1
|
Wang LN, Wang WC, Liao K, Xu LJ, Xie DX, Xie RH, Xiao S. Survival mechanisms of plants under hypoxic stress: Physiological acclimation and molecular regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:440-454. [PMID: 40052431 DOI: 10.1111/jipb.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 03/29/2025]
Abstract
Hypoxia (low-oxygen tension) caused by complete submergence or waterlogging is an abiotic stress factor that severely affects the yield and distribution of plants. To adapt to and survive under hypoxic conditions, plants employ several physiological and molecular strategies that integrate morphological acclimation, metabolic shifts, and signaling networks. Group VII ETHYLENE RESPONSE FACTORS (ERF-VIIs), master transcription factors, have emerged as a molecular hub for regulating plant hypoxia sensing and signaling. Several mitogen-activated protein kinases and calcium-dependent protein kinases have recently been reported to be involved in potentiating hypoxia signaling via interaction with and phosphorylation of ERF-VIIs. Here, we provide an overview of the current knowledge on the regulatory network of ERF-VIIs and their post-translational regulation in determining plant responses to hypoxia and reoxygenation, with a primary focus on recent advancements in understanding how signaling molecules, including ethylene, long-chain acyl-CoA, phosphatidic acid, and nitric oxide, are involved in the regulation of ERV-VII activities. Furthermore, we propose future directions for investigating the intricate crosstalk between plant growth and hypoxic resilience, which is central to guiding breeding and agricultural management strategies for promoting flooding and submergence stress tolerance in plants.
Collapse
Affiliation(s)
- Lin-Na Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei-Cheng Wang
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ke Liao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ling-Jing Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dao-Xin Xie
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ruo-Han Xie
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518017, China
| | - Shi Xiao
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518017, China
| |
Collapse
|
2
|
Yang M, Wei J, Xu Y, Zheng S, Yu B, Ming Y, Jin H, Xie L, Qi H, Xiao S, Huang W, Chen L. Autophagy Regulates Plant Tolerance to Submergence by Modulating Photosynthesis. PLANT, CELL & ENVIRONMENT 2025; 48:2267-2284. [PMID: 39575938 DOI: 10.1111/pce.15290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 02/04/2025]
Abstract
The increase in global climate variability has increased the frequency and severity of floods, profoundly affecting agricultural production and food security worldwide. Autophagy is an intracellular catabolic pathway that is dispensable for plant responses to submergence. However, the physiological role of autophagy in plant response to submergence remains unclear. In this study, a multi-omics approach was applied by combining transcriptomics, proteomics, and lipidomics to characterize molecular changes in the Arabidopsis autophagy-defective mutant (atg5-1) responding to submergence. Our results revealed that submergence resulted in remarkable changes in the transcriptome, proteome, and lipidome of Arabidopsis. Under submerged conditions, the levels of chloroplastidic lipids, including monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylglycerol (PG), were lower in atg5-1 than in wild-type, suggesting that autophagy may affect photosynthesis by regulating lipid metabolism. Consistently, photosynthesis-related proteins and photosynthetic efficiency decreased in atg5-1 under submergence conditions. Phenotypic analysis revealed that inhibition of photosynthesis resulted in a decreased tolerance to submergence. Compared to wild-type plants, atg5-1 plants showed a significant decrease in starch content after submergence. Collectively, our findings reveal a novel role for autophagy in plant response to submergence via the regulation of underwater photosynthesis and starch content.
Collapse
Affiliation(s)
- Mingkang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology & Agriculture, Shaoguan University, Shaoguan, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Jiaosheng Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yarou Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Baiyin Yu
- Henry Fok School of Biology & Agriculture, Shaoguan University, Shaoguan, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Yu Ming
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijuan Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Liang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
de Oliveira HO, Siqueira JA, Medeiros DB, Fernie AR, Nunes-Nesi A, Araújo WL. Harnessing the dynamics of plant organic acids metabolism following abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109465. [PMID: 39787814 DOI: 10.1016/j.plaphy.2024.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS). They also participate in the biosynthesis of solutes involved in stress signaling and osmoregulation, particularly during stomatal movements. This review explores how OAs regulate plant metabolism in response to specific abiotic stresses, emphasizing the increased production of malate, citrate, and succinate, which enhance resilience to water deficits, metal toxicity, and flooding. Since these mechanisms involve intricate metabolic networks, changes in OA metabolism present promising and underexplored potential for agriculture. Understanding these mechanisms could lead to innovative strategies for developing crops with greater resilience to climate change, whether through genetic manipulation or by selecting varieties with favorable metabolic responses to stress.
Collapse
Affiliation(s)
- Hellen Oliveira de Oliveira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - David B Medeiros
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil; Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
4
|
Wang X, Wen H, Suprun A, Zhu H. Ethylene Signaling in Regulating Plant Growth, Development, and Stress Responses. PLANTS (BASEL, SWITZERLAND) 2025; 14:309. [PMID: 39942870 PMCID: PMC11820588 DOI: 10.3390/plants14030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025]
Abstract
Ethylene is a gaseous plant hormone that plays a crucial role in coordinating various physiological processes in plants. It acts as a key mediator, integrating both endogenous developmental cues and external environmental signals to regulate a wide range of functions, including growth, fruit ripening, leaf abscission, and responses to stress. The signaling pathway is initiated when ethylene binds to its receptor. After decades of research, the key components of ethylene signaling have been identified and characterized. Although the molecular mechanisms of the sensing of ethylene signal and its transduction have been studied extensively, a new area of research is how respiration and epigenetic modifications influence ethylene signaling and ethylene response. Here, we summarize the research progress in recent years and review the function and importance of ethylene signaling in plant growth and stress responses. In addition, we also describe the current understanding of how epigenetic modifications regulate ethylene signaling and the ethylene response. Together, our review sheds light on the new signaling mechanisms of ethylene.
