacitive DNA biosensor performance by target overhang with application on screening test of HLA-B*58:01 and HLA-B*57:01 genes. Biosens Bioelectron 2016; 82:99-104. [PMID: 27054813 DOI: 10.1016/j.bios.2016.03.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/12/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Abstract
A highly sensitive label-free DNA biosensor based on PNA probes immobilized on a gold electrode was used to detect a hybridization event. The effect of a target DNA overhang on the hybridization efficiency was shown to enhance the detected signal and allowed detection at a very low concentration. The sensors performances were investigated with a complementary target that had the same length as the probe, and the signal was compared to the target DNAs with different lengths and overhangs. A longer target DNA overhang was found to provide a better response. When the overhang was on the electrode side the signal enhancement was greater than when the overhang was on the solution side due to the increased thickness of the sensing surface, hence produced a larger capacitance change. Using conformationally constrained acpcPNA probes, double stranded DNA was detected sensitively and specifically without any denaturing step. When two acpcPNA probes were applied for the screening test for the double stranded HLA-B*58:01 and HLA-B*57:01 genes that are highly similar, the method differentiated the two genes in all samples. Both purified and unpurified PCR products gave comparable results. This method would be potentially useful as a rapid screening test without the need for purification and denaturation of the PCR products.
Collapse
Affiliation(s)
- Orawan Thipmanee
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Apon Numnuam
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Warakorn Limbut
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Chittanon Buranachai
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Proespichaya Kanatharana
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Panote Thavarungkul
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
19
|
Readman JB, Dickson G, Coldham NG. Translational Inhibition of CTX-M Extended Spectrum β-Lactamase in Clinical Strains of Escherichia coli by Synthetic Antisense Oligonucleotides Partially Restores Sensitivity to Cefotaxime. Front Microbiol 2016; 7:373. [PMID: 27047482 PMCID: PMC4805641 DOI: 10.3389/fmicb.2016.00373] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/08/2016] [Indexed: 11/13/2022] Open
Abstract
Synthetic antisense oligomers are DNA mimics that can specifically inhibit gene expression at the translational level by ribosomal steric hindrance. They bind to their mRNA targets by Watson-Crick base pairing and are resistant to degradation by both nucleases and proteases. A 25-mer phosphorodiamidate morpholino oligomer (PMO) and a 13-mer polyamide (peptide) nucleic acid (PNA) were designed to target mRNA (positions -4 to +21, and -17 to -5, respectively) close to the translational initiation site of the extended-spectrum β-lactamase resistance genes of CTX-M group 1. These antisense oligonucleotides were found to inhibit β-lactamase activity by up to 96% in a cell-free translation-transcription coupled system using an expression vector carrying a bla CTX-M-15 gene cloned from a clinical isolate. Despite evidence for up-regulation of CTX-M gene expression, they were both found to significantly restore sensitivity to cefotaxime (CTX) in E. coli AS19, an atypical cell wall permeable mutant, in a dose dependant manner (0-40 nM). The PMO and PNA were covalently bound to the cell penetrating peptide (CPP; (KFF)3K) and both significantly (P < 0.05) increased sensitivity to CTX in a dose dependent manner (0-40 nM) in field and clinical isolates harboring CTX-M group 1 β-lactamases. Antisense oligonucleotides targeted to the translational initiation site and Shine-Dalgarno region of bla CTX-M-15 inhibited gene expression, and when conjugated to a cell penetrating delivery vehicle, partially restored antibiotic sensitivity to both field and clinical isolates.
Collapse
Affiliation(s)
- John B Readman
- Bacteriology Department, Animal and Plant Health AgencySurrey, UK; Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of LondonSurrey, UK
| | - George Dickson
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London Surrey, UK
| | - Nick G Coldham
- Bacteriology Department, Animal and Plant Health Agency Surrey, UK
| |
Collapse
|
20
|
Goux E, Lespinasse Q, Guieu V, Perrier S, Ravelet C, Fiore E, Peyrin E. Fluorescence anisotropy-based structure-switching aptamer assay using a peptide nucleic acid (PNA) probe. Methods 2015; 97:69-74. [PMID: 26455538 DOI: 10.1016/j.ymeth.2015.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/04/2015] [Accepted: 09/18/2015] [Indexed: 01/04/2023] Open
Abstract
This study describes for the first time the feasibility of using peptide nucleic acids (PNAs) as an alternative to the DNA probes in structure-switching aptamer fluorescence polarisation assays. The effects of experimental parameters such as the length of the PNA strand, the nature of dye and the buffer conditions on the assay performances are first explored using two different methodologies based on the competition between the PNA/aptamer hydribridisation and the target/aptamer complexation. D-ATP can be detected from 1 to 25 μM in a linear range and a detection limit (LOD) of 3 μM can be reached. For this target, this lowers by a factor >5 the LOD reported with conventional DNA-based fluorescent structure switching aptamer-based assays and by a factor 3 the LOD observed with non-competitive fluorescent sensing platform indicating the usefulness of the PNA-based approach.
Collapse
Affiliation(s)
- Emma Goux
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France
| | - Quentin Lespinasse
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France
| | - Valérie Guieu
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France.
| | - Sandrine Perrier
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France
| | - Corinne Ravelet
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France
| | - Emmanuelle Fiore
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France
| | - Eric Peyrin
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France.
