1
|
Singh G, Sharma G, Sanchita, Kalra P, Satija P, Pawan, Singh B, Aulakh D, Wreidt M. Click‐Derived Uracil‐Appended Organosilatranyl Scaffolds: Synthesis, Antibacterial Characteristics, Pb2+ Binding and Fabrication of Hybrid Silica Nanoparticles. ChemistrySelect 2020. [DOI: 10.1002/slct.201903464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Geetika Sharma
- Department of ChemistryPanjab University Chandigarh 160014 India
| | - Sanchita
- Department of ChemistryPanjab University Chandigarh 160014 India
| | - Pooja Kalra
- Department of Chemistry and BiochemistrySharda University 201306 Sharda Greater Noida
| | - Pinky Satija
- Department of ChemistryPanjab University Chandigarh 160014 India
| | - Pawan
- Department of ChemistryPanjab University Chandigarh 160014 India
| | - Baljinder Singh
- Department of BiotechnologyPanjab University Chandigarh 160014 India
| | - Darpandeep Aulakh
- Functional Materials Design & X-ray Diffraction Lab, Department of Chemistry & Bimolecular ScienceClarkson University, Box 5810 Potsdam, NY 13699 USA
| | - Mario Wreidt
- Functional Materials Design & X-ray Diffraction Lab, Department of Chemistry & Bimolecular ScienceClarkson University, Box 5810 Potsdam, NY 13699 USA
| |
Collapse
|
2
|
The X-ray Structures of Six Octameric RNA Duplexes in the Presence of Different Di- and Trivalent Cations. Int J Mol Sci 2016; 17:ijms17070988. [PMID: 27355942 PMCID: PMC4964368 DOI: 10.3390/ijms17070988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 12/15/2022] Open
Abstract
Due to the polyanionic nature of RNA, the principles of charge neutralization and electrostatic condensation require that cations help to overcome the repulsive forces in order for RNA to adopt a three-dimensional structure. A precise structural knowledge of RNA-metal ion interactions is crucial to understand the mechanism of metal ions in the catalytic or regulatory activity of RNA. We solved the crystal structure of an octameric RNA duplex in the presence of the di- and trivalent metal ions Ca(2+), Mn(2+), Co(2+), Cu(2+), Sr(2+), and Tb(3+). The detailed investigation reveals a unique innersphere interaction to uracil and extends the knowledge of the influence of metal ions for conformational changes in RNA structure. Furthermore, we could demonstrate that an accurate localization of the metal ions in the X-ray structures require the consideration of several crystallographic and geometrical parameters as well as the anomalous difference map.
Collapse
|
3
|
Qi X, Xia T. Structure, dynamics, and mechanism of the lead-dependent ribozyme. Biomol Concepts 2015; 2:305-14. [PMID: 25962038 DOI: 10.1515/bmc.2011.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/06/2011] [Indexed: 12/24/2022] Open
Abstract
Leadzyme is a small catalytic RNA that was identified by in vitro selection for Pb2+-dependent cleavage from a tRNA library. Leadzyme employs a unique two-step Pb2+-specific mechanism to cleave within its active site. NMR and crystal structures of the active site revealed different folding patterns, but neither features the in-line alignment for attack by the 2'-OH nucleophilic group. These experimentally determined structures most likely represent ground states and are catalytically inactive. There are significant dynamics of the active site and the motif samples multiple conformations at the ground states. Various metal ion binding sites have been identified, including one that may be occupied by a catalytic Pb2+. Based on functional group analysis, a computational model of the transition state has been proposed. This model features a unique base triple that is consistent with sequence and functional group requirements for catalysis. This structure is likely only populated transiently, but imposing appropriate conformational constraints may significantly stabilize this state thereby promoting catalysis. Other ions may inhibit the cleavage by competing for the Pb2+ binding site, or by stabilizing the ground state thereby suppressing its transition to the catalytically active conformation. Some rare earth ions can enhance the reaction via an unknown mechanism. Because of its unique chemistry and dynamic behavior, leadzyme can continue to serve as an excellent model system for teaching us RNA biology and chemistry.
Collapse
|
4
|
Schultz EP, Vasquez EE, Scott WG. Structural and catalytic effects of an invariant purine substitution in the hammerhead ribozyme: implications for the mechanism of acid-base catalysis. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2256-63. [PMID: 25195740 PMCID: PMC4157442 DOI: 10.1107/s1399004714010608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/09/2014] [Indexed: 11/10/2022]
Abstract
The hammerhead ribozyme catalyzes RNA cleavage via acid-base catalysis. Whether it does so by general acid-base catalysis, in which the RNA itself donates and abstracts protons in the transition state, as is typically assumed, or by specific acid-base catalysis, in which the RNA plays a structural role and proton transfer is mediated by active-site water molecules, is unknown. Previous biochemical and crystallographic experiments implicate an invariant purine in the active site, G12, as the general base. However, G12 may play a structural role consistent with specific base catalysis. To better understand the role of G12 in the mechanism of hammerhead catalysis, a 2.2 Å resolution crystal structure of a hammerhead ribozyme from Schistosoma mansoni with a purine substituted for G12 in the active site of the ribozyme was obtained. Comparison of this structure (PDB entry 3zd4), in which A12 is substituted for G, with three previously determined structures that now serve as important experimental controls, allows the identification of structural perturbations that are owing to the purine substitution itself. Kinetic measurements for G12 purine-substituted schistosomal hammerheads confirm a previously observed dependence of rate on the pK(a) of the substituted purine; in both cases inosine, which is similar to G in pK(a) and hydrogen-bonding properties, is unexpectedly inactive. Structural comparisons indicate that this may primarily be owing to the lack of the exocyclic 2-amino group in the G12A and G12I substitutions and its structural effect upon both the nucleotide base and phosphate of A9. The latter involves the perturbation of a previously identified and well characterized metal ion-binding site known to be catalytically important in both minimal and full-length hammerhead ribozyme sequences. The results permit it to be suggested that G12 plays an important role in stabilizing the active-site structure. This result, although not inconsistent with the potential role of G12 as a general base, indicates that an alternative hammerhead cleavage mechanism involving specific base catalysis may instead explain the observed rate dependence upon purine substitutions at G12. The crystallographic results, contrary to previous assumptions, therefore cannot be interpreted to favor the general base catalysis mecahnism over the specific base catalysis mechanism. Instead, both of these mutually exclusive mechanistic alternatives must be considered in light of the current structural and biochemical data.