Collapse
Affiliation(s)
- Xiaoyi Wang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.W.); (H.W.)
| | - Hongyi Wen
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.W.); (H.W.)
| | - Andrey Suprun
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.W.); (H.W.)
| |
Collapse
|
5
|
Holdsworth MJ, Liu H, Castellana S, Abbas M, Liu J, Perata P. Geography, altitude, agriculture, and hypoxia. PLANT PHYSIOLOGY 2024; 197:kiae535. [PMID: 39365016 DOI: 10.1093/plphys/kiae535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
Reduced oxygen availability (hypoxia) represents a key plant abiotic stress in natural and agricultural systems, but conversely it is also an important component of normal growth and development. We review recent advances that demonstrate how genetic adaptations associated with hypoxia impact the known plant oxygen-sensing mechanism through the PLANT CYSTEINE OXIDASE N-degron pathway. Only 3 protein substrates of this pathway have been identified, and all adaptations identified to date are associated with the most important of these, the group VII ETHYLENE RESPONSE FACTOR transcription factors. We discuss how geography, altitude, and agriculture have all shaped molecular responses to hypoxia and how these responses have emerged at different taxonomic levels through the evolution of land plants. Understanding how ecological and agricultural genetic variation acts positively to enhance hypoxia tolerance will provide novel tools and concepts to improve the performance of crops in the face of increasing extreme flooding events.
Collapse
Affiliation(s)
| | - Huanhuan Liu
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Simone Castellana
- PlantLab, Institute of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy
| | - Mohamad Abbas
- Plant Stress Resilience group, Institute of Environmental Biology, Utrecht University, Utrecht 3541 TR, The Netherlands
| | - Jianquan Liu
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Pierdomenico Perata
- PlantLab, Institute of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy
| |
Collapse
|
6
|
Rolletschek H, Borisjuk L, Gómez-Álvarez EM, Pucciariello C. Advances in seed hypoxia research. PLANT PHYSIOLOGY 2024; 197:kiae556. [PMID: 39471319 PMCID: PMC11852284 DOI: 10.1093/plphys/kiae556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/01/2024]
Abstract
Seeds represent essential stages of the plant life cycle: embryogenesis, the intermittent quiescence phase, and germination. Each stage has its own physiological requirements, genetic program, and environmental challenges. Consequently, the effects of developmental and environmental hypoxia can vary from detrimental to beneficial. Past and recent evidence shows how low-oxygen signaling and metabolic adaptations to hypoxia affect seed development and germination. Here, we review the recent literature on seed biology in relation to hypoxia research and present our perspective on key challenges and opportunities for future investigations.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Eva María Gómez-Álvarez
- PlantLab, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56010 Pisa, Italy
- nanoPlant Center @NEST, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Chiara Pucciariello
- PlantLab, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56010 Pisa, Italy
- nanoPlant Center @NEST, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| |
Collapse
|
7
|
Gage E, Jain R, Terry LA, Falagán N. Controlled atmosphere as cold chain support for extending postharvest life in cabbage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109094. [PMID: 39243582 DOI: 10.1016/j.plaphy.2024.109094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Postharvest management of cabbage relies on high-intensity cooling to control postharvest physiology, minimising quality loss despite incurring significant energy and environmental costs. As an alternative, we hypothesised that controlled atmosphere (CA) could allow increased storage temperature by supporting physiological regulation, while maintaining quality and reducing energy demand. This study examined the effect CA (1.5 kPa CO2 and 6 kPa O2) at 5 or 10 °C on cabbage quality, with the aim of proposing a more sustainable and resilient supply chain. CA treatment was effective at reducing head respiration at higher temperature, with CA/10 °C treatment achieving lower respiration rates than Control/5 °C. Improved head colour retention and maintenance of stump quality were observed in cabbage under CA conditions. CA effects were seen also at a regulatory level; CA promoted an average of 25.4% reduction in abscisic acid accumulation potentially as part of a wider hypoxia stress response and was successful in decreasing expression of the senescence-coordinating transcription factor BoORE15. This finding was linked with a lower in downstream expression of pheophytinase and subtilisin protease. These results demonstrated that CA treatment fundamentally modified postharvest physiology in cabbage, which can be exploited to enable storage at warmer temperatures, contributing to supply chains with lower energy demand and its associated environmental benefits.
Collapse
Affiliation(s)
- Ewan Gage
- Plant Science Laboratory, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - Ritika Jain
- Plant Science Laboratory, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - Leon A Terry
- Plant Science Laboratory, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - Natalia Falagán
- Plant Science Laboratory, Cranfield University, Bedfordshire, MK43 0AL, UK.