| |
Collapse
|
21
|
Westerlund K, Honarvar H, Tolmachev V, Eriksson Karlström A. Design, Preparation, and Characterization of PNA-Based Hybridization Probes for Affibody-Molecule-Mediated Pretargeting. Bioconjug Chem 2015; 26:1724-36. [PMID: 26086597 DOI: 10.1021/acs.bioconjchem.5b00292] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In radioimmunotherapy, the contrast between tumor and normal tissue can be improved by using a pretargeting strategy with a primary targeting agent, which is conjugated to a recognition tag, and a secondary radiolabeled molecule binding specifically to the recognition tag. The secondary molecule is injected after the targeting agent has accumulated in the tumor and is designed to have a favorable biodistribution profile, with fast clearance from blood and low uptake in normal tissues. In this study, we have designed and evaluated two complementary peptide nucleic acid (PNA)-based probes for specific and high-affinity association in vivo. An anti-HER2 Affibody-PNA chimera, Z(HER2:342)-SR-HP1, was produced by a semisynthetic approach using sortase A catalyzed ligation of a recombinantly produced Affibody molecule to a PNA-based HP1-probe assembled using solid-phase chemistry. A complementary HP2 probe carrying a DOTA chelator and a tyrosine for dual radiolabeling was prepared by solid-phase synthesis. Circular dichroism (CD) spectroscopy and UV thermal melts showed that the probes can hybridize to form a structured duplex with a very high melting temperature (T(m)), both in HP1:HP2 and in Z(HER2:342)-SR-HP1:HP2 (T(m) = 86-88 °C), and the high binding affinity between Z(HER2:342)-SR-HP1 and HP2 was confirmed in a surface plasmon resonance (SPR)-based binding study. Following a moderately fast association (1.7 × 10(5) M(-1) s(-1)), the dissociation of the probes was extremely slow and <5% dissociation was observed after 17 h. The equilibrium dissociation constant (K(D)) for Z(HER2:342)-SR-HP1:HP2 binding to HER2 was estimated by SPR to be 212 pM, suggesting that the conjugation to PNA does not impair Affibody binding to HER2. The biodistribution profiles of (111)In- and (125)I-labeled HP2 were measured in NMRI mice, showing very fast blood clearance rates and low accumulation of radioactivity in kidneys and other organs. The measured radioactivity in blood was 0.63 ± 0.15 and 0.41 ± 0.15%ID/g for (125)I- and (111)In-HP2, respectively, at 1 h p.i., and at 4 h p.i., the kidney accumulation of radioactivity was 0.17 ± 0.04%ID/g for (125)I-HP2 and 3.83 ± 0.39%ID/g for (111)In-HP2. Taken together, the results suggest that a PNA-based system has suitable biophysical and in vivo properties and is a promising approach for pretargeting of Affibody molecules.
Collapse
Affiliation(s)
- Kristina Westerlund
- †School of Biotechnology, Division of Protein Technology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Hadis Honarvar
- ‡Department of Immunology, Genetics and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Vladimir Tolmachev
- ‡Department of Immunology, Genetics and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Amelie Eriksson Karlström
- †School of Biotechnology, Division of Protein Technology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| |
Collapse
|
22
|
Vilaivan T. Pyrrolidinyl PNA with α/β-Dipeptide Backbone: From Development to Applications. Acc Chem Res 2015; 48:1645-56. [PMID: 26022340 DOI: 10.1021/acs.accounts.5b00080] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The specific pairing between two complementary nucleobases (A·T, C·G) according to the Watson-Crick rules is by no means unique to natural nucleic acids. During the past few decades a number of nucleic acid analogues or mimics have been developed, and peptide nucleic acid (PNA) is one of the most intriguing examples. In addition to forming hybrids with natural DNA/RNA as well as itself with high affinity and specificity, the uncharged peptide-like backbone of PNA confers several unique properties not observed in other classes of nucleic acid analogues. PNA is therefore suited to applications currently performed by conventional oligonucleotides/analogues and others potentially beyond this. In addition, PNA is also interesting in its own right as a new class of oligonucleotide mimics. Unlimited opportunities exist to modify the PNA structure, stimulating the search for new systems with improved properties or additional functionality not present in the original PNA, driving future research and applications of these in nanotechnology and beyond. Although many structural variations of PNA exist, significant improvements to date have been limited to a few constrained derivatives of the privileged N-2-aminoethylglycine PNA scaffold. In this Account, we summarize our contributions in this field: the development of a new family of conformationally constrained pyrrolidinyl PNA having a nonchimeric α/β-dipeptide backbone derived from nucleobase-modified proline and cyclic β-amino acids. The conformational constraints dictated by the pyrrolidine ring and the β-amino acid are essential requirements determining the binding efficiency, as the structure and stereochemistry of the PNA backbone significantly affect its ability to interact with DNA, RNA, and in self-pairing. The modular nature of the dipeptide backbone simplifies the synthesis and allows for rapid structural optimization. Pyrrolidinyl PNA having a (2'R,4'R)-proline/(1S,2S)-2-aminocyclopentanecarboxylic backbone (acpcPNA) binds to DNA with outstanding affinity and sequence specificity. It also binds to RNA in a highly sequence-specific fashion, albeit with lower affinity than to DNA. Additional characteristics include exclusive antiparallel/parallel selectivity and a low tendency for self-hybridization. Modification of the nucleobase or backbone allowing site-specific incorporation of labels and other functions to acpcPNA via click and other conjugation chemistries is possible, generating functional PNAs that are suitable for various applications. DNA sensing and biological applications of acpcPNA have been demonstrated, but these are still in their infancy and the full potential of pyrrolidinyl PNA is yet to be realized. With properties competitive with, and in some aspects superior to, the best PNA technology available to date, pyrrolidinyl PNA offers great promise as a platform system for future elaboration for the fabrication of new functional materials, nanodevices, and next-generation analytical tools.
Collapse
Affiliation(s)
- Tirayut Vilaivan
- Organic Synthesis Research
Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
23
|
Danko AS, Fontenete SJ, de Aquino Leite D, Leitão PO, Almeida C, Schaefer CE, Vainberg S, Steffan RJ, Azevedo NF. Detection of Dehalococcoides spp. by peptide nucleic acid fluorescent in situ hybridization. J Mol Microbiol Biotechnol 2014; 24:142-9. [PMID: 24970105 DOI: 10.1159/000362790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chlorinated solvents including tetrachloroethene (perchloroethene and trichloroethene), are widely used industrial solvents. Improper use and disposal of these chemicals has led to a widespread contamination. Anaerobic treatment technologies that utilize Dehalococcoides spp. can be an effective tool to remediate these contaminated sites. Therefore, the aim of this study was to develop, optimize and validate peptide nucleic acid (PNA) probes for the detection of Dehalococcoides spp. in both pure and mixed cultures. PNA probes were designed by adapting previously published DNA probes targeting the region of the point mutations described for discriminating between the Dehalococcoides spp. strain CBDB1 and strain 195 lineages. Different fixation, hybridization and washing procedures were tested. The results indicated that the PNA probes hybridized specifically and with a high sensitivity to their corresponding lineages, and that the PNA probes developed during this work can be used in a duplex assay to distinguish between strain CBDB1 and strain 195 lineages, even in complex mixed cultures. This work demonstrates the effectiveness of using PNA fluorescence in situ hybridization to distinguish between two metabolically and genetically distinct Dehalococcoides strains, and they can have strong implications in the monitoring and differentiation of Dehalococcoides populations in laboratory cultures and at contaminated sites.
