1
|
Khan A, Dawar P, De S. Thiourea compounds as multifaceted bioactive agents in medicinal chemistry. Bioorg Chem 2025; 158:108319. [PMID: 40058221 DOI: 10.1016/j.bioorg.2025.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Microbial resistance (MR) and cancer are global healthcare pitfalls that have caused millions of deaths and pose a significant pharmaceutical challenge, with clinical cases increasing. Thioureas are preferred structures in medicinal chemistry, chemosensors, and organic synthesis platforms. In fact, thiourea (TU) moieties serve as a common framework for several medications and bioactive substances, demonstrating a wide range of therapeutic and pharmacological accomplishments. The integration of the thiourea moiety into a diverse range of organic molecules has resulted in very flexible compounds with widespread uses in medicinal chemistry. Moreover, for over a century, TU and its metal complexes have been characterized for their biological activity. Finally, we provide an assessment and future outlook of different organo-thiourea derivatives, from the very beginning to the most recent discoveries in medicinal activity.
Collapse
Affiliation(s)
- Adeeba Khan
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Palak Dawar
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Suranjan De
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
2
|
Dimitrić Marković J, Dimić D, Eichhorn T, Milenković D, Pavićević A, Đikić D, Živković E, Čokić V, Rüffer T, Kaluđerović GN. Ru(II) Complexes with 3,4-Dimethylphenylhydrazine: Exploring In Vitro Anticancer Activity and Protein Affinities. Biomolecules 2025; 15:350. [PMID: 40149886 PMCID: PMC11940238 DOI: 10.3390/biom15030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Two new Ru(II) complexes, mononuclear [RuCl2(η6-p-cymene)(3,4-dmph-κN)] (1) and the binuclear complex [{RuCl(η6-p-cymene)}2(μ-Cl)(μ-3,4-dmph-κ2N,N')]Cl (2; 3,4-dmph = 3,4-dimethylphenylhydrazine), are synthesized and experimentally and theoretically structurally characterized utilizing 1H and 13C NMR and FTIR spectroscopy, as well as DFT calculations. Degradation product of 2, thus ([{RuCl(η6-p-cymene)}2(μ-Cl)(μ-3,4-dmph-κ2N,N')][RuCl3(η6-p-cymene)] (2b) was characterized with SC-XRD. In the crystals of 2b, the cationic and anionic parts interact through N-H...Cl hydrogen bridges. The spectrofluorimetric measurements proved the spontaneity of the binding processes of both complexes and HSA. Spin probing EPR measurements implied that 1 and 2 decreased the amount of bound 16-doxylstearate and implicated their potential to bind to HSA more strongly than the spin probe. The cytotoxicity assessment of both complexes against the MDA-MB-231 and MIA PaCa-2 cancer cell lines demonstrated a clear dose-dependent decrease in cell viability and no effect on healthy HS-5 cells. Determination of the malondialdehyde and protein carbonyl concentrations indicated that new complexes could offer protective antioxidant benefits in specific cancer contexts. Gel electrophoresis measurements showed the reduction in MMP9 activity and indicated the potential of 1 in limiting the cancer cells' invasion. The annexin V/PI apoptotic assay results showed that 1 and 2 exhibit different selectivity towards MIA PaCa-2 and MDA-MB-231 cancer cells. A comparative molecular docking analysis of protein binding, specifically targeting acetylcholinesterase (ACHE), matrix metalloproteinase-9 (MMP-9), and human serum albumin (HSA), demonstrated distinct binding interactions for each complex.
Collapse
Affiliation(s)
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia (A.P.)
| | - Thomas Eichhorn
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, D-06217 Merseburg, Germany;
| | - Dejan Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandra Pavićević
- Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia (A.P.)
| | - Dragoslava Đikić
- Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (D.Đ.); (E.Ž.); (V.Č.)
| | - Emilija Živković
- Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (D.Đ.); (E.Ž.); (V.Č.)
| | - Vladan Čokić
- Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (D.Đ.); (E.Ž.); (V.Č.)
| | - Tobias Rüffer
- Institute of Chemistry, Chemnitz University of Technology, Straße der Nationen 62, D-09111 Chemnitz, Germany;
| | - Goran N. Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, D-06217 Merseburg, Germany;
| |
Collapse
|
3
|
Shrestha D, Kimutai B, Chow CS. Impacts of amino acid-linked platinum(II) complexes on DNA structure. J Biol Inorg Chem 2025; 30:87-101. [PMID: 39853368 PMCID: PMC11913917 DOI: 10.1007/s00775-025-02097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
The discovery of cisplatin (cisPt) as an effective anticancer agent was a milestone in the health industry. Despite its success, undesired side effects and acquired resistance still limit the therapeutic usefulness of cisPt. Intrastrand adduct formation at consecutive purines and structural modifications of DNA caused by platinum(II) complexes are important factors for antitumor efficacy. In this study, we examined amino acid-linked platinum(II) complexes, collectively referred to as AAPt, for antiproliferative activity and ability to induce DNA bending. The antiproliferative activity of one AAPt complex tested against a prostate cancer cell line was comparable to that of cisPt, whereas only activity of the AAPt complex was lower in a normal human prostate cell line. Various AAPt analogues were examined for impact on the structures of DNAs with four different purine dinucleotide target sites (GG, AG, GA, and AA) and compared to the parent cisPt. The roles of side-chain identity, chirality, and coordination type (e.g., (N,O) vs. (N,N)) of AAPt complexes are discussed with respect to DNA adduct formation and ability to induce DNA bending. Although the AAPt complexes display different nucleotide preferences (A for AAPt vs. G for cisPt), DNAs containing GG-platinum adducts display a greater degree of bending compared to DNAs with AA-platinum adducts.
Collapse
Affiliation(s)
- Deepak Shrestha
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Bett Kimutai
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
4
|
Bates AC, Klugh KL, Galaeva AO, Patch RA, Manganaro JF, Markham SA, Scurek E, Levina A, Lay PA, Crans DC. Optimizing Therapeutics for Intratumoral Cancer Treatments: Antiproliferative Vanadium Complexes in Glioblastoma. Int J Mol Sci 2025; 26:994. [PMID: 39940763 PMCID: PMC11817060 DOI: 10.3390/ijms26030994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Glioblastoma, an aggressive cancer, is difficult to treat due to its location, late detection, drug resistance, and poor absorption of chemotherapeutics. Intratumoral drug administration offers a promising potential treatment alternative with localized delivery and minimal systemic toxicity. Vanadium(V) coordination complexes, incorporating Schiff base and catecholate ligands, have shown effects as antiproliferative agents with tunable efficacy and reactivity, stability, steric bulk, hydrophobicity, uptake, and toxicity optimized for the intratumoral administration vehicle. A new series of oxovanadium(V) Schiff base-catecholate complexes were synthesized and characterized using nuclear magnetic resonance (NMR), UV-Vis, and infrared spectroscopy and mass spectrometry. Stability under physiological conditions was assessed via UV-Vis spectroscopy, and the antiproliferative activity was evaluated in T98G glioblastoma and SVG p12 normal glial cells using viability assays. The newly synthesized [VO(3-tBuHSHED)(TIPCAT)] complex was more stable (t1/2 ~4.5 h) and had strong antiproliferative activity (IC50 ~1.5 µM), comparing favorably with the current lead compound, [VO(HSHED)(DTB)]. The structural modifications enhanced stability, hydrophobicity, and steric bulk through substitution with iso-propyl and tert-butyl groups. The improved properties were attributed to steric hindrance associated with the new Schiff base and catecholato ligands, as well as the formation of non-toxic byproducts upon degradation. The [VO(3-tBuHSHED)(TIPCAT)] complex emerges as a promising candidate for glioblastoma therapy by demonstrating enhanced stability and a greater selectivity, which highlights the role of strategic ligand design in developing localized therapies for the treatment of resistant cancers. In reporting the new class of compounds effective against T98G glioblastoma cells, we describe the generally desirable properties that potential drugs being developed for intratumoral administration should have.
Collapse
Affiliation(s)
- Andrew C. Bates
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Kameron L. Klugh
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Anna O. Galaeva
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Raley A. Patch
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - John F. Manganaro
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Skyler A. Markham
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Emma Scurek
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
5
|
Pattanayak PD, Banerjee A, Sahu G, Das S, Lima S, Akintola O, Buchholz A, Görls H, Plass W, Reuter H, Dinda R. Insights into the Theranostic Activity of Nonoxido V IV: Lysosome-Targeted Anticancer Metallodrugs. Inorg Chem 2024; 63:19418-19438. [PMID: 39340532 DOI: 10.1021/acs.inorgchem.4c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Developing new anticancer agents can be useful, with the ability to diagnose and treat cancer worldwide. Previously, we focused on examining the effects of nonoxidovanadium(IV) complexes on insulin mimetic and cytotoxicity activity. In this study, in addition to the cytotoxic activity, we evaluated their bioimaging properties. This study investigates the synthesis of four stable nonoxido VIV complexes [VIV(L1-4)2] (1-4) using aroylhydrazone ligands (H2L1-4) and their full characterization in solid state and the solution phase stability using various physicochemical techniques. The biomolecular (DNA/HSA) interaction of the complexes was evaluated by using conventional methods. The in vitro cytotoxicity of 1-4 was studied against A549 and LN-229 cancer cell lines and found that drug 2 displayed the highest activity among the four. Since 1-4 are fluorescently active, live cell imaging was used to evaluate their cellular localization activity. Complexes specifically target the lysosome and damage lysosome integrity by producing an excessive amount (9.7-fold) of reactive oxygen species (ROS) compared to the control, which may cause cell apoptosis. Overall, this study indicates that 2 has the greatest potential for the development of multifunctional theranostic agents that combine imaging capabilities and anticancer properties of nonoxidovanadium(IV)-based metallodrugs.