| |
Collapse
|
8
|
Kalachanis D, Chondrogiannis C, Petropoulou Y. Photosynthetic Traits of Quercus coccifera Green Fruits: A Comparison with Corresponding Leaves during Mediterranean Summer. PLANTS (BASEL, SWITZERLAND) 2024; 13:2867. [PMID: 39458814 PMCID: PMC11511256 DOI: 10.3390/plants13202867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024]
Abstract
Fruit photosynthesis occurs in an internal microenvironment seldom encountered by a leaf (hypoxic and extremely CO2-enriched) due to its metabolic and anatomical features. In this study, the anatomical and photosynthetic traits of fully exposed green fruits of Quercus coccifera L. were assessed during the period of fruit production (summer) and compared to their leaf counterparts. Our results indicate that leaf photosynthesis, transpiration and stomatal conductance drastically reduced during the summer drought, while they recovered significantly after the autumnal rainfalls. In acorns, gas exchange with the surrounding atmosphere is hindered by the complete absence of stomata; hence, credible CO2 uptake measurements could not be applied in the field. The linear electron transport rates (ETRs) in ambient air were similar in intact leaves and pericarps (i.e., when the physiological internal atmosphere of each tissue is maintained), while the leaf NPQ was significantly higher, indicating enhanced needs for harmless energy dissipation. The ETR measurements performed on leaf and pericarp discs at different CO2/O2 partial pressures in the supplied air mixture revealed that pericarps displayed significantly lower values at ambient gas levels, yet they increased by ~45% under high CO2/O2 ratios (i.e., at gas concentrations simulating the fruit's interior). Concomitantly, NPQ declined gradually in both tissues as the CO2/O2 ratio increased, yet the decrease was more pronounced in pericarps. Furthermore, net CO2 assimilation rates for both leaf and pericarp segments were low in ambient air and increased almost equally at high CO2, while pericarps exhibited significantly higher respiration. It is suggested that during summer, when leaves suffer from photoinhibition, acorns could contribute to the overall carbon balance, through the re-assimilation of respiratory CO2, thereby reducing the reproductive cost.
Collapse
Affiliation(s)
- Dimitrios Kalachanis
- Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece;
| | | | - Yiola Petropoulou
- Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece;
| |
Collapse
|
9
|
Pieczywek PM, Nosalewicz A, Zdunek A. A novel application of laser speckle imaging technique for prediction of hypoxic stress of apples. PLANT METHODS 2024; 20:147. [PMID: 39342339 PMCID: PMC11437772 DOI: 10.1186/s13007-024-01271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Fruit storage methods such as dynamic controlled atmosphere (DCA) technology enable adjusting the level of oxygen in the storage room, according to the physiological state of the product to slow down the ripening process. However, the successful application of DCA requires precise and reliable sensors of the oxidative stress of the fruit. In this study, respiration rate and chlorophyll fluorescence (CF) signals were evaluated after introducing a novel predictors of apples' hypoxic stress based on laser speckle imaging technique (LSI). RESULTS Both chlorophyll fluorescence and LSI signals were equally good for stress detection in principle. However, in an application with automatic detection based on machine learning models, the LSI signal proved to be superior, due to its stability and measurement repeatability. Moreover, the shortcomings of the CF signal appear to be its inability to indicate oxygen stress in tissues with low chlorophyll content but this does not apply to LSI. A comparison of different LSI signal processing methods showed that method based on the dynamics of changes in image content was better indicators of stress than methods based on measurements of changes in pixel brightness (inertia moment or laser speckle contrast analysis). Data obtained using the near-infrared laser provided better prediction capabilities, compared to the laser with red light. CONCLUSIONS The study showed that the signal from the scattered laser light phenomenon is a good predictor for the oxidative stress of apples. Results showed that effective prediction using LSI was possible and did not require additional signals. The proposed method has great potential as an alternative indicator of fruit oxidative stress, which can be applied in modern storage systems with a dynamically controlled atmosphere.
Collapse
Affiliation(s)
- Piotr Mariusz Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| | - Artur Nosalewicz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
10
|
Yiotis C, Chondrogiannis C. Reduced diffusional limitations in carnation stems facilitate higher photosynthetic rates and reduced photorespiratory losses compared with leaves. PHYSIOLOGIA PLANTARUM 2024; 176:e14573. [PMID: 39400364 DOI: 10.1111/ppl.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Green stem photosynthesis has been shown to be relatively inefficient but can occasionally contribute significantly to the carbon budget of desert plants. Although the possession of green photosynthetic stems is a common trait, little is known about their photosynthetic characteristics in non-desert species. Dianthus caryophyllus is a semi-woody species with prominent green stems, which show similar photosynthetic anatomy with leaves. In the present study, we used a combination of gas exchange and chlorophyll fluorescence measurements, some of which were taken under varying O2 and CO2 partial pressures, to investigate whether the apparent anatomical similarities between the species' leaves and stems translate into similar photosynthetic physiology and capacity for CO2 assimilation. Both organs displayed high photosynthetic electron transport rates (ETR) and similar values of steady-state non-photochemical quenching (NPQ), albeit leaves could attain them faster. The analysis of OJIP transients showed that the quantum efficiencies and energy fluxes along the photosynthetic electron transport chain are largely similar between leaves and stems. Stems displayed higher total conductance to CO2 diffusion, similar biochemical properties, significantly higher photosynthetic rates and lower water use efficiency than leaves. Leaf ETR was more sensitive to sub-ambient O2 and super-ambient CO2 partial pressures, while leaves also displayed a higher relative rate of Rubisco oxygenation. We conclude that the highly responsive NPQ and the enhanced photorespiration and WUE in leaves represent photoprotective and water-conserving adaptations to the high incident light intensities they experience naturally, at the expense of higher CO2 assimilation rates, which the vertically orientated stems can readily attain.