Collapse
Affiliation(s)
- Anthony S Danko
- Centro de Investigação em Geo-Ambiente e Recursos (CIGAR), Departamento de Engenharia de Minas, Faculdade de Engenharia, Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Devi G, Yuan Z, Lu Y, Zhao Y, Chen G. Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes. Nucleic Acids Res 2014; 42:4008-18. [PMID: 24423869 PMCID: PMC3973316 DOI: 10.1093/nar/gkt1367] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Peptide nucleic acids (PNAs) have been developed for applications in biotechnology and therapeutics. There is great potential in the development of chemically modified PNAs or other triplex-forming ligands that selectively bind to RNA duplexes, but not single-stranded regions, at near-physiological conditions. Here, we report on a convenient synthesis route to a modified PNA monomer, thio-pseudoisocytosine (L), and binding studies of PNAs incorporating the monomer L. Thermal melting and gel electrophoresis studies reveal that L-incorporated 8-mer PNAs have superior affinity and specificity in recognizing the duplex region of a model RNA hairpin to form a pyrimidine motif major-groove RNA2–PNA triplex, without appreciable binding to single-stranded regions to form an RNA–PNA duplex or, via strand invasion, forming an RNA–PNA2 triplex at near-physiological buffer condition. In addition, an L-incorporated 8-mer PNA shows essentially no binding to single-stranded or double-stranded DNA. Furthermore, an L-modified 6-mer PNA, but not pseudoisocytosine (J) modified or unmodified PNA, binds to the HIV-1 programmed −1 ribosomal frameshift stimulatory RNA hairpin at near-physiological buffer conditions. The stabilization of an RNA2–PNA triplex by L modification is facilitated by enhanced van der Waals contacts, base stacking, hydrogen bonding and reduced dehydration energy. The destabilization of RNA–PNA and DNA–PNA duplexes by L modification is due to the steric clash and loss of two hydrogen bonds in a Watson–Crick-like G–L pair. An RNA2–PNA triplex is significantly more stable than a DNA2–PNA triplex, probably because the RNA duplex major groove provides geometry compatibility and favorable backbone–backbone interactions with PNA. Thus, L-modified triplex-forming PNAs may be utilized for sequence-specifically targeting duplex regions in RNAs for biological and therapeutic applications.
Collapse
Affiliation(s)
- Gitali Devi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | | | | | | | | |
Collapse
|
25
|
Quantitative single-nucleotide polymorphism analysis in secondary-structured DNA by affinity capillary electrophoresis using a polyethylene glycol–peptide nucleic acid block copolymer. Anal Biochem 2013; 433:150-2. [DOI: 10.1016/j.ab.2012.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/12/2012] [Accepted: 10/13/2012] [Indexed: 11/17/2022]
|
26
|
Kundu LM, Tsukada H, Matsuoka Y, Kanayama N, Takarada T, Maeda M. Estimation of binding constants of peptide nucleic acid and secondary-structured DNA by affinity capillary electrophoresis. Anal Chem 2012; 84:5204-9. [PMID: 22624952 DOI: 10.1021/ac301025m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An affinity capillary electrophoresis method was developed to determine a binding constant between a peptide nucleic acid (PNA) and a hairpin-structured DNA. A diblock copolymer composed of PNA and polyethylene glycol (PEG) was synthesized as a novel affinity probe. The base sequence of the probe's PNA segment was complementary to a hairpin-structured region of a 60-base single-stranded DNA (ssDNA). Upon applying a voltage, the DNA hairpin migrated slowly compared to a random sequence ssDNA in the presence of the PNA probe. This retardation was induced by strand invasion of the PNA into the DNA hairpin to form a hybridized complex, where the PEG segment received a large amount of hydrodynamic friction during electrophoresis. The binding constant between the PNA probe and the DNA hairpin was easily determined by mobility analysis. This simple method would be potentially beneficial in studying binding behaviors of various artificial nucleotides to natural DNA or RNA.
Collapse
Affiliation(s)
- Lal Mohan Kundu
- Bioengineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Li J, Qi XJ, Du YY, Fu HE, Chen GN, Yang HH. Efficient detection of secondary structure folded nucleic acids related to Alzheimer's disease based on junction probes. Biosens Bioelectron 2012; 36:142-6. [PMID: 22560436 DOI: 10.1016/j.bios.2012.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 03/15/2012] [Accepted: 04/09/2012] [Indexed: 11/28/2022]
Abstract
Single stranded DNA often forms stable secondary structures under physiological conditions. These DNA secondary structures play important physiological roles. However, the analysis of such secondary structure folded DNA is often complicated because of its high thermodynamic stability and slow hybridization kinetics. In this article, we demonstrate that Y-shaped junction probes could be used for rapid and highly efficient detection of secondary structure folded DNA. Our approach contained a molecular beacon (MB) probe and an assistant probe. In the absence of target, the MB probe failed to hybridize with the assistant probe. Whereas, the MB probe and the assistant probe could cooperatively unwind the secondary structure folded DNA target to form a ternary Y-shaped junction structure. In this condition, the MB probe was also opened, resulting in separating the fluorophores from the quenching moiety and emitting the fluorescence signal. This approach allowed for the highly sensitive detection of secondary structure folded DNA target, such as a tau specific DNA fragment related to Alzheimer's disease in this case. Additionally, this approach showed strong SNPs identifying capability. Furthermore, it was noteworthy that this newly proposed approach was capable of detecting secondary structure folded DNA target in cell lysate samples.
