1
|
Ren C, Aini N, Kuang Y, Lin Y, Liang Z. Sensing, Adapting and Thriving: How Fruit Crops Combat Abiotic Stresses. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40205704 DOI: 10.1111/pce.15504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
Production of high-yield and high-quality fruits is always the long-term objective of fruit crop cultivation, which, however, is challenged by various abiotic stresses such as drought, extreme temperatures and high salinity, and the adverse impacts of abiotic stresses on fruit crops are exacerbated by climate change in recent years. To cope with these environmental stressors, fruit crops have evolved adaptative strategies involving physiological changes and molecular regulation. In this review, we summarise the relevent changes in photosynthesis, osmotic and reactive oxygen species (ROS) equilibrium, metabolism and protein homeostasis in response to abiotic stresses. Moreover, perception of environmental stimuli as well as recent progress of underlying regulatory mechanisms is also discussed. Based on our current knowledge, possible strategies for stress resilience improvement in fruit crops are accordingly proposed. In addition, we also discuss the challenges in identification of key nodes in plant responses to multiple stresses and development of stress-resilient fruit crops, and addressing these issues in the future would advance our understanding of how fruit crops combat abiotic stresses and facilitate the breeding of superior fruit crops that can adapt to and thrive in the changing environments.
Collapse
Affiliation(s)
- Chong Ren
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nuremanguli Aini
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yangfu Kuang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Lin
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Guo P, Chong L, Jiao Z, Xu R, Niu Q, Zhu Y. Salt stress activates the CDK8-AHL10-SUVH2/9 module to dynamically regulate salt tolerance in Arabidopsis. Nat Commun 2025; 16:2454. [PMID: 40074748 PMCID: PMC11903955 DOI: 10.1038/s41467-025-57806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Salt stress has devastating effects on agriculture, yet the key regulators modulating the transcriptional dynamics of salt-responsive genes remain largely elusive in plants. Here, we discover that salt stress substantially induces the kinase activity of Mediator cyclin-dependent kinase 8 (CDK8), which is essential for its positive role in regulating salt tolerance. CDK8 is identified to phosphorylate AT-hook motif nuclear-localized protein 10 (AHL10) at serine 314, leading to its degradation under salt stress. Consistently, AHL10 is found to negatively regulate salt tolerance. Transcriptome analysis further indicates that CDK8 regulates over 20% of salt-responsive genes, half of which are co-regulated by AHL10. Moreover, AHL10 is revealed to recruit SU(VAR)3-9 homologs (SUVH2/9) to AT-rich DNA sequences in the nuclear matrix-attachment regions (MARs) of salt-responsive gene promoters, facilitating H3K9me2 deposition and repressing salt-responsive genes. Our study thereby has identified the CDK8-AHL10-SUVH2/9 module as a key molecular switch controlling transcriptional dynamics in response to salt stress.
Collapse
Affiliation(s)
- Pengcheng Guo
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Leelyn Chong
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhixin Jiao
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Rui Xu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qingfeng Niu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yingfang Zhu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China.
| |
Collapse
|
3
|
Suresh P, Muneer S. Light spectrum mediated improved graft-healing response by enhanced expression of transport protein in vegetables under drought conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:109780. [PMID: 40398271 DOI: 10.1016/j.plaphy.2025.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 05/23/2025]
Abstract
Vegetable production faces unprecedented challenges due to a rapid change in climate. Among several challenges increased stress factors like drought, salinity, and temperature threaten overall vegetable production. Grafting, a well-established technique of uniting a scion (shoot) with a compatible rootstock, has emerged as a crucial strategy for enhancing vegetable resilience. This approach strategically combines the desired fruiting characteristics of the scion with the robust root system and stress tolerance of the rootstock. Whereas, successful grafting can be hampered by stress conditions, that leads to poor graft union formation and reduced crop growth. This highlights the need for innovative solutions to optimize successful healing process during grafting. Light-emitting diodes (LEDs) offer a promising avenue for exploration. Recent research suggests that manipulating the light spectrum using LEDs during the grafting process can significantly improve its success rate. Specific wavelengths of light are known to influence critical crop physiological processes, including photosynthesis, hormone signaling, and stress response pathways that leads a better graft-union formation with a high compatibility rate. Hence, it can be hypothesized that targeted light spectrums can promote graft union development and enhance crop resilience under stress. This present review is a detailed summarization of controlled environment studies utilizing LEDs that is exposed to vegetables under various light spectra, encompassing red, blue, and far-red wavelength combinations which are meticulously tailored to optimize crop growth and stress tolerance. The review also highlights the impact of the light spectrum on several key parameters, such as the percentage of successful grafts, graft union formation, and scion and rootstock growth under drought stress conditions, molecular exchange at graft junction. This review holds significant promise for revolutionizing vegetable grafting practices, particularly in controlled environments. By harnessing the power of light spectrum manipulation in conjunction with grafting, growers can potentially achieve higher yields, better quality produce, and increased tolerance to environmental stressors. This combined approach paves the way for a more sustainable and productive future for vegetable farming in a changing climate.
Collapse
Affiliation(s)
- Preethika Suresh
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India; School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India.
| |
Collapse
|
4
|
Wang P, Liu F, Wang Y, Chen H, Liu T, Li M, Chen S, Wang D. Deciphering crucial salt-responsive genes in Brassica napus via statistical modeling and network analysis on dynamic transcriptomic data. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109568. [PMID: 39903946 DOI: 10.1016/j.plaphy.2025.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Soil salinization severely impacts crop yields, threatening global food security. Understanding the salt stress response of Brassica napus (B. napus), a vital oilseed crop, is crucial for developing salt-tolerant varieties. This study aims to comprehensively characterize the dynamic transcriptomic response of B. napus seedlings to salt stress, identifying key genes and pathways involved in this process. RNA-sequencing on 43 B. napus seedling samples are performed, including 24 controls and 19 salt-stressed plants, at time points of 0, 1, 3, 6, and 12 h. Differential expression analysis using 33 control experiments (CEs) identified 39,330 differentially expressed genes (DEGs). Principal component analysis (PCA) and a novel penalized logistic regression with k-Shape clustering (PLRKSC) method identify 346 crucial DEGs. GO enrichment, differential co-expression network analysis, and functional validation through B. napus transformation verify the functional roles of the identified DEGs. The analysis reveals highly dynamic and tissue-specific expression patterns of DEGs under salt stress. The identified 346 crucial DEGs include those involved in leaf and root development, stress-responsive transcription factors, and genes associated with the salt overly sensitive (SOS) pathway. Specifically, Overexpression of RD26 (BnaC07g40860D) in B. napus significantly enhances salt tolerance, confirming its role in salt stress response. This study provides a comprehensive understanding of the B. napus salt stress response at the transcriptomic level and identifies key candidate genes, such as RD26, for developing salt-tolerant varieties. The methodologies established can be applied to other omics studies of plant stress responses.
Collapse
Affiliation(s)
- Pei Wang
- State Key Laboratory of Crop Stress Adaption and Improvement, College of Agriculture, School of Life Sciences, School of Mathematics and Statistics, Henan University, Kaifeng, 475004, Henan, China; Henan Engineering Research Center for Industrial Internet of Things, Henan University, Zhengzhou, 450046, Henan, China
| | - Fei Liu
- State Key Laboratory of Crop Stress Adaption and Improvement, College of Agriculture, School of Life Sciences, School of Mathematics and Statistics, Henan University, Kaifeng, 475004, Henan, China
| | - Yongfeng Wang
- State Key Laboratory of Crop Stress Adaption and Improvement, College of Agriculture, School of Life Sciences, School of Mathematics and Statistics, Henan University, Kaifeng, 475004, Henan, China
| | - Hao Chen
- State Key Laboratory of Crop Stress Adaption and Improvement, College of Agriculture, School of Life Sciences, School of Mathematics and Statistics, Henan University, Kaifeng, 475004, Henan, China
| | - Tong Liu
- State Key Laboratory of Crop Stress Adaption and Improvement, College of Agriculture, School of Life Sciences, School of Mathematics and Statistics, Henan University, Kaifeng, 475004, Henan, China
| | - Mengyao Li
- State Key Laboratory of Crop Stress Adaption and Improvement, College of Agriculture, School of Life Sciences, School of Mathematics and Statistics, Henan University, Kaifeng, 475004, Henan, China
| | - Shunjie Chen
- State Key Laboratory of Crop Stress Adaption and Improvement, College of Agriculture, School of Life Sciences, School of Mathematics and Statistics, Henan University, Kaifeng, 475004, Henan, China
| | - Daojie Wang
- State Key Laboratory of Crop Stress Adaption and Improvement, College of Agriculture, School of Life Sciences, School of Mathematics and Statistics, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
5
|
Zhang H, Yu C, Zhang Q, Qiu Z, Zhang X, Hou Y, Zang J. Salinity survival: molecular mechanisms and adaptive strategies in plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1527952. [PMID: 40093605 PMCID: PMC11906435 DOI: 10.3389/fpls.2025.1527952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/28/2025] [Indexed: 03/19/2025]
Abstract
Soil salinity is a significant environmental challenge that threatens plant growth and development, adversely affecting global food crop production. This underscores the critical need to elucidate the molecular mechanisms underlying plant salt tolerance, which has profound implications for agricultural advancement. Recent progress in plant salt tolerance has greatly improved our understanding of the molecular mechanisms of plant responses to salt stress and precision design breeding as an effective strategy for developing new salt-tolerant crop varieties. This review focuses on the model plant species Arabidopsis thaliana and important crops, namely, wheat (Triticum aestivum), maize (Zea mays), and rice (Oryza sativa). It summarizes current knowledge on plant salt tolerance, emphasizing key aspects such as the perception and response to salt stress, Na+ transport, Na+ compartmentalization and clearance, changes in reactive oxygen species induced by salt stress, and regulation of plant stem cell development under salt stress conditions. The review might provide new and valuable information for understanding the molecular mechanisms of plant response and adaptation to salt stress.
Collapse
Affiliation(s)
- Huankai Zhang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Caiyu Yu
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Qian Zhang
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, China
| | - Zihan Qiu
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Xiansheng Zhang
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, China
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yifeng Hou
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, China
| | - Jie Zang
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, China
| |
Collapse
|
6
|
Chen C, Yu W, Xu X, Wang Y, Wang B, Xu S, Lan Q, Wang Y. Research Advancements in Salt Tolerance of Cucurbitaceae: From Salt Response to Molecular Mechanisms. Int J Mol Sci 2024; 25:9051. [PMID: 39201741 PMCID: PMC11354715 DOI: 10.3390/ijms25169051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Soil salinization severely limits the quality and productivity of economic crops, threatening global food security. Recent advancements have improved our understanding of how plants perceive, signal, and respond to salt stress. The discovery of the Salt Overly Sensitive (SOS) pathway has been crucial in revealing the molecular mechanisms behind plant salinity tolerance. Additionally, extensive research into various plant hormones, transcription factors, and signaling molecules has greatly enhanced our knowledge of plants' salinity tolerance mechanisms. Cucurbitaceae plants, cherished for their economic value as fruits and vegetables, display sensitivity to salt stress. Despite garnering some attention, research on the salinity tolerance of these plants remains somewhat scattered and disorganized. Consequently, this article offers a review centered on three aspects: the salt response of Cucurbitaceae under stress; physiological and biochemical responses to salt stress; and the current research status of their molecular mechanisms in economically significant crops, like cucumbers, watermelons, melon, and loofahs. Additionally, some measures to improve the salt tolerance of Cucurbitaceae crops are summarized. It aims to provide insights for the in-depth exploration of Cucurbitaceae's salt response mechanisms, uncovering the roles of salt-resistant genes and fostering the cultivation of novel varieties through molecular biology in the future.