Collapse
Affiliation(s)
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Oluseun Akintola
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, 49067 Osnabrück, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| |
Collapse
|
6
|
Prabaharan R, Arunachalam A, Rengan R. Analysis of antiproliferative activity of new half-sandwich arene Ru(II) thiophene based aroylhydrazone complexes. Dalton Trans 2024; 53:13469-13477. [PMID: 39069794 DOI: 10.1039/d4dt01845a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Efforts in researching the efficient anti-tumor properties of three novel arene ruthenium(II) complexes incorporating thiophene-based aroylhydrazone ligands have been undertaken. The complexes' elemental composition was [(η6-p-cymene)Ru(L)Cl]. They were comprehensively characterized through elemental and spectroscopic analyses (FT-IR, UV-vis, NMR, and HR-MS). Single crystal X-ray diffraction studies revealed a pseudo-octahedral geometry with bidentate coordination of the ligands in a representative complex. The in vitro assessment of the complexes' cancer cell growth inhibition was conducted using the MTT assay against A549 (human lung carcinoma), HeLa (human cervical carcinoma), HuH-7 (hepatocellular carcinoma), and NIH-3T3 (mouse fibroblast non-cancerous cell line). Results indicated significant cytotoxicity across all cancer cell lines, with IC50 concentrations of complex 2 being 6.8 μM for A549, 11.6 μM for HeLa, and 9.4 μM for HuH-7, compared to cisplatin with IC50 values of 18.9 μM, 17.68 μM, and 24 μM respectively. Notably, complex 2 demonstrated particularly promising cytotoxicity against all tested cancerous cell lines. Fluorescent staining analysis such as acridine orange/ethidium bromide (AO-EB) and HOECHST 33342 revealed cell death mechanisms involving membrane disintegration and nuclear condensation following treatment with complex 2. Further studies were conducted to measure reactive oxygen species (ROS) levels using the dichlorodihydrofluorescein diacetate (DCFH-DA) assay, and mitochondrial membrane potential (MMP) was assessed using the JC-1 dye assay. These studies demonstrated that complex 2 increased ROS levels, decreased membrane potential, and promoted mitochondrial dysfunction-mediated cell death pathways. Additionally, flow cytometry analysis, utilizing dual staining of Annexin V-FITC and propidium iodide (PI), was employed to quantitatively study apoptosis induction.
Collapse
Affiliation(s)
- Ramya Prabaharan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli-620024, India.
| | - Abirami Arunachalam
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli-620024, India.
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli-620024, India.
| |
Collapse
|
7
|
Luković D, Franich AA, Živković MD, Rajković S, Stojanović B, Gajović N, Jurišević M, Pavlović S, Simović Marković B, Jovanović M, Stojanović BS, Pavlović R, Jovanović I. Biological Evaluation of Dinuclear Platinum(II) Complexes with Aromatic N-Heterocycles as Bridging Ligands. Int J Mol Sci 2024; 25:8525. [PMID: 39126093 PMCID: PMC11312983 DOI: 10.3390/ijms25158525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The history of effective anti-cancer medications begins with the discovery of cisplatin's anti-cancer properties. Second-generation analogue, carboplatin, with a similar range of effectiveness, made progress in improving these drugs with fewer side effects and better solubility. Renewed interest in platinum-based drugs has been increasing in the past several years. These developments highlight a revitalized enthusiasm and ongoing exploration in platinum chemotherapy based on the series of dinuclear platinum(II) complexes, [{Pt(L)Cl}2(μ-bridging ligand)]2+, which have been synthesized and evaluated for their biological activities. These complexes are designed to target various cancerous conditions, exhibiting promising antitumor, antiproliferative, and apoptosis-inducing activities. The current work aims to shed light on the potential of these complexes as next-generation platinum-based therapies, highlighting their enhanced efficacy and reduced side effects, which could revolutionize the approach to chemotherapy.
Collapse
Affiliation(s)
- Desimir Luković
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| | - Andjela A. Franich
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia; (A.A.F.); (S.R.)
| | - Marija D. Živković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Snežana Rajković
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia; (A.A.F.); (S.R.)
| | - Bojan Stojanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Nevena Gajović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| | - Milena Jurišević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
- Department of Clinical Pharmacy, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia;
| | - Slađana Pavlović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| | - Bojana Simović Marković
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| | - Marina Jovanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| | - Bojana S. Stojanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Radiša Pavlović
- Department of Clinical Pharmacy, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia;
| | - Ivan Jovanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| |
Collapse
|
8
|
Dar OA, Hashmi AA, Al-Bogami AS, Ahmad A, Wani MY. Heteroleptic cobalt complex augments antifungal activity with fluconazole and causes membrane disruption in Candida albicans. Dalton Trans 2024; 53:11720-11735. [PMID: 38932585 DOI: 10.1039/d4dt01209g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Heteroleptic metal complexes containing CuII, CoII, and ZnII, incorporating curcumin and a Schiff base ligand (L), were synthesized and characterized, and their antifungal activity was evaluated. Their antifungal activities were investigated individually and in combination with fluconazole. Utilizing various analytical techniques such as UV-Vis, FT-IR, NMR, ESI-MS, TGA-DTG, elemental analyses, conductance, and magnetic susceptibility measurements, complex C1 ([Cu(Cur)LCl(H2O)]) was assigned a distorted octahedral geometry, while complexes C2 ([Co(Cur)LCl(H2O)]) and C3 ([Zn(Cur)LCl(H2O)]) were assigned octahedral geometries. Among these complexes, C2 exhibited the highest inhibitory activity against both FLC-susceptible and resistant strains of Candida albicans. Furthermore, C2 demonstrated candidicidal activity and synergistic interactions with fluconazole, effectively inhibiting the growth and survival of both FLC-resistant and FLC-sensitive C. albicans strains. The complex displayed a dose-dependent inhibition of drug efflux pumps in FLC-resistant C. albicans strains, indicating its potential to disrupt the cell membrane of these strains. The significant role of membrane efflux transporters in the development of antifungal drug resistance within Candida species has been extensively documented and our findings indicate that complex C2 specifically targets this crucial factor, thereby playing a pivotal role in mitigating drug resistance in C. albicans.
Collapse
Affiliation(s)
- Ovas Ahmad Dar
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Athar Adil Hashmi
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| |
Collapse
|
9
|
Mitrović M, Djukić MB, Vukić M, Nikolić I, Radovanović MD, Luković J, Filipović IP, Matić S, Marković T, Klisurić OR, Popović S, Matović ZD, Ristić MS. Search for new biologically active compounds: in vitro studies of antitumor and antimicrobial activity of dirhodium(II,II) paddlewheel complexes. Dalton Trans 2024; 53:9330-9349. [PMID: 38747564 DOI: 10.1039/d4dt01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Four neutral Rh1-Rh4 complexes of the general formula [Rh2(CH3COO)4L2], where L is an N-alkylimidazole ligand, were synthesized and characterized using various spectroscopic techniques, and in the case of Rh4 the crystal structure was confirmed. Investigation of the interactions of these complexes with HSA by fluorescence spectroscopy revealed that the binding constants Kb are moderately strong (∼104 M-1), and site-marker competition experiments showed that the complexes bind to Heme site III (subdomain IB). Competitive binding studies for CT DNA using EB and HOE showed that the complexes bind to the minor groove, which was also confirmed by viscosity experiments. Molecular docking confirmed the experimental data for HSA and CT DNA. Antimicrobial tests showed that the Rh2-Rh4 complexes exerted a strong inhibitory effect on G+ bacteria B. cereus and G- bacteria V. parahaemolyticus as well as on the yeast C. tropicalis, which showed a higher sensitivity compared to fluconazole. The cytotoxic activity of Rh1-Rh4 complexes tested on three cancer cell lines (HeLa, HCT116 and MDA-MB-231) and on healthy MRC-5 cells showed that all investigated complexes elicited more efficient cytotoxicity on all tested tumor cells than on control cells. Investigation of the mechanism of action revealed that the Rh1-Rh4 complexes inhibit cell proliferation via different mechanisms of action, namely apoptosis (increase in expression of the pro-apoptotic Bax protein and caspase-3 protein in HeLa and HCT116 cells; changes in mitochondrial potential and mitochondrial damage; release of cytochrome c from the mitochondria; cell cycle arrest in G2/M phase in both HeLa and HCT116 cells together with a decrease in the expression of cyclin A and cyclin B) and autophagy (reduction in the expression of the protein p62 in HeLa and HCT116 cells).
Collapse
Affiliation(s)
- Marina Mitrović
- University of Kragujevac, Faculty of Medical Sciences, Department of Medical Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Maja B Djukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Milena Vukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Ivana Nikolić
- University of Kragujevac, Faculty of Medical Sciences, Department of Medical Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Marko D Radovanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jovan Luković
- University of Kragujevac, Faculty of Medical Sciences, Department of Medical Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Ignjat P Filipović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Sanja Matić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Tijana Marković
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Olivera R Klisurić
- University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Suzana Popović
- University of Kragujevac, Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Zoran D Matović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Marija S Ristić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
10
|
Ćorović K, Stojković DL, Petrović ĐS, Jovičić Milić SS, Đukić MB, Radojević ID, Raković I, Jurišević M, Gajović N, Jovanović M, Marinković J, Jovanović I, Stojanović B. Newly synthesized palladium(II) complexes with dialkyl esters of ( S, S)-propylenediamine- N, N'-di-(2,2'-di-(4-hydroxy-benzil))acetic acid: in vitro investigation of biological activities and HSA/DNA binding. Dalton Trans 2024; 53:7922-7938. [PMID: 38644680 DOI: 10.1039/d4dt00659c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The four new ligands, dialkyl esters of (S,S)-propylenediamine-N,N'-di-(2,2'-di-(4-hydroxy-benzil))acetic acid (R2-S,S-pddtyr·2HCl) (R = ethyl (L1), propyl (L2), butyl (L3), and pentyl (L4)) and corresponding palladium(II) complexes have been synthesized and characterized by microanalysis, infrared, 1H NMR and 13C NMR spectroscopy. In vitro cytotoxicity was evaluated using the MTT assay on four tumor cell lines, including mouse mammary (4T1) and colon (CT26), and human mammary (MDA-MD-468) and colon (HCT116), as well as non-tumor mouse mesenchymal stem cells. Using fluorescence spectroscopy were investigated the interactions of new palladium(II) complexes [PdCl2(R2-S,S-pddtyr)]; (R = ethyl (C1), propyl (C2), butyl (C3), and pentyl (C4)) with calf thymus human serum albumin (HSA) and DNA (CT-DNA). The high values of the binding constants, Kb, and the Stern-Volmer quenching constant, KSV, show the good binding of all complexes for HSA and CT-DNA. The mentioned ligands and complexes were also tested on in vitro antimicrobial activity against 11 microorganisms. Testing was performed by the microdilution method, where the minimum inhibitory concentration (MMC) and the minimum microbicidal concentration (MMC) were determined.