Collapse
Affiliation(s)
- Charilaos Yiotis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Christos Chondrogiannis
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
- Laboratory of Plant Physiology, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
11
|
Im G, Choi D. Molecular and physiological characterization of AIP1, encoding the acetolactate synthase regulatory subunit in rice. Biochem Biophys Res Commun 2024; 718:150087. [PMID: 38735139 DOI: 10.1016/j.bbrc.2024.150087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Flooding deprives plants of oxygen and thereby causes severe stress by interfering with energy production, leading to growth retardation. Enzymes and metabolites may help protect plants from waterlogging and hypoxic environmental conditions. Acetolactate synthase (ALS) is a key enzyme in the biosynthesis of branched-chain amino acids (BCAAs), providing the building blocks for proteins and various secondary metabolites. Additionally, under energy-poor conditions, free BCAAs can be used as an alternative energy source by mitochondria through a catabolic enzyme chain reaction. In this study, we characterized ALS-INTERACTING PROTEIN 1 (OsAIP1), which encodes the regulatory subunit of ALS in rice (Oryza sativa). This gene was expressed in all parts of the rice plant, and its expression level was significantly higher in submerged and low-oxygen environments. Rice transformants overexpressing OsAIP1 showed a higher survival rate under hypoxic stress than did non-transgenic control plants under the same conditions. The OsAIP1-overexpressing plants accumulated increased levels of BCAAs, demonstrating that OsAIP1 is an important factor in the hypoxia resistance mechanism. These results suggest that ALS proteins are part of a defense mechanism that improves the tolerance of plants to low-oxygen environments.
Collapse
Affiliation(s)
- Geunmuk Im
- Department of Biological Science, Kunsan National University, Gunsan-si, 54150, Republic of Korea
| | - Dongsu Choi
- Department of Biological Science, Kunsan National University, Gunsan-si, 54150, Republic of Korea.
| |
Collapse
|
12
|
Leszczuk A, Kutyrieva-Nowak N, Nowak A, Nosalewicz A, Zdunek A. Low oxygen environment effect on the tomato cell wall composition during the fruit ripening process. BMC PLANT BIOLOGY 2024; 24:503. [PMID: 38840061 PMCID: PMC11155102 DOI: 10.1186/s12870-024-05226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Oxygen concentration is a key characteristic of the fruit storage environment determining shelf life and fruit quality. The aim of the work was to identify cell wall components that are related to the response to low oxygen conditions in fruit and to determine the effects of such conditions on the ripening process. Tomato (Solanum lycopersicum) fruits at different stages of the ripening process were stored in an anoxic and hypoxic environment, at 0% and 5% oxygen concentrations, respectively. We used comprehensive and comparative methods: from microscopic immunolabelling and estimation of enzymatic activities to detailed molecular approaches. Changes in the composition of extensin, arabinogalactan proteins, rhamnogalacturonan-I, low methyl-esterified homogalacturonan, and high methyl-esterified homogalacturonan were analysed. RESULTS In-depth molecular analyses showed that low oxygen stress affected the cell wall composition, i.e. changes in protein content, a significantly modified in situ distribution of low methyl-esterified homogalacturonan, appearance of callose deposits, disturbed native activities of β-1,3-glucanase, endo-β-1,4-glucanase, and guaiacol peroxidase (GPX), and disruptions in molecular parameters of single cell wall components. Taken together, the data obtained indicate that less significant changes were observed in fruit in the breaker stage than in the case of the red ripe stage. The first symptoms of changes were noted after 24 h, but only after 72 h, more crucial deviations were visible. The 5% oxygen concentration slows down the ripening process and 0% oxygen accelerates the changes taking place during ripening. CONCLUSIONS The observed molecular reset occurring in tomato cell walls in hypoxic and anoxic conditions seems to be a result of regulatory and protective mechanisms modulating ripening processes.
Collapse
Affiliation(s)
- Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland.
| | | | - Artur Nowak
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie- Skłodowska University, Akademicka 19, Lublin, 20-033, Poland
| | - Artur Nosalewicz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland
| |
Collapse
|
13
|
Maciag T, Kozieł E, Otulak-Kozieł K, Jafra S, Czajkowski R. Looking for Resistance to Soft Rot Disease of Potatoes Facing Environmental Hypoxia. Int J Mol Sci 2024; 25:3757. [PMID: 38612570 PMCID: PMC11011919 DOI: 10.3390/ijms25073757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Plants are exposed to various stressors, including pathogens, requiring specific environmental conditions to provoke/induce plant disease. This phenomenon is called the "disease triangle" and is directly connected with a particular plant-pathogen interaction. Only a virulent pathogen interacting with a susceptible plant cultivar will lead to disease under specific environmental conditions. This may seem difficult to accomplish, but soft rot Pectobacteriaceae (SRPs) is a group virulent of pathogenic bacteria with a broad host range. Additionally, waterlogging (and, resulting from it, hypoxia), which is becoming a frequent problem in farming, is a favoring condition for this group of pathogens. Waterlogging by itself is an important source of abiotic stress for plants due to lowered gas exchange. Therefore, plants have evolved an ethylene-based system for hypoxia sensing. Plant response is coordinated by hormonal changes which induce metabolic and physiological adjustment to the environmental conditions. Wetland species such as rice (Oryza sativa L.), and bittersweet nightshade (Solanum dulcamara L.) have developed adaptations enabling them to withstand prolonged periods of decreased oxygen availability. On the other hand, potato (Solanum tuberosum L.), although able to sense and response to hypoxia, is sensitive to this environmental stress. This situation is exploited by SRPs which in response to hypoxia induce the production of virulence factors with the use of cyclic diguanylate (c-di-GMP). Potato tubers in turn reduce their defenses to preserve energy to prevent the negative effects of reactive oxygen species and acidification, making them prone to soft rot disease. To reduce the losses caused by the soft rot disease we need sensitive and reliable methods for the detection of the pathogens, to isolate infected plant material. However, due to the high prevalence of SRPs in the environment, we also need to create new potato varieties more resistant to the disease. To reach that goal, we can look to wild potatoes and other Solanum species for mechanisms of resistance to waterlogging. Potato resistance can also be aided by beneficial microorganisms which can induce the plant's natural defenses to bacterial infections but also waterlogging. However, most of the known plant-beneficial microorganisms suffer from hypoxia and can be outcompeted by plant pathogens. Therefore, it is important to look for microorganisms that can withstand hypoxia or alleviate its effects on the plant, e.g., by improving soil structure. Therefore, this review aims to present crucial elements of potato response to hypoxia and SRP infection and future outlooks for the prevention of soft rot disease considering the influence of environmental conditions.