Collapse
Affiliation(s)
- Cuiyun Chen
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wancong Yu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Xinrui Xu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yiheng Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Bo Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Shiyong Xu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Qingkuo Lan
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Yong Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| |
Collapse
|
7
|
Ganguly A, Amin S, Al-Amin, Tasnim Chowdhury F, Khan H, Riazul Islam M. Whole genome resequencing unveils low-temperature stress tolerance specific genomic variations in jute (Corchorus sp.). J Genet Eng Biotechnol 2024; 22:100376. [PMID: 38797551 PMCID: PMC11015510 DOI: 10.1016/j.jgeb.2024.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 05/29/2024]
Abstract
Jute (Corchorus sp.), a commercially important and eco-friendly crop, is widely cultivated in Bangladesh, India, and China. Some varieties of this tropical plant such as the Corchorus olitorius. Variety accession no. 2015 (acc. 2015) has been found to be low-temperature tolerant. The current study was designed to explore the genome-wide variations present in the tolerant plant acc. 2015 in comparison to the sensitive farmer popular variety Corchorus olitorius var. O9897 using the whole genome resequencing technique. Among different variations, intergenic Single Nucleotide Polymorphism (SNPs) and Insertion-Deletion (InDels) were found in the highest percentage whereas approximately 3% SNPs and 2% InDels were found in exonic regions in both plants. Gene enrichment analysis indicated the presence of acc. 2015 specific SNPs in the genes encoding peroxidase, ER lumen protein retaining receptor, and hexosyltransferase involved in stress response (GO:0006950) which were not present in sensitive variety O9897. Besides, distinctive copy number variation regions (CNVRs) comprising 120 gene loci were found in acc. 2015 with a gain of function from multiple copy numbers but absent in O9897. Gene ontology analysis revealed these gene loci to possess different receptors like kinases, helicases, phosphatases, transcription factors especially Myb transcription factors, regulatory proteins containing different binding domains, annexin, laccase, acyl carrier protein, potassium transporter, and vesicular transporter proteins that are responsible for low temperature induced adaptation pathways in plants. This work of identifying genomic variations linked to cold stress tolerance traits will help to develop successful markers that will pave the way to develop genetically modified cold-resistant jute lines for year-round cultivation to meet the demand for a sustainable fiber crop economy.
Collapse
Affiliation(s)
- Athoi Ganguly
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Shaheena Amin
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh; Department of Biochemistry and Molecular Biology, National Institute of Science and Technology, Dhaka, Bangladesh
| | - Al-Amin
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Farhana Tasnim Chowdhury
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Haseena Khan
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| | - Mohammad Riazul Islam
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
8
|
He L, Wu Z, Wang X, Zhao C, Cheng D, Du C, Wang H, Gao Y, Zhang R, Han J, Xu J. A novel maize F-bZIP member, ZmbZIP76, functions as a positive regulator in ABA-mediated abiotic stress tolerance by binding to ACGT-containing elements. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111952. [PMID: 38072329 DOI: 10.1016/j.plantsci.2023.111952] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024]
Abstract
The group F-bZIP transcription factors (TFs) in Arabidopsis are involved in nutrient deficiency or salt stress responses. Nevertheless, our learning about the functions of group F-bZIP genes in maize remains limited. Here, we cloned a new F-bZIP gene (ZmbZIP76) from maize inbred line He344. The expression of ZmbZIP76 in maize was dramatically induced by high salt, osmotic stress and abscisic acid. Accordingly, overexpression of ZmbZIP76 increased tolerance of transgenic plants to salt and osmotic stress. In addition, ZmbZIP76 functions as a nuclear transcription factor and upregulates the expression of a range of abiotic stress-responsive genes by binding to the ACGT-containing elements, leading to enhanced reactive oxygen species (ROS) scavenging capability, increased abscisic acid level, proline content, and ratio of K+/Na+, reduced water loss rate, and membrane damage. These physiological changes caused by ZmbZIP76 ultimately enhanced tolerance of transgenic plants to salt and osmotic stress.
Collapse
Affiliation(s)
- Lin He
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Zixuan Wu
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Xueheyuan Wang
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Changjiang Zhao
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Dianjun Cheng
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Chuhuai Du
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Haoyu Wang
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Yuan Gao
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Ruijia Zhang
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, PR China.
| | - Jingyu Xu
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina.
| |
Collapse
|
9
|
Tian Y, Zeng H, Wu JC, Dai GX, Zheng HP, Liu C, Wang Y, Zhou ZK, Tang DY, Deng GF, Tang WB, Liu XM, Lin JZ. The zinc finger protein DHHC09 S-acylates the kinase STRK1 to regulate H2O2 homeostasis and promote salt tolerance in rice. THE PLANT CELL 2024; 36:919-940. [PMID: 38180963 PMCID: PMC10980341 DOI: 10.1093/plcell/koae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Soil salinity results in oxidative stress and heavy losses to crop production. The S-acylated protein SALT TOLERANCE RECEPTOR-LIKE CYTOPLASMIC KINASE 1 (STRK1) phosphorylates and activates CATALASE C (CatC) to improve rice (Oryza sativa L.) salt tolerance, but the molecular mechanism underlying its S-acylation involved in salt signal transduction awaits elucidation. Here, we show that the DHHC-type zinc finger protein DHHC09 S-acylates STRK1 at Cys5, Cys10, and Cys14 and promotes salt and oxidative stress tolerance by enhancing rice H2O2-scavenging capacity. This modification determines STRK1 targeting to the plasma membrane or lipid nanodomains and is required for its function. DHHC09 promotes salt signaling from STRK1 to CatC via transphosphorylation, and its deficiency impairs salt signal transduction. Our findings demonstrate that DHHC09 S-acylates and anchors STRK1 to the plasma membrane to promote salt signaling from STRK1 to CatC, thereby regulating H2O2 homeostasis and improving salt stress tolerance in rice. Moreover, overexpression of DHHC09 in rice mitigates grain yield loss under salt stress. Together, these results shed light on the mechanism underlying the role of S-acylation in RLK/RLCK-mediated salt signal transduction and provide a strategy for breeding highly salt-tolerant rice.
Collapse
Affiliation(s)
- Ye Tian
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Hui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Ji-Cai Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Gao-Xing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - He-Ping Zheng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Cong Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| | - Yan Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Zheng-Kun Zhou
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Dong-Ying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| | - Guo-Fu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Wen-Bang Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| | - Xuan-Ming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| | - Jian-Zhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| |
Collapse
|
10
|
Prazyan A, Podlutskii M, Volkova P, Kazakova E, Bitarishvili S, Shesterikova E, Saburov V, Makarenko E, Lychenkova M, Korol M, Kazakov E, Moiseev A, Geras’kin S, Bondarenko E. Comparative Analysis of the Effect of Gamma-, Electron, and Proton Irradiation on Transcriptomic Profile of Hordeum vulgare L. Seedlings: In Search for Molecular Contributors to Abiotic Stress Resilience. PLANTS (BASEL, SWITZERLAND) 2024; 13:342. [PMID: 38337875 PMCID: PMC10857502 DOI: 10.3390/plants13030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
The development of adaptation strategies for crops under ever-changing climate conditions is a critically important food security issue. Studies of barley responses to ionising radiation showed that this evolutionarily ancient stress factor can be successfully used to identify molecular pathways involved in adaptation to a range of abiotic stressors. In order to identify potential molecular contributors to abiotic stress resilience, we examined the transcriptomic profiles of barley seedlings after exposure to γ-rays, electrons, and protons. A total of 553 unique differentially expressed genes with increased expression and 124 with decreased expression were detected. Among all types of radiation, the highest number of differentially expressed genes was observed in electron-irradiated samples (428 upregulated and 56 downregulated genes). Significant upregulation after exposure to the three types of radiation was shown by a set of ROS-responsive genes, genes involved in DNA repair, cell wall metabolism, auxin biosynthesis and signalling, as well as photosynthesis-related genes. Most of these genes are known to be involved in plant ROS-mediated responses to other abiotic stressors, especially with genotoxic components, such as heavy metals and drought. Ultimately, the modulation of molecular pathways of plant responses to ionising radiation may be a prospective tool for stress tolerance programmes.
Collapse
Affiliation(s)
- Alexander Prazyan
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Mikhail Podlutskii
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | | | - Elizaveta Kazakova
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Sofia Bitarishvili
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Ekaterina Shesterikova
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Vyacheslav Saburov
- A. Tsyb Medical Radiological Research Centre—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Ekaterina Makarenko
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Maria Lychenkova
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Marina Korol
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Evgeniy Kazakov
- A. Tsyb Medical Radiological Research Centre—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Alexander Moiseev
- A. Tsyb Medical Radiological Research Centre—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Stanislav Geras’kin
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Ekaterina Bondarenko
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| |
Collapse
|
11
|
Kitawaki K, Mihara R, Kamimura S, Sato A, Ushiyama M, Ito-Inaba Y, Inaba T. Chemical screening approach using single leaves identifies compounds that affect cold signaling in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:234-245. [PMID: 37177986 PMCID: PMC10469520 DOI: 10.1093/plphys/kiad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
The identification of chemical compounds that affect intracellular processes has greatly contributed to our understanding of plant growth and development. In most cases, these compounds have been identified in germinated seedlings. However, chemical screening using mature plants would benefit and advance our understanding of environmental responses. In this study, we developed a high-throughput screening method using single leaves of mature plants to identify small molecules that affect cold-regulated gene expression. A single excised leaf of Arabidopsis (Arabidopsis thaliana) grown in submerged cultures responded to low temperatures in terms of COLD-REGULATED (COR) gene expression. We used transgenic Arabidopsis harboring a COLD-REGULATED 15A (COR15A) promoter::luciferase (COR15Apro::LUC) construct to screen natural compounds that affect the cold induction of COR15Apro::LUC. This approach allowed us to identify derivatives of 1,4-naphthoquinone as specific inhibitors of COR gene expression. Moreover, 1,4-naphthoquinones appeared to inhibit the rapid induction of upstream C-REPEAT BINDING FACTOR (CBF) transcription factors upon exposure to low temperature, suggesting that 1,4-naphthoquinones alter upstream signaling processes. Our study offers a chemical screening scheme for identifying compounds that affect environmental responses in mature plants. This type of analysis is likely to reveal an unprecedented link between certain compounds and plant environmental responses.
Collapse
Affiliation(s)
- Kohei Kitawaki
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Ryota Mihara
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Saori Kamimura
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Akito Sato
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Mari Ushiyama
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | | |
Collapse
|
12
|
Shehzad M, Ditta A, Cai X, Ur Rahman S, Xu Y, Wang K, Zhou Z, Fang L. Identification of salt stress-tolerant candidate genes in the BC 2F 2 population at the seedling stages of G. hirsutum and G. darwinii using NGS-based bulked segregant analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1125805. [PMID: 37465381 PMCID: PMC10350501 DOI: 10.3389/fpls.2023.1125805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 07/20/2023]
Abstract
Salinity is a major threat to the yield and productivity of cotton seedlings. In the present study, we developed a BC2F2 population of cotton plants from Gossypium darwinii (5-7) and Gossypium hirsutum (CCRI 12-4) salt-susceptible parents to identify salt-resistant candidate genes. The Illumina HiSeq™ strategy was used with bulked segregant analysis. Salt-resistant and salt-susceptible DNA bulks were pooled by using 30 plants from a BC2F2 population. Next-generation sequencing (NGS) technology was used for the sequencing of parents and both bulks. Four significant genomic regions were identified: the first genomic region was located on chromosome 18 (1.86 Mb), the second and third genomic regions were on chromosome 25 (1.06 Mb and 1.94 Mb, respectively), and the fourth was on chromosome 8 (1.41 Mb). The reads of bulk1 and bulk2 were aligned to the G. darwinii and G. hirsutum genomes, respectively, leading to the identification of 20,664,007 single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels). After the screening, 6,573 polymorphic markers were obtained after filtration of the candidate regions. The SNP indices in resistant and susceptible bulks and Δ(SNP-index) values of resistant and susceptible bulks were measured. Based on the higher Δ(SNP-index) value, six effective polymorphic SNPs were selected in a different chromosome. Six effective SNPs were linked to five candidate genes in four genomic regions. Further validation of these five candidate genes was carried out using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), resulting in an expression profile that showed two highly upregulated genes in the salt-tolerant species G. darwinii, i.e., Gohir.D05G367800 and Gohir.D12G239100; however, the opposite was shown in G. hirsutum, for which all genes, except one, showed partial expression. The results indicated that Gohir.D05G367800 and Gohir.D12G239100 may be salt-tolerant genes. We are confident that this study could be helpful for the cloning, transformation, and development of salt-resistant cotton varieties.