Collapse
Affiliation(s)
- Juan Li
- The Key Laboratory of Analysis and Detection Technology for Food Safety of the MOE, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Nguyen C, Grimes J, Gerasimova YV, Kolpashchikov DM. Molecular-beacon-based tricomponent probe for SNP analysis in folded nucleic acids. Chemistry 2011; 17:13052-8. [PMID: 21956816 PMCID: PMC3221966 DOI: 10.1002/chem.201101987] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Indexed: 01/13/2023]
Abstract
Hybridization probes are often inefficient in the analysis of single-stranded DNA or RNA that are folded in stable secondary structures. A molecular beacon (MB) probe is a short DNA hairpin with a fluorophore and a quencher attached to opposite sides of the oligonucleotide. The probe is widely used in real-time analysis of specific DNA and RNA sequences. This study demonstrates how a conventional MB probe can be used for the analysis of nucleic acids that form very stable (T(m) > 80 °C) hairpin structures. Here we demonstrate that the MB probe is not efficient in direct analysis of secondary structure-folded analytes, whereas a MB-based tricomponent probe is suitable for these purposes. The tricomponent probe takes advantage of two oligonucleotide adaptor strands f and m. Each adaptor strand contains a fragment complementary to the analyte and a fragment complementary to a MB probe. In the presence of a specific analyte, the two adaptor strands hybridize to the analyte and the MB probe, thus forming a quadripartite complex. DNA strand f binds to the analyte with high affinity and unwinds its secondary structure. Strand m forms a stable complex only with the fully complementary analyte. The MB probe fluorescently reports the formation of the quadripartite associate. It was demonstrated that the DNA analytes folded in hairpin structures with stems containing 5, 6, 7, 8, 9, 11, or 13 base pairs can be detected in real time with the limit of detection (LOD) lying in the nanomolar range. The stability of the stem region in the DNA analyte did not affect the LOD. Analytes containing single base substitutions in the stem or in the loop positions were discriminated from the fully complementary DNA at room temperature. The tricomponent probe promises to simplify nucleic acid analysis at ambient temperatures in such applications as in vivo RNA monitoring, detection of pathogens, and single nucleotide polymorphism (SNP) genotyping by DNA microarrays.
Collapse
Affiliation(s)
- Camha Nguyen
- Camha Nguyen, Jeffrey Grimes, Dr. Y. V. Gerasimova, Dr. D. M. Kolpashchikov Chemistry Department University of Central Florida 4000 Central Florida Blvd., Orlando, FL 32816, USA
| | - Jeffrey Grimes
- Camha Nguyen, Jeffrey Grimes, Dr. Y. V. Gerasimova, Dr. D. M. Kolpashchikov Chemistry Department University of Central Florida 4000 Central Florida Blvd., Orlando, FL 32816, USA
| | - Yulia V. Gerasimova
- Camha Nguyen, Jeffrey Grimes, Dr. Y. V. Gerasimova, Dr. D. M. Kolpashchikov Chemistry Department University of Central Florida 4000 Central Florida Blvd., Orlando, FL 32816, USA
| | - Dmitry M. Kolpashchikov
- Camha Nguyen, Jeffrey Grimes, Dr. Y. V. Gerasimova, Dr. D. M. Kolpashchikov Chemistry Department University of Central Florida 4000 Central Florida Blvd., Orlando, FL 32816, USA
| |
Collapse
|
29
|
Avila-Figueroa A, Cattie D, Delaney S. A small unstructured nucleic acid disrupts a trinucleotide repeat hairpin. Biochem Biophys Res Commun 2011; 413:532-6. [PMID: 21924238 DOI: 10.1016/j.bbrc.2011.08.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
A variety of neurodegenerative disorders are associated with the expansion of trinucleotide repeat (TNR) sequences. These repetitive sequences are prone to adopting non-canonical structures, such as intrastrand stem-loop hairpins. Indeed, the formation and persistence of these hairpins during DNA replication and/or repair have been proposed as factors that facilitate TNR expansion. Given this proposed contribution of TNR hairpins to the expansion mechanism, disruption of such structures via strand invasion offers a potential means to negate the disease-initiating expansion. In this work, we investigated the strand invading abilities of a (CTG)(3) unstructured nucleic acid on a (CAG)(10) TNR hairpin. Using fluorescence, optical, and electrophoretic methods, instantaneous disruption of the (CAG)(10) hairpin by (CTG)(3) was observed at low temperatures. Additionally, we have identified three distinct duplex-like species that form between (CAG)(10) and (CTG)(3); these include 1, 2, or 3 (CTG)(3) sequences hybridized to (CAG)(10). The results presented here showcase (CTG)(3) as an invader of a TNR hairpin and suggest that unstructured nucleic acids could serve as a scaffold to design agents to prevent TNR expansion.
Collapse
Affiliation(s)
- Amalia Avila-Figueroa
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, United States
| | | | | |
Collapse
|
30
|
Lecosnier S, Cordier C, Simon P, François JC, Saison-Behmoaras TE. A steric blocker of translation elongation inhibits IGF-1R expression and cell transformation. FASEB J 2011; 25:2201-10. [PMID: 21402719 DOI: 10.1096/fj.10-169540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) is involved in transformation, survival, mitogenesis and differentiation. It is overexpressed in many tumors and a validated target for anticancer therapy. In cell-free systems, polypyrimidic peptide nucleic acids (PNAs) can form triplex-like structures with messenger RNAs and halt the ribosomal machinery during the translation elongation. A 17-mer PNA that formed a PNA(2):mRNA complex with a purine-rich sequence located in the coding region of IGF-1R mRNA induced the synthesis of a truncated IGF-1R in vitro. This PNA down-regulated expression of the receptor by 70-80% in prostate cancer cells without affecting insulin receptor expression that exhibits high homology with IGF-1R. Inhibition occurs at the translational level, since the IGF-1R mRNA level measured by quantitative RT-PCR was not affected by PNA treatment. In addition, IGF-1R knockdown by PNA led to an attenuation of phosphorylation of downstream signaling pathways, PI3K/AKT and MAPK, involved in survival and mitogenesis and also to a decrease in cell transformation. Of the steric blockers tested, which included phosphorodiamidate morpholino oligomers and locked nucleic acids, PNA was unique in its ability to form triplex structures with mRNA and to arrest translation elongation.
Collapse
Affiliation(s)
- Sabine Lecosnier
- Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Unité Mixte de Recherche 7196, Paris, France
| | | | | | | | | |
Collapse
|
31
|
Tonelli A, Tedeschi T, Germini A, Sforza S, Corradini R, Medici MC, Chezzi C, Marchelli R. Real time RNA transcription monitoring by Thiazole Orange (TO)-conjugated Peptide Nucleic Acid (PNA) probes: norovirus detection. MOLECULAR BIOSYSTEMS 2011; 7:1684-92. [PMID: 21399831 DOI: 10.1039/c0mb00353k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thiazole Orange (TO)-conjugated Peptide Nucleic Acid (PNA) probes have been reported as a valuable strategy for DNA analysis; however, no investigations targeting RNA molecules and no comparisons between different derivatization approaches have been reported so far. In this work, two TO-conjugated PNAs for genogroup II noroviruses (NoV GII) detection were designed and synthesized. Both the probes target the most conserved stretch of nucleotides identified in the open reading frame 1-2 (ORF1-ORF2) junction region and differ for the dye conjugation strategy: one PNA is end-labelled with the TO molecule tethered by a linker; the other probe bears the TO molecule directly linked to the PNA backbone, replacing a conventional nucleobase. The spectroscopic properties of the two PNA probes were studied and their applicability to NoVs detection, using an isothermal assay, was investigated. Both probes showed good specificity and high fluorescence enhancement upon hybridization, especially targeting RNA molecules. Moreover, the two probes were successfully employed for NoVs detection from stool specimens in an isothermal-based amplification assay targeting RNA 'amplicons'. The probes showed to be specific even in the presence of high concentrations of non-target RNA.