Collapse
Affiliation(s)
- Kemal Ćorović
- Community Health Center Tutin, Department of Emergency Medicine, Bogoljuba Čukića 12, 36320 Tutin, Republic of Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Danijela Lj Stojković
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Republic of Serbia.
| | - Đorđe S Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia
| | - Sandra S Jovičić Milić
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Republic of Serbia.
| | - Maja B Đukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia
| | - Ivana D Radojević
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia
| | - Ivana Raković
- University of Kragujevac, Faculty of Medical Sciences, Department of Infectious Diseases, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Milena Jurišević
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Nevena Gajović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Marina Jovanović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Otorinolaringology, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Jovana Marinković
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Ivan Jovanović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Bojan Stojanović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Surgery, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| |
Collapse
|
11
|
Sayala J, Srivastava E, Kumar P, Shukla N, Kumar A, Patra AK. Photocytotoxic kinetically stable ruthenium(II)- N, N-donor polypyridyl complexes of oxalate with anticancer activity against HepG2 liver cancer cells. Dalton Trans 2024; 53:4580-4597. [PMID: 38349214 DOI: 10.1039/d3dt04058e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Liver cancer is one of the leading causes of death that motivating scientists worldwide to synthesize novel chemotherapeutics. Ru(II)-polypyridyl complexes are extensively studied for possible therapeutic and cellular applications due to their tunable coordination chemistry, structural diversity, ligand-exchange kinetics, accessible redox states, and rich photophysical or photochemical properties. Herein, we have synthesized a series of Ru(II) polypyridyl complexes [RuII(N^N)2(ox)] (1-3), where ox is oxalate (C2O42-) and N^N is 1,10-phenanthroline (phen) (1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (2), and dipyrido[3,2,-a:2',3'-c]phenazine (dppz) (3). Oxalate (ox2-) was opted as a bioactive dioxo ligand to prevent facile hydrolysis in aqueous media, thereby increasing the stability of the Ru(II)-polypyridyl complexes in physiological media. We thoroughly characterized all the complexes using ESI-MS, FT-IR, UV-vis, and 1H NMR spectroscopy and other physicochemical methods. The complexes were stable under physiological conditions and under low-energy green LED light (λirr = 530 nm). However, the photoirradiation of complexes resulted in the efficient generation of singlet oxygen (1O2) as a major reactive oxygen species (ROS). The role of the extended aromatic conjugation of the N^N-donor ligands in the complexes was demonstrated by their binding propensities with CT-DNA and bovine serum albumin (BSA). Both DNA intercalation and groove binding were evidenced, while tryptophan (Trp) and tyrosine (Tyr) binding site preferences were revealed from the synchronous fluorescence spectra (SFS) of BSA. The cytotoxic profiling of the complexes performed on hepatocellular carcinoma cells (HepG2) in the dark and in the presence of green light indicated their dose-dependent cytotoxicity. The [RuII(N^N)2(ox)] complexes exhibited enhanced photocytotoxicity mediated by efficient generation of cytotoxic 1O2 and effective interaction with DNA. All the complexes were internalized by the HepG2 liver cancer cells efficiently and localized to the cytoplasm and nucleus. The complexes exhibited potent anti-proliferative, anti-clonogenic, and anti-migratory effects on the cancer cells, suggesting their potential for therapeutic applications.
Collapse
Affiliation(s)
- Juhi Sayala
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| | - Ekta Srivastava
- Department of Biological Science & Bioengineering Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Priyaranjan Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| | - Nitin Shukla
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| | - Ashok Kumar
- Department of Biological Science & Bioengineering Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| |
Collapse
|
12
|
Khan TA, Bhar K, Samanta R, Bhatt S, Singh M, Rani R, Kumar V, Sharma AK. A bis-quinoline ruthenium(II) arene complex with submicromolar cytotoxicity in castration-resistant prostate cancer cells. Chem Commun (Camb) 2024; 60:1579-1582. [PMID: 38224119 DOI: 10.1039/d3cc05083a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A new Ru(II) arene chlorido organometallic complex [(η6-p-cymene)(L)RuCl]PF6 (named as pCYRuL) using 2-bis(quinolin-2-ylmethylene) hydrazine (L) was developed that exhibits potent anticancer activity against castration-resistant prostate cancer (CRPC) (IC50 = 0.71 μM), and it is 45 times more effective than the standard drug cisplatin (IC50 = 31.3 μM) in a castration-resistant human prostatic adenocarcinoma cell line (PC-3) but non-toxic in normal human kidney cells (HK2) as well as normal breast cells (MCF10A) and found that pCYRuL exerted anticancer activity via apoptosis induction and cell cycle arrest in the G2/M phase of PC-3 cells.
Collapse
Affiliation(s)
- Tanveer A Khan
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, District Ajmer, Rajasthan, 305817, India.
| | - Kishalay Bhar
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, District Ajmer, Rajasthan, 305817, India.
| | - Rohit Samanta
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, District Ajmer, Rajasthan, 305817, India.
| | - Surabhi Bhatt
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, District Ajmer, Rajasthan, 305817, India.
| | - Mamta Singh
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201313, India
| | - Reshma Rani
- Jubilant Biosys, Greater Noida, UP 201310, India
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201313, India
| | - Anuj K Sharma
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, District Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
13
|
Zhang C, Lipparini F, Stopkowicz S, Gauss J, Cheng L. Cholesky Decomposition-Based Implementation of Relativistic Two-Component Coupled-Cluster Methods for Medium-Sized Molecules. J Chem Theory Comput 2024; 20:787-798. [PMID: 38198515 DOI: 10.1021/acs.jctc.3c01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A Cholesky decomposition (CD)-based implementation of relativistic two-component coupled-cluster (CC) and equation-of-motion CC (EOM-CC) methods using an exact two-component Hamiltonian augmented with atomic-mean-field spin-orbit integrals (the X2CAMF scheme) is reported. The present CD-based implementation of X2CAMF-CC and EOM-CC methods employs atomic-orbital-based algorithms to avoid the construction of two-electron integrals and intermediates involving three and four virtual indices. Our CD-based implementation extends the applicability of X2CAMF-CC and EOM-CC methods to medium-sized molecules with the possibility to correlate around 1000 spinors. Benchmark calculations for uranium-containing small molecules were performed to assess the dependence of the CC results on the Cholesky threshold. A Cholesky threshold of 10-4 is shown to be sufficient to maintain chemical accuracy. Example calculations to illustrate the capability of the CD-based relativistic CC methods are reported for the bond-dissociation energy of the uranium hexafluoride molecule, UF6, with up to quadruple-ζ basis sets, and the lowest excitation energy in the solvated uranyl ion [UO22+(H2O)12].
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Chemistry, the Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa I-56124, Italy
| | - Stella Stopkowicz
- Fachrichtung Chemie, Universität des Saarlandes, Saarbrücken D-66123, Germany
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0315, Norway
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| | - Lan Cheng
- Department of Chemistry, the Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
14
|
Yernale NG, Suliphuldevara Mathada B, Shivprasad S, Hiremath S, Karunakar P, Venkatesulu A. Spectroscopic, theoretical and computational investigations of novel benzo[b]thiophene based ligand and its M(II) complexes: As high portentous antimicrobial and antioxidant agents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123114. [PMID: 37454435 DOI: 10.1016/j.saa.2023.123114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
The reaction of 3-chlorobenzo[b]thiophene-2-carbohydrazide with 4-(diethylamino) salicylaldehyde gave the new ligand; 3-chloro-N'-(4-(diethylamino)-2-hydroxybenzylidene)-benzo[b]thiophene-2-carbohydrazide. The Cu(II), Co(II), Ni(II), and Zn(II) complexes have been successfully prepared. The ligand and the complexes were characterized by analytical, FT-IR, 1H NMR, mass, UV-visible spectroscopy, molar conductivity, and magnetic susceptibility measurements. The FT-IR spectral data showed that the ligand adopted a tridentate fashion when binding with the metal ions via the nitrogen atoms of the imine (C = N), carboxyl (C = O), and phenolic oxygen (O-H) donor atoms. Density Functional Theory (DFT) estimations for the ligand at the DFT/B3LYP level via 6-31G++ (d, p) replicate the structure and geometry. Finally, HOMO and LUMO analyses were used for the charge transfer interface of the structure. Furthermore, molecular docking and ADME calculations were also performed to correlate and interpret the experimental results. The antimicrobial activity study illustrated enhancement in the activity of the free ligand upon complex formation, and the Cu(II) complex (MIC 25 µg mL-1) may be considered a promising antibacterial agent, and the Ni(II) and Zn(II) complexes (MIC 25 µg mL-1) as promising antifungal agents. Also, synthesized Cu(II) and Zn(II) metal complexes (MIC 3.125 µg mL-1) showed promising anti-TB activity against M. tuberculosis. Further, benzo[b]thiophene-based ligand and its metal complexes were evaluated for in vitro antioxidant activity, and in silico docking studies were carried out against Cytochrome c Peroxidase (PDB ID: 2X08).
Collapse
Affiliation(s)
| | | | - Swami Shivprasad
- Department of Chemistry, Guru Nanak First Grade College, Bidar, Karnataka, India
| | - Sunilkumar Hiremath
- Department of Chemistry, Guru Nanak First Grade College, Bidar, Karnataka, India
| | - Prashantha Karunakar
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Kumaraswamy Layout, Bangalore 560111, Karnataka, India
| | - Adavala Venkatesulu
- Department of PG Studies and Research Centre in Physics, Govt. First Grade College, Hosakote, Bangalore Rural, Karnataka, India
| |
Collapse
|
15
|
Kwon HC, Lee DH, Yoon M, Nayab S, Lee H, Han JH. Novel Cu(II) complexes as DNA-destabilizing agents and their DNA nuclease activity. Dalton Trans 2023; 52:16802-16811. [PMID: 37902974 DOI: 10.1039/d3dt02615a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Here, we report a series of four novel Cu complexes, namely 2-(piperidin-1-ylmethyl)quinoline copper(II) nitrate, [LACu(NO3)2] (Cu1), 4-(quinolin-2-ylmethyl)morpholine copper(II) nitrate, [LBCu(NO3)2] (Cu2), 4-(quinolin-2-ylmethyl)morpholine copper(II) chloride, [LBCuCl2] (Cu3), and 2-(piperidin-1-ylmethyl)pyridine copper(II) chloride, [LCCu(μ-Cl)Cl]2 (Cu4). X-ray diffraction studies revealed that the geometry around the Cu(II) center could be best described as distorted octahedral in Cu1 and Cu2, whereas Cu3 and Cu4 showed distorted tetrahedral and square pyramidal geometries, respectively. DNA binding studies showed that Cu complexes Cu1-3 containing quinoline interacted via minor groove binding, whereas the Cu4 complex containing pyridine interacted via intercalation. All Cu complexes containing quinoline and pyridine caused destabilization of DNA at specific homogeneous G-C regions. The Cu1-3 complexes as groove binders destabilized the DNA structure much more than the Cu4 complex as an intercalator. Regarding groove binders, the Cu2 complex containing quinoline and morpholine caused the highest distortion and destabilization of the DNA structure, leading to high DNA cleavage efficiency.