Collapse
Affiliation(s)
- Muhammad Shehzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Allah Ditta
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Punjab, Pakistan
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
| | - Shafeeq Ur Rahman
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Liu Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Lu KK, Song RF, Guo JX, Zhang Y, Zuo JX, Chen HH, Liao CY, Hu XY, Ren F, Lu YT, Liu WC. CycC1;1-WRKY75 complex-mediated transcriptional regulation of SOS1 controls salt stress tolerance in Arabidopsis. THE PLANT CELL 2023; 35:2570-2591. [PMID: 37040621 PMCID: PMC10291036 DOI: 10.1093/plcell/koad105] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 06/15/2023]
Abstract
SALT OVERLY SENSITIVE1 (SOS1) is a key component of plant salt tolerance. However, how SOS1 transcription is dynamically regulated in plant response to different salinity conditions remains elusive. Here, we report that C-type Cyclin1;1 (CycC1;1) negatively regulates salt tolerance by interfering with WRKY75-mediated transcriptional activation of SOS1 in Arabidopsis (Arabidopsis thaliana). Disruption of CycC1;1 promotes SOS1 expression and salt tolerance in Arabidopsis because CycC1;1 interferes with RNA polymerase II recruitment by occupying the SOS1 promoter. Enhanced salt tolerance of the cycc1;1 mutant was completely compromised by an SOS1 mutation. Moreover, CycC1;1 physically interacts with the transcription factor WRKY75, which can bind to the SOS1 promoter and activate SOS1 expression. In contrast to the cycc1;1 mutant, the wrky75 mutant has attenuated SOS1 expression and salt tolerance, whereas overexpression of SOS1 rescues the salt sensitivity of wrky75. Intriguingly, CycC1;1 inhibits WRKY75-mediated transcriptional activation of SOS1 via their interaction. Thus, increased SOS1 expression and salt tolerance in cycc1;1 were abolished by WRKY75 mutation. Our findings demonstrate that CycC1;1 forms a complex with WRKY75 to inactivate SOS1 transcription under low salinity conditions. By contrast, under high salinity conditions, SOS1 transcription and plant salt tolerance are activated at least partially by increased WRKY75 expression but decreased CycC1;1 expression.
Collapse
Affiliation(s)
- Kai-Kai Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| | - Ru-Feng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| | - Jia-Xing Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| | - Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| | - Jia-Xin Zuo
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| | - Hui-Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| | - Cai-Yi Liao
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| | - Xiao-Yu Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School
of Life Sciences, Central China Normal University, Wuhan
430079, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan
University, Wuhan 430072, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| |
Collapse
|
14
|
Xiang ZX, Li W, Lu YT, Yuan TT. Hydrogen sulfide alleviates osmotic stress-induced root growth inhibition by promoting auxin homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1369-1384. [PMID: 36948886 DOI: 10.1111/tpj.16198] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/09/2023] [Indexed: 06/17/2023]
Abstract
Hydrogen sulfide (H2 S) promotes plant tolerance against various environmental cues, and d-cysteine desulfhydrase (DCD) is an enzymatic source of H2 S to enhance abiotic stress resistance. However, the role of DCD-mediated H2 S production in root growth under abiotic stress remains to be further elucidated. Here, we report that DCD-mediated H2 S production alleviates osmotic stress-mediated root growth inhibition by promoting auxin homeostasis. Osmotic stress up-regulated DCD gene transcript and DCD protein levels and thus H2 S production in roots. When subjected to osmotic stress, a dcd mutant showed more severe root growth inhibition, whereas the transgenic lines DCDox overexpressing DCD exhibited less sensitivity to osmotic stress in terms of longer root compared to the wild-type. Moreover, osmotic stress inhibited root growth through repressing auxin signaling, whereas H2 S treatment significantly alleviated osmotic stress-mediated inhibition of auxin. Under osmotic stress, auxin accumulation was increased in DCDox but decreased in dcd mutant. H2 S promoted auxin biosynthesis gene expression and auxin efflux carrier PIN-FORMED 1 (PIN1) protein level under osmotic stress. Taken together, our results reveal that mannitol-induced DCD and H2 S in roots promote auxin homeostasis, contributing to alleviating the inhibition of root growth under osmotic stress.
Collapse
Affiliation(s)
- Zhi-Xin Xiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
15
|
He Z, Chen M, Ling B, Cao T, Wang C, Li W, Tang W, Chen K, Zhou Y, Chen J, Xu Z, Wang D, Guo C, Ma Y. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) in transgenic wheat confers tolerance to phosphorus starvation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:580-586. [PMID: 36774913 DOI: 10.1016/j.plaphy.2023.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
In plants, autophagy plays an important role in regulating intracellular degradation and amino acid recycling in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) shows strong resistance to various abiotic stresses; however, current understanding of the regulation network of abiotic stress resistance in foxtail millet remains limited. In this study, we aimed to determine the autophagy-related gene SiATG8a in foxtail millet. We found that SiATG8a was mainly expressed in the stem and was induced by low-phosphorus (LP) stress. Overexpression of SiATG8a in wheat (Triticum aestivum) significantly increased the grain yield and spike number per m2 under LP treatment compared to those in the WT varieties S366 and S4056. There was no significant difference in the grain P content between SiATG8a-overexpressing wheat and WT wheat under normal phosphorus (NP) and LP treatments. However, the phosphorus (P) content in the roots, stems, and leaves of transgenic plants was significantly higher than that in WT plants under NP and LP conditions. Furthermore, the expression of P transporter genes, such as TaPHR1, TaPHR3, TaIPS1, and TaPT9, in SiATG8a-transgenic wheat was higher than that in WT under LP. Collectively, overexpression of SiATG8a increases the P content of roots, stems, and leaves of transgenic wheat under LP conditions by modulating the expression of P-related transporter gene, which may result in increased grain yield; thus, SiATG8a is a candidate gene for generating transgenic wheat with improved tolerance to LP stress in the field.
Collapse
Affiliation(s)
- Zhang He
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China.
| | - Ming Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bingqi Ling
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Tao Cao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chunxiao Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Weiwei Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China.
| | - Wensi Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Kai Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yongbin Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhaoshi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Dan Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China.
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China.
| | - Youzhi Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
16
|
Wang D, Wang K, Sun S, Yan P, Lu X, Liu Z, Li Q, Li L, Gao Y, Liu J. Transcriptome and Metabolome Analysis Reveals Salt-Tolerance Pathways in the Leaves and Roots of ZM-4 ( Malus zumi) in the Early Stages of Salt Stress. Int J Mol Sci 2023; 24:3638. [PMID: 36835052 PMCID: PMC9960305 DOI: 10.3390/ijms24043638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
The breeding of salt-tolerant rootstock relies heavily on the availability of salt-tolerant Malus germplasm resources. The first step in developing salt-tolerant resources is to learn their molecular and metabolic underpinnings. Hydroponic seedlings of both ZM-4 (salt-tolerant resource) and M9T337 (salt-sensitive rootstock) were treated with a solution of 75 mM salinity. ZM-4's fresh weight increased, then decreased, and then increased again after being treated with NaCl, whereas M9T337's fresh weight continued to decrease. The results of transcriptome and metabolome after 0 h (CK) and 24 h of NaCl treatment showed that the leaves of ZM-4 had a higher content of flavonoids (phloretinm, naringenin-7-O-glucoside, kaempferol-3-O-galactoside, epiafzelechin, etc.) and the genes (CHI, CYP, FLS, LAR, and ANR) related to the flavonoid synthesis pathway showed up-regulation, suggesting a high antioxidant capacity. In addition to the high polyphenol content (L-phenylalanine, 5-O-p-coumaroyl quinic acid) and the high related gene expression (4CLL9 and SAT), the roots of ZM-4 exhibited a high osmotic adjustment ability. Under normal growing conditions, the roots of ZM-4 contained a higher content of some amino acids (L-proline, tran-4-hydroxy-L-prolin, L-glutamine, etc.) and sugars (D-fructose 6-phosphate, D-glucose 6-phosphate, etc.), and the genes (GLT1, BAM7, INV1, etc.) related to these two pathways were highly expressed. Furthermore, some amino acids (S-(methyl) glutathione, N-methyl-trans-4-hydroxy-L-proline, etc.) and sugars (D-sucrose, maltotriose, etc.) increased and genes (ALD1, BCAT1, AMY1.1, etc.) related to the pathways showed up-regulation under salt stress. This research provided theoretical support for the application of breeding salt-tolerant rootstocks by elucidating the molecular and metabolic mechanisms of salt tolerance during the early stages of salt treatment for ZM-4.
Collapse
Affiliation(s)
- Dajiang Wang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Agricultural College, Shihezi University, Shihezi 832003, China
- National Repository of Apple Germplasm Resources, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Xingcheng 125100, China
| | - Kun Wang
- National Repository of Apple Germplasm Resources, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Xingcheng 125100, China
| | - Simiao Sun
- National Repository of Apple Germplasm Resources, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Xingcheng 125100, China
| | - Peng Yan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, No. 403 Nanchang Road, Urumqi 830091, China
| | - Xiang Lu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Agricultural College, Shihezi University, Shihezi 832003, China
- National Repository of Apple Germplasm Resources, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Xingcheng 125100, China
| | - Zhao Liu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Agricultural College, Shihezi University, Shihezi 832003, China
- National Repository of Apple Germplasm Resources, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Xingcheng 125100, China
| | - Qingshan Li
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Agricultural College, Shihezi University, Shihezi 832003, China
- National Repository of Apple Germplasm Resources, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Xingcheng 125100, China
| | - Lianwen Li
- National Repository of Apple Germplasm Resources, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Xingcheng 125100, China
| | - Yuan Gao
- National Repository of Apple Germplasm Resources, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Xingcheng 125100, China
| | - Jihong Liu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Zhang H, Zhang K, Liu T, Zhang Y, Tang Z, Dong J, Wang F. The characterization and expression analysis under stress conditions of PCST1 in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2022; 17:2134675. [PMID: 36281762 PMCID: PMC9601564 DOI: 10.1080/15592324.2022.2134675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Analysis of PCST1 expression characteristics and the role of PCST1 in response to osmotic stress in Arabidopsis thaliana. The structure of PCST1 was analyzed using Bioinformatics method. Real-time PCR, GUS tissue localization and subcellular localization were adopted to analyze the expression pattern of PCST1 in Arabidopsis. To validate the transgenic positive strain of PCST1 using Real-time PCR, overexpression experiments were performed in wild type. Full-length cDNA was cloned and connected into a binary vector with 35S promoter, and the construction was transformed into wild type. With NaCl and mannitol treatments, the germination rate, green leaves rate, physiological indexes were carried out and counted in Arabidopsis with overexpression of PCST1 and T-DNA insertion mutants. The molecular mechanism of PCST1 in response to osmotic stress in Arabidopsis was analyzed. Based on the bioinformatic analysis, PCST1 is a hydrophobin with 403 amino acids, and the molecular weight is 45.3236 KDa. It contains only the START (the lipid/sterol - binding StAR - related lipid transfer protein domains) conservative domain. PCST1 possesses phosphatidylcholine binding sites and transmembrane region. Expression pattern analysis showed that expression of PCST1 increased with time. The PCST1 widely expressed in Arabidopsis, including roots, axils of stem leaves, flowers (sepal, conductive tissue of the petal, thrum, anther and stigmas), and the top and basal parts of the siliquas. It mainly localized in cell membrane. The overexpression of PCST1 enhanced the sensitivity to osmotic stress in Arabidopsis based on the germination rate. While expression of PCST1 decreased, and the sensitivity to osmotic stress had no obvious change in Arabidopsis. Its molecular mechanism study showed, that PCST1 response to osmotic stress resistance by regulating the proline, betaine synthesis, as well as the expression of key genes SOS, NCED, CIPK. PCST1 is composed of 403 amino acids. The START conservative domain, a transmembrane structure, the phosphatidyl choline binding sites are contained in PCST1. It is localized in cytoplasmic membrane. The PCST1 widely expressed in the root, leaf, flower and siliquas. NaCl and mannitol suppressed the expression of PCST1 and PCST1 can negatively control action of Arabidopsis in the osmotic stress. PCST1 regulates the synthetic pathway of proline, betaine and the expression of SOS, NCED and CIPK in response to the osmotic stress resistance.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University; Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Tongtong Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Ying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
- Pear Engineering and Technology Research Center of Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Ziyan Tang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Fengru Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
18
|
Gao C, Lu S, Zhou R, Wang Z, Li Y, Fang H, Wang B, Chen M, Cao Y. The OsCBL8-OsCIPK17 Module Regulates Seedling Growth and Confers Resistance to Heat and Drought in Rice. Int J Mol Sci 2022; 23:12451. [PMID: 36293306 PMCID: PMC9604039 DOI: 10.3390/ijms232012451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 12/01/2023] Open
Abstract
The calcium signaling pathway is critical for plant growth, development, and response to external stimuli. The CBL-CIPK pathway has been well characterized as a calcium-signaling pathway. However, in most reports, only a single function for this module has been described. Here, we examined multiple functions of this module. CIPK showed a similar distribution to that of CBL, and OsCBL and OsCIPK families were retained after experiencing whole genome duplication events through the phylogenetic and synteny analysis. This study found that OsCBL8 negatively regulated rice seed germination and seedling growth by interacting with OsCIPK17 with overexpression and gene editing mutant plants as materials combining plant phenotype, physiological indicators and transcriptome sequencing. This process is likely mediated by OsPP2C77, which is a member of the ABA signaling pathway. In addition, OsCBL mediated the targeting of OsNAC77 and OsJAMYB by OsCIPK17, thus conferring resistance to high temperatures and pathogens in rice. Our work reveals a unique signaling pathway, wherein OsCBL8 interacts with OsCIPK17 and provides rice with multiple resistance while also regulating seedling growth.