Collapse
Affiliation(s)
- Alessandro Tonelli
- Department of Organic and Industrial Chemistry, University of Parma, Vle GP Usberti 17/A, 43124 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Calabretta A, Wasserberg D, Posthuma-Trumpie GA, Subramaniam V, van Amerongen A, Corradini R, Tedeschi T, Sforza S, Reinhoudt DN, Marchelli R, Huskens J, Jonkheijm P. Patterning of peptide nucleic acids using reactive microcontact printing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1536-1542. [PMID: 20799750 DOI: 10.1021/la102756k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
PNAs (peptide nucleic acids) have been immobilized onto surfaces in a fast, accurate way by employing reactive microcontact printing. Surfaces have been first modified with aldehyde groups to react with the amino end of the synthesized PNAs. When patterning fluorescein-labeled PNAs by reactive microcontact printing using oxygen-oxidized polydimethylsiloxane stamps, homogeneous arrays were fabricated and characterized using optical methods. PNA-patterned surfaces were hybridized with complementary and mismatched dye-labeled oligonucleotides to test their ability to recognize DNA sequences. The stability and selectivity of the PNA-DNA duplexes on surfaces have been verified by fluorescence microscopy, and the melting curves have been recorded. Finally, the technique has been applied to the fabrication of chips by spotting a PNA microarray onto a flat PDMS stamp and reproducing the same features onto many slides. The chips were finally applied to single nucleotide polymorphism detection on oligonucleotides.
Collapse
Affiliation(s)
- Alessandro Calabretta
- Molecular Nanofabrication and Biophysical Engineering, Department of Science and Technology, University of Twente, PEnschede, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Grimes J, Gerasimova YV, Kolpashchikov DM. Real-time SNP analysis in secondary-structure-folded nucleic acids. Angew Chem Int Ed Engl 2010; 49:8950-3. [PMID: 20963740 PMCID: PMC3017124 DOI: 10.1002/anie.201004475] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jeffrey Grimes
- Chemistry Department, University of Central Florida, 4000 Central Blvd, Orlando, FL 32816 (USA), Fax: (+1) 407-823-2252,
| | - Yulia V. Gerasimova
- Chemistry Department, University of Central Florida, 4000 Central Blvd, Orlando, FL 32816 (USA), Fax: (+1) 407-823-2252,
| | - Dmitry M. Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Blvd, Orlando, FL 32816 (USA), Fax: (+1) 407-823-2252,
| |
Collapse
|
34
|
Grimes J, Gerasimova YV, Kolpashchikov DM. Real-Time SNP Analysis in Secondary-Structure-Folded Nucleic Acids. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004475] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Application of peptide nucleic acid towards development of nanobiosensor arrays. Bioelectrochemistry 2010; 79:153-61. [PMID: 20356802 DOI: 10.1016/j.bioelechem.2010.02.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/20/2010] [Accepted: 02/23/2010] [Indexed: 11/20/2022]
Abstract
Peptide nucleic acid (PNA) is the modified DNA or DNA analogue with a neutral peptide backbone instead of a negatively charged sugar phosphate. PNA exhibits chemical stability, resistant to enzymatic degradation inside living cell, recognizing specific sequences of nucleic acid, formation of stable hybrid complexes like PNA/DNA/PNA triplex, strand invasion, extraordinary thermal stability and ionic strength, and unique hybridization relative to nucleic acids. These unique physicobiochemical properties of PNA enable a new mode of detection, which is a faster and more reliable analytical process and finds applications in the molecular diagnostics and pharmaceutical fields. Besides, a variety of unique characteristic features, PNAs replace DNA as a probe for biomolecular tool in the molecular genetic diagnostics, cytogenetics, and various pharmaceutical potentials as well as for the development of sensors/arrays/chips and many more investigation purposes. This review paper discusses the various current aspects related with PNAs, making a new hot device in the commercial applications like nanobiosensor arrays.
Collapse
|
36
|
Tan JC, Patel JJ, Tan A, Blain JC, Albert TJ, Lobo NF, Ferdig MT. Optimizing comparative genomic hybridization probes for genotyping and SNP detection in Plasmodium falciparum. Genomics 2009; 93:543-50. [PMID: 19285129 PMCID: PMC3095972 DOI: 10.1016/j.ygeno.2009.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 01/16/2009] [Accepted: 02/26/2009] [Indexed: 02/03/2023]
Abstract
Microarray-based comparative genomic hybridizations (CGH) interrogate genomic DNA to identify structural differences such as amplifications and deletions that are easily detected as large signal aberrations. Subtle signal deviations caused by single nucleotide polymorphisms (SNPs) can also be detected but is challenged by a high AT content (81%) in P. falciparum. We compared genome-wide CGH signal to sequence polymorphisms between parasite strains 3D7, HB3, and Dd2 using NimbleGen microarrays. From 23,191 SNPs (excluding var/rif/stevor genes), our CGH probe set detected SNPs with >99.9% specificity but low (<10%) sensitivity. Probe length, melting temperature, GC content, SNP location in the probe, mutation type, and hairpin structures affected SNP sensitivity. Previously unrecognized variable number tandem repeats (VNTRs) also were detected by this method. These findings will guide the redesign of a probe set to optimize an openly available CGH microarray platform for high-resolution genotyping suitable for population genomics studies.