Collapse
Affiliation(s)
- Hee Chang Kwon
- Department of Chemical and Biological Engineering, Andong National University, 1375 Gyeongdong-ro, Andong, Gyeongbuk, Korea, 36729.
| | - Da Hyun Lee
- Department of Chemical and Biological Engineering, Andong National University, 1375 Gyeongdong-ro, Andong, Gyeongbuk, Korea, 36729.
| | - Minyoung Yoon
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Saira Nayab
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
- Department of Chemistry, Shaheed Benazir Bhutto University (SBBU), Sheringal Upper Dir (18050), Khyber Pakhtunkhwa, Islamic Republic of Pakistan
| | - Hyosun Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Ji Hoon Han
- Department of Chemical and Biological Engineering, Andong National University, 1375 Gyeongdong-ro, Andong, Gyeongbuk, Korea, 36729.
| |
Collapse
|
16
|
Kopcha WP, Biswas R, Sun Y, Chueng STD, Dorn HC, Zhang J. Water-soluble endohedral metallofullerenes: new horizons for biomedical applications. Chem Commun (Camb) 2023; 59:13551-13561. [PMID: 37877250 PMCID: PMC11033704 DOI: 10.1039/d3cc03603k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Endohedral metallofullerenes (EMFs) offer a safe avenue to manipulate metals important to biomedical applications such as MRI contrast, X-ray contrast, radiolabeling, radiotherapy, chemotherapy, and the control of inflammation by scavenging reactive oxygen species (ROS). Moreover, functionalizing the double bonds on the surface of EMFs modifies their solubility, supramolecular behaviour, binding, targeting characteristics, and physical properties. While most existing water-soluble derivatives possess a statistical mixture of appended functional groups, progress has been made in creating molecularly-precise derivatives with a defined number of surface functional groups, leading to potentially more nuanced control of their behaviour and properties. Further elucidation of the structure-function relationships of these materials is expected to enhance their utility in biomedical applications and possibly broaden their use in diverse areas of science and technology.
Collapse
Affiliation(s)
- William P Kopcha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ, 08854, USA.
| | - Rohin Biswas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ, 08854, USA.
| | - Yue Sun
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ, 08854, USA.
| | | | - Harry C Dorn
- Department of Chemistry, Virginia Polytechnic Institute and State University, 1040 Drillfield Dr, Blacksburg, VA, 24061, USA.
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ, 08854, USA.
| |
Collapse
|
17
|
Movahedpour A, Taghvaeefar R, Asadi‐Pooya A, Karami Y, Tavasolian R, Khatami SH, Soltani Fard E, Taghvimi S, Karami N, Rahimi Jaberi K, Taheri‐Anganeh M, Ghasemi H. Nano-delivery systems as a promising therapeutic potential for epilepsy: Current status and future perspectives. CNS Neurosci Ther 2023; 29:3150-3159. [PMID: 37452477 PMCID: PMC10580365 DOI: 10.1111/cns.14355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Epilepsy is a common chronic neurological disorder caused by aberrant neuronal electrical activity. Antiseizure medications (ASMs) are the first line of treatment for people with epilepsy (PWE). However, their effectiveness may be limited by their inability to cross the blood-brain barrier (BBB), among many other potential underpinnings for drug resistance in epilepsy. Therefore, there is a need to overcome this issue and, hopefully, improve the effectiveness of ASMs. Recently, synthetic nanoparticle-based drug delivery systems have received attention for improving the effectiveness of ASMs due to their ability to cross the BBB. Furthermore, exosomes have emerged as a promising generation of drug delivery systems because of their potential benefits over synthetic nanoparticles. In this narrative review, we focus on various synthetic nanoparticles that have been studied to deliver ASMs. Furthermore, the benefits and limitations of each nano-delivery system have been discussed. Finally, we discuss exosomes as potentially promising delivery tools for treating epilepsy.
Collapse
Affiliation(s)
| | | | - Ali‐Akbar Asadi‐Pooya
- Epilepsy Research CenterShiraz University of Medical SciencesShirazIran
- Department of Neurology, Jefferson Comprehensive Epilepsy CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Yousof Karami
- Department of Clinical Science, Faculty of Veterinary MedicineShahid Bahonar University of KermanKermanIran
| | - Ronia Tavasolian
- Department of Clinical Science and NutritionUniversity of ChesterChesterUK
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Sina Taghvimi
- Department of Biology, Faculty of ScienceShahid Chamran University of AhvazAhvazIran
| | - Neda Karami
- TU Wien, Institute of Solid State ElectronicsViennaAustria
| | - Khojaste Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Mortaza Taheri‐Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research InstituteUrmia University of Medical SciencesUrmiaIran
| | | |
Collapse
|
18
|
Sookai S, Munro OQ. Spectroscopic and computational study of the interaction of Pt(II) pyrrole-imine chelates with human serum albumin. Dalton Trans 2023; 52:14774-14789. [PMID: 37698009 DOI: 10.1039/d3dt02039h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Three bis(pyrrolide-imine) Pt(II) chelates were synthesised and characterized with different bridging alkyl groups, specifically 2-hydroxypropyl (1), 2,2-dimethylpropyl (2), and 1,2-(S,S)-(+)-cyclohexyl (3). Novel compounds 1 and 2 were analysed by single-crystal X-ray diffraction (space group P1̄). The asymmetric unit of 1 comprises three independent molecules linked by hydrogen bonds involving the OH groups, forming a trimeric supramolecular structure. The Pt(II) chelates were reacted with human serum albumin (HSA) to investigate how the ligand bound to the Pt(II) ion influences the compound's affinity for HSA. Fluorescence quenching data obtained for native HSA and HSA bound to site-specific probes (warfarin, subdomain IIA; ibuprofen, subdomain IIIA) indicated that the three Pt(II) chelates bind close enough (within ∼30 Å) to Trp-214 to quench its intrinsic fluorescence. The bimolecular quenching constant (kq) was 103-104 -fold higher than the maximum diffusion-controlled collision constant in water (1010 M s-1) at 310 K, while the affinity constants, Ka, ranged from ∼5 × 103 to ∼5 × 105 at 310 K, and followed the order 1 > 3 > 2. The reactions of 1 and 3 with HSA were enthalpically driven, while that for 2 was entropically driven. Macromolecular docking simulations (Glide XP) and binding site specificity assays employing site-specific probes and UV-vis CD spectroscopy indicated that 1 and 2 target Sudlow's site II in subdomain IIIA, minimally perturbing the tertiary structure of the protein. Well-resolved induced CD signals from 1 and 2 bound to HSA in subdomain IIIA were adequately simulated by hybrid QM:MM TD-DFT methods. We conclude that the structure of the bis(pyrrolide-imine) Pt(II) chelate measurably affects its uptake by HSA without detectable decomposition or demetallation. Such compounds could thus serve as metallodrug candidates capable of utilising an HSA-mediated cellular uptake pathway.
Collapse
Affiliation(s)
- Sheldon Sookai
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa.
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa.
- School of Chemistry University of Leeds, Woodhouse Lane, LS2 9JT, UK.
| |
Collapse
|
19
|
Margariti A, Papakonstantinou VD, Stamatakis GM, Demopoulos CA, Machalia C, Emmanouilidou E, Schnakenburg G, Nika MC, Thomaidis NS, Philippopoulos AI. First-Row Transition Metal Complexes Incorporating the 2-(2'-pyridyl)quinoxaline Ligand (pqx), as Potent Inflammatory Mediators: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin. Molecules 2023; 28:6899. [PMID: 37836742 PMCID: PMC10574351 DOI: 10.3390/molecules28196899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory mediators constitute a recently coined term in the field of metal-based complexes with antiplatelet activities. Our strategy targets Platelet-Activating Factor (PAF) and its receptor, which is the most potent lipid mediator of inflammation. Thus, the antiplatelet (anti-PAF) potency of any substance could be exerted by inhibiting the PAF-induced aggregation in washed rabbit platelets (WRPs), which internationally is a well-accepted methodology. Herein, a series of mononuclear (mer-[Cr(pqx)Cl3(H2O]) (1), [Co(pqx)Cl2(DMF)] (2) (DMF = N,N'-dimethyl formamide), [Cu(pqx)Cl2(DMSO)] (3) (DMSO = dimethyl sulfoxide), [Zn(pqx)Cl2] (4)) and dinuclear complexes ([Mn(pqx)(H2O)2Cl2]2 (5), [Fe(pqx)Cl2]2 (6) and [Ni(pqx)Cl2]2 (7)) incorporating the 2-(2'-pyridyl)quinoxaline ligand (pqx), were biologically evaluated as inhibitors of the PAF- and thrombin-induced aggregation in washed rabbit platelets (WRPs). The molecular structure of the five-co-ordinate analog (3) has been elucidated by single-crystal X-ray diffraction revealing a trigonal bipyramidal geometry. All complexes are potent inhibitors of the PAF-induced aggregation in WRPs in the micromolar range. Complex (6) displayed a remarkable in vitro dual inhibition against PAF and thrombin, with IC50 values of 1.79 μM and 0.46 μM, respectively. Within the series, complex (5) was less effective (IC50 = 39 μM) while complex (1) was almost 12-fold more potent against PAF, as opposed to thrombin-induced aggregation. The biological behavior of complexes 1, 6 and 7 on PAF's basic metabolic enzymatic pathways reveals that they affect key biosynthetic and catabolic enzymes of PAF underlying the anti-inflammatory properties of the relevant complexes. The in vitro cytotoxic activities of all complexes in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) are described via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results reveal that complex 3 is the most potent within the series.
Collapse
Affiliation(s)
- Antigoni Margariti
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Vasiliki D. Papakonstantinou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.D.P.); (G.M.S.); (C.A.D.); (C.M.); (E.E.)
| | - George M. Stamatakis
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.D.P.); (G.M.S.); (C.A.D.); (C.M.); (E.E.)
| | - Constantinos A. Demopoulos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.D.P.); (G.M.S.); (C.A.D.); (C.M.); (E.E.)
| | - Christina Machalia
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.D.P.); (G.M.S.); (C.A.D.); (C.M.); (E.E.)