Collapse
Affiliation(s)
- Cong Gao
- College of Life Sciences, Nantong University, Nantong 226007, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shuai Lu
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Rong Zhou
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Zihui Wang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Yi Li
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Hui Fang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Baohua Wang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Moxian Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271000, China
| | - Yunying Cao
- College of Life Sciences, Nantong University, Nantong 226007, China
| |
Collapse
|
19
|
Chen Y, Zhou Y, Cai Y, Feng Y, Zhong C, Fang Z, Zhang Y. De novo transcriptome analysis of high-salinity stress-induced antioxidant activity and plant phytohormone alterations in Sesuvium portulacastrum. FRONTIERS IN PLANT SCIENCE 2022; 13:995855. [PMID: 36212296 PMCID: PMC9540214 DOI: 10.3389/fpls.2022.995855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Sesuvium portulacastrum has a strong salt tolerance and can grow in saline and alkaline coastal and inland habitats. This study investigated the physiological and molecular responses of S. portulacastrum to high salinity by analyzing the changes in plant phytohormones and antioxidant activity, including their differentially expressed genes (DEGs) under similar high-salinity conditions. High salinity significantly affected proline (Pro) and hydrogen peroxide (H2O2) in S. portulacastrum seedlings, increasing Pro and H2O2 contents by 290.56 and 83.36%, respectively, compared to the control. Antioxidant activities, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), significantly increased by 83.05, 205.14, and 751.87%, respectively, under high salinity. Meanwhile, abscisic acid (ABA) and gibberellic acid (GA3) contents showed the reverse trend of high salt treatment. De novo transcriptome analysis showed that 36,676 unigenes were matched, and 3,622 salt stress-induced DEGs were identified as being associated with the metabolic and biological regulation processes of antioxidant activity and plant phytohormones. POD and SOD were upregulated under high-salinity conditions. In addition, the transcription levels of genes involved in auxin (SAURs and GH3), ethylene (ERF1, ERF3, ERF114, and ABR1), ABA (PP2C), and GA3 (PIF3) transport or signaling were altered. This study identified key metabolic and biological processes and putative genes involved in the high salt tolerance of S. portulacastrum and it is of great significance for identifying new salt-tolerant genes to promote ecological restoration of the coastal strand.
Collapse
Affiliation(s)
- YiQing Chen
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
| | - Yan Zhou
- Mangrove Institute, Lingnan Normal University, Zhanjiang, China
| | - Yuyi Cai
- Mangrove Institute, Lingnan Normal University, Zhanjiang, China
| | - Yongpei Feng
- Mangrove Institute, Lingnan Normal University, Zhanjiang, China
| | - Cairong Zhong
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
| | - ZanShan Fang
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
| | - Ying Zhang
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
- Mangrove Institute, Lingnan Normal University, Zhanjiang, China
| |
Collapse
|
20
|
Zhang Q, Feng YX, Lin YJ, Yu XZ. Mathematical quantification of interactive complexity of transcription factors involved in proline-mediated regulative strategies in Oryza sativa under chromium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:36-44. [PMID: 35460933 DOI: 10.1016/j.plaphy.2022.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 05/21/2023]
Abstract
Involvement of transcription factor (TFs) in governing genes at transcription or post transcription level is known to have affirmative impact on plant physiological and morphological development, especially during environmental abuse. Application of exogenous proline (Pro) is one among the effective approaches to strengthen plant resistance against stresses. However, Pro-mediated regulative strategies of TFs in responses to the chromium (Cr) in rice plants through the gene interaction network are still not clear. In the current study, Pro-mediated interactive complexity of various TFs (i.e., MYB, NAC, WRKY, bHLH, and bZIP) under hexavalent chromium [Cr(VI)] was investigated using Agilent 4 × 44 K rice gene chip and gene interactive probability model (GIPM). Results showed that exogenous Pro had a negligible effect on Cr uptake in rice plants, while a small positive response in biomass accretion of rice seedlings was observed under Cr(VI)+Pro treatments which was to certain extend greater than single Cr(VI) treatments. Rice microarray analysis showed that Cr(VI) significantly (p < 0.05) repressed the expression of TFs in the rice roots and shoots, while the application of exogenous Pro significantly (p < 0.05) up-regulated the expression levels of some TFs in rice tissues. Mathematical modularization indicated that Pro-mediated interaction between MYB and NAC carried more weightage than other TFs in rice roots and shoots under Cr(VI) stress. Overall, our study provides convincing evidence to confirm a positive role of exogenous Pro on reducing the negative impact exerted by Cr(VI) on rice plants through regulating expression and interaction of different TFs.
Collapse
Affiliation(s)
- Qing Zhang
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yu-Juan Lin
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
21
|
Malécange M, Pérez-Garcia MD, Citerne S, Sergheraert R, Lalande J, Teulat B, Mounier E, Sakr S, Lothier J. Leafamine ®, a Free Amino Acid-Rich Biostimulant, Promotes Growth Performance of Deficit-Irrigated Lettuce. Int J Mol Sci 2022; 23:7338. [PMID: 35806343 PMCID: PMC9266813 DOI: 10.3390/ijms23137338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Water deficit causes substantial yield losses that climate change is going to make even more problematic. Sustainable agricultural practices are increasingly developed to improve plant tolerance to abiotic stresses. One innovative solution amongst others is the integration of plant biostimulants in agriculture. In this work, we investigate for the first time the effects of the biostimulant -Leafamine®-a protein hydrolysate on greenhouse lettuce (Lactuca sativa L.) grown under well-watered and water-deficit conditions. We examined the physiological and metabolomic water deficit responses of lettuce treated with Leafamine® (0.585 g/pot) or not. Root application of Leafamine® increased the shoot fresh biomass of both well-watered (+40%) and deficit-irrigated (+20%) lettuce plants because the projected leaf area increased. Our results also indicate that Leafamine® application could adjust the nitrogen metabolism by enhancing the total nitrogen content, amino acid (proline) contents and the total protein level in lettuce leaves, irrespective of the water condition. Osmolytes such as soluble sugars and polyols, also increased in Leafamine®-treated lettuce. Our findings suggest that the protective effect of Leafamine is a widespread change in plant metabolism and could involve ABA, putrescine and raffinose.
Collapse
Affiliation(s)
- Marthe Malécange
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (M.M.); (M.-D.P.-G.); (J.L.); (B.T.); (J.L.)
- BCF Life Sciences, Boisel, 56140 Pleucadeuc, France; (R.S.); (E.M.)
| | - Maria-Dolores Pérez-Garcia
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (M.M.); (M.-D.P.-G.); (J.L.); (B.T.); (J.L.)
| | - Sylvie Citerne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France;
| | | | - Julie Lalande
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (M.M.); (M.-D.P.-G.); (J.L.); (B.T.); (J.L.)
| | - Béatrice Teulat
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (M.M.); (M.-D.P.-G.); (J.L.); (B.T.); (J.L.)
| | | | - Soulaiman Sakr
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (M.M.); (M.-D.P.-G.); (J.L.); (B.T.); (J.L.)
| | - Jérémy Lothier
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (M.M.); (M.-D.P.-G.); (J.L.); (B.T.); (J.L.)
| |
Collapse
|
22
|
Kong F, Ramonell KM. Arabidopsis Toxicos en Levadura 12 Modulates Salt Stress and ABA Responses in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23137290. [PMID: 35806295 PMCID: PMC9266925 DOI: 10.3390/ijms23137290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022] Open
Abstract
Salt is one of the most common abiotic stresses, causing ionic and osmotic pressure changes that affect plant growth and development. In this work, we present molecular and genetic evidence that Arabidopsis Toxicos en Levadura 12 (ATL12) is involved in both salt stress and in the abscisic acid response to this stress. We demonstrate that ATL12 is highly induced in response to salt stress and that atl12 mutants have a lower germination rate, decreased root length, and lower survival rate compared to the Col-0 wild-type in response to salt stress. Overexpression of ATL12 increases expression of the salt stress-associated genes SOS1/2, and ABA-responsive gene RD29B. Additionally, higher levels of reactive oxygen species are detected when ATL12 is overexpressed, and qRT-PCR showed that ATL12 is involved in the AtRBOHD/F-mediated signaling. ATL12 expression is also highly induced by ABA treatment. Mutants of atl12 are hypersensitive to ABA and have a shorter root length. A decrease in water loss and reduced stomatal aperture were also observed in atl12 mutants in response to ABA. ABA-responsive genes RD29B and RAB18 were downregulated in atl12 mutants but were upregulated in the overexpression line of ATL12 in response to ABA. Taken together our results suggest that ATL12 modulates the response to salt stress and is involved in the ABA signaling pathway in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Feng Kong
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35401, USA; or
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Katrina M. Ramonell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35401, USA; or
- Correspondence:
| |
Collapse
|
23
|
Does Abiotic Host Stress Favour Dothideomycete-Induced Disease Development? PLANTS 2022; 11:plants11121615. [PMID: 35736766 PMCID: PMC9227157 DOI: 10.3390/plants11121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/07/2022]
Abstract
Dothideomycetes represent one of the largest and diverse class of fungi. This class exhibits a wide diversity of lifestyles, including endophytic, saprophytic, pathogenic and parasitic organisms. Plant pathogenic fungi are particularly common within the Dothideomycetes and are primarily found within the orders of Pleosporales, Botryosphaeriales and Capnodiales. As many Dothideomycetes can infect crops used as staple foods around the world, such as rice, wheat, maize or banana, this class of fungi is highly relevant to food security. In the context of climate change, food security faces unprecedented pressure. The benefits of a more plant-based diet to both health and climate have long been established, therefore the demand for crop production is expected to increase. Further adding pressure on food security, both the prevalence of diseases caused by fungi and the yield losses associated with abiotic stresses on crops are forecast to increase in all climate change scenarios. Furthermore, abiotic stresses can greatly influence the outcome of the host-pathogen interaction. This review focuses on the impact of abiotic stresses on the host in the development of diseases caused by Dothideomycete fungi.