Collapse
Affiliation(s)
- Eric P. Schultz
- Department of Chemistry and Biochemistry and The Center for the Molecular Biology of RNA, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ernesto E. Vasquez
- Department of Chemistry and Biochemistry and The Center for the Molecular Biology of RNA, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - William G. Scott
- Department of Chemistry and Biochemistry and The Center for the Molecular Biology of RNA, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
5
|
Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proc Natl Acad Sci U S A 2014; 111:13028-33. [PMID: 25157168 DOI: 10.1073/pnas.1414571111] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Twister is a recently discovered RNA motif that is estimated to have one of the fastest known catalytic rates of any naturally occurring small self-cleaving ribozyme. We determined the 4.1-Å resolution crystal structure of a twister sequence from an organism that has not been cultured in isolation, and it shows an ordered scissile phosphate and nucleotide 5' to the cleavage site. A second crystal structure of twister from Orzyza sativa determined at 3.1-Å resolution exhibits a disordered scissile phosphate and nucleotide 5' to the cleavage site. The core of twister is stabilized by base pairing, a large network of stacking interactions, and two pseudoknots. We observe three nucleotides that appear to mediate catalysis: a guanosine that we propose deprotonates the 2'-hydroxyl of the nucleotide 5' to the cleavage site and a conserved adenosine. We suggest the adenosine neutralizes the negative charge on a nonbridging phosphate oxygen atom at the cleavage site. The active site also positions the labile linkage for in-line nucleophilic attack, and thus twister appears to simultaneously use three strategies proposed for small self-cleaving ribozymes. The twister crystal structures (i) show its global structure, (ii) demonstrate the significance of the double pseudoknot fold, (iii) provide a possible hypothesis for enhanced catalysis, and (iv) illuminate the roles of all 10 highly conserved nucleotides of twister that participate in the formation of its small and stable catalytic pocket.
Collapse
|
6
|
Khisamutdinov EF, Jasinski DL, Guo P. RNA as a boiling-resistant anionic polymer material to build robust structures with defined shape and stoichiometry. ACS NANO 2014; 8:4771-81. [PMID: 24694194 PMCID: PMC4046798 DOI: 10.1021/nn5006254] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/25/2014] [Indexed: 05/22/2023]
Abstract
RNA is a polyribonucleic acid belonging to a special class of anionic polymers, holding a unique property of self-assembly that is controllable in the construction of structures with defined size, shape, and stoichiometry. We report here the use of RNA as polymers to fabricate boiling-resistant triangular nanoscaffolds, which were used to construct hexagons and patterned hexagonal arrays. The RNA triangular scaffolds demonstrated promising potential to construct fluorogenic probes and therapeutic agents as functionalization with siRNA, ribozyme, folate, and fluorogenic RNA aptamers revealed independent functional activity of each RNA moiety. The ribozyme was able to cleave hepatitis genomic RNA fragments, the siRNA silenced the target genes, and all fluorogenic RNA aptamers retained their fluorescence emission property. The creation of boiling-temperature-resistant RNA nanoparticles opens a new dimension of RNA as a special polymer, feasible in industrial and nanotechnological applications.
Collapse
|
7
|
Anderson M, Schultz EP, Martick M, Scott WG. Active-site monovalent cations revealed in a 1.55-Å-resolution hammerhead ribozyme structure. J Mol Biol 2013; 425:3790-8. [PMID: 23711504 DOI: 10.1016/j.jmb.2013.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 11/18/2022]
Abstract
We have obtained a 1.55-Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni under conditions that permit detailed observations of Na(+) ion binding in the ribozyme's active site. At least two such Na(+) ions are observed. The first Na(+) ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical with that previously observed for divalent cations. A second Na(+) ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with that of previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na(+), but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na(+) directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active-site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest-resolution ribozyme structure in the Protein Data Bank.
Collapse
Affiliation(s)
- Michael Anderson
- Department of Chemistry and Biochemistry and The Center for the Molecular Biology of RNA, 228 Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
8
|
Abstract
MOTIVATION To recognize remote relationships between RNA molecules, one must be able to align structures without regard to sequence similarity. We have implemented a method, which is swift [O(n(2))], sensitive and tolerant of large gaps and insertions. Molecules are broken into overlapping fragments, which are characterized by their memberships in a probabilistic classification based on local geometry and H-bonding descriptors. This leads to a probabilistic similarity measure that is used in a conventional dynamic programming method. RESULTS Examples are given of database searching, the detection of structural similarities, which would not be found using sequence based methods, and comparisons with a previously published approach. AVAILABILITY AND IMPLEMENTATION Source code (C and perl) and binaries for linux are freely available at www.zbh.uni-hamburg.de/fries.
Collapse
Affiliation(s)
- Tim Wiegels
- Centre for Bioinformatics, University of Hamburg, Bundesstr. 43, D-20146 Hamburg, Germany.
| | | | | |
Collapse
|
9
|
Menor-Salván C, Marín-Yaseli MR. Prebiotic chemistry in eutectic solutions at the water-ice matrix. Chem Soc Rev 2012; 41:5404-15. [PMID: 22660387 DOI: 10.1039/c2cs35060b] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A crystalline ice matrix at subzero temperatures can maintain a liquid phase where organic solutes and salts concentrate to form eutectic solutions. This concentration effect converts the confined reactant solutions in the ice matrix, sometimes making condensation and polymerisation reactions occur more favourably. These reactions occur at significantly high rates from a prebiotic chemistry standpoint, and the labile products can be protected from degradation. The experimental study of the synthesis of nitrogen heterocycles at the ice-water system showed the efficiency of this scenario and could explain the origin of nucleobases in the inner Solar System bodies, including meteorites and extra-terrestrial ices, and on the early Earth. The same conditions can also favour the condensation of monomers to form ribonucleic acid and peptides. Together with the synthesis of these monomers, the ice world (i.e., the chemical evolution in the range between the freezing point of water and the limit of stability of liquid brines, 273 to 210 K) is an under-explored experimental model in prebiotic chemistry.