Collapse
Affiliation(s)
- John C. Tan
- The Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana
| | - Jigar J. Patel
- The Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana
- Roche NimbleGen, Inc., 504 South Rosa Rd, Madison, Wisconsin
| | - Asako Tan
- The Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana
| | | | - Tom J. Albert
- Roche NimbleGen, Inc., 504 South Rosa Rd, Madison, Wisconsin
| | - Neil F. Lobo
- The Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana
| | - Michael T. Ferdig
- The Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
37
|
Synthesis of Chiral Heteronucleotide ONA Sequences by a Fmoc/Boc-Based Submonomeric Strategy. Int J Pept Res Ther 2009. [DOI: 10.1007/s10989-009-9181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Lahoud G, Timoshchuk V, Lebedev A, Arar K, Hou YM, Gamper H. Properties of pseudo-complementary DNA substituted with weakly pairing analogs of guanine or cytosine. Nucleic Acids Res 2008; 36:6999-7008. [PMID: 18987000 PMCID: PMC2602760 DOI: 10.1093/nar/gkn797] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A straightforward enzymatic protocol for converting regular DNA into pseudo-complementary DNA could improve the performance of oligonucleotide microarrays by generating readily hybridizable structure-free targets. Here we screened several highly destabilizing analogs of G and C for one that could be used with 2-aminoadenine (nA) and 2-thiothymine (sT) to generate structure-free DNA that is fully accessible to complementary probes. The analogs, which included bioactive bases such as 6-thioguanine (sG), 5-nitrocytosine (NitroC), 2-pyrimidinone (P; the free base of zebularine) and 6-methylfuranopyrimidinone (MefP), were prepared as dNTPs and evaluated as substrates for T7 and Phi29 DNA polymerases that lacked editor function. Pairing properties of the analogs were characterized by solution hybridization assays using modified oligonucleotides or primer extension products. P and MeP did not support robust primer extension whereas sG and NitroC did. In hybridization assays, however, sG lacked discrimination and NitroC paired too strongly to C. The dNTPs of two other base analogs, 7-nitro-7-deazahypoxanthine (NitrocH) and 2-thiocytosine (sC), exhibited the greatest promise. Either analog could be used with nA and sT to generate DNA that was nearly structure-free. Hybridization of probes to these modified DNAs will require the development of base analogs that pair strongly to NitrocH or sC.
Collapse
Affiliation(s)
- Georges Lahoud
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
39
|
Quantitative rRNA-targeted solution-based hybridization assay using peptide nucleic acid molecular beacons. Appl Environ Microbiol 2008; 74:7297-305. [PMID: 18820054 DOI: 10.1128/aem.01002-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries.
Collapse
|
40
|
Lahoud G, Timoshchuk V, Lebedev A, de Vega M, Salas M, Arar K, Hou YM, Gamper H. Enzymatic synthesis of structure-free DNA with pseudo-complementary properties. Nucleic Acids Res 2008; 36:3409-19. [PMID: 18448471 PMCID: PMC2425472 DOI: 10.1093/nar/gkn209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Long single-stranded DNAs and RNAs possess considerable secondary structure under conditions that support stable hybrid formation with oligonucleotides. Consequently, different oligomeric probes can hybridize to the same target with efficiencies that vary by several orders of magnitude. The ability to enzymatically generate structure-free single-stranded copies of any nucleic acid without impairing Watson–Crick base pairing to short probes would eliminate this problem and significantly improve the performance of many oligonucleotide-based applications. Synthetic nucleic acids that exhibit these properties are defined as pseudo-complementary. Previously, we described a pseudo-complementary A-T couple consisting of 2-aminoadenine (nA) and 2-thiothymine (sT) bases. The nA-sT couple is a mismatch even though nA-T and A-sT are stable base pairs. Here we show that 7-alkyl-7-deazaguanine and N4-alkylcytosine (where alkyl = methyl or ethyl) can be used in conjunction with nA and sT to render DNA largely structure-free and pseudo-complementary. The deoxynucleoside triphosphates (dNTPs) of these bases are incorporated into DNA by selected mesophilic and thermophilic DNA polymerases and the resulting primer extension products hybridize with good specificity and stability to oligonucleotide probes composed of the standard bases. Further optimization and characterization of the synthesis and properties of pseudo-complementary DNA should lead to an ideal target for use with oligonucleotide probes that are <25 nt in length.
Collapse
Affiliation(s)
- Georges Lahoud
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Burlina F, Dixson DD, Doyle RP, Chassaing G, Boddy CN, Dawson P, Offer J. Orthogonal ligation: a three piece assembly of a PNA-peptide-PNA conjugate. Chem Commun (Camb) 2008:2785-7. [PMID: 18688310 DOI: 10.1039/b801242c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A PNA-peptide-PNA conjugate was assembled from three fragments using a combination of native chemical ligation and an orthogonal, auxiliary-mediated ligation.
Collapse
Affiliation(s)
- Fabienne Burlina
- UPMC Univ Paris 06, CNRS UMR 7613, 4 place Jussieu, F-75005 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
Jeyanathan M, Alexander DC, Turenne CY, Girard C, Behr MA. Evaluation of in situ methods used to detect Mycobacterium avium subsp. paratuberculosis in samples from patients with Crohn's disease. J Clin Microbiol 2006; 44:2942-50. [PMID: 16891515 PMCID: PMC1594655 DOI: 10.1128/jcm.00585-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In common with other diagnostic tests, detection of mycobacteria in tissue by microscopic examination is susceptible to spectrum bias. Since Crohn's disease is defined by the absence of detectable pathogenic organisms, the use of in situ techniques to search for Mycobacterium avium subsp. paratuberculosis in Crohn's disease samples requires validation of methods in a paucibacillary setting. To generate paucibacillary infection, C57BL/6 mice were artificially infected with Mycobacterium avium subsp. paratuberculosis strain K10 and M. tuberculosis H37Rv, yielding tissues harboring fewer than one bacillus per oil immersion field. Serial sections of organs were then studied by cell wall-based staining techniques (Ziehl-Neelsen and auramine rhodamine) and nucleic acid-based staining techniques (in situ hybridization [ISH] and indirect in situ PCR [IS PCR]). Microscopic examination and measurement of morphometric parameters of bacilli revealed that for all methods, Mycobacterium avium subsp. paratuberculosis bacilli were observed to be shorter, smaller, and less rod shaped than M. tuberculosis bacilli. Ziehl-Neelsen, auramine rhodamine stains, ISH targeting rRNA, and IS-PCR targeting the IS900 element afforded comparable sensitivities, but for all methods, visualization of individual bacterial forms required magnification x1,000. Auramine rhodamine staining and IS-PCR generated positive signals in negative controls, indicating the nonspecificity of these assays. Together, our results indicate that detection of Mycobacterium avium subsp. paratuberculosis bacilli in tissue requires oil immersion microscopy, that rRNA-ISH provides sensitivity and specificity comparable to those of Ziehl-Neelsen staining, and that the microscopic detection limit for Mycobacterium avium subsp. paratuberculosis in tissue is governed more by bacterial burden than by staining method.