Collapse
|
24
|
D’Alessandro R, Docimo T, Graziani G, D’Amelia V, De Palma M, Cappetta E, Tucci M. Abiotic Stresses Elicitation Potentiates the Productiveness of Cardoon Calli as Bio-Factories for Specialized Metabolites Production. Antioxidants (Basel) 2022; 11:antiox11061041. [PMID: 35739938 PMCID: PMC9219710 DOI: 10.3390/antiox11061041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023] Open
Abstract
Cultivated cardoon (Cynara cardunculus L. var altilis) is a Mediterranean traditional food crop. It is adapted to xerothermic conditions and also grows in marginal lands, producing a large biomass rich in phenolic bioactive metabolites and has therefore received attention for pharmaceutical, cosmetic and innovative materials applications. Cardoon cell cultures can be used for the biotechnological production of valuable molecules in accordance with the principles of cellular agriculture. In the current study, we developed an elicitation strategy on leaf-derived cardoon calli for boosting the production of bioactive extracts for cosmetics. We tested elicitation conditions that trigger hyper-accumulation of bioactive phenolic metabolites without compromising calli growth through the application of chilling and salt stresses. We monitored changes in growth, polyphenol accumulation, and antioxidant capability, along with transcriptional variations of key chlorogenic acid and flavonoids biosynthetic genes. At moderate stress intensity and duration (14 days at 50–100 mM NaCl) salt exerted the best eliciting effect by stimulating total phenols and antioxidant power without impairing growth. Hydroalcoholic extracts from elicited cardoon calli with optimal growth and bioactive metabolite accumulation were demonstrated to lack cytotoxicity by MTT assay and were able to stimulate pro-collagen and aquaporin production in dermal cells. In conclusion, we propose a “natural” elicitation system that can be easily and safely employed to boost bioactive metabolite accumulation in cardoon cell cultures and also in pilot-scale cell culture production.
Collapse
Affiliation(s)
- Rosa D’Alessandro
- Institute of Bioscience and BioResources, National Research Council, Via Università 100, 80055 Portici, Italy; (R.D.); (V.D.); (M.D.P.); (E.C.); (M.T.)
| | - Teresa Docimo
- Institute of Bioscience and BioResources, National Research Council, Via Università 100, 80055 Portici, Italy; (R.D.); (V.D.); (M.D.P.); (E.C.); (M.T.)
- Correspondence: ; Tel.: +39-081-253-9223
| | - Giulia Graziani
- Department of Pharmaceutical Science, University of Naples Federico II, Via Montesano, 80131 Napoli, Italy;
| | - Vincenzo D’Amelia
- Institute of Bioscience and BioResources, National Research Council, Via Università 100, 80055 Portici, Italy; (R.D.); (V.D.); (M.D.P.); (E.C.); (M.T.)
| | - Monica De Palma
- Institute of Bioscience and BioResources, National Research Council, Via Università 100, 80055 Portici, Italy; (R.D.); (V.D.); (M.D.P.); (E.C.); (M.T.)
| | - Elisa Cappetta
- Institute of Bioscience and BioResources, National Research Council, Via Università 100, 80055 Portici, Italy; (R.D.); (V.D.); (M.D.P.); (E.C.); (M.T.)
| | - Marina Tucci
- Institute of Bioscience and BioResources, National Research Council, Via Università 100, 80055 Portici, Italy; (R.D.); (V.D.); (M.D.P.); (E.C.); (M.T.)
| |
Collapse
|
25
|
Gupta A, Mishra R, Rai S, Bano A, Pathak N, Fujita M, Kumar M, Hasanuzzaman M. Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture. Int J Mol Sci 2022; 23:3741. [PMID: 35409104 PMCID: PMC8998651 DOI: 10.3390/ijms23073741] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/17/2022] Open
Abstract
Climate change has devastating effects on plant growth and yield. During ontogenesis, plants are subjected to a variety of abiotic stresses, including drought and salinity, affecting the crop loss (20-50%) and making them vulnerable in terms of survival. These stresses lead to the excessive production of reactive oxygen species (ROS) that damage nucleic acid, proteins, and lipids. Plant growth-promoting bacteria (PGPB) have remarkable capabilities in combating drought and salinity stress and improving plant growth, which enhances the crop productivity and contributes to food security. PGPB inoculation under abiotic stresses promotes plant growth through several modes of actions, such as the production of phytohormones, 1-aminocyclopropane-1-carboxylic acid deaminase, exopolysaccharide, siderophore, hydrogen cyanide, extracellular polymeric substances, volatile organic compounds, modulate antioxidants defense machinery, and abscisic acid, thereby preventing oxidative stress. These bacteria also provide osmotic balance; maintain ion homeostasis; and induce drought and salt-responsive genes, metabolic reprogramming, provide transcriptional changes in ion transporter genes, etc. Therefore, in this review, we summarize the effects of PGPB on drought and salinity stress to mitigate its detrimental effects. Furthermore, we also discuss the mechanistic insights of PGPB towards drought and salinity stress tolerance for sustainable agriculture.
Collapse
Affiliation(s)
- Anmol Gupta
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Richa Mishra
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Smita Rai
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Ambreen Bano
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
26
|
Root Na+ Content Negatively Correlated to Salt Tolerance Determines the Salt Tolerance of Brassica napus L. Inbred Seedlings. PLANTS 2022; 11:plants11070906. [PMID: 35406886 PMCID: PMC9002931 DOI: 10.3390/plants11070906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
Soil salinization is a major environmental stressor that reduces the growth and yield of crops. Maintaining the balance of ions under salinity is vital for plant salt tolerance; however, little is known about the correlation between the salt tolerance of crops and the ion contents of their roots and shoots. Here, we investigated the poorly understood salt-tolerance mechanisms, particularly regarding ion contents (particularly Na+), in Brassica napus subsp. napus L., an agriculturally important species. Twenty B. napus inbred lines were randomly chosen from five salt-tolerance categories and treated with increasing concentrations of NaCl (0–200 mmol) for this work. We found that the root Na+ content is the most correlated limiting factor for the salt tolerance of B. napus; the higher the salt tolerance, the lower the root Na+ content. Correspondingly, the Ca2+/Na+ and K+/Na+ ratios of the roots were highly correlated with B. napus salt tolerance, indicating that the selective absorption ability of these ions by the roots and their translocation to the shoots play a pivotal role in this trait. These data provide a foundation for the further study of the molecular mechanisms underlying salt tolerance and for breeding salt-tolerant B. napus cultivars.
Collapse
|
27
|
Alsajri FA, Wijewardana C, Bheemanahalli R, Irby JT, Krutz J, Golden B, Reddy VR, Reddy KR. Morpho-Physiological, Yield, and Transgenerational Seed Germination Responses of Soybean to Temperature. FRONTIERS IN PLANT SCIENCE 2022; 13:839270. [PMID: 35392514 PMCID: PMC8981302 DOI: 10.3389/fpls.2022.839270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Temperature is the primary factor affecting the morpho-physiological, developmental, and yield attributes of soybean. Despite several temperature and soybean studies, functional relationships between temperature and soybean physiology and yield components are limited. An experiment was conducted to determine the optimum temperature for soybean gas exchange and yield components using indeterminate (Asgrow AG5332, AG) and determinate (Progeny P5333 RY, PR) growth habit cultivars. Plants grown outdoors were exposed to 5 day/night temperature treatments, 21/13, 25/17, 29/21, 33/25, and 37°C/29°C, from flowering to maturity using the sunlit plant growth chambers. Significant temperature and cultivar differences were recorded among all measured parameters. Gas exchange parameters declined with increasing temperature treatments during the mid-pod filling stage, and quadratic functions best described the response. The optimum temperature for soybean pod weight, number, and seed number was higher for AG than PR, indicating greater high-temperature tolerance. Soybean exposed to warmer parental temperature (37°C/29°C) during pod filling decreased significantly the transgenerational seed germination when incubated at 18, 28, and 38°C. Our findings suggest that the impact of temperature during soybean development is transferable. The warmer temperature has adverse transgenerational effects on seed germination ability. Thus, developing soybean genotypes tolerant to high temperatures will help growers to produce high-yielding and quality beans. The quantified temperature, soybean physiology, and yield components-dependent functional algorithms would be helpful to develop adaptation strategies to offset the impacts of extreme temperature events associated with future climate change.
Collapse
Affiliation(s)
- Firas Ahmed Alsajri
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi, MS, United States
- Field Crops Department, Tikrit University, Tikrit, Iraq
| | - Chathurika Wijewardana
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi, MS, United States
| | - Raju Bheemanahalli
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi, MS, United States
| | - J. Trenton Irby
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi, MS, United States
| | - Jason Krutz
- Mississippi Water Resources Research Institute, Mississippi State University, Mississippi, MS, United States
| | - Bobby Golden
- Delta Research and Extension Center, Stoneville, MS, United States
| | - Vangimalla R. Reddy
- Adaptive Cropping Systems Laboratory, USDA-ARS, BARC-W, Beltsville, MD, United States
| | - K. Raja Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi, MS, United States
| |
Collapse
|
28
|
Hou Z, Li Y, Cheng Y, Li W, Li T, Du H, Kong F, Dong L, Zheng D, Feng N, Liu B, Cheng Q. Genome-Wide Analysis of DREB Genes Identifies a Novel Salt Tolerance Gene in Wild Soybean ( Glycine soja). FRONTIERS IN PLANT SCIENCE 2022; 13:821647. [PMID: 35310639 PMCID: PMC8931524 DOI: 10.3389/fpls.2022.821647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/17/2022] [Indexed: 05/24/2023]
Abstract
Salt stress is a major factor limiting the growth and yield of soybean (Glycine max). Wild soybeans (Glycine soja) contain high allelic diversity and beneficial alleles that can be re-introduced into domesticated soybeans to improve adaption to the environment. However, very few beneficial alleles have been identified from wild soybean. Here, we demonstrate that wild soybean is more salt tolerant than cultivated soybean and examine dehydration responsive element-binding (DREB) family transcription factor genes to look for advantageous alleles that might improve drought tolerance in cultivated soybean. Our genome-wide analysis identified 103 DREB genes from the Glycine max genome. By combined RNA-sequencing and population genetics of wild, landrace, and cultivated soybean accessions, we show that the natural variation in DREB3a and DREB3b is related to differences in salt tolerance in soybean accessions. Interestingly, DREB3b, but not DREB3a, appears to have undergone artificial selection. Soybean plants carrying the wild soybean DREB3b allele (DREB3b39Del ) are more salt tolerant than those containing the reference genome allele (DREB3bRef ). Together, our results suggest that the loss of the DREB3b39Del allele through domestication of cultivated soybean may be associated with a reduction in salt tolerance. Our findings provide crucial information for improving salt tolerance in soybean through molecular breeding.
Collapse
Affiliation(s)
- Zhihong Hou
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yongli Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yuhan Cheng
- Beijing Zhongnong Futong Horticulture Co., Ltd., Beijing, China
| | - Weiwei Li
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Keshan, China
| | - Tai Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hao Du
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Dianfeng Zheng
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, China
| | - Naijie Feng
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, China
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
29
|
Bhardwaj A, Devi P, Chaudhary S, Rani A, Jha UC, Kumar S, Bindumadhava H, Prasad PVV, Sharma KD, Siddique KHM, Nayyar H. 'Omics' approaches in developing combined drought and heat tolerance in food crops. PLANT CELL REPORTS 2022; 41:699-739. [PMID: 34223931 DOI: 10.1007/s00299-021-02742-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Global climate change will significantly increase the intensity and frequency of hot, dry days. The simultaneous occurrence of drought and heat stress is also likely to increase, influencing various agronomic characteristics, such as biomass and other growth traits, phenology, and yield-contributing traits, of various crops. At the same time, vital physiological traits will be seriously disrupted, including leaf water content, canopy temperature depression, membrane stability, photosynthesis, and related attributes such as chlorophyll content, stomatal conductance, and chlorophyll fluorescence. Several metabolic processes contributing to general growth and development will be restricted, along with the production of reactive oxygen species (ROS) that negatively affect cellular homeostasis. Plants have adaptive defense strategies, such as ROS-scavenging mechanisms, osmolyte production, secondary metabolite modulation, and different phytohormones, which can help distinguish tolerant crop genotypes. Understanding plant responses to combined drought/heat stress at various organizational levels is vital for developing stress-resilient crops. Elucidating the genomic, proteomic, and metabolic responses of various crops, particularly tolerant genotypes, to identify tolerance mechanisms will markedly enhance the continuing efforts to introduce combined drought/heat stress tolerance. Besides agronomic management, genetic engineering and molecular breeding approaches have great potential in this direction.