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.D.P.); (G.M.S.); (C.A.D.); (C.M.); (E.E.)
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany;
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (M.-C.N.); (N.S.T.)
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (M.-C.N.); (N.S.T.)
| | - Athanassios I. Philippopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| |
Collapse
|
20
|
Arabpour Shiraz Z, Sohrabi N, Eslami Moghadam M, Oftadeh M. Molecular docking and spectroscopic study of bovine serum albumin interaction with new anticancer Pt complex with isopentyl dithiocarbamate ligand. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:65-85. [PMID: 37452787 DOI: 10.1080/15257770.2023.2233576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Although cisplatin is useful in the treatment of cancer, it has a series of side effects that limit its use. Dithiocarbamates reduce the toxicity of platinum due to their structure and the presence of S, and N donating groups. In this article, the interaction of [Pt(bpy)(isopentyl.dtc)]NO3, where bpy is bipyridine and isopentyl.dtc is isopentyl-dithiocarbamate, with BSA, bovine serum albumin has been studied. The molecular binding method, including UV-Vis and fluorescence titration, was carried out in conditions including pH = 7.4 and temperatures of 27 and 37 °C. The negative values of enthalpy (ΔH°b) and entropy (ΔS°b) show that the driving forces of this interaction are hydrogen and van der Waals, and the negative value of the Gibbs free energy, ΔG°b indicates that the interaction proceeds spontaneously. The fluorescence results showed that the quenching mechanism is the static type and the Stern Volmer constant, KSV, was also obtained. The fluorescence titration method data displayed that the quenching mechanism is static. Binding constant (Kb), binding point (n), Hill coefficients, nH, Hill constant, KH, number of binding sites, g, BSA melting temperature, Tm, were also obtained. Finally, the molecular docking method result shows the binding constant, Ki and binding free energy for the platinum complex are -6.53 and 16.39 kcal mol-1, respectively, and also the proper position of binding on BSA can be considered the site I in the subdomain IIA.
Collapse
Affiliation(s)
| | - Nasrin Sohrabi
- Chemistry Department, Payame Noor University, Tehran, I. R. Iran
| | | | - Mohsen Oftadeh
- Chemistry Department, Payame Noor University, Tehran, I. R. Iran
| |
Collapse
|
21
|
Ullah S, Sirajuddin M, Ullah Z, Mushtaq A, Naz S, Zubair M, Haider A, Ali S, Kubicki M, Wani TA, Zargar S, Rehman MU. Synthesis, Structural Elucidation and Pharmacological Applications of Cu(II) Heteroleptic Carboxylates. Pharmaceuticals (Basel) 2023; 16:ph16050693. [PMID: 37242476 DOI: 10.3390/ph16050693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Six heteroleptic Cu(II) carboxylates (1-6) were prepared by reacting 2-chlorophenyl acetic acid (L1), 3-chlorophenyl acetic acid (L2), and substituted pyridine (2-cyanopyridine and 2-chlorocyanopyridine). The solid-state behavior of the complexes was described via vibrational spectroscopy (FT-IR), which revealed that the carboxylate moieties adopted different coordination modes around the Cu(II) center. A paddlewheel dinuclear structure with distorted square pyramidal geometry was elucidated from the crystal data for complexes 2 and 5 with substituted pyridine moieties at the axial positions. The presence of irreversible metal-centered oxidation reduction peaks confirms the electroactive nature of the complexes. A relatively higher binding affinity was observed for the interaction of SS-DNA with complexes 2-6 compared to L1 and L2. The findings of the DNA interaction study indicate an intercalative mode of interaction. The maximum inhibition against acetylcholinesterase enzyme was caused for complex 2 (IC50 = 2 µg/mL) compared to the standard drug Glutamine (IC50 = 2.10 µg/mL) while the maximum inhibition was found for butyrylcholinesterase enzyme by complex 4 (IC50 = 3 µg/mL) compared to the standard drug Glutamine (IC50 = 3.40 µg/mL). The findings of the enzymatic activity suggest that the under study compounds have potential for curing of Alzheimer's disease. Similarly, complexes 2 and 4 possess the maximum inhibition as revealed from the free radical scavenging activity performed against DPPH and H2O2.
Collapse
Affiliation(s)
- Shaker Ullah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Sirajuddin
- Department of Chemistry, University of Science and Technology Bannu, Bannu 28100, Pakistan
| | - Zafran Ullah
- Department of Chemistry, University of Science and Technology Bannu, Bannu 28100, Pakistan
| | - Afifa Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saba Naz
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ali Haider
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maciej Kubicki
- Department of Chemistry, Adam Mickiewicz University in Poznan, 61-712 Poznan, Poland
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
22
|
Prabaharan R, Rengan R, Thangavel SK, Małecki JG. Exploration of Antiproliferative Activity and Apoptosis Induction of New Nickel(II) Complexes Encompassing Carbazole Ligands. ACS OMEGA 2023; 8:12584-12591. [PMID: 37033823 PMCID: PMC10077545 DOI: 10.1021/acsomega.3c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
To attest the effectiveness of nickel complexes as anticancer drug candidates with minimum side effects, the present investigation describes the facile synthesis and anticancer activities of nickel(II) complexes enriched with three derivatives of carbazolone-based benzhydrazone ligands(L) having a [Ni(L)2] composition. Analytical and spectral techniques were used to characterize the synthesized Ni(II) complexes. The single-crystal X-ray diffraction performed for complex 4 confirmed the square planar geometry with a [Ni(κ2-N,O-L)2] arrangement. The MTT assay was carried out for the complexes to determine in vitro cytotoxicity against cancerous human-cervical carcinoma, human-colon carcinoma, and non-cancerous L929 (fibroblast) cells. All three complexes exhibited good toxicity against the cancer cells with a low IC50 concentration. Complex 4, containing -OCH3 fragment, exhibits high lipophilicity and revealed exceptional cytotoxicity against cancer cells. AO-EB fluorescent staining indicated apoptosis-associated cell morphological changes after exposure to complex 4. The apoptosis induction was further confirmed by a HOECHST-33342 fluorescent staining technique via chromosomal condensation and nuclear fragmentation. Further, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) mechanistic studies revealed that complex 4 can raise ROS levels and reduce MMP and promote mitochondrial dysfunction-mediated apoptotic cell death. Further, stimulation of late apoptosis by complex 4 in cervical cancer cells was quantitatively differentiated through the staining of phosphatidylserine externalization by flow cytometry. Furthermore, the ELISA analysis confirmed that complex 4 induced apoptosis through caspase activation.
Collapse
Affiliation(s)
- Ramya Prabaharan
- Centre
for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Ramesh Rengan
- Centre
for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Sathiya Kamatchi Thangavel
- Centre
for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Jan Grzegorz Małecki
- Department
of Crystallography, Institute of Chemistry, University of Silesia, Katowice 40-006, Poland
| |
Collapse
|
23
|
Navale GR, Singh S, Ghosh K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
24
|
Cytotoxicity Evaluation of Unmodified Paddlewheel Dirhodium(II,II)-Acetate/-Formamidinate Complexes and Their Axially Modified Low-Valent Metallodendrimers. Molecules 2023; 28:molecules28062671. [PMID: 36985643 PMCID: PMC10055960 DOI: 10.3390/molecules28062671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Two diphenyl formamidine ligands, four dirhodium(II,II) complexes, and three axially modified low-valent dirhodium(II,II) metallodendrimers were synthesized and evaluated as anticancer agents against the A2780, A2780cis, and OVCAR-3 human ovarian cancer cell lines. The dirhodium(II,II) complexes show moderate cytotoxic activity in the tested tumor cell lines, with acetate and methyl-substituted formamidinate compounds displaying increased cytotoxicity that is relative to cisplatin in the A2780cis cisplatin resistant cell line. Additionally, methyl- and fluoro-substituted formamidinate complexes showed comparable and increased cytotoxic activity in the OVCAR-3 cell line when compared to cisplatin. The low-valent metallodendrimers show some activity, but a general decrease in cytotoxicity was observed when compared to the precursor complexes in all but one case, which is where the more active acetate-derived metallodendrimer showed a lower IC50 value in the OVCAR-3 cell line in comparison with the dirhodium(II,II) tetraacetate.
Collapse
|
25
|
Soldatović TV, Šmit B, Mrkalić EM, Matić SL, Jelić RM, Serafinović MĆ, Gligorijević N, Čavić M, Aranđelović S, Grgurić-Šipka S. Exploring heterometallic bridged Pt(II)-Zn(II) complexes as potential antitumor agents. J Inorg Biochem 2023; 240:112100. [PMID: 36535193 DOI: 10.1016/j.jinorgbio.2022.112100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The four novel complexes [{cis-PtCl(NH3)2(μ-4,4'-bipyridyl)ZnCl(terpy)}](ClO4)2 (C1), [{trans-PtCl(NH3)2(μ-4,4'-bipyridyl)ZnCl(terpy)}](ClO4)2 (C2), [{cis-PtCl(NH3)2(μ-pyrazine)ZnCl(terpy)}](ClO4)2 (C3) and [{trans-PtCl(NH3)2(μ-pyrazine)ZnCl(terpy)}](ClO4)2 (C4) (where terpy = 2,2':6',2''-terpyridine) were synthesized and characterized. Acid-base titrations and concentration dependent kinetic measurements for the reactions with biologically relevant ligands such as guanosine-5'-monophosphate (5'-GMP), inosine-5'-monophosphate (5'-IMP) and glutathione (GSH), were studied at pH 7.4 and 37 °C. The binding of the heterometallic bridged cis- or trans-Pt(II)-Zn(II) complexes to calf thymus DNA (CT-DNA) was studied by UV absorption and fluorescence emission spectroscopy and molecular docking. The results indicated that the complexes bind strongly to DNA, through groove binding, hydrogen bonds, and hydrophobic or electrostatic interaction. The possible in vitro DNA protective effect of cis- and trans-Pt-L-Zn complexes has shown that C3 had significant dose-dependent DNA-protective effect and the same ability to inhibit peroxyl as well as hydroxyl radicals. Antiproliferative effect of the complexes, mRNA expression of apoptosis and repair-related genes after treatment in cancer cells indicated that newly synthesized C2 exhibited highly selective cytotoxicity toward colon carcinoma HCT116 cells. Only treatment with trans analog C2 induced effect similar to the typical DNA damaging agent such as cisplatin, characterized by p53 mediated cell response, cell cycle arrest and certain induction of apoptotic related genes. Both cis- and trans-isomers C1 and C2 showed potency to elicit expression of PARP1 mRNA and in vitro DNA binding.