Collapse
Affiliation(s)
- César Menor-Salván
- Centro de Astrobiología (INTA-CSIC), INTA, E-28850 Torrejón de Ardoz, Spain.
| | | |
Collapse
|
10
|
Nikolaev Y, Pervushin K. Structural basis of RNA binding by leucine zipper GCN4. Protein Sci 2012; 21:667-76. [PMID: 22374868 PMCID: PMC3403464 DOI: 10.1002/pro.2051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 02/19/2012] [Indexed: 11/06/2022]
Abstract
Recently, we showed that leucine zipper (LZ) motifs of basic leucine zipper (bZIP) transcription factors GCN4 and c-Jun are capable of catalyzing degradation of RNA (Nikolaev et al., PLoS ONE 2010; 5:e10765). This observation is intriguing given the tight regulation of RNA turnover control and the antiquity of bZIP transcription factors. To support further mechanistic studies, herein, we elucidated RNA binding interface of the GCN4 leucine zipper motif from yeast. Solution NMR experiments showed that the LZ-RNA interaction interface is located in the first two heptads of LZ moiety, and that only the dimeric (coiled coil) LZ conformation is capable of binding RNA. Site-directed mutagenesis of the LZ-GCN4 RNA binding interface showed that substrate binding is facilitated by lysine and arginine side chains, and that at least one nucleophilic residue is located in proximity to the RNA phosphate backbone. Further studies in the context of full-length bZIP factors are envisaged to address the biological relevance of LZ RNase activity.
Collapse
Affiliation(s)
- Yaroslav Nikolaev
- Biozentrum of University Basel, Klingelbergstrasse 70CH-4056 Basel, Switzerland
- *Correspondence to: Konstantin Pervushin, School of Biological Sciences, Nanyang Technological University, Singapore. E-mail: or Yaroslav Nikolaev, E-mail:
| | - Konstantin Pervushin
- Biozentrum of University Basel, Klingelbergstrasse 70CH-4056 Basel, Switzerland
- School of Biological Sciences, Nanyang Technological UniversitySingapore 637551, Singapore
- *Correspondence to: Konstantin Pervushin, School of Biological Sciences, Nanyang Technological University, Singapore. E-mail: or Yaroslav Nikolaev, E-mail:
| |
Collapse
|
11
|
Aitken GDC, Cox H, Stace AJ. Moderating the Acidity of Pb(II)–Water Complexes through the Coordination of Nonaqueous Ligands: A Computational Study. J Phys Chem A 2012; 116:3035-41. [DOI: 10.1021/jp300032m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Georgina D. C. Aitken
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, U.K
| | - Hazel Cox
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, U.K
| | - Anthony J. Stace
- School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
12
|
Salpin JY, Guillaumont S, Ortiz D, Tortajada J, Maître P. Direct evidence for tautomerization of the uracil moiety within the Pb2+/uridine-5'-monophosphate complex: a combined tandem mass spectrometry and IRMPD study. Inorg Chem 2011; 50:7769-78. [PMID: 21744847 DOI: 10.1021/ic200918q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure of the [Pb(UMP)-H](+) (UMP = uridine-5'-monophosphate) complex was studied in the gas phase by combining electrospray ionization (ESI), tandem mass spectrometry, and mid-infrared multiple photon dissociation (IRMPD) spectroscopy. The results obtained show that Pb(2+) ions interact not only with the deprotonated phosphate group but also with a carbonyl group of the nucleobase moiety by folding of the mononucleotide, resulting in macrochelates that are not likely to be present in solution. Comparison between the IRMPD and DFT-computed spectra suggests that the ESI-generated complex likely corresponds to a mixture of several structures, and establishes the enolic tautomers as the most abundant species for the [Pb(UMP)-H](+) ion, while the very weak IRMPD signal observed at ∼1763 cm(-1) points to a minor population of oxo forms. Our data also suggest that losing the nucleobase residue under CID conditions does not necessarily mean a lack of interaction between the metal and the nucleobase moiety, as commonly reported in the literature for large oligonucleotides.
Collapse
Affiliation(s)
- Jean-Yves Salpin
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Université d'Evry Val d'Essonn e, Bâtiment Maupertuis, Boulevard François Mitterrand, 91025 Evry, France.
| | | | | | | | | |
Collapse
|
13
|
Xia F, Zhu H. Alkaline hydrolysis of ethylene phosphate: an ab initio study by supermolecule model and polarizable continuum approach. J Comput Chem 2011; 32:2545-54. [PMID: 21598282 DOI: 10.1002/jcc.21834] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 02/26/2011] [Accepted: 10/20/2011] [Indexed: 11/06/2022]
Abstract
The alkaline hydrolysis reaction of ethylene phosphate (EP) has been investigated using a supermolecule model, in which several explicit water molecules are included. The structures and single-point energies for all of the stationary points are calculated in the gas phase and in solution at the B3LYP/6-31++G(df,p) and MP2/6-311++G(df,2p) levels. The effect of water bulk solvent is introduced by the polarizable continuum model (PCM). Water attack and hydroxide attack pathways are taken into account for the alkaline hydrolysis of EP. An associative mechanism is observed for both of the two pathways with a kinetically insignificant intermediate. The water attack pathway involves a water molecule attacking and a proton transfer from the attacking water to the hydroxide in the first step, followed by an endocyclic bond cleavage to the leaving group. While in the first step of the hydroxide attack pathway the nucleophile is the hydroxide anion. The calculated barriers in aqueous solution for the water attack and hydroxide attack pathways are all about 22 kcal/mol. The excellent agreement between the calculated and observed values demonstrates that both of the two pathways are possible for the alkaline hydrolysis of EP.