Collapse
Affiliation(s)
- Tomasz Maciag
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| |
Collapse
|
14
|
Vuerich M, Cingano P, Trotta G, Petrussa E, Braidot E, Scarpin D, Bezzi A, Mestroni M, Pellegrini E, Boscutti F. New perspective for the upscaling of plant functional response to flooding stress in salt marshes using remote sensing. Sci Rep 2024; 14:5472. [PMID: 38443548 PMCID: PMC10914724 DOI: 10.1038/s41598-024-56165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/02/2024] [Indexed: 03/07/2024] Open
Abstract
Understanding the response of salt marshes to flooding is crucial to foresee the fate of these fragile ecosystems, requiring an upscaling approach. In this study we related plant species and community response to multispectral indices aiming at parsing the power of remote sensing to detect the environmental stress due to flooding in lagoon salt marshes. We studied the response of Salicornia fruticosa (L.) L. and associated plant community along a flooding and soil texture gradient in nine lagoon salt marshes in northern Italy. We considered community (i.e., species richness, dry biomass, plant height, dry matter content) and individual traits (i.e., annual growth, pigments, and secondary metabolites) to analyze the effect of flooding depth and its interplay with soil properties. We also carried out a drone multispectral survey, to obtain remote sensing-derived vegetation indices for the upscaling of plant responses to flooding. Plant diversity, biomass and growth all declined as inundation depth increased. The increase of soil clay content exacerbated flooding stress shaping S. fruticosa growth and physiological responses. Multispectral indices were negatively related with flooding depth. We found key species traits rather than other community traits to better explain the variance of multispectral indices. In particular stem length and pigment content (i.e., betacyanin, carotenoids) were more effective than other community traits to predict the spectral indices in an upscaling perspective of salt marsh response to flooding. We proved multispectral indices to potentially capture plant growth and plant eco-physiological responses to flooding at the large scale. These results represent a first fundamental step to establish long term spatial monitoring of marsh acclimation to sea level rise with remote sensing. We further stressed the importance to focus on key species traits as mediators of the entire ecosystem changes, in an ecological upscaling perspective.
Collapse
Affiliation(s)
- Marco Vuerich
- DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy.
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Paolo Cingano
- DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
- Department of Environmental and Life Sciences (DSV), University of Trieste, 34127, Trieste, Italy
| | - Giacomo Trotta
- DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
- Department of Environmental and Life Sciences (DSV), University of Trieste, 34127, Trieste, Italy
| | - Elisa Petrussa
- DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Enrico Braidot
- DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Dora Scarpin
- DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Annelore Bezzi
- Department of Mathematics and Geosciences, University of Trieste, 34128, Trieste, Italy
| | - Michele Mestroni
- Agricoltura Innovativa Mestroni, 33036, Mereto di Tomba, UD, Italy
| | - Elisa Pellegrini
- DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Francesco Boscutti
- DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
15
|
Liu N, Du Y, Yan S, Chen W, Deng M, Xu S, Wang H, Zhan W, Huang W, Yin Y, Yang X, Zhao Q, Fernie AR, Yan J. The light and hypoxia induced gene ZmPORB1 determines tocopherol content in the maize kernel. SCIENCE CHINA. LIFE SCIENCES 2024; 67:435-448. [PMID: 38289421 DOI: 10.1007/s11427-023-2489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/11/2023] [Indexed: 03/05/2024]
Abstract
Tocopherol is an important lipid-soluble antioxidant beneficial for both human health and plant growth. Here, we fine mapped a major QTL-qVE1 affecting γ-tocopherol content in maize kernel, positionally cloned and confirmed the underlying gene ZmPORB1 (por1), as a protochlorophyllide oxidoreductase. A 13.7 kb insertion reduced the tocopherol and chlorophyll content, and the photosynthetic activity by repressing ZmPORB1 expression in embryos of NIL-K22, but did not affect the levels of the tocopherol precursors HGA (homogentisic acid) and PMP (phytyl monophosphate). Furthermore, ZmPORB1 is inducible by low oxygen and light, thereby involved in the hypoxia response in developing embryos. Concurrent with natural hypoxia in embryos, the redox state has been changed with NO increasing and H2O2 decreasing, which lowered γ-tocopherol content via scavenging reactive nitrogen species. In conclusion, we proposed that the lower light-harvesting chlorophyll content weakened embryo photosynthesis, leading to fewer oxygen supplies and consequently diverse hypoxic responses including an elevated γ-tocopherol consumption. Our findings shed light on the mechanism for fine-tuning endogenous oxygen concentration in the maize embryo through a novel feedback pathway involving the light and low oxygen regulation of ZmPORB1 expression and chlorophyll content.