Collapse
Affiliation(s)
| | - Poonam Devi
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Anju Rani
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Shiv Kumar
- International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - H Bindumadhava
- Dr. Marri Channa Reddy Foundation (MCRF), Hyderabad, India
| | | | | | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India.
| |
Collapse
|
30
|
Gao C, Zhu X, Lu S, Xu J, Zhou R, Lv J, Chen Y, Cao Y. Functional Analysis of OsCIPK17 in Rice Grain Filling. FRONTIERS IN PLANT SCIENCE 2022; 12:808312. [PMID: 35145535 PMCID: PMC8821165 DOI: 10.3389/fpls.2021.808312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
We used mutant cipk17 and Nipponbare in field experiments to analyze agronomic traits, photosynthetic parameters, transcriptome, and gene expression. The results demonstrated cytoplasmic localization of OsCIPK17, while GUS allogeneic (A. thaliana) tissue-staining and quantitative analysis showed the gene was expressed in many organs, including flower buds; furthermore, it was involved in root, stem, and leaf growth. Compared to Nipponbare plants, grain filling rate and final grain weight decreased in plants of the knockout mutant owing to a delay in attainment of maximum grain filling rate. Photosystem II (PSII) efficiency was also reduced. Enrichment analysis showed that the functions of differentially expressed genes (DEGs) focused on nucleoside-, nucleotide-, and lipid-binding, as well as hydrolase, transferase, and phosphorylase activities. Signaling pathways mainly included starch and sucrose metabolism, as well as photosynthesis. Additionally, some DEGs were verified by fluorescence analysis. The results showed that knockout of OsCIPK17 affected photosynthesis and starch-, sucrose-, and amino acid metabolism-related gene expression; furthermore, the mutation reduced PSII utilization efficiency, it blocked the synthesis and metabolism of starch and sucrose, and affected the formation and transport of assimilates, thereby reducing final grain weight.
Collapse
|
31
|
Zhang G, Peng Y, Zhou J, Tan Z, Jin C, Fang S, Zhong S, Jin C, Wang R, Wen X, Li B, Lu S, Zhou G, Fu T, Guo L, Yao X. Genome-Wide Association Studies of Salt-Alkali Tolerance at Seedling and Mature Stages in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:857149. [PMID: 35574128 PMCID: PMC9094488 DOI: 10.3389/fpls.2022.857149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 05/19/2023]
Abstract
Most plants are sensitive to salt-alkali stress, and the degree of tolerance to salt-alkali stress varies from different species and varieties. In order to explore the salt-alkali stress adaptability of Brassica napus, we collected the phenotypic data of 505 B. napus accessions at seedling and mature stages under control, low and high salt-alkali soil stress conditions in Inner Mongolia of China. Six resistant and 5 sensitive materials, respectively, have been identified both in Inner Mongolia and Xinjiang Uygur Autonomous Region of China. Genome-wide association studies (GWAS) for 15 absolute values and 10 tolerance coefficients (TCs) of growth and agronomic traits were applied to investigate the genetic basis of salt-alkali tolerance of B. napus. We finally mapped 9 significant QTLs related to salt-alkali stress response and predicted 20 candidate genes related to salt-alkali stress tolerance. Some important candidate genes, including BnABA4, BnBBX14, BnVTI12, BnPYL8, and BnCRR1, were identified by combining sequence variation annotation and expression differences. The identified valuable loci and germplasms could be useful for breeding salt-alkali-tolerant B.napus varieties. This study laid a foundation for understanding molecular mechanism of salt-alkali stress adaptation and provides rich genetic resources for the large-scale production of B. napus on salt-alkali land in the future.
Collapse
Affiliation(s)
- Guofang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yan Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinzhi Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Cheng Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shuai Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shengzhu Zhong
- Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia, China
| | - Cunwang Jin
- Green Industry Development Center, Inner Mongolia, China
| | - Ruizhen Wang
- Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia, China
| | - Xiaoliang Wen
- Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia, China
| | - Binrui Li
- Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Guangsheng Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- *Correspondence: Xuan Yao
| |
Collapse
|
32
|
Athar HUR, Zulfiqar F, Moosa A, Ashraf M, Zafar ZU, Zhang L, Ahmed N, Kalaji HM, Nafees M, Hossain MA, Islam MS, El Sabagh A, Siddique KHM. Salt stress proteins in plants: An overview. FRONTIERS IN PLANT SCIENCE 2022; 13:999058. [PMID: 36589054 PMCID: PMC9800898 DOI: 10.3389/fpls.2022.999058] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 05/04/2023]
Abstract
Salinity stress is considered the most devastating abiotic stress for crop productivity. Accumulating different types of soluble proteins has evolved as a vital strategy that plays a central regulatory role in the growth and development of plants subjected to salt stress. In the last two decades, efforts have been undertaken to critically examine the genome structure and functions of the transcriptome in plants subjected to salinity stress. Although genomics and transcriptomics studies indicate physiological and biochemical alterations in plants, it do not reflect changes in the amount and type of proteins corresponding to gene expression at the transcriptome level. In addition, proteins are a more reliable determinant of salt tolerance than simple gene expression as they play major roles in shaping physiological traits in salt-tolerant phenotypes. However, little information is available on salt stress-responsive proteins and their possible modes of action in conferring salinity stress tolerance. In addition, a complete proteome profile under normal or stress conditions has not been established yet for any model plant species. Similarly, a complete set of low abundant and key stress regulatory proteins in plants has not been identified. Furthermore, insufficient information on post-translational modifications in salt stress regulatory proteins is available. Therefore, in recent past, studies focused on exploring changes in protein expression under salt stress, which will complement genomic, transcriptomic, and physiological studies in understanding mechanism of salt tolerance in plants. This review focused on recent studies on proteome profiling in plants subjected to salinity stress, and provide synthesis of updated literature about how salinity regulates various salt stress proteins involved in the plant salt tolerance mechanism. This review also highlights the recent reports on regulation of salt stress proteins using transgenic approaches with enhanced salt stress tolerance in crops.
Collapse
Affiliation(s)
- Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Nadeem Ahmed
- College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Botany, Mohy-ud-Din Islamic University, Nerian Sharif, Pakistan
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Sohidul Islam
- Department of Agronomy, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Ayman El Sabagh
- Faculty of Agriculture, Department of Field Crops, Siirt University, Siirt, Türkiye
- Agronomy Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth WA, Australia
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| |
Collapse
|
33
|
Ibrahimova U, Zivcak M, Gasparovic K, Rastogi A, Allakhverdiev SI, Yang X, Brestic M. Electron and proton transport in wheat exposed to salt stress: is the increase of the thylakoid membrane proton conductivity responsible for decreasing the photosynthetic activity in sensitive genotypes? PHOTOSYNTHESIS RESEARCH 2021; 150:195-211. [PMID: 34125427 PMCID: PMC8556197 DOI: 10.1007/s11120-021-00853-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/28/2021] [Indexed: 05/16/2023]
Abstract
Effects of salinity caused by 150 mM NaCl on primary photochemical reactions and some physiological and biochemical parameters (K+/Na+ ratio, soluble sugars, proline, MDA) have been studied in five Triticum aestivum L. genotypes with contrasting salt tolerance. It was found that 150 mM NaCl significantly decreased the photosynthetic efficiency of two sensitive genotypes. The K+/Na+ ratio decreased in all genotypes exposed to salinity stress when compared with the control. Salinity stress also caused lipid peroxidation and accumulation of soluble sugars and proline. The amounts of soluble sugars and proline were higher in tolerant genotypes than sensitive ones, and lipid peroxidation was higher in sensitive genotypes. The noninvasive measurements of photosynthesis-related parameters indicated the genotype-dependent effects of salinity stress on the photosynthetic apparatus. The significant decrease of chlorophyll content (SPAD values) or adverse effects on photosynthetic functions at the PSII level (measured by the chlorophyll fluorescence parameters) were observed in the two sensitive genotypes only. Although the information obtained by different fast noninvasive techniques were consistent, the correlation analyses identified the highest correlation of the noninvasive records with MDA, K+/Na+ ratio, and free proline content. The lower correlation levels were found for chlorophyll content (SPAD) and Fv/Fm values derived from chlorophyll fluorescence. Performance index (PIabs) derived from fast fluorescence kinetics, and F735/F685 ratio correlated well with MDA and Na+ content. The most promising were the results of linear electron flow measured by MultispeQ sensor, in which we found a highly significant correlation with all parameters assessed. Moreover, the noninvasive simultaneous measurements of chlorophyll fluorescence and electrochromic band shift using this sensor indicated the apparent proton leakage at the thylakoid membranes resulting in a high proton conductivity (gH+), present in sensitive genotypes only. The possible consequences for the photosynthetic functions and the photoprotection are discussed.
Collapse
Affiliation(s)
- Ulkar Ibrahimova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ, 1073, Azerbaijan
- Research Institute of Crop Husbandry, Ministry of Agriculture of the Azerbaijan Republic, Baku, Azerbaijan
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Kristina Gasparovic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznan, Poland.
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE, Enschede, The Netherlands.
| | - Suleyman I Allakhverdiev
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ, 1073, Azerbaijan
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow, 142290, Russia
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, People's Republic of China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia.
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic.
| |
Collapse
|
34
|
Kumar D, Malik N, Sengar RS, Yadav B, Singh AK, Yadav CL, Yadav MK. Transcriptional Regulation in Sugarcane under Water Deficit during Formative Growth Stage. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721060062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Wang HF, Shan HY, Shi H, Wu DD, Li TT, Li QL. Characterization of a transcription factor SlNAC7 gene from Suaeda liaotungensis and its role in stress tolerance. JOURNAL OF PLANT RESEARCH 2021; 134:1105-1120. [PMID: 33963939 DOI: 10.1007/s10265-021-01309-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
NAC (NAM, ATAF1/2, CUC2) transcription factors play important roles in plant growth, development, and responses to abiotic stress. In this study, we cloned an NAC2 subfamily transcription factor gene (SlNAC7) from the halophyte Suaeda liaotungensis K., and conducted a series of studies to determine the characteristics and functions of this gene. The SlNAC7 coding region contains 1719 base pairs that encode a 573 amino acid long protein. SlNAC7 is expressed in the roots, stems, and leaves of S. liaotungensis, with the highest expression in the leaves. We found that SlNAC7 expression can be induced by drought, salt, cold, and abscisic acid. Transient expression in onion epidermal cells revealed that SlNAC7 is located in both the nucleus and cytoplasm. A transcriptional activation experiment in yeast showed that the transcriptional activation domain of SlNAC7 is located at the C terminus. When SlNAC7 was transformed into Arabidopsis under the control of a CaMV 35S promoter its overexpression was found to enhance the ability of transgenic plants to resist drought, salt, and cold stress. Moreover, these plants showed multiple changes in growth characteristics and physiological and biochemical indices in response to different stresses, as well as the upregulation of numerous stress-related genes. We have thus characterized a new halophyte-derived NAC transcription factor, SlNAC7, which can regulate plant growth and physiological and biochemical changes under adverse conditions by regulating the expression of stress-related genes, thereby enhancing plant stress resistance. SlNAC7 is a promising candidate for breeding new varieties of stress-tolerant crops.
Collapse
Affiliation(s)
- Hong-Fei Wang
- School of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Key Laboratory of Plant Biotechnology of Liaoning Province, Liaoning Normal University, Dalian, 116081, China
| | - Hong-Yan Shan
- School of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Key Laboratory of Plant Biotechnology of Liaoning Province, Liaoning Normal University, Dalian, 116081, China
| | - He Shi
- School of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Key Laboratory of Plant Biotechnology of Liaoning Province, Liaoning Normal University, Dalian, 116081, China
| | - Dan-Dan Wu
- School of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Key Laboratory of Plant Biotechnology of Liaoning Province, Liaoning Normal University, Dalian, 116081, China
| | - Tong-Tong Li
- School of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Key Laboratory of Plant Biotechnology of Liaoning Province, Liaoning Normal University, Dalian, 116081, China
| | - Qiu-Li Li
- School of Life Sciences, Liaoning Normal University, Dalian, 116081, China.