Collapse
Affiliation(s)
- Tanja V Soldatović
- Department of Natural-Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića bb, Novi Pazar 36300, Serbia.
| | - Biljana Šmit
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, Kragujevac 34000, Serbia
| | - Emina M Mrkalić
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, Kragujevac 34000, Serbia
| | - Sanja Lj Matić
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, Kragujevac 34000, Serbia
| | - Ratomir M Jelić
- Faculty of Medical Sciences, Department of Pharmacy, University of Kragujevac, Svetozara Markovića 69, Kragujevac 34000, Serbia
| | - Marina Ćendić Serafinović
- Faculty of Science, Department of Chemistry, University of Kragujevac, Radoja Domanovića 12, Kragujevac 34000, Serbia
| | - Nevenka Gligorijević
- Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Milena Čavić
- Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Sandra Aranđelović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Sanja Grgurić-Šipka
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade 11000, Serbia.
| |
Collapse
|
26
|
Liang Z, Liu L, Zhou Y, Liu W, Lu Y. Research Progress on Bioactive Metal Complexes against ER-Positive Advanced Breast Cancer. J Med Chem 2023; 66:2235-2256. [PMID: 36780448 DOI: 10.1021/acs.jmedchem.2c01458] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Breast cancer is the most prevalent cancer in women and represents a serious disease that is harmful to life and health. In 1977, with the approval of tamoxifen, endocrine therapy has become the main clinical treatment for ER-positive (ER+) breast cancer. Although patients initially respond well to endocrine therapies, drug resistance often emerges and side effects can be challenging. To overcome drug resistance, the exploration for new drugs is a priority. Metal complexes have demonstrated significant antitumor activities, and platinum complexes are widely used in the clinic against various cancers, including breast cancer. In this Perspective, the first section describes the classification and mechanism of endocrine therapy drugs for ER+ breast cancer, and the second section summarizes research since 2000 into metal complexes with activity toward ER+ breast cancer. Finally, we discuss the opportunities, challenges, and future directions for metal complexes in the treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Lijuan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Yanyu Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China.,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| |
Collapse
|
27
|
Taniya S, Khanra S, Bhowmik AD, Bandyopadhyay A, Chatterjee S, Chattopadhyay A, Das D. A New Fe(III) Complex Derived from Cyclohexane Based Imine Derivative: Studies on H
2
PO
4
−
Recognition and Anti‐Cancer Activity Against MCF7 and MDA‐MB‐231 Human Breast Cancer Cells. ChemistrySelect 2023. [DOI: 10.1002/slct.202203054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Seikh Taniya
- Department of Chemistry The University of Burdwan Burdwan 713104 W.B. India
| | - Somnath Khanra
- Department of Chemistry The University of Burdwan Burdwan 713104 W.B. India
- Department of Chemistry A. B. N. Seal College Cooch Behar 736101 W.B. India
| | | | - Arindam Bandyopadhyay
- Department of Zoology Visva-Bharati Santiniketan 731235 W. B. India
- Department of Zoology University of Allahabad Prayagraj 211002 U. P. India
| | | | | | - Debasis Das
- Department of Chemistry The University of Burdwan Burdwan 713104 W.B. India
| |
Collapse
|
28
|
Liu H, Zhou Y, Liu Y, Wang Z, Zheng Y, Peng C, Tian M, Zhang Q, Li J, Tan H, Fu Q, Ding M. Protein-Inspired Polymers with Metal-Site-Regulated Ordered Conformations. Angew Chem Int Ed Engl 2023; 62:e202213000. [PMID: 36353928 DOI: 10.1002/anie.202213000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Metal ions play critical roles in facilitating peptide folding and inducing conformational transitions, thereby impacting on the biological activity of many proteins. However, the effect of metal sites on the hierarchical structures of biopolymers is still poorly understood. Herein, inspired by metalloproteins, we report an order-to-order conformational regulation in synthetic polymers mediated by a variety of metal ions. The copolymers are decorated with clinically available desferrioxamine (DFO) as an exogenous ligand template, which presents a geometric constraint toward peptide backbone via short-range hydrogen bonding interactions, thus dramatically altering the secondary conformations and self-assembly behaviors of polypeptides and allowing for a controllable β-sheet to α-helix transition modulated by metal-ligand interactions. These metallopolymers could form ferritin-inspired hierarchical structures with high stability and membrane activity for efficient brain delivery across the blood-brain barrier (BBB) and long-lasting magnetic resonance imaging (MRI) in vivo.
Collapse
Affiliation(s)
- Hang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yeqiang Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zuojie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chuan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Meng Tian
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
29
|
Majerz I, Krawczyk MS. Crystal Structure and Chemical Bonds in [Cu II2(Tolf) 4(MeOH) 2]∙2MeOH. Int J Mol Sci 2023; 24:ijms24021745. [PMID: 36675260 PMCID: PMC9864235 DOI: 10.3390/ijms24021745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
A new coordination compound of copper(II) with a tolfenamate ligand of the paddle-wheel-like structure [CuII2(Tolf)4(MeOH)2]∙2MeOH was obtained and structurally characterized. Chemical bonds of Cu(II)∙∙∙Cu(II) and Cu(II)-O were theoretically analyzed and compared with the results for selected similar structures from the CSD database. QTAIM analysis showed that the Cu(II)∙∙∙Cu(II) interaction has a strength comparable to a hydrogen bond, as indicated by the electron density at a critical point. The remaining QTAIM parameters indicate stability of the Cu(II)∙∙∙Cu(II) interaction. Other methods, such as NCI and NBO, also indicate a significant strength of this interaction. Thus, the Cu(II)∙∙∙Cu(II) interaction can be treated as one of the noncovalent interactions that affects the structure of the coordination compound, the packing of molecules in the crystal, and the general properties of the compound.
Collapse
|
30
|
Abbas G, Usman M, Salman ZE, Wadood A, Halim SA, Shams S, Ullah MS, Al-Harrasi A. Biological evaluation and in silico molecular docking studies of newly synthesized homoleptic and heteroleptic Cd(II) carboxylates. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.133991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Synthesis, Structure, and Hydrolytic Activation of Ruthenium (III)-Pyrazole Complex. J CHEM-NY 2022. [DOI: 10.1155/2022/4056110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We report here the synthesis of water-soluble mer-[RuCl3(DMSO-S) (pyz)2] 2 prepared by the reaction of mer-RuCl3(DMSO-S)31 with pyrazole in anhydrous CH2Cl2. Compound 2 was characterized by IR and UV-visible spectroscopy, X-ray diffraction, cyclic voltammetry, and DFT calculations. The X-ray diffraction analysis disclosed that compound 2 has two independent molecules present in the asymmetric unit with different conformations for one of the pyrazoles and different hydrogen bonding. The DFT calculations suggest the structure-activity relationship and hydrolytic activity of these complexes.
Collapse
|
32
|
Hu X, Guo L, Liu M, Zhang Q, Gong Y, Sun M, Feng S, Xu Y, Liu Y, Liu Z. Increasing Anticancer Activity with Phosphine Ligation in Zwitterionic Half-Sandwich Iridium(III), Rhodium(III), and Ruthenium(II) Complexes. Inorg Chem 2022; 61:20008-20025. [PMID: 36426422 DOI: 10.1021/acs.inorgchem.2c03279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The synthesis and biological assessment of neutral or cationic platinum group metal-based anticancer complexes have been extremely studied, whereas there are few reports on the corresponding zwitterionic complexes. Herein, the synthesis, characterization, and bioactivity of zwitterionic half-sandwich phosphine-imine iridium(III), rhodium(III), and ruthenium(II) complexes were presented. The sulfonated phosphine-imine ligand and a group of zwitterionic half-sandwich P,N-chelating organometallic complexes were fully characterized by nuclear magnetic resonance (NMR), mass spectrum (electrospray ionization, ESI), elemental analysis, and X-ray crystallography. The solution stability of these complexes and their spectral properties were also determined. Notably, almost all of these complexes showed enhanced anticancer activity against model HeLa and A549 cancer cells than the corresponding zwitterionic pyridyl-imine N,N-chelating iridium(III) and ruthenium(II) complexes, which have exhibited inactive or low active in our previous work. The increase in the lipophilic property and intracellular uptake levels of these zwitterionic P,N-chelating complexes appeared to be associated with their superior cytotoxicity. In addition, these complexes showed biomolecular interactions with bovine serum albumin (BSA). The flow cytometry studies indicated that the representative complex Ir1 could induce early-stage apoptosis in A549 cells. Further, confocal microscopy imaging analysis displayed that Ir1 entered A549 cells through the energy-dependent pathway, targeted lysosome, and could cause lysosomal damage. In particular, these complexes could impede cell migration in A549 cells.
Collapse
Affiliation(s)
- Xueyan Hu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Lihua Guo
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mengqi Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Qiuya Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuwen Gong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mengru Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Shenghan Feng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Youzhi Xu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yiming Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhe Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
33
|
Sharma S, Chaudhari A. Solution State Studies on Some Binary Metal Complexes of Salbutamol. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422120214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Synthesis of a New Dinuclear Ag(I) Complex with Asymmetric Azine Type Ligand: X-ray Structure and Biological Studies. INORGANICS 2022. [DOI: 10.3390/inorganics10110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aspects of the molecular and supramolecular structure of the new dinuclear [Ag(L)(NO3)]2 complex, where L is 2-((E)-(((E)-1-(thiazol-2-yl)ethylidene)hydrazono)methyl)phenol, were discussed. The complex was crystallized in the monoclinic crystal system and P21/n space group. The unit cell parameters are a = 10.3274(2) Å, b = 11.4504(3) Å, c = 12.7137(3) Å and β = 108.2560(10)°. The asymmetric unit comprised one [Ag(L)(NO3)] formula in which the azine and nitrate ligand groups act as NN- and OO-bidentate chelates, respectively. The coordination environment of the Ag(I) is completed by one weak Ag-O bond with another [Ag(L)(NO3)] unit, leading to the dinuclear formula [Ag(L)(NO3)]2. This was clearly revealed by Hirshfeld analysis. Additionally, the Ag…C, O…H and C…C intermolecular interactions played an important role in the molecular packing of the studied complex. The antimicrobial, antioxidant and cytotoxic activities of the [Ag(L)(NO3)]2 complex and the free ligand (L) were discussed. While the [Ag(L)(NO3)]2 complex showed very weak antioxidant activity, the results of the antifungal and cytotoxic activities were promising. The inhibition zone diameters (IZD) and the minimum inhibitory concentration (MIC) values were determined to be 31 mm and 20 μg/mL, respectively, against A. fumigatus, which is compared to 17 mm and 156 μg/mL, respectively, for the positive control Ketoconazole. Generally, the Ag(I) complex has better antimicrobial activities than the free ligand against all microbes except for S. aureus, where the free ligand has higher activity. Additionally, the IC50 value against colon carcinoma (HCT-116 cell line) was determined to be 12.53 ± 0.69 µg/mL, which is compared to 5.35 ± 0.49 µg/mL for cis-platin. Additionally, the Ag(I) complex displays better cytotoxicity than the free ligand (L) (242.92 ± 8.12 µg/mL).