Collapse
Affiliation(s)
- Futing Xia
- School of Chemistry, Sichuan University, Chengdu, China
| | | |
Collapse
|
14
|
Lopes PEM, Roux B, MacKerell AD. Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability. Theory and applications. Theor Chem Acc 2009; 124:11-28. [PMID: 20577578 PMCID: PMC2888514 DOI: 10.1007/s00214-009-0617-x] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A current emphasis in empirical force fields is on the development of potential functions that explicitly treat electronic polarizability. In the present article, the commonly used methodologies for modelling electronic polarization are presented along with an overview of selected application studies. Models presented include induced point-dipoles, classical Drude oscillators, and fluctuating charge methods. The theoretical background of each method is followed by an introduction to extended Langrangian integrators required for computationally tractable molecular dynamics simulations using polarizable force fields. The remainder of the review focuses on application studies using these methods. Emphasis is placed on water models, for which numerous examples exist, with a more thorough discussion presented on the recently published models associated with the Drude-based CHARMM and the AMOEBA force fields. The utility of polarizable models for the study of ion solvation is then presented followed by an overview of studies of small molecules (e.g. CCl(4), alkanes, etc) and macromolecule (proteins, nucleic acids and lipid bilayers) application studies. The review is written with the goal of providing a general overview of the current status of the field and to facilitate future application and developments.
Collapse
Affiliation(s)
- Pedro E. M. Lopes
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21230, USA
| | - Benoit Roux
- Institute of Molecular Pediatric Sciences, Gordon Center for Integrative Science, University of Chicago 929 E. 57th St. Chicago, IL 60637
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21230, USA
| |
Collapse
|
15
|
Wang H, Kim Y, Liu H, Zhu Z, Bamrungsap S, Tan W. Engineering a Unimolecular DNA-Catalytic Probe for Single Lead Ion Monitoring. J Am Chem Soc 2009; 131:8221-6. [DOI: 10.1021/ja901132y] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui Wang
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200
| | - Youngmi Kim
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200
| | - Haipeng Liu
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200
| | - Zhi Zhu
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200
| | - Suwussa Bamrungsap
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200
| | - Weihong Tan
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200
| |
Collapse
|
16
|
Salpin JY, Guillaumont S, Tortajada J, Lamsabhi AM. Gas-phase interactions between lead(II) ions and thiouracil nucleobases: a combined experimental and theoretical study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:359-69. [PMID: 19038555 DOI: 10.1016/j.jasms.2008.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/14/2008] [Accepted: 10/22/2008] [Indexed: 05/17/2023]
Abstract
The gas-phase interactions between lead(II) ions and 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil have been investigated by combining mass spectrometry and theoretical calculations. The most abundant complexes observed, namely [Pb(thiouracil) - H](+), have been studied by MS/MS experiments. Cationization by the metal allows an unambiguous characterization of the sulfur position, several fragment ions being specific of each isomer. Moreover, compared with the uracil fragmentation, new fragmentation channels are observed: elimination of PbS or total reduction of the metal. Calculations performed on the different structures, including tautomers, show that sulfur is the preferred complexation site, suggesting the greater affinity of lead for sulfur. The most stable structures are always preferentially bidentate. Natural population analysis indicates a charge transfer from the base to the metal with a more pronounced covalent character for sulfur compared to oxygen. Energetic profiles associated with the main fragmentations have been described.
Collapse
Affiliation(s)
- Jean-Yves Salpin
- Université d'Evry Val d'Essonne, Laboratoire d'Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE), Evry, France.
| | | | | | | |
Collapse
|
17
|
Martick M, Lee TS, York DM, Scott WG. Solvent structure and hammerhead ribozyme catalysis. CHEMISTRY & BIOLOGY 2008; 15:332-42. [PMID: 18420140 PMCID: PMC2610685 DOI: 10.1016/j.chembiol.2008.03.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/05/2008] [Accepted: 03/07/2008] [Indexed: 11/21/2022]
Abstract
Although the hammerhead ribozyme is regarded as a prototype for understanding RNA catalysis, the mechanistic roles of associated metal ions and water molecules in the cleavage reaction remain controversial. We have investigated the catalytic potential of observed divalent metal ions and water molecules bound to a 2 A structure of the full-length hammerhead ribozyme by using X-ray crystallography in combination with molecular dynamics simulations. A single Mn(2+) is observed to bind directly to the A9 phosphate in the active site, accompanying a hydrogen-bond network involving a well-ordered water molecule spanning N1 of G12 (the general base) and 2'-O of G8 (previously implicated in general acid catalysis) that we propose, based on molecular dynamics calculations, facilitates proton transfer in the cleavage reaction. Phosphate-bridging metal interactions and other mechanistic hypotheses are also tested with this approach.
Collapse
Affiliation(s)
- Monika Martick
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- The Center for the Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tai-Sung Lee
- Consortium for Bioinformatics and Computational Biology, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, MN 55455, USA
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, MN 55455, USA
| | - Darrin M. York
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, MN 55455, USA
| | - William G. Scott
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, MN 55455, USA
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
18
|
Scott WG. Morphing the minimal and full-length hammerhead ribozymes: implications for the cleavage mechanism. Biol Chem 2007; 388:727-35. [PMID: 17570825 DOI: 10.1515/bc.2007.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The hammerhead ribozyme is a small, intensively studied catalytic RNA, and has been used as a prototype for understanding how RNA catalysis works. In 2003, the importance of a set of tertiary contacts that appear in natural sequences of the hammerhead RNA was finally understood. The presence of these contact regions in stems I and II in 'full-length hammerhead ribozymes' is accompanied by an up to 1000-fold catalytic rate enhancement, indicating a profound structural effect upon the active site. Although the new structure resolved most of what appeared to be irreconcilable differences with mechanistic studies in solution, it did so in a way that is simultaneously reconcilable with earlier crystallographic mechanistic studies, within the limits imposed by the truncated sequence of the minimal hammerhead. Here we present an analysis of the correspondence between the full-length and minimal hammerhead crystal structures, using adiabatic morphing calculations that for the first time test the hypothesis that the minimal hammerhead structure occasionally visits the active conformation, both in solution and in the crystalline state in a sterically allowed manner, and argue that this is the simplest hypothesis that consistently explains all of the experimental observations.