- Key Laboratory of Plant Biotechnology of Liaoning Province, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
36
|
Shailani A, Joshi R, Singla-Pareek SL, Pareek A. Stacking for future: Pyramiding genes to improve drought and salinity tolerance in rice. PHYSIOLOGIA PLANTARUM 2021; 172:1352-1362. [PMID: 33180968 DOI: 10.1111/ppl.13270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 05/02/2023]
Abstract
Abiotic stresses, such as drought and salinity, adversely affect rice production and cause a severe threat to food security. Conventional crop breeding techniques alone are inadequate for achieving drought stress tolerance in crop plants. Using transgenic technology, incremental improvements in tolerance to drought and salinity have been successfully attained via manipulation of gene(s) in several crop species. However, achieving the goal via pyramiding multiple genes from the same or different tolerance mechanisms has received little attention. Pyramiding of multiple genes can be achieved either through breeding, by using marker-assisted selection, or by genetic engineering through molecular stacking co-transformation or re-transformation. Transgene stacking into a single locus has added advantages over breeding or re-transformation since the former assures co-inheritance of genes, contributing to more effective tolerance in transgenic plants for generations. Drought, being a polygenic trait, the potential candidate genes for gene stacking are those contributing to cellular detoxification, osmolyte accumulation, antioxidant machinery, and signaling pathways. Since cellular dehydration is inbuilt in salinity stress, manipulation of these genes results in improving tolerance to salinity along with drought in most of the cases. In this review, attempts have been made to provide a critical assessment of transgenic plants developed through transgene stacking and approaches to achieve the same. Identification and functional validation of more such candidate genes is needed for research programs targeting the gene stacking for developing crop plants with high precision in the shortest possible time to ensure sustainable crop productivity under marginal lands.
Collapse
Affiliation(s)
- Anjali Shailani
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
37
|
Rezaei Cherati S, Shanmugam S, Pandey K, Khodakovskaya MV. Whole-Transcriptome Responses to Environmental Stresses in Agricultural Crops Treated with Carbon-Based Nanomaterials. ACS APPLIED BIO MATERIALS 2021; 4:4292-4301. [DOI: 10.1021/acsabm.1c00108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sajedeh Rezaei Cherati
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Sudha Shanmugam
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Kamal Pandey
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
- University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Mariya V. Khodakovskaya
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| |
Collapse
|
38
|
Transcriptome analysis of upland cotton revealed novel pathways to scavenge reactive oxygen species (ROS) responding to Na 2SO 4 tolerance. Sci Rep 2021; 11:8670. [PMID: 33883626 PMCID: PMC8060397 DOI: 10.1038/s41598-021-87999-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
Salinity is an extensive and adverse environmental stress to crop plants across the globe, and a major abiotic constraint responsible for limited crop production threatening the crop security. Soil salinization is a widespread problem across the globe, threatening the crop production and food security. Salinity impairs plant growth and development via reduction in osmotic potential, cytotoxicity due to excessive uptake of ions such as sodium (Na+) and chloride (Cl-), and nutritional imbalance. Cotton, being the most cultivated crop on saline-alkaline soils, it is of great importance to elucidate the mechanisms involved in Na2SO4 tolerance which is still lacking in upland cotton. Zhong 9835, a Na2SO4 resistant cultivar was screened for transcriptomic studies through various levels of Na2SO4 treatments, which results into identification of 3329 differentially expressed genes (DEGs) in roots, stems and leave at 300 mM Na2SO4 stress till 12 h in compared to control. According to gene functional annotation analysis, genes involved in reactive oxygen species (ROS) scavenging system including osmotic stress and ion toxicity were significantly up-regulated, especially GST (glutathione transferase). In addition, analysis for sulfur metabolism, results in to identification of two rate limiting enzymes [APR (Gh_D05G1637) and OASTL (Gh_A13G0863)] during synthesis of GSH from SO42-. Furthermore, we also observed a crosstalk of the hormones and TFs (transcription factors) enriched in hormone signal transduction pathway. Genes related to IAA exceeds the rest of hormones followed by ubiquitin related genes which are greater than TFs. The analysis of the expression profiles of diverse tissues under Na2SO4 stress and identification of relevant key hub genes in a network crosstalk will provide a strong foundation and valuable clues for genetic improvements of cotton in response to various salt stresses.
Collapse
|
39
|
Tolay I. The impact of different Zinc (Zn) levels on growth and nutrient uptake of Basil (Ocimum basilicum L.) grown under salinity stress. PLoS One 2021; 16:e0246493. [PMID: 33529247 PMCID: PMC7853465 DOI: 10.1371/journal.pone.0246493] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 11/18/2022] Open
Abstract
Salinity is among the most important abiotic stresses, which negatively affect growth, nutrient uptake and yield of crop plants. Application of different micronutrients, particularly zinc (Zn) have the potential to ameliorate the negative impacts of salinity stress. However, the role of Zn in improving salinity tolerance of basil (Ocimum basilicum L.) is poorly understood. This study evaluated the impact of different Zn levels (0, 5 and 10 mg kg-1) on growth and nutrient acquisition traits of basil under different salinity levels (0, 0.5, 1.0 and 1.5% NaCl). Data relating to biomass production, chlorophyll index, sodium (Na), potassium (K) uptake, K/Na ratio, Zn, copper (Cu), manganese (Mn) and iron (Fe) uptake were recorded. Increasing salinity level reduced biomass production, chlorophyll index and nutrient uptake traits (except for Na and Fe accumulation) of basil. Zinc application (10 mg kg-1) improved biomass production, chlorophyll index and nutrient acquisition traits under normal as well as saline conditions. The reduction in chlorophyll index and biomass production was higher under 0 and 5 mg kg-1 than 10 mg kg-1 Zn application. The K concentration decreased under increasing salinity; however, Zn application improved K uptake under normal as well as saline conditions. Different growth and nutrient acquisition traits had negative correlations with Na accumulation; however, no positive correlation was recorded among growth and nutrient uptake traits. The results revealed that Zn application could improve the salinity tolerance of basil. However, actual biochemical and genetic mechanisms involved in Zn-induced salinity tolerance warrant further investigation.
Collapse
Affiliation(s)
- Inci Tolay
- Department of Soil Science and Plant Nutrition, Akdeniz University, Faculty of Agriculture, Antalya, Turkey
| |
Collapse
|
40
|
Tokarz KM, Wesołowski W, Tokarz B, Makowski W, Wysocka A, Jędrzejczyk RJ, Chrabaszcz K, Malek K, Kostecka-Gugała A. Stem Photosynthesis-A Key Element of Grass Pea ( Lathyrus sativus L.) Acclimatisation to Salinity. Int J Mol Sci 2021; 22:E685. [PMID: 33445673 PMCID: PMC7828162 DOI: 10.3390/ijms22020685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/19/2022] Open
Abstract
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.
Collapse
Affiliation(s)
- Krzysztof M. Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (B.T.); (W.M.); (A.W.)
| | - Wojciech Wesołowski
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (W.W.); (A.K.-G.)
| | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (B.T.); (W.M.); (A.W.)
| | - Wojciech Makowski
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (B.T.); (W.M.); (A.W.)
| | - Anna Wysocka
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (B.T.); (W.M.); (A.W.)
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Roman J. Jędrzejczyk
- Plant-Microorganism Interactions Group, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland;
| | - Karolina Chrabaszcz
- Raman Imaging Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (K.C.); (K.M.)
| | - Kamilla Malek
- Raman Imaging Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (K.C.); (K.M.)
| | - Anna Kostecka-Gugała
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (W.W.); (A.K.-G.)
| |
Collapse
|
41
|
Zhang G, Zhou J, Peng Y, Tan Z, Li L, Yu L, Jin C, Fang S, Lu S, Guo L, Yao X. Genome-Wide Association Studies of Salt Tolerance at Seed Germination and Seedling Stages in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:772708. [PMID: 35069628 PMCID: PMC8766642 DOI: 10.3389/fpls.2021.772708] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/25/2021] [Indexed: 05/19/2023]
Abstract
Most crops are sensitive to salt stress, but their degree of susceptibility varies among species and cultivars. In order to understand the salt stress adaptability of Brassica napus to salt stress, we collected the phenotypic data of 505 B. napus accessions at the germination stage under 150 or 215 mM sodium chloride (NaCl) and at the seedling stage under 215 mM NaCl. Genome-wide association studies (GWAS) of 16 salt tolerance coefficients (STCs) were applied to investigate the genetic basis of salt stress tolerance of B. napus. In this study, we mapped 31 salts stress-related QTLs and identified 177 and 228 candidate genes related to salt stress tolerance were detected at germination and seedling stages, respectively. Overexpression of two candidate genes, BnCKX5 and BnERF3 overexpression, were found to increase the sensitivity to salt and mannitol stresses at the germination stage. This study demonstrated that it is a feasible method to dissect the genetic basis of salt stress tolerance at germination and seedling stages in B. napus by GWAS, which provides valuable loci for improving the salt stress tolerance of B. napus. Moreover, these candidate genes are rich genetic resources for the following exploration of molecular mechanisms in adaptation to salt stress in B. napus.
Collapse
Affiliation(s)
- Guofang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jinzhi Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yan Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Cheng Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shuai Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- *Correspondence: Xuan Yao,
| |
Collapse
|
42
|
Teymouri M, Parvini Kohneh Shahri M, Darvishzadeh R. Salt-Induced Differences During the Gene Expression of Telomerase Enzyme in Sunflower. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2579. [PMID: 34179190 PMCID: PMC8217534 DOI: 10.30498/ijb.2021.2579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: Salinity is one of the most important environmental stresses which reduces the nutrient uptake, growth and yield of crops including sunflower. Objectives: The aim of this study was evaluating the expression pattern of telomerase gene, TERT, in sunflower plants under salinity stress. Materials and Methods: Sunflower plants of both sensitive and resistant lines were grown in greenhouse and treated with different levels of NaCl (2, 5 and 8 dSm-1).
The expression pattern of TERT gene was evaluated at 8th leaf stage 6, 12 and 24 hours post salt treatment using real time-PCR,
since the effects of salt stress are eventually manifested in the leaves. Results: In both lines, salt-subjected plants showed reduced size and dried leaves, due to breakthrough of the growth.
Compared to the control group, treated groups tended to indicate downregulated pattern of TERT gene expression. Conclusions: This study offers TERT as a new gene affected by salt stress when growth is arrested.
Collapse
Affiliation(s)
- Mahdi Teymouri
- Department of Biology, Urmia Branch, Islamic Azad University, Urmia, Iran
| | | | - Reza Darvishzadeh
- Department of Biology, Urmia Branch, Islamic Azad University, Urmia, Iran.,Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources,Urmia University, Urmia, Iran
| |
Collapse
|
43
|
Potassium: A key modulator for cell homeostasis. J Biotechnol 2020; 324:198-210. [PMID: 33080306 DOI: 10.1016/j.jbiotec.2020.10.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Potassium (K) is the most vital and abundant macro element for the overall growth of plants and its deficiency or, excess concentration results in many diseases in plants. It is involved in regulation of many crucial roles in plant development. Depending on soil-root interactions, complex soil dynamics often results in unpredictable availability of the elements. Based on the importance index, K is considered to be the second only to nitrogen for the overall growth of plants. More than 60 enzymes within the plant system depend on K for its activation, in which K act as a key regulator. K helps plants to resist several abiotic and biotic stresses in the environment. We have reviewed the research progress about K's role in plants covering various important considerations of K highlighting the effects of microbes on soil K+; K and its contribution to adsorbed dose in plants; the importance of K+ deficiency; physiological functions of K+ transporters and channels; and interference of abiotic stressor in the regulatory role of K. This review further highlights the scope of future research regarding K.