Collapse
Affiliation(s)
- Nannan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yuanhao Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shijuan Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Min Deng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Shutu Xu
- College of Agronomy, Northwest A&F University, Xi'an, 710000, China
| | - Hong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-center of National Maize Improvement Center of China, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Wei Zhan
- College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China
| | - Wenjie Huang
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yan Yin
- Plant Science Facility of the Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qiao Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
16
|
Jia L, Tang Y, Tian K, Ai W, Shang W, Wu H. Effects of hypobaria, hyperoxia, and nitrogen form on the growth and nutritional quality of lettuce. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:44-50. [PMID: 38245347 DOI: 10.1016/j.lssr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/14/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024]
Abstract
The objectives of this research were to investigate the impact of hypobaria, hyperoxia, and nitrogen form on the growth and nutritional quality of plants. Pre-culture 20-day-old lettuce (Lactuca sativa L. var. Rome) seedlings grew for 25 days under three levels of total atmospheric pressure (101, 54, and 30 kPa), two levels of oxygen partial pressure (21 and 28 kPa), and two forms of nitrogen (NO3N and NH4N). The ratios of NO3N to NH4N included 3: 1, 4: 0, 2: 2, and 0: 4. The nitrogen quantity included two levels, i.e. N1, 0.1 g N kg-1 dry matrix and N2, 0.2 g N kg-1 dry matrix. The growth status of lettuce plants in different treatments differentiated markedly. Regardless of the nitrogen factor, the growth status of lettuce plants treated with total atmospheric pressure/oxygen partial pressure at 54/21 was equivalent to the treatment of 101/21. Under the hypobaric condition (54 kPa), compared with 21 kPa oxygen partial pressure, hyperoxia (28 kPa) significantly inhibited the growth of lettuce plants and the biomass (fresh weight) decreased by 60.9%-69.9% compared with that under 101/21 treatment. At the N1 level, the sequence of the biomass of lettuce plants supplied with different ratios of NO3N to NH4N was 3: 1 > 4: 0 > 2: 2 > 0: 4, and there were higher concentrations of chlorophyll and carotenoid of lettuce plants supplied with the higher ratio of NO3 to NH4. At the N2 level, the effects of different ratios of NO3N to NH4N on lettuce plants were similar to those at the N1 level. The high nitrogen (N2) promoted the growth of lettuce plants such as 54/21/N2 treatments. Both form and nitrogen level did not affect the stress resistance of lettuce plants. Hypobaria (54 kPa) increased the contents of N, P, and K and hyperoxia (28 kPa) decreased the content of organic carbon in lettuce plants. The high nitrogen (N2) improved the content of total N and the N uptake. The ratios of NO3N to NH4N were 4: 0 and 3: 1, lettuce could absorb and utilize N effectively. This study demonstrated that hyperoxia (28 kPa) inhibited the growth of lettuce plants under the hypobaric condition (54 kPa), and high level of nitrogen (0.2 g N kg-1 dry matrix) and NO3N: NH4N at 3: 1 markedly enhanced the growth, the contents of mineral elements and the nutritional quality of lettuce plants.
Collapse
Affiliation(s)
- Linwei Jia
- College of Environment and Resources, Xiangtan University, Xiangtan 411100, China; National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China
| | - Yongkang Tang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China.
| | - Ke Tian
- College of Environment and Resources, Xiangtan University, Xiangtan 411100, China
| | - Weidang Ai
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China
| | - Wenjin Shang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China
| | - Hao Wu
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China
| |
Collapse
|
17
|
Daniel K, Hartman S. How plant roots respond to waterlogging. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:511-525. [PMID: 37610936 DOI: 10.1093/jxb/erad332] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Plant submergence is a major abiotic stress that impairs plant performance. Under water, reduced gas diffusion exposes submerged plant cells to an environment that is enriched in gaseous ethylene and is limited in oxygen (O2) availability (hypoxia). The capacity for plant roots to avoid and/or sustain critical hypoxia damage is essential for plants to survive waterlogging. Plants use spatiotemporal ethylene and O2 dynamics as instrumental flooding signals to modulate potential adaptive root growth and hypoxia stress acclimation responses. However, how non-adapted plant species modulate root growth behaviour during actual waterlogged conditions to overcome flooding stress has hardly been investigated. Here we discuss how changes in the root growth rate, lateral root formation, density, and growth angle of non-flood adapted plant species (mainly Arabidopsis) could contribute to avoiding and enduring critical hypoxic conditions. In addition, we discuss current molecular understanding of how ethylene and hypoxia signalling control these adaptive root growth responses. We propose that future research would benefit from less artificial experimental designs to better understand how plant roots respond to and survive waterlogging. This acquired knowledge would be instrumental to guide targeted breeding of flood-tolerant crops with more resilient root systems.
Collapse
Affiliation(s)
- Kevin Daniel
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Sjon Hartman
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
18
|
Gómez-Álvarez EM, Salardi-Jost M, Ahumada GD, Perata P, Dell'Acqua M, Pucciariello C. Seed bacterial microbiota in post-submergence tolerant and sensitive barley genotypes. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23166. [PMID: 38266278 DOI: 10.1071/fp23166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
Flooding is a predominant abiotic stress for cultivated plants, including barley. This cereal crop shows a large adaptability to different environmental conditions, suggesting the presence of key traits to tolerate adverse conditions. During germination, genetic variations account for dissimilarities in flooding tolerance. However, differences in the seed microbiota may also contribute to tolerance/sensitivity during seedling establishment. This work investigated differences in microbiome among the grains of barley accessions. Two barley phenotypes were compared, each either tolerant or sensitive to a short submergence period followed by a recovery. The study used a metataxonomic analysis based on 16S ribosomal RNA gene sequencing and subsequent functional prediction. Our results support the hypothesis that bacterial microbiota inhabiting the barley seeds are different between sensitive and tolerant barley accessions, which harbour specific bacterial phyla and families. Finally, bacteria detected in tolerant barley accessions show a peculiar functional enrichment that suggests a possible connection with successful germination and seedling establishment.