Collapse
|
43
|
Liu WT, Guo H, Wu JH. Effects of target length on the hybridization efficiency and specificity of rRNA-based oligonucleotide microarrays. Appl Environ Microbiol 2006; 73:73-82. [PMID: 17071797 PMCID: PMC1797121 DOI: 10.1128/aem.01468-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The effect of target size on microarray hybridization efficiencies and specificity was investigated using a set of 166 oligonucleotide probes targeting the 16S rRNA gene of Escherichia coli. The targets included unfragmented native rRNA, fragmented rRNA ( approximately 20 to 100 bp), PCR amplicons (93 to 1,480 bp), and three synthetic single-stranded DNA oligonucleotides (45 to 56 bp). Fluorescence intensities of probes hybridized with targets were categorized into classes I (81 to 100% relative to the control probe), II (61 to 80%), III (41 to 60%), IV (21 to 40%), V (6 to 20%), and VI (0 to 5%). Good hybridization efficiency was defined for those probes conferring intensities in classes I to IV; those in classes V and VI were regarded as weak and false-negative signals, respectively. Using unfragmented native rRNA, 13.9% of the probes had fluorescence intensities in classes I to IV, whereas the majority (57.8%) exhibited false-negative signals. Similar trends were observed for the 1,480-bp PCR amplicon (6.6% of the probes were in classes I to IV). In contrast, after hybridization of fragmented rRNA, the percentage of probes in classes I to IV rose to 83.1%. Likewise, when DNA target sizes were reduced from 1,480 bp to 45 bp, this percentage increased approximately 14-fold. Overall, microarray hybridization efficiencies and specificity were improved with fragmented rRNA (20 to 100 bp), short PCR amplicons (<150 bp), and synthetic targets (45 to 56 bp). Such an understanding is important to the application of DNA microarray technology in microbial community studies.
Collapse
Affiliation(s)
- Wen-Tso Liu
- Division of Environmental Science and Engineering, National University of Singapore, Block E2, no. 04-07, 1 Engineering Drive 2, Singapore 117576.
| | | | | |
Collapse
|
44
|
Wilks SA, Keevil CW. Targeting species-specific low-affinity 16S rRNA binding sites by using peptide nucleic acids for detection of Legionellae in biofilms. Appl Environ Microbiol 2006; 72:5453-62. [PMID: 16885298 PMCID: PMC1538740 DOI: 10.1128/aem.02918-05] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using fluorescence in situ hybridization to detect bacterial groups has several inherent limitations. DNA probes are generally used, targeting sites on the 16S rRNA. However, much of the 16S rRNA is highly conserved, with variable regions often located in inaccessible areas where secondary structures can restrict probe access. Here, we describe the use of peptide nucleic acid (PNA) probes as a superior alternative to DNA probes, especially when used for environmental samples. A complex bacterial genus (Legionella) was studied, and two probes were designed, one to detect all species and one targeted to Legionella pneumophila. These probes were developed from existing sequences and are targeted to low-binding-affinity sites on the 16S rRNA. In total, 47 strains of Legionella were tested. In all cases, the Legionella spp. PNA probe labeled cells strongly but did not bind to any non-Legionella species. Likewise, the specific L. pneumophila PNA probe labeled only strains of L. pneumophila. By contrast, the equivalent DNA probes performed poorly. To assess the applicability of this method for use on environmental samples, drinking-water biofilms were spiked with a known concentration of L. pneumophila bacteria. Quantifications of the L. pneumophila bacteria were compared using PNA hybridization and standard culture methods. The culture method quantified only 10% of the number of L. pneumophila bacteria found by PNA hybridization. This illustrates the value of this method for use on complex environmental samples, especially where cells may be in a viable but noncultivable state.
Collapse
Affiliation(s)
- Sandra A Wilks
- Environmental Healthcare Unit, Microbiology Group, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, United Kingdom.
| | | |
Collapse
|
45
|
Musumeci D, Valente M, Capasso D, Palumbo R, Görlach M, Schmidtke M, Zell R, Roviello GN, Sapio R, Pedone C, Bucci EM. A short PNA targeting coxsackievirus B3 5'-nontranslated region prevents virus-induced cytolysis. J Pept Sci 2006; 12:161-70. [PMID: 16121332 DOI: 10.1002/psc.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Targeting regulatory RNA regions to interfere with the biosynthesis of a protein is an intriguing alternative to targeting a protein itself. Regulatory regions are often unique in sequence and/or structure and, thus, ideally suited for specific recognition with a low risk of undesired side effects. Targeting regulatory RNA elements, however, is complicated by their complex three-dimensional structure, which poses kinetic and thermodynamic constraints to the recognition by a complementary oligonucleotide. Oligonucleotide mimics, which shift the thermodynamic equilibrium towards complex formation and yield stable complexes with a target RNA, can overcome this problem. Peptide nucleic acids (PNA) represent such a promising class of molecules. PNA are very stable, non-ionic compounds and they are not sensitive to enzymatic degradation. Yet, PNA form specific base pairs with a target sequence. We have designed, synthesised and characterised PNA able to enter infected cells and to bind specifically to a control region of the genomic RNA of coxsackievirus B3 (CVB3), which is an important human pathogen. The results obtained by studying the interaction of such PNA with their RNA target, the entrance into the cell and the viral inhibition are herein presented.
Collapse
|
46
|
Ziemba AJ, Zhilina ZV, Krotova-Khan Y, Stankova L, Ebbinghaus SW. Targeting and regulation of the HER-2/neu oncogene promoter with bis-peptide nucleic acids. Oligonucleotides 2005; 15:36-50. [PMID: 15788899 DOI: 10.1089/oli.2005.15.36] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antigene oligonucleotides have the potential to regulate gene expression through site-specific DNA binding. However, in vivo applications have been hindered by inefficient cellular uptake, degradation, and strand displacement. Peptide nucleic acids (PNAs) address several of these problems, as they are resistant to degradation and bind DNA with high affinity. We designed two cationic pyrimidine bis-PNAs (cpy-PNAs) to target the polypurine tract of the HER-2/neu promoter and compared them to an unmodified phosphodiester triplex-forming oligonucleotide (TFO1) and a TFO-nitrogen mustard conjugate (TFO2). PNA1 contains a + 2 charge and bound two adjacent 9-bp target sequences with high affinity and specificity, but only at low pH. PNA2 contains a +5 charge and bound one 11-bp target with high affinity up to pH 7.4, but with lower specificity. The PNA:DNA:PNA triplex formed by these cpy-bis-PNAs presented a stable barrier to DNA polymerase extension. The cpy-bis-PNAs and the TFO-alkylator conjugate prevented HER-2/neu transcription in a reporter gene assay (TFO2 = PNA1 > PNA2 >> TFO1). Both PNAs and TFOs were effective at binding the target sequence in naked genomic DNA, but only the TFO-alkylator (TFO2) and the more cationic PNA (PNA2) were detected at the endogenous HER-2/neu promoter in permeabilized cells. This work demonstrates the potential for preventing HER-2/neu gene expression with cpy-bis-PNAs in tumor cells.