Collapse
Affiliation(s)
- William G Scott
- The Center for the Molecular Biology of RNA, 228 Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
19
|
Stich TA, Lahiri S, Yeagle G, Dicus M, Brynda M, Gunn A, Aznar C, Derose VJ, Britt RD. Multifrequency Pulsed EPR Studies of Biologically Relevant Manganese(II) Complexes. APPLIED MAGNETIC RESONANCE 2007; 31:321-341. [PMID: 22190766 PMCID: PMC3242439 DOI: 10.1007/bf03166263] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Electron paramagnetic resonance studies at multiple frequencies (MF EPR) can provide detailed electronic structure descriptions of unpaired electrons in organic radicals, inorganic complexes, and metalloenzymes. Analysis of these properties aids in the assignment of the chemical environment surrounding the paramagnet and provides mechanistic insight into the chemical reactions in which these systems take part. Herein, we present results from pulsed EPR studies performed at three different frequencies (9, 31, and 130 GHz) on [Mn(II)(H(2)O)(6)](2+), Mn(II) adducts with the nucleotides ATP and GMP, and the Mn(II)-bound form of the hammerhead ribozyme (MnHH). Through line shape analysis and interpretation of the zero-field splitting values derived from successful simulations of the corresponding continuous-wave and field-swept echo-detected spectra, these data are used to exemplify the ability of the MF EPR approach in distinguishing the nature of the first ligand sphere. A survey of recent results from pulsed EPR, as well as pulsed electron-nuclear double resonance and electron spin echo envelope modulation spectroscopic studies applied to Mn(II)-dependent systems, is also presented.
Collapse
Affiliation(s)
- T A Stich
- Department of Chemistry, University of California-Davis, Davis, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Martick M, Scott WG. Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 2006; 126:309-20. [PMID: 16859740 PMCID: PMC4447102 DOI: 10.1016/j.cell.2006.06.036] [Citation(s) in RCA: 390] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/22/2006] [Accepted: 06/16/2006] [Indexed: 11/22/2022]
Abstract
Minimal hammerhead ribozymes have been characterized extensively by static and time-resolved crystallography as well as numerous biochemical analyses, leading to mutually contradictory mechanistic explanations for catalysis. We present the 2.2 A resolution crystal structure of a full-length Schistosoma mansoni hammerhead ribozyme that permits us to explain the structural basis for its 1000-fold catalytic enhancement. The full-length hammerhead structure reveals how tertiary interactions occurring remotely from the active site prime this ribozyme for catalysis. G-12 and G-8 are positioned consistent with their previously suggested roles in acid-base catalysis, the nucleophile is aligned with a scissile phosphate positioned proximal to the A-9 phosphate, and previously unexplained roles of other conserved nucleotides become apparent within the context of a distinctly new fold that nonetheless accommodates the previous structural studies. These interactions permit us to explain the previously irreconcilable sets of experimental results in a unified, consistent, and unambiguous manner.
Collapse
Affiliation(s)
- Monika Martick
- Department of Molecular, Cellular and Developmental Biology, Robert L. Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
21
|
Kazakov SA, Balatskaya SV, Johnston BH. Ligation of the hairpin ribozyme in cis induced by freezing and dehydration. RNA (NEW YORK, N.Y.) 2006; 12:446-56. [PMID: 16495237 PMCID: PMC1383583 DOI: 10.1261/rna.2123506] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although reducing the temperature slows most chemical reactions, freezing can stimulate some reactions by mechanisms that are only partially understood. Here we show that freezing stimulates the self-ligation (circularization) of linear forms of the hairpin ribozyme (HPR) containing 2',3'-cyclic phosphate and 5'-OH termini. Divalent metal ions (M2+) are not required, but monovalent cations and anions at millimolar concentrations can have various effects on this reaction depending on the specific ion. Under optimal conditions, the observed rate of M2+-independent self-ligation reaches a peak (0.04 min(-1)) at -10 degrees C with a yield of -60% after 1 h. In contrast, no ligation occurs either at above 0 degrees C or in solutions that remain unfrozen when supercooled to subzero temperatures. Under freezing conditions, the cleavage-ligation equilibrium strongly favors ligation. Besides freezing, evaporation of the aqueous solvent as well as the presence of ethanol at levels of 40% or above can also induce M2+-independent HPR ligation at 25 degrees C. We argue that partial RNA dehydration, which is a common feature of freezing, evaporation, and the presence of ethanol, is a key factor supporting HPR ligation activity at both above- and below-freezing temperatures. In the context of the RNA world hypothesis, freezing-induced ligation is an attractive mechanism by which complex RNAs could have evolved under conditions in which RNA was relatively protected against degradation.
Collapse
Affiliation(s)
- Sergei A Kazakov
- Somagenics, Inc., 2161 Delaware Avenue, Santa Cruz, CA 95060, USA.
| | | | | |
Collapse
|
22
|
Richter SN, Gatto B, Tabarrini O, Fravolini A, Palumbo M. Antiviral 6-amino-quinolones: Molecular basis for potency and selectivity. Bioorg Med Chem Lett 2005; 15:4247-51. [PMID: 16054362 DOI: 10.1016/j.bmcl.2005.06.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 06/17/2005] [Accepted: 06/23/2005] [Indexed: 11/28/2022]
Abstract
Structural modifications introduced in 6-amino-quinolones to increase antiviral activity can strongly affect cytotoxicity to host cells. By competition to Tat-TAR complex and binding experiments to viral and cellular DNA and RNA structures, we show that the nature of the substituent at position 7 modifies drug affinity and specificity for the nucleic acid. Interestingly, the basicity of the above substituent modulates chelation of the quinolone template to magnesium ions, which, in turn, critically affects the potency and target selectivity in the antiviral quinolone family.