Collapse
Affiliation(s)
| | | | | | | | - Matteo Dell'Acqua
- Genetics Lab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | |
Collapse
|
19
|
Anttila J, Tikkasalo OP, Hölttä T, Lintunen A, Vainio E, Leppä K, Haikarainen IP, Koivula H, Ghasemi Falk H, Kohl L, Launiainen S, Pihlatie M. Model of methane transport in tree stems: Case study of sap flow and radial diffusion. PLANT, CELL & ENVIRONMENT 2024; 47:140-155. [PMID: 37712449 DOI: 10.1111/pce.14718] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
The transport processes of methane (CH4 ) in tree stems remain largely unknown, although they are critical in assessing the whole-forest CH4 dynamics. We used a physically based dynamic model to study the spatial and diurnal dynamics of stem CH4 transport and fluxes. We parameterised the model using data from laboratory experiments with Pinus sylvestris and Betula pendula and compared the model to experimental data from a field study. Stem CH4 flux in laboratory and field conditions were explained by the axial advective CH4 transport from soil with xylem sap flow and the radial CH4 diffusion through the stem conditions. Diffusion resistance caused by the bark permeability did not significantly affect gas transport or stem CH4 flux in the laboratory experiments. The role of axial diffusion of CH4 in trees was unresolved and requires further studies. Due to the transit time of CH4 in the stem, the diurnal dynamics of stem CH4 fluxes can deviate markedly from the diurnal dynamics of sap flow.
Collapse
Affiliation(s)
- Jani Anttila
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Helsinki, Finland
- Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Olli-Pekka Tikkasalo
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Helsinki, Finland
- Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Teemu Hölttä
- Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Anna Lintunen
- Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
- Department of Physics, Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Elisa Vainio
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Kersti Leppä
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Iikka P Haikarainen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Hanna Koivula
- Department of Food and Nutrition, Helsinki Institute of Sustainability Science, HELSUS, University of Helsinki, Helsinki, Finland
| | - Homa Ghasemi Falk
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Lukas Kohl
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | | | - Mari Pihlatie
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Holloway-Phillips M, Cernusak LA, Nelson DB, Lehmann MM, Tcherkez G, Kahmen A. Covariation between oxygen and hydrogen stable isotopes declines along the path from xylem water to wood cellulose across an aridity gradient. THE NEW PHYTOLOGIST 2023; 240:1758-1773. [PMID: 37680025 DOI: 10.1111/nph.19248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
Oxygen and hydrogen isotopes of cellulose in plant biology are commonly used to infer environmental conditions, often from time series measurements of tree rings. However, the covariation (or the lack thereof) between δ18 O and δ2 H in plant cellulose is still poorly understood. We compared plant water, and leaf and branch cellulose from dominant tree species across an aridity gradient in Northern Australia, to examine how δ18 O and δ2 H relate to each other and to mean annual precipitation (MAP). We identified a decline in covariation from xylem to leaf water, and onwards from leaf to branch wood cellulose. Covariation in leaf water isotopic enrichment (Δ) was partially preserved in leaf cellulose but not branch wood cellulose. Furthermore, whilst δ2 H was well-correlated between leaf and branch, there was an offset in δ18 O between organs that increased with decreasing MAP. Our findings strongly suggest that postphotosynthetic isotope exchange with water is more apparent for oxygen isotopes, whereas variable kinetic and nonequilibrium isotope effects add complexity to interpreting metabolic-induced δ2 H patterns. Varying oxygen isotope exchange in wood and leaf cellulose must be accounted for when δ18 O is used to reconstruct climatic scenarios. Conversely, comparing δ2 H and δ18 O patterns may reveal environmentally induced shifts in metabolism.
Collapse
Affiliation(s)
- Meisha Holloway-Phillips
- Department of Environmental Sciences-Botany, University of Basel, 4056, Basel, Switzerland
- Research Unit of Forest Dynamics, Research Group of Ecosystem Ecology, Stable Isotope Research Centre, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmendsorf, Switzerland
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, 4878, Australia
| | - Daniel B Nelson
- Department of Environmental Sciences-Botany, University of Basel, 4056, Basel, Switzerland
| | - Marco M Lehmann
- Research Unit of Forest Dynamics, Research Group of Ecosystem Ecology, Stable Isotope Research Centre, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmendsorf, Switzerland
| | - Guillaume Tcherkez
- Research School of Biology, College of Science, Australian National University, Canberra, ACT, 2601, Australia
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070, Beaucouzé, France
| | - Ansgar Kahmen
- Department of Environmental Sciences-Botany, University of Basel, 4056, Basel, Switzerland
| |
Collapse
|
21
|
Kononenko NV, Lazareva EM, Fedoreyeva LI. Mechanisms of Antioxidant Resistance in Different Wheat Genotypes under Salt Stress and Hypoxia. Int J Mol Sci 2023; 24:16878. [PMID: 38069196 PMCID: PMC10707134 DOI: 10.3390/ijms242316878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Various stressors lead to an increase in ROS and damage to plant tissues. Plants have a powerful antioxidant system (AOS), which allows them to neutralize excess ROS. We detected an intense fluorescent glow of ROS in the cells of the cap, meristem, and elongation zones in the roots of wheat Triticum aestivum (Orenburgskaya 22 variety) and Triticum durum (Zolotaya variety). An increase in ROS was accompanied by DNA breaks in the nuclei of wheat root cells, the release of cytochrome c from mitochondria into the cytoplasm, and the translocation of phosphatidylserine into the outer layer of the plasma membrane under salt stress and hypoxia. The different resistances of the two wheat varieties to different abiotic stresses were revealed. The soft wheat variety Orenburgskaya 22 showed high resistance to salt stress but sensitivity to hypoxia, and the durum wheat variety Zolotaya showed tolerance to hypoxia but high sensitivity to salt stress. Different activations of AOS components (GSH, MnSOD, Cu/ZnSOD, CAT, PX, GPX, and GST) were revealed in different wheat genotypes. The basis for the tolerance of the Zolotaya variety to hypoxia is the high content of glutathione (GSH) and the activation of glutathione-dependent enzymes. One of the mechanisms of high resistance to salt stress in the Orenburgskaya 22 variety is a decrease in the level of ROS as a result of the increased activity of the MnSOD and Cu/ZnSOD genes. Identifying the mechanisms of plant tolerance to abiotic stress is the most important task for improving breeding varieties of agricultural plants and increasing their yield.