Collapse
|
47
|
Šket P, Črnugelj M, Plavec J. Identification of mixed di-cation forms of G-quadruplex in solution. Nucleic Acids Res 2005; 33:3691-7. [PMID: 15985684 PMCID: PMC1164438 DOI: 10.1093/nar/gki690] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multinuclear NMR study has demonstrated that G-quadruplex adopted by d(G3T4G4) exhibits two cation binding sites between three of its G-quartets. Titration of tighter binding K+ ions into the solution of d(G3T4G4)2 folded in the presence of NH4+15 ions uncovered a mixed mono-K+-mono-NH4+15 form that represents intermediate in the conversion of di-NH4+15 into di-K+ form. Analogously, NH4+15 ions were found to replace Na+ ions inside d(G3T4G4)2 quadruplex. The preference of NH4+15 over Na+ ions for the two binding sites is considerably smaller than the preference of K+ over NH4+15 ions. The two cation binding sites within the G-quadruplex core differ to such a degree that NH4+15 ions bound to the site, which is closer to the edge-type loop, are always replaced first during titration by K+ ions. The second binding site is not taken up by K+ ion until K+ ion already resides at the first binding site. Quantitative analysis of concentrations of the three di-cation forms, which are in slow exchange on the NMR time scale, at 12 K+ ion concentrations afforded equilibrium binding constants. K+ ion binding to sites U and L within d(G3T4G4)2 is more favorable with respect to NH4+15 ions by Gibbs free energies of approximately −24 and −18 kJ mol−1 which includes differences in cation dehydration energies, respectively.
Collapse
Affiliation(s)
| | | | - Janez Plavec
- To whom correspondence should be addressed. Tel: +386 1 47 60 353; Fax: +386 1 47 60 300;
| |
Collapse
|
48
|
Wang Y, Armitage BA, Berry GC. Reversible Association of PNA-Terminated Poly(2-hydroxyethyl acrylate) from ATRP. Macromolecules 2005. [DOI: 10.1021/ma050604t] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ying Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Bruce A. Armitage
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Guy C. Berry
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
49
|
Dilek I, Madrid M, Singh R, Urrea CP, Armitage BA. Effect of PNA backbone modifications on cyanine dye binding to PNA-DNA duplexes investigated by optical spectroscopy and molecular dynamics simulations. J Am Chem Soc 2005; 127:3339-45. [PMID: 15755150 DOI: 10.1021/ja045145a] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Optical spectroscopy and molecular dynamics simulations have been used to study the interaction between a cationic cyanine dye and peptide nucleic acid (PNA)-DNA duplexes. This recognition event is important because it leads to a visible color change, signaling successful hybridization of PNA with a complementary DNA strand. We previously proposed that the dye recognized the minor groove of the duplex, using it as a template for the assembly of a helical aggregate. Consistent with this, we now report that addition of isobutyl groups to the PNA backbone hinders aggregation of the dye when the substituents project into the minor groove but have a weaker effect if directed out of the groove. UV-Visible and circular dichroic spectroscopy were used to compare aggregation on the different PNA-DNA duplexes, while molecular dynamics simulations were used to confirm that the substituents block the minor groove to varying degrees, depending on the configuration of the starting amino acid. In addition to a simple steric blockage effect of the substituent, the simulations suggest that directing the isobutyl group into the minor groove causes the groove to narrow and the duplex to become more rigid, structural perturbations that are relevant to the growing interest in backbone-modified PNA for applications in the biological and materials sciences.
Collapse
Affiliation(s)
- Isil Dilek
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
50
|
Turner JL, Becker ML, Li X, Taylor JSA, Wooley KL. PNA-directed solution- and surface-assembly of shell crosslinked (SCK) nanoparticle conjugates. SOFT MATTER 2005; 1:69-78. [PMID: 32521833 DOI: 10.1039/b417653g] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The conjugation of complementary peptide nucleic acid (PNA) sequences to well defined shell crosslinked (SCK) nanoparticles is reported as a mechanism by which to direct their self assembly into higher order structures selective and tunable binding interactions. Base-pairing-driven aggregation of the SCK's occurred for mixtures of SCK's that presented complementary sequences in aqueous sodium chloride solutions and upon mica substrates. The assembly processes were monitored by dynamic light scattering and atomic force microscopy as a function of salt concentration, and by UV-vis spectroscopy as a function of salt concentration and temperature. Moreover, the stoichiometries of the PNA sequences conjugated per SCK nanoparticle and the stoichiometric ratios in the production of mixtures of SCK's bearing complementary PNA sequences were each altered to tune the hierarchical assemblies.
Collapse
Affiliation(s)
- Jeffrey L Turner
- Center for Materials Innovation and Department of Chemistry, Washington University, One Brookings Drive, CB 1134, St. Louis, Missouri63130-4899, USA.
| | - Matthew L Becker
- Center for Materials Innovation and Department of Chemistry, Washington University, One Brookings Drive, CB 1134, St. Louis, Missouri63130-4899, USA.
| | - Xiaoxu Li
- Center for Materials Innovation and Department of Chemistry, Washington University, One Brookings Drive, CB 1134, St. Louis, Missouri63130-4899, USA.
| | - John-Stephen A Taylor
- Center for Materials Innovation and Department of Chemistry, Washington University, One Brookings Drive, CB 1134, St. Louis, Missouri63130-4899, USA.
| | - Karen L Wooley
- Center for Materials Innovation and Department of Chemistry, Washington University, One Brookings Drive, CB 1134, St. Louis, Missouri63130-4899, USA.
| |
Collapse
|