Collapse
Affiliation(s)
- Sara N Richter
- Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | | | | | | | | |
Collapse
|
23
|
Mikulecky PJ, Takach JC, Feig AL. Entropy-driven folding of an RNA helical junction: an isothermal titration calorimetric analysis of the hammerhead ribozyme. Biochemistry 2004; 43:5870-81. [PMID: 15134461 PMCID: PMC2465462 DOI: 10.1021/bi0360657] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Helical junctions are extremely common motifs in naturally occurring RNAs, but little is known about the thermodynamics that drive their folding. Studies of junction folding face several challenges: non-two-state folding behavior, superposition of secondary and tertiary structural energetics, and drastically opposing enthalpic and entropic contributions to folding. Here we describe a thermodynamic dissection of the folding of the hammerhead ribozyme, a three-way RNA helical junction, by using isothermal titration calorimetry of bimolecular RNA constructs. By using this method, we show that tertiary folding of the hammerhead core occurs with a highly unfavorable enthalpy change, and is therefore entropically driven. Furthermore, the enthalpies and heat capacities of core folding are the same whether supported by monovalent or divalent ions. These properties appear to be general to the core sequence of bimolecular hammerhead constructs. We present a model for the ion-induced folding of the hammerhead core that is similar to those advanced for the folding of much larger RNAs, involving ion-induced collapse to a structured, non-native state accompanied by rearrangement of core residues to produce the native fold. In agreement with previous enzymological and structural studies, our thermodynamic data suggest that the hammerhead structure is stabilized in vitro predominantly by diffusely bound ions. Our approach addresses several significant challenges that accompany the study of junction folding, and should prove useful in defining the thermodynamic determinants of stability in these important RNA motifs.
Collapse
Affiliation(s)
| | | | - Andrew L. Feig
- To whom correspondence should be addressed:Andrew L. Feig, Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 USA. Phone: 812-856-5449. Fax: 812-855-8300. E-mail:
| |
Collapse
|
24
|
Pitt SW, Majumdar A, Serganov A, Patel DJ, Al-Hashimi HM. Argininamide binding arrests global motions in HIV-1 TAR RNA: comparison with Mg2+-induced conformational stabilization. J Mol Biol 2004; 338:7-16. [PMID: 15050819 PMCID: PMC4694592 DOI: 10.1016/j.jmb.2004.02.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 02/04/2004] [Accepted: 02/11/2004] [Indexed: 10/26/2022]
Abstract
The structure and dynamics of the stem-loop transactivation response element (TAR) RNA from the human immunodeficiency virus type-1 (HIV-1) bound to the ligand argininamide (ARG) has been characterized using a combination of a large number of residual dipolar couplings (RDCs) and trans-hydrogen bond NMR methodology. Binding of ARG to TAR changes the average inter-helical angle between the two stems from approximately 47 degrees in the free state to approximately 11 degrees in the bound state, and leads to the arrest of large amplitude (+/-46 degrees ) inter-helical motions observed previously in the free state. While the global structural dynamics of TAR-ARG is similar to that previously reported for TAR bound to Mg2+, there are substantial differences in the hydrogen bond alignment of bulge and neighboring residues. Based on a novel H5(C5)NN experiment for probing hydrogen-mediated 2hJ(N,N) scalar couplings as well as measured RDCs, the TAR-ARG complex is stabilized by a U38-A27.U23 base-triple involving an A27.U23 reverse Hoogsteen hydrogen bond alignment as well as by a A22-U40 Watson-Crick base-pair at the junction of stem I. These hydrogen bond alignments are not observed in either the free or Mg2+ bound forms of TAR. The combined conformational analysis of TAR under three states reveals that ligands and divalent ions can stabilize similar RNA global conformations through distinct interactions involving different hydrogen bond alignments in the RNA.
Collapse
Affiliation(s)
- Stephen W. Pitt
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Ananya Majumdar
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Alexander Serganov
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Dinshaw J. Patel
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Hashim M. Al-Hashimi
- Departments of Chemistry and Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109, USA
- Corresponding author:
| |
Collapse
|
25
|
Schiemann O, Fritscher J, Kisseleva N, Sigurdsson ST, Prisner TF. Structural Investigation of a High-Affinity MnII Binding Site in the Hammerhead Ribozyme by EPR Spectroscopy and DFT Calculations. Effects of Neomycin B on Metal-Ion Binding. Chembiochem 2003; 4:1057-65. [PMID: 14523924 DOI: 10.1002/cbic.200300653] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electron paramagnetic resonance spectroscopy and density functional theory methods were used to study the structure of a single, high-affinity Mn(II) binding site in the hammerhead ribozyme. This binding site exhibits a dissociation constant Ke of 4.4 microM in buffer solutions containing 1 M NaCl, as shown by titrations monitored by continuous wave (cw) EPR. A combination of electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) experiments revealed that the paramagnetic manganese(II) ion in this binding site is coupled to a single nitrogen atom with a quadrupole coupling constant kappa of 0.7 MHz, an asymmetry parameter eta of 0.4, and an isotropic hyperfine coupling constant of Aiso(14N)=2.3 MHz. All three EPR parameters are sensitive to the arrangement of the Mn(II) ligand sphere and can therefore be used to determine the structure of the binding site. A possible location for this binding site may be at the G10.1, A9 site found to be occupied by Mn(II) in crystals (MacKay et al., Nature 1994, 372, 68 and Scott et al., Science 1996, 274, 2065). To determine whether the structure of the binding site is the same in frozen solution, we performed DFT calculations for the EPR parameters, based on the structure of the Mn(II) site in the crystal. Computations with the BHPW91 density function in combination with a 9s7p4d basis set for the manganese(II) center and the Iglo-II basis set for all other atoms yielded values of kappa(14N)=+0.80 MHz, eta=0.324, and Aiso(14N)=+2.7 MHz, in excellent agreement with the experimentally obtained EPR parameters, which suggests that the binding site found in the crystal and in frozen solution are the same. In addition, we demonstrated by EPR that Mn(II) is released from this site upon binding of the aminoglycoside antibiotic neomycin B (Kd=1.2 microM) to the hammerhead ribozyme. Neomycin B has previously been shown to inhibit the catalytic activity of this ribozyme (Uhlenbeck et al., Biochemistry 1995, 34, 11 186).