Collapse
|
44
|
Ma W, Ren Z, Zhou Y, Zhao J, Zhang F, Feng J, Liu W, Ma X. Genome-Wide Identification of the Gossypium hirsutum NHX Genes Reveals that the Endosomal-Type GhNHX4A is Critical for the Salt Tolerance of Cotton. Int J Mol Sci 2020; 21:E7712. [PMID: 33081060 PMCID: PMC7589573 DOI: 10.3390/ijms21207712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Soil salinization, which is primarily due to excessive Na+ levels, is a major abiotic stress adversely affecting plant growth and development. The Na+/H+ antiporter (NHX) is a transmembrane protein mediating the transport of Na+ or K+ and H+ across the membrane to modulate the ionic balance of plants in response to salt stress. Research regarding NHXs has mainly focused on the vacuolar-type NHX family members. However, the biological functions of the endosomal-type NHXs remain relatively uncharacterized. In this study, 22 NHX family members were identified in Gossypium hirsutum. A phylogenetic analysis divided the GhNHX genes into two categories, with 18 and 4 in the vacuolar and endosomal groups, respectively. The chromosomal distribution of the NHX genes revealed the significant impact of genome-wide duplication during the polyploidization process on the number of GhNHX genes. Analyses of gene structures and conserved motifs indicated that GhNHX genes in the same phylogenetic cluster are conserved. Additionally, the salt-induced expression patterns confirmed that the expression levels of most of the GhNHX genes are affected by salinity. Specifically, in the endosomal group, GhNHX4A expression was substantially up-regulated by salt stress. A yeast functional complementation test proved that GhNHX4A can partially restore the salt tolerance of the salt-sensitive yeast mutant AXT3. Silencing GhNHX4A expression decreased the resistance of cotton to salt stress because of an increase in the accumulation of Na+ in stems and a decrease in the accumulation of K+ in roots. The results of this study may provide the basis for an in-depth characterization of the regulatory functions of NHX genes related to cotton salt tolerance, especially the endosomal-type GhNHX4A. Furthermore, the presented data may be useful for selecting appropriate candidate genes for the breeding of new salt-tolerant cotton varieties.
Collapse
Affiliation(s)
- Wenyu Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.M.); (Z.R.); (J.Z.); (F.Z.)
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.M.); (Z.R.); (J.Z.); (F.Z.)
| | - Yang Zhou
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops, College of Horticulture, Hainan University, Haikou 570228, China;
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.M.); (Z.R.); (J.Z.); (F.Z.)
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.M.); (Z.R.); (J.Z.); (F.Z.)
| | - Junping Feng
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China;
| | - Wei Liu
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China;
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.M.); (Z.R.); (J.Z.); (F.Z.)
| |
Collapse
|
45
|
Transcriptomic profile analysis of the halophyte Suaeda rigida response and tolerance under NaCl stress. Sci Rep 2020; 10:15148. [PMID: 32939003 PMCID: PMC7494938 DOI: 10.1038/s41598-020-71529-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
Suaeda rigida is a lignified, true haplotype that predominantly grows in the Tarim basin, China. It has significant economic and ecological value. Herein, with aim to determine the genes associated with salt tolerance, transcriptome sequencing was performed on its stem, leaves and root over three set NaCl gradients regimens at treatment intervals of 3 h and 5 days. From our findings, we identified 829,095 unigenes, with 331,394 being successfully matched to at least one annotation database. In roots, under 3 h treatment, no up-regulated DEGs were identified in 100 and 500 mM NaCl treated samples. Under 5 days treatment, 97, 60 and 242 up-regulated DEGs were identified in 100, 300, 500 mM NaCl treated samples, respectively. We identified 50, 22 and 255 down-regulated DEGs in 100, 300, 500 mM NaCl treated samples, respectively. GO biological process enrichment analysis established that down-regulated DEGs were associated with nitrogen compound transport, organic substance transport and intracellular protein transport while the up-regulated genes were enriched in cell wall biogenesis, such as plant-type cell wall biogenesis, cell wall assembly, extracellular matrix organization and plant-type cell wall organization. These findings provide valuable knowledge on genes associated with salt tolerance of Suaeda rigida, and can be applied in other downstream haplotype studies.
Collapse
|
46
|
Fan D, Subramanian S, Smith DL. Plant endophytes promote growth and alleviate salt stress in Arabidopsis thaliana. Sci Rep 2020; 10:12740. [PMID: 32728116 PMCID: PMC7391687 DOI: 10.1038/s41598-020-69713-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) are a functionally diverse group of microbes having immense potential as biostimulants and stress alleviators. Their exploitation in agro-ecosystems as an eco-friendly and cost-effective alternative to traditional chemical inputs may positively affect agricultural productivity and environmental sustainability. The present study describes selected rhizobacteria, from a range of origins, having plant growth promoting potential under controlled conditions. A total of 98 isolates (ectophytic or endophytic) from various crop and uncultivated plants were screened, out of which four endophytes (n, L, K and Y) from Phalaris arundinacea, Solanum dulcamara, Scorzoneroides autumnalis, and Glycine max, respectively, were selected in vitro for their vegetative growth stimulating effects on Arabidopsis thaliana Col-0 seedlings with regard to leaf surface area and shoot fresh weight. A 16S rRNA gene sequencing analysis of the strains indicated that these isolates belong to the genera Pseudomonas, Bacillus, Mucilaginibacter and Rhizobium. Strains were then further tested for their effects on abiotic stress alleviation under both Petri-plate and pot conditions. Results from Petri-dish assay indicated strains L, K and Y alleviated salt stress in Arabidopsis seedlings, while strains K and Y conferred increases in fresh weight and leaf area under osmotic stress. Results from subsequent in vivo trials indicated all the isolates, especially strains L, K and Y, distinctly increased A. thaliana growth under both normal and high salinity conditions, as compared to control plants. The activity of antioxidant enzymes (ascorbate peroxidase, catalase and peroxidase), proline content and total antioxidative capacity also differed in the inoculated A. thaliana plants. Furthermore, a study on spatial distribution of the four strains, using either conventional Petri-plate counts or GFP-tagged bacteria, indicated that all four strains were able to colonize the endosphere of A. thaliana root tissue. Thus, the study revealed that the four selected rhizobacteria are good candidates to be explored as plant growth stimulators, which also possess salt stress mitigating property, partially by regulating osmolytes and antioxidant enzymes. Moreover, the study is the first report of Scorzoneroides autumnalis (fall dandelion) and Solanum dulcamara (bittersweet) associated endophytes with PGP effects.
Collapse
Affiliation(s)
- Di Fan
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Sowmyalakshmi Subramanian
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Donald L Smith
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada.
| |
Collapse
|
47
|
Yang T, Lian Y, Kang J, Bian Z, Xuan L, Gao Z, Wang X, Deng J, Wang C. The SUPPRESSOR of MAX2 1 (SMAX1)-Like SMXL6, SMXL7 and SMXL8 Act as Negative Regulators in Response to Drought Stress in Arabidopsis. ACTA ACUST UNITED AC 2020; 61:1477-1492. [DOI: 10.1093/pcp/pcaa066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022]
Abstract
Abstract
Drought represents a major threat to crop growth and yields. Strigolactones (SLs) contribute to regulating shoot branching by targeting the SUPPRESSOR OF MORE AXILLARY GROWTH2 (MAX2)-LIKE6 (SMXL6), SMXL7 and SMXL8 for degradation in a MAX2-dependent manner in Arabidopsis. Although SLs are implicated in plant drought response, the functions of the SMXL6, 7 and 8 in the SL-regulated plant response to drought stress have remained unclear. Here, we performed transcriptomic, physiological and biochemical analyses of smxl6, 7, 8 and max2 plants to understand the basis for SMXL6/7/8-regulated drought response. We found that three D53 (DWARF53)-Like SMXL members, SMXL6, 7 and 8, are involved in drought response as the smxl6smxl7smxl8 triple mutants showed markedly enhanced drought tolerance compared to wild type (WT). The smxl6smxl7smxl8 plants exhibited decreased leaf stomatal index, cuticular permeability and water loss, and increased anthocyanin biosynthesis during dehydration. Moreover, smxl6smxl7smxl8 were hypersensitive to ABA-induced stomatal closure and ABA responsiveness during and after germination. In addition, RNA-sequencing analysis of the leaves of the D53-like smxl mutants, SL-response max2 mutant and WT plants under normal and dehydration conditions revealed an SMXL6/7/8-mediated network controlling plant adaptation to drought stress via many stress- and/or ABA-responsive and SL-related genes. These data further provide evidence for crosstalk between ABA- and SL-dependent signaling pathways in regulating plant responses to drought. Our results demonstrate that SMXL6, 7 and 8 are vital components of SL signaling and are negatively involved in drought responses, suggesting that genetic manipulation of SMXL6/7/8-dependent SL signaling may provide novel ways to improve drought resistance.
Collapse
Affiliation(s)
- Tao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuke Lian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jihong Kang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhiyuan Bian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lijuan Xuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhensheng Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xinyu Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianming Deng
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Chongying Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
48
|
Luo X, Zhang Y, Wu H, Bai J. Drought stress-induced autophagy gene expression is correlated with carbohydrate concentrations in Caragana korshinskii. PROTOPLASMA 2020; 257:1211-1220. [PMID: 32318821 DOI: 10.1007/s00709-020-01507-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Autophagy has been reported to be an adapt function of plant cells under various stresses. In this report, autophagy-related gene expressions and carbohydrate concentrations in Caragana korshinskii leaf cells under drought stress were investigated. Leaf samples of C. korshinskii plants of an estimated 15-year-old were collected from three sites with different drought stress (annual precipitation range, 325.8 to 440.8 mm) at the Loess Plateau in northwestern China. Autophagy was observed in C. korshinskii samples from all three sites and was revealed by autophagosomes in the cytoplasm of mesophyll cells and increased chloroplasts degradation observed by transmission electron microscopy. Furthermore, with the drought stress increase, autophagy-related gene expressions were upregulated and leaf concentration of sucrose was increased, while concentrations of monosaccharide sugars such as glucose, fructose and galactose were decreased. The results suggested that drought stress induced autophagy gene expression, which may serve as a survival mechanism for nutrient remobilisation.
Collapse
Affiliation(s)
- Xinjuan Luo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanyu Zhang
- College of Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Hongdou Wu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Juan Bai
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
49
|
Overexpression of LeNHX4 improved yield, fruit quality and salt tolerance in tomato plants (Solanum lycopersicum L.). Mol Biol Rep 2020; 47:4145-4153. [DOI: 10.1007/s11033-020-05499-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/03/2020] [Indexed: 11/27/2022]
|
50
|
Zhang J, Li S, Cai Q, Wang Z, Cao J, Yu T, Xie T. Exogenous diethyl aminoethyl hexanoate ameliorates low temperature stress by improving nitrogen metabolism in maize seedlings. PLoS One 2020; 15:e0232294. [PMID: 32353025 PMCID: PMC7192554 DOI: 10.1371/journal.pone.0232294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/11/2020] [Indexed: 01/24/2023] Open
Abstract
Spring maize sowing occurs during a period of low temperature (LT) in Northeast
China, and the LT suppresses nitrogen (N) metabolism and photosynthesis, further
reducing dry matter accumulation. Diethyl aminoethyl hexanoate (DA-6) improves N
metabolism; hence, we studied the effects of DA-6 on maize seedlings under LT
conditions. The shoot and root fresh weight and dry weight decreased by
17.70%~20.82% in the LT treatment, and decreased by 5.81%~13.57% in the LT +
DA-6 treatment on the 7th day, respectively. Exogenous DA-6
suppressed the increases in ammonium (NH4+) content and
glutamate dehydrogenase (GDH) activity, and suppressed the decreases in nitrate
(NO3–) and nitrite (NO2–)
contents, and activities of nitrate reductase (NR), nitrite reductase (NiR),
glutamine synthetase (GS), glutamate synthase (GOGAT) and transaminase
activities. NiR activity was most affected by DA-6 under LT conditions.
Additionally, exogenous DA-6 suppressed the net photosynthetic rate (Pn)
decrease, and the suppressed the increases of superoxide anion radical
(O2·−) generation rate and hydrogen peroxide
(H2O2) content. Taken together, our results suggest
that exogenous DA-6 mitigated the repressive effects of LT on N metabolism by
improving photosynthesis and modulating oxygen metabolism, and subsequently
enhanced the LT tolerance of maize seedlings.
Collapse
Affiliation(s)
- Jianguo Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, P.R.
China
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences,
Harbin, P.R. China
| | - Shujun Li
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences,
Harbin, P.R. China
| | - Quan Cai
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences,
Harbin, P.R. China
| | - Zhenhua Wang
- College of Agriculture, Northeast Agricultural University, Harbin, P.R.
China
- * E-mail:
| | - Jingsheng Cao
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences,
Harbin, P.R. China
| | - Tao Yu
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences,
Harbin, P.R. China
| | - Tenglong Xie
- College of Agriculture, Northeast Agricultural University, Harbin, P.R.
China
| |
Collapse
|