Collapse
|
35
|
Cetin MM, Peng W, Unruh D, Mayer MF, Mechref Y, Yelekci K. Design, synthesis, molecular modeling, and bioactivity evaluation of 1,10-phenanthroline and prodigiosin (Ps) derivatives and their Copper(I) complexes against mTOR and HDAC enzymes as highly potent and effective new anticancer therapeutic drugs. Front Pharmacol 2022; 13:980479. [PMID: 36267272 PMCID: PMC9578020 DOI: 10.3389/fphar.2022.980479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the second type of cancer with a high probability of brain metastasis and has always been one of the main problems of breast cancer research due to the lack of effective treatment methods. Demand for developing an effective drug against breast cancer brain metastasis and finding molecular mechanisms that play a role in effective treatment are gradually increasing. However, there is no effective anticancer therapeutic drug or treatment method specific to breast cancer, in particular, for patients with a high risk of brain metastases. It is known that mTOR and HDAC enzymes play essential roles in the development of breast cancer brain metastasis. Therefore, it is vital to develop some new drugs and conduct studies toward the inhibition of these enzymes that might be a possible solution to treat breast cancer brain metastasis. In this study, a series of 1,10-phenanthroline and Prodigiosin derivatives consisting of their copper(I) complexes have been synthesized and characterized. Their biological activities were tested in vitro on six different cell lines (including the normal cell line). To obtain additional parallel validations of the experimental data, some in silico modeling studies were carried out with mTOR and HDAC1 enzymes, which are very crucial drug targets, to discover novel and potent drugs for breast cancer and related brain metastases disease.
Collapse
Affiliation(s)
- M. Mustafa Cetin
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
- *Correspondence: M. Mustafa Cetin, ; Kemal Yelekci, ; Yehia Mechref,
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Daniel Unruh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Michael F. Mayer
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
- *Correspondence: M. Mustafa Cetin, ; Kemal Yelekci, ; Yehia Mechref,
| | - Kemal Yelekci
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
- *Correspondence: M. Mustafa Cetin, ; Kemal Yelekci, ; Yehia Mechref,
| |
Collapse
|
36
|
NASKAR RAHUL, GHOSH PARAMITA, MANDAL SUBRATA, JANA SUBRATA, MURMU NABENDU, MONDAL TAPANKUMAR. Palladium(II) complex bearing benzothiazole based O,N,S donor pincer ligand: Study of in-vitro cytotoxicity, interaction with CT-DNA and BSA protein. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Alem MB, Damena T, Desalegn T, Koobotse M, Eswaramoorthy R, Ngwira KJ, Ombito JO, Zachariah M, Demissie TB. Cytotoxic mixed-ligand complexes of Cu(II): A combined experimental and computational study. Front Chem 2022; 10:1028957. [PMID: 36247670 PMCID: PMC9557196 DOI: 10.3389/fchem.2022.1028957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 01/08/2023] Open
Abstract
Herein, we report the synthesis of mixed-ligand Cu(II) complexes of metformin and ciprofloxacin drugs together with 1,10-phenanthroline as a co-ligand. The synthesized complexes were characterized using different spectroscopic and spectrometric techniques. In vitro cytotoxic activity against human breast adenocarcinoma cancer cell line (MCF-7) as well as antibacterial activity against two gram-negative and two gram-positive bacterial strains were also investigated. The analyses of the experimental results were supported using quantum chemical calculations and molecular docking studies against estrogen receptor alpha (ERα; PDB: 5GS4). The cytotoxicity of the [Cu(II) (metformin) (1,10-phenanthroline)] complex (1), with IC50 of 4.29 µM, and the [Cu(II) (ciprofloxacin) (1,10-phenanthroline)] complex (2), with IC50 of 7.58 µM, were found to be more effective than the referenced drug, cisplatin which has IC50 of 18.62 µM against MCF-7 cell line. The molecular docking analysis is also in good agreement with the experimental results, with binding affinities of –7.35, –8.76 and –6.32 kcal/mol, respectively, for complexes 1, 2 and cisplatin against ERα. Moreover, complex 2 showed significant antibacterial activity against E. coli (inhibition diameter zone, IDZ, = 17.3 mm), P. aeruginosa (IDZ = 17.08 mm), and S. pyogen (IDZ = 17.33 mm), at 25 μg/ml compared to ciprofloxacin (IDZ = 20.0, 20.3, and 21.3 mm), respectively. Our BOILED-egg model indicated that the synthesized metal complexes have potentially minimal neurotoxicity than that of cisplatin.
Collapse
Affiliation(s)
- Mamaru Bitew Alem
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia,*Correspondence: Mamaru Bitew Alem, ; Tegene Desalegn, ; Taye B. Demissie,
| | - Tadewos Damena
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia
| | - Tegene Desalegn
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia,*Correspondence: Mamaru Bitew Alem, ; Tegene Desalegn, ; Taye B. Demissie,
| | - Moses Koobotse
- School of Allied Health Professions, University of Botswana, Gaborone, Botswana
| | - Rajalakshmanan Eswaramoorthy
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kennedy J. Ngwira
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Taye B. Demissie
- Department of Chemistry, University of Botswana, Gaborone, Botswana,*Correspondence: Mamaru Bitew Alem, ; Tegene Desalegn, ; Taye B. Demissie,
| |
Collapse
|
38
|
Arojojoye AS, Kim JH, Olelewe C, Parkin S, Awuah SG. Chiral gold(III) complexes: speciation, in vitro, and in vivo anticancer profile. Chem Commun (Camb) 2022; 58:10237-10240. [PMID: 36004570 PMCID: PMC10317552 DOI: 10.1039/d2cc03081k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emerging synthetic development of chiral gold(III) complexes has prompted new opportunities in catalysis and material science with limited utility in biomedicine. Here, we demonstrate potential chemotherapeutic capability of [C^N]Au(III)Cl(R-DuPhos) (1-7) complexes, containing 1,2-bis[(2R,5R)-2,5-dialkylphospholano]benzene, which shows good stabilty, potent anticancer activity, and tolerability in mice.
Collapse
Affiliation(s)
| | - Jong H Kim
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
39
|
Saroya S, Asija S, Deswal Y, Kumar N, Kumar D, Jindal DK, Puri P, Kumar S. Pentacoordinated diorganotin(IV) complexes of Schiff base ligands: synthesis, characterization, antimicrobial and anticancer studies. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
40
|
Gorboletova GG, Bychkova SA, Frolova KO. Thermodynamics of the Formation of a Nickel(II) and Glycylglycine Complex in an Aqueous Solution. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422090126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
New Organic-Inorganic Salt Based on Fluconazole Drug: TD-DFT Benchmark and Computational Insights into Halogen Substitution. Int J Mol Sci 2022; 23:ijms23158765. [PMID: 35955897 PMCID: PMC9369134 DOI: 10.3390/ijms23158765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we report the synthesis of a new organic–inorganic molecular salt of the clinically used antifungal drug fluconazole, (H2Fluconazole).SnCl6.2H2O. By detailed investigation and analysis of its structural properties, we show that the structure represents a 0D structure built of alternating organic and inorganic zig-zag layers along the crystallographic c-axis and the primary supramolecular synthons in this salt are hydrogen bonding, F···π and halogen bonding interactions. Magnetic measurements reveal the co-existence of weak ferromagnetic behavior at low magnetic field and large diamagnetic contributions, indicating that the synthesized material behaves mainly as a diamagnetic material, with very low magnetic susceptibility and with a band gap energy of 3.6 eV, and the salt is suitable for semiconducting applications. Extensive theoretical study is performed to explain the acceptor donor reactivity of this compound and to predict the Cl-substitution effect by F, Br and I. The energy gap, frontier molecular orbitals (FMOs) and the different chemical reactivity descriptors were evaluated at a high theoretical level. Calculations show that Cl substitution by Br and I generates compounds with more important antioxidant ability and the intramolecular charge transfer linked to the inorganic anion.
Collapse
|
42
|
Gaikwad M, Konkimalla VB, Salunke-Gawali S. Metal complexes as topoisomerase inhibitors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Varna D, Geromichalou E, Hatzidimitriou AG, Papi R, Psomas G, Dalezis P, Aslanidis P, Choli-Papadopoulou T, Trafalis DT, Angaridis PA. Silver(I) complexes bearing heterocyclic thioamide ligands with NH 2 and CF 3 substituents: effect of ligand group substitution on antibacterial and anticancer properties. Dalton Trans 2022; 51:9412-9431. [PMID: 35674362 DOI: 10.1039/d2dt00793b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, there has been an increasing interest in the study of Ag(I) coordination compounds as potent antibacterial and anticancer agents. Herein, a series of Ag(I) complexes bearing phosphines and heterocyclic thioamide ligands with highly electronegative NH2- and CF3-group substituents, i.e. [AgCl(atdztH)(xantphos)] (1), [Ag(μ-atdztH)(DPEphos)]2(NO3)2 (2), [Ag(atdzt)(PPh3)3] (3), [Ag(μ-atdzt)(DPEphos)]2 (4), and [Ag(μ-mtft)(DPEphos)]2 (5), where atdztH = 5-amino-1,3,4-thiadiazole-2-thiol, mtftH = 4-methyl-5-(trifluoromethyl)-1,2,4-triazol-3-thiol, xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, and DPEphos = bis(2-diphenylphosphino-phenyl)ether, were synthesized, and their in vitro antibacterial and anticancer properties were evaluated. Complexes 1-4 bearing the NH2-substituted thioamide exhibited moderate-to-high activity against S. aureus, B. subtilis, B. cereus and E. coli bacterial strains. A high antiproliferative activity was also observed for 1-3 against SKOV-3, Hup-T3, DMS114 and PC3 cancer cell lines (IC50 = 4.0-11.7 μM), as well as some degree of selectivity against MRC-5 normal cells. Interestingly, 5 bearing the CF3-substituted thioamide is completely inactive in all bioactivity studies. Binding of 1-3 to drug-carrier proteins BSA and HSA is reasonably strong for their uptake and subsequent release to possible target sites. The three complexes show a significant in vitro antioxidant ability for scavenging free radicals, suggesting likely implication of this property in the mechanism of their bioactivity, but a low potential to destroy the double-strand structure of CT-DNA by intercalation. Complementary insights into possible bioactivity mechanisms were provided by molecular docking calculations, exploring the ability of complexes to bind to bacterial DNA gyrase, and to the overexpressed in the aforementioned cancer cells Fibroblast Growth Factor Receptor 1, affecting their functionalities.