Collapse
Affiliation(s)
- Olav Schiemann
- Department of Physical and Theoretical Chemistry, and Center for Biological Magnetic Resonance, Johann Wolfgang Goethe University, Marie-Curie-Strasse 11, 60439 Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|
26
|
Al-Hashimi HM, Pitt SW, Majumdar A, Xu W, Patel DJ. Mg2+-induced variations in the conformation and dynamics of HIV-1 TAR RNA probed using NMR residual dipolar couplings. J Mol Biol 2003; 329:867-73. [PMID: 12798678 PMCID: PMC4692374 DOI: 10.1016/s0022-2836(03)00517-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of divalent Mg(2+) on the conformation and dynamics of the stem-loop transactivation response element (TAR) RNA from HIV-1 have been characterized using NMR residual dipolar couplings (RDCs). Order matrix analysis of one bond 13C-1H RDCs measured in TAR at [Mg(2+)]:[TAR] stoichiometric ratios of approximately 3:1 (TAR(3.0Mg)) and approximately 4.5:1 (TAR(4.5Mg)) revealed that Mg(2+) reduces the average inter-helical angle from 47(+/-5) degrees in TAR(free) to 5(+/-7) degrees in TAR(4.5Mg). In contrast to the TAR(free) state, the generalized degree of order for the two stems in TAR(4.5Mg) is found to be identical within experimental uncertainty, indicating that binding of Mg(2+) leads to an arrest of inter-helical motions in TAR(free). Results demonstrate that RDC-NMR methodology can provide new insight into the effects of Mg(2+) on both the conformation and dynamics of RNA.
Collapse
Affiliation(s)
- Hashim M Al-Hashimi
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
27
|
Abstract
Twenty years have passed since the initial discovery of catalytic RNA. Although initial discoveries of ribozymes (RNA enzymes) involved phosphoryl transfer reactions on RNA substrates, our knowledge of the biological repertoire of these enzymes was expanded recently as a result of new evidence suggesting that the RNA component of the ribosome catalyzes peptide bond formation. Ribozymes have posed novel challenges for mechanistic studies, but recent investigations have yielded increasing support for chemical mechanisms involving precisely positioned nucleic acid bases with environmentally perturbed pKa values and metal ions. A continuing challenge for RNA enzymologists is the separation of the structural and chemical effects in interpreting experimental results, a challenge that will be overcome as the intriguing fields of RNA enzymology and structural biology continue to expand.
Collapse
Affiliation(s)
- Victoria J DeRose
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA.
| |
Collapse
|
28
|
Stuhlmann F, Jäschke A. Characterization of an RNA active site: interactions between a Diels-Alderase ribozyme and its substrates and products. J Am Chem Soc 2002; 124:3238-44. [PMID: 11916406 DOI: 10.1021/ja0167405] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ribozymes have recently been shown to catalyze the stereoselective formation of carbon-carbon bonds between small organic molecules. The interactions of these Diels-Alderase ribozymes with their substrates and products have now been elucidated by chemical substitution analysis by using 44 different, systematically varied analogues. RNA-diene interaction is governed by stacking interactions, while hydrogen bonding and metal ion coordination appear to be less important. The diene has to be an anthracene derivative, and substituents at defined positions are permitted, thereby shedding light on the geometry of the binding site. The dienophile must be a five-membered maleimidyl ring with an unsubstituted reactive double bond, and a hydrophobic side chain makes a major contribution to RNA binding. The ribozyme distinguishes between different enantiomers of chiral substrates and accelerates cycloadditions with both enantio- and diastereoselectivity. The stereochemistry of the reaction is controlled by RNA-diene interactions. The RNA interacts strongly and stereoselectively with the cycloaddition products, requiring several structural features to be present. Taken together, the results highlight the intricacy of ribozyme active sites which can control chemical reaction pathways based on minute differences in substrate stereochemistry and substitution pattern.
Collapse
Affiliation(s)
- Friedrich Stuhlmann
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry, Free University of Berlin, Thielallee 63, D-14195 Berlin, Germany
| | | |
Collapse
|
29
|
Stolze K, Holmes SC, Earnshaw DJ, Singh M, Stetsenko D, Williams D, Gait MJ. Novel spermine-amino acid conjugates and basic tripeptides enhance cleavage of the hairpin ribozyme at low magnesium ion concentration. Bioorg Med Chem Lett 2001; 11:3007-10. [PMID: 11714598 DOI: 10.1016/s0960-894x(01)00608-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Combinations of the polyamine spermine and magnesium ions synergize to dramatically enhance cleavage of the hairpin ribozyme. Certain synthetic basic tripeptides stimulate hairpin cleavage significantly at limiting magnesium ion concentration, notably the tripeptide of L-diaminobutyric acid (Dab). Of a range of novel synthetic spermine-amino acid conjugates, L-Dab-spermine (but not D-Dab nor other amino acid conjugates) was more effective than spermine itself.