Collapse
Affiliation(s)
- Despoina Varna
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Elena Geromichalou
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Rigini Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis Dalezis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Paraskevas Aslanidis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Panagiotis A Angaridis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
44
|
Almeida CM, S. Marcon PH, Nascimento ÉCM, Martins JBL, Chagas MAS, Fujimori M, De Marchi PGF, França EL, Honorio‐França AC, Gatto CC. Organometallic Gold (III) and Platinum (II) Complexes with Thiosemicarbazone: structural behavior, anticancer activity, and molecular docking. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Carolane M. Almeida
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - Pedro H. S. Marcon
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - Érica C. M. Nascimento
- Laboratory of Computational Chemistry University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - João B. L. Martins
- Laboratory of Computational Chemistry University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - Marcio A. S. Chagas
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | - Mahmi Fujimori
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | - Patrícia G. F. De Marchi
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | - Eduardo L. França
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | | | - Claudia C. Gatto
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| |
Collapse
|
45
|
Barskaya ES, Abramovich MS, Moiseeva AA, Chorbu AA, Polyakova MN, Rzheutsky AV, Grigoriev GP, Berezina AV, Zyk NV, Beloglazkina EK. Adsorption of 2-(pyridin-2-yl)benzothiazoles with terminal thioacetate groups on the gold surface and their complexation with copper(ii) chloride. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Abstract
Vanadium is an ultratrace element present in higher plants, animals, algae, and bacteria. In recent years, vanadium complexes have been studied to be considered as a representative of a new class of nonplatinum metal anticancer drugs. Nevertheless, the study of cell signaling pathways related to vanadium compounds has scarcely been reported on and reviewed thus far; this information is highly critical for identifying novel targets that play a key role in the anticancer activity of these compounds. Here, we perform a review of the activity of vanadium compounds over cell signaling pathways on cancer cells and of the underlying mechanisms, thereby providing insight into the role of these proteins as potential new molecular targets of vanadium complexes.
Collapse
|
47
|
Dege N, Tamer Ö, Şimşek M, Avcı D, Yaman M, Başoğlu A, Atalay Y. Experimental and theoretical approaches on structural, spectroscopic (FT‐IR and UV‐Vis), nonlinear optical and molecular docking analyses for Zn (II) and Cu (II) complexes of 6‐chloropyridine‐2‐carboxylic acid. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Necmi Dege
- Department of Physics, Faculty of Arts and Sciences Ondokuz Mayıs University Samsun Turkey
| | - Ömer Tamer
- Department of Physics, Faculty of Arts and Sciences Sakarya University Sakarya Turkey
| | - Merve Şimşek
- Department of Physics, Faculty of Arts and Sciences Sakarya University Sakarya Turkey
| | - Davut Avcı
- Department of Physics, Faculty of Arts and Sciences Sakarya University Sakarya Turkey
| | - Mavişe Yaman
- Department of Physics, Faculty of Arts and Sciences Ondokuz Mayıs University Samsun Turkey
| | - Adil Başoğlu
- Department of Physics, Faculty of Arts and Sciences Sakarya University Sakarya Turkey
| | - Yusuf Atalay
- Department of Physics, Faculty of Arts and Sciences Sakarya University Sakarya Turkey
| |
Collapse
|
48
|
Cieslik P, Comba P, Dittmar B, Ndiaye D, Tóth É, Velmurugan G, Wadepohl H. Exceptional Manganese(II) Stability and Manganese(II)/Zinc(II) Selectivity with Rigid Polydentate Ligands. Angew Chem Int Ed Engl 2022; 61:e202115580. [PMID: 34979049 PMCID: PMC9305554 DOI: 10.1002/anie.202115580] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 12/02/2022]
Abstract
While MnII complexes meet increasing interest in biomedical applications, ligands are lacking that enable high MnII complex stability and selectivity vs. ZnII , the most relevant biological competitor. We report here two new bispidine derivatives, which provide rigid and large coordination cavities that perfectly match the size of MnII , yielding eight-coordinate MnII complexes with record stabilities. In contrast, the smaller ZnII ion cannot accommodate all ligand donors, resulting in highly strained and less stable six-coordinate complexes. Combined theoretical and experimental data (X-ray crystallography, potentiometry, relaxometry and 1 H NMR spectroscopy) demonstrate unprecedented selectivity for MnII vs. ZnII (KMnL /KZnL of 108 -1010 ), in sharp contrast to the usual Irving-Williams behavior, and record MnII complex stabilities and inertness with logKMnL close to 25.
Collapse
Affiliation(s)
- Patrick Cieslik
- Universität HeidelbergAnorganisch-Chemisches Institut, INF 27069120HeidelbergGermany
| | - Peter Comba
- Universität HeidelbergAnorganisch-Chemisches Institut, INF 27069120HeidelbergGermany
- Universität HeidelbergInterdisciplinary Center for Scientific Computing, INF 20569120HeidelbergGermany
| | - Benedikt Dittmar
- Universität HeidelbergAnorganisch-Chemisches Institut, INF 27069120HeidelbergGermany
| | - Daouda Ndiaye
- Centre de Biophysique MoléculaireCNRS UPR 4301Université d'Orléansrue Charles Sadron45071OrléansFrance
| | - Éva Tóth
- Centre de Biophysique MoléculaireCNRS UPR 4301Université d'Orléansrue Charles Sadron45071OrléansFrance
| | | | - Hubert Wadepohl
- Universität HeidelbergAnorganisch-Chemisches Institut, INF 27069120HeidelbergGermany
| |
Collapse
|
49
|
Mohanty M, Sahu G, Banerjee A, Lima S, Patra SA, Crochet A, Sciortino G, Sanna D, Ugone V, Garribba E, Dinda R. Mo(VI) Potential Metallodrugs: Explaining the Transport and Cytotoxicity by Chemical Transformations. Inorg Chem 2022; 61:4513-4532. [PMID: 35213131 DOI: 10.1021/acs.inorgchem.2c00113] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transport and cytotoxicity of molybdenum-based drugs have been explained with the concept of chemical transformation, a very important idea in inorganic medicinal chemistry that is often overlooked in the interpretation of the biological activity of metal-containing systems. Two monomeric, [MoO2(L1)(MeOH)] (1) and [MoO2(L2)(EtOH)] (2), and two mixed-ligand dimeric MoVIO2 species, [{MoO2(L1-2)}2(μ-4,4'-bipy)] (3-4), were synthesized and characterized. The structures of the solid complexes were solved through SC-XRD, while their transformation in water was clarified by UV-vis, ESI-MS, and DFT. In aqueous solution, 1-4 lead to the penta-coordinated [MoO2(L1-2)] active species after the release of the solvent molecule (1 and 2) or removal of the 4,4'-bipy bridge (3 and 4). [MoO2(L1-2)] are stable in solution and react with neither serum bioligand nor cellular reductants. The binding affinity of 1-4 toward HSA and DNA were evaluated through analytical and computational methods and in both cases a non-covalent interaction is expected. Furthermore, the in vitro cytotoxicity of the complexes was also determined and flow cytometry analysis showed the apoptotic death of the cancer cells. Interestingly, μ-4,4'-bipy bridged complexes 3 and 4 were found to be more active than monomeric 1 and 2, due to the mixture of species generated, that is [MoO2(L1-2)] and the cytotoxic 4,4'-bipy released after their dissociation. Since in the cytosol neither the reduction of MoVI to MoV/IV takes place nor the production of reactive oxygen species (ROS) through Fenton-like reactions of 1-4 with H2O2 occurs, the mechanism of cytotoxicity should be attributable to the direct interaction with DNA that happens with a minor-groove binding which results in cell death through an apoptotic mechanism.
Collapse
Affiliation(s)
- Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Aurélien Crochet
- Department of Chemistry, Fribourg Center for Nanomaterials, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Valeria Ugone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
50
|
Gupta G, Sun Y, Das A, Stang PJ, Lee CY. BODIPY based Metal-Organic Macrocycles and Frameworks: Recent Therapeutic Developments. Coord Chem Rev 2022; 452:214308. [PMID: 35001940 PMCID: PMC8730361 DOI: 10.1016/j.ccr.2021.214308] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Boron dipyrromethene, commonly known as BODIPY, based metal-organic macrocycles (MOCs) and metal-organic frameworks (MOFs) represent an interesting part of materials due to their versatile tunability of structure and functionality as well as significant physicochemical properties, thus broadening their applications in various scientific domains, especially in biomedical sciences. With increasing concern over the efficacy of cancer drugs versus quality of patient's life dilemma, scientists have been trying to fabricate novel comprehensive therapeutic strategies along with the discovery of novel safer drugs where research with BODIPY metal complexes has shown vital advancements. In this review, we have exclusively examined the articles involving studies related to light harvesting and photophysical properties of BODIPY based MOCs and MOFs, synthesized through self-assembly process, with a special focus on biomolecular interaction and its importance in anti-cancer drug research. In the end, we also emphasized the possible practical challenges involved during the synthetic process, based on our experience on dealing with BODIPY molecules and steps to overcome them along with their future potentials. This review will significantly help our fellow research groups, especially the budding researchers, to quickly and comprehensively get the near to wholesome picture of BODIPY based MOCs and MOFs and their present status in anti-cancer drug discovery.
Collapse
Affiliation(s)
- Gajendra Gupta
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Yan Sun
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Abhishek Das
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | - Peter J. Stang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|