Collapse
Affiliation(s)
- K Stolze
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Takagi Y, Warashina M, Stec WJ, Yoshinari K, Taira K. Recent advances in the elucidation of the mechanisms of action of ribozymes. Nucleic Acids Res 2001; 29:1815-34. [PMID: 11328865 PMCID: PMC37246 DOI: 10.1093/nar/29.9.1815] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cleavage of RNA can be accelerated by a number of factors. These factors include an acidic group (Lewis acid) or a basic group that aids in the deprotonation of the attacking nucleophile, in effect enhancing the nucleophilicity of the nucleophile; an acidic group that can neutralize and stabilize the leaving group; and any environment that can stabilize the pentavalent species that is either a transition state or a short-lived intermediate. The catalytic properties of ribozymes are due to factors that are derived from the complicated and specific structure of the ribozyme-substrate complex. It was postulated initially that nature had adopted a rather narrowly defined mechanism for the cleavage of RNA. However, recent findings have clearly demonstrated the diversity of the mechanisms of ribozyme-catalyzed reactions. Such mechanisms include the metal-independent cleavage that occurs in reactions catalyzed by hairpin ribozymes and the general double-metal-ion mechanism of catalysis in reactions catalyzed by the Tetrahymena group I ribozyme. Furthermore, the architecture of the complex between the substrate and the hepatitis delta virus ribozyme allows perturbation of the pK(a) of ring nitrogens of cytosine and adenine. The resultant perturbed ring nitrogens appear to be directly involved in acid/base catalysis. Moreover, while high concentrations of monovalent metal ions or polyamines can facilitate cleavage by hammerhead ribozymes, divalent metal ions are the most effective acid/base catalysts under physiological conditions.
Collapse
Affiliation(s)
- Y Takagi
- Gene Discovery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Science City 305-8562, Japan
| | | | | | | | | |
Collapse
|
31
|
Kanavarioti A, Monnard PA, Deamer DW. Eutectic phases in ice facilitate nonenzymatic nucleic acid synthesis. ASTROBIOLOGY 2001; 1:271-281. [PMID: 12448990 DOI: 10.1089/15311070152757465] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polymeric compounds similar to oligonucleotides are relevant to the origin of life and particularly to the concept of an RNA world. Although short oligomers of RNA can be synthesized nonenzymatically under laboratory conditions by second-order reactions in concentrated solutions, there is no consensus on how these polymers could have been synthesized de novo on the early Earth from dilute solutions of monomers. To address this question in the context of an RNA world, we have explored ice eutectic phases as a reaction medium. When an aqueous solution freezes, the solutes become concentrated in the spaces between the ice crystals. The increased concentration offsets the effect of the lower temperature and accelerates the reaction. Here we show that in the presence of metal ions in dilute solutions, frozen samples of phosphoimidazolide-activated uridine react within days at -18 degrees C to form oligouridylates up to 11 bases long. Product yields typically exceed 90%, and approximately 30% of the oligomers include one or more 3'-5' linkages. These conditions facilitate not only the notoriously difficult oligouridylate synthesis, but also the oligomerization of activated cytidylate, adenylate, and guanylate. To our knowledge, this represents the first report to indicate that ice matrices on the early Earth may have accelerated certain prebiotic polymerization reactions.
Collapse
Affiliation(s)
- A Kanavarioti
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA, USA.
| | | | | |
Collapse
|
32
|
Abstract
The appropriate folding of catalytic RNA is a prerequisite for effective catalysis. A novel ribozyme, the maxizyme, has been generated and its activity can be controlled allosterically. The maxizymes work both in vitro and in vivo indicating the potential utility of this novel class of ribozyme as a gene-inactivating agent with a biosensor function.
Collapse
MESH Headings
- Adenosine Triphosphate/physiology
- Allosteric Regulation
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Binding Sites
- Catalysis
- DNA/physiology
- Dimerization
- Flavin Mononucleotide/physiology
- Fusion Proteins, bcr-abl/genetics
- Genes, abl
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Models, Molecular
- Neoplasm Transplantation
- Nucleic Acid Conformation
- Plasmids/genetics
- RNA/physiology
- RNA, Catalytic/chemistry
- RNA, Catalytic/metabolism
- RNA, Catalytic/pharmacology
- RNA, Transfer/chemistry
- Sequence Deletion
- Structure-Activity Relationship
- Substrate Specificity
- Tumor Cells, Cultured/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- M Warashina
- National Institute for Advanced Interdisciplinary Research AIST, MITI 305-8562, Tsukuba Science City, Japan
| | | | | |
Collapse
|
33
|
Warashina M, Takagi Y, Stec WJ, Taira K. Differences among mechanisms of ribozyme-catalyzed reactions. Curr Opin Biotechnol 2000; 11:354-62. [PMID: 10975454 DOI: 10.1016/s0958-1669(00)00110-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The catalytic properties of ribozymes depend on the sophisticated structures of the respective ribozyme-substrate complexes. Although it has been suggested that ribozyme-mediated cleavage of RNA occurs via a rather strictly defined mechanism, recent findings have clearly demonstrated the diversity of reaction mechanisms.
Collapse
Affiliation(s)
- M Warashina
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo, Japan
| | | | | | | |
Collapse
|
34
|
Abstract
The hairpin ribozyme belongs to the family of small catalytic RNAs that cleave RNA substrates in a reversible reaction that generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. The hairpin catalytic motif was discovered in the negative strand of the tobacco ringspot virus satellite RNA, where hairpin ribozyme-mediated self-cleavage and ligation reactions participate in processing RNA replication intermediates. The self-cleaving hairpin, hammerhead, hepatitis delta and Neurospora VS RNAs each adopt unique structures and exploit distinct kinetic and catalytic mechanisms despite catalyzing the same chemical reactions. Mechanistic studies of hairpin ribozyme reactions provided early evidence that, like protein enzymes, RNA enzymes are able to exploit a variety of catalytic strategies. In contrast to the hammerhead and Tetrahymena ribozyme reactions, hairpin-mediated cleavage and ligation proceed through a catalytic mechanism that does not require direct coordination of metal cations to phosphate or water oxygens. The hairpin ribozyme is a better ligase than it is a nuclease while the hammerhead reaction favors cleavage over ligation of bound products by nearly 200-fold. Recent structure-function studies have begun to yield insights into the molecular bases of these unique features of the hairpin ribozyme.
Collapse
Affiliation(s)
- M J Fedor
- Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB35, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|