Collapse
Affiliation(s)
- Neonila V. Kononenko
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (N.V.K.); (E.M.L.)
| | - Elena M. Lazareva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (N.V.K.); (E.M.L.)
- Biological Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Larisa I. Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (N.V.K.); (E.M.L.)
| |
Collapse
|
22
|
Pieczywek PM, Leszczuk A, Kurzyna-Szklarek M, Cybulska J, Jóźwiak Z, Rutkowski K, Zdunek A. Apple metabolism under oxidative stress affects plant cell wall structure and mechanical properties. Sci Rep 2023; 13:13879. [PMID: 37620347 PMCID: PMC10449782 DOI: 10.1038/s41598-023-40782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Several studies have shown beneficial effects of short exposure to oxidative stress on stored fruit, such as better preservation, increased firmness, preservation of polyphenolic compounds, and reduced risk of postharvest disorders such as bitter pit and superficial scald in apples. In this study the effect of short-term oxidative stress conditions on the physiology of apple fruit was investigated. Apple fruit of three cultivars were exposed to hypoxic storage conditions of various lengths to induce anaerobiosis. The response of apple fruit to short-term oxidative stress was evaluated by means of cell wall immunolabeling and atomic force microscopy. In addition, the antioxidant capacity and antioxidative activity of apple peels was assessed. Through various techniques, it was shown that short-term oxidative stress conditions promote specific enzymatic activity that induces changes in the cell wall of apple fruit cells. Exposure to short-term stress resulted in the remodeling of cell wall pectic polysaccharides, observed as an increase in the size and complexity of extracted oxalate pectin. Structural changes in the cell wall were followed by an increase in Young's modulus (compressive stiffness of a solid material, expressed as the relationship between stress and axial strain) of the cell wall material. The data presented in this paper show in a novel way how storage under short-term oxidative stress modifies the cell wall of apple fruit at the molecular level.
Collapse
Affiliation(s)
| | - Agata Leszczuk
- Institute of Agrophysics Polish Academy of Sciences, Lublin, Poland
| | | | - Justyna Cybulska
- Institute of Agrophysics Polish Academy of Sciences, Lublin, Poland
| | - Zbigniew Jóźwiak
- Institute of Horticulture - National Research Institute, Skierniewice, Poland
| | - Krzysztof Rutkowski
- Institute of Horticulture - National Research Institute, Skierniewice, Poland
| | - Artur Zdunek
- Institute of Agrophysics Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
23
|
Li M, Yao T, Lin W, Hinckley WE, Galli M, Muchero W, Gallavotti A, Chen JG, Huang SSC. Double DAP-seq uncovered synergistic DNA binding of interacting bZIP transcription factors. Nat Commun 2023; 14:2600. [PMID: 37147307 PMCID: PMC10163045 DOI: 10.1038/s41467-023-38096-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
Many eukaryotic transcription factors (TF) form homodimer or heterodimer complexes to regulate gene expression. Dimerization of BASIC LEUCINE ZIPPER (bZIP) TFs are critical for their functions, but the molecular mechanism underlying the DNA binding and functional specificity of homo- versus heterodimers remains elusive. To address this gap, we present the double DNA Affinity Purification-sequencing (dDAP-seq) technique that maps heterodimer binding sites on endogenous genomic DNA. Using dDAP-seq we profile twenty pairs of C/S1 bZIP heterodimers and S1 homodimers in Arabidopsis and show that heterodimerization significantly expands the DNA binding preferences of these TFs. Analysis of dDAP-seq binding sites reveals the function of bZIP9 in abscisic acid response and the role of bZIP53 heterodimer-specific binding in seed maturation. The C/S1 heterodimers show distinct preferences for the ACGT elements recognized by plant bZIPs and motifs resembling the yeast GCN4 cis-elements. This study demonstrates the potential of dDAP-seq in deciphering the DNA binding specificities of interacting TFs that are key for combinatorial gene regulation.
Collapse
Affiliation(s)
- Miaomiao Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wanru Lin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Will E Hinckley
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shao-Shan Carol Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
24
|
Neri-Silva R, Monteiro-Batista RDC, Fonseca-Pereira PD, Nunes MD, Viana-Silva AL, Palhares Ribeiro T, Pérez-Díaz JL, Medeiros DB, Araújo WL, Fernie AR, Nunes-Nesi A. On the Significance of the ADNT1 Carrier in Arabidopsis thaliana under Waterlogging Conditions. Biomolecules 2023; 13:biom13050731. [PMID: 37238601 DOI: 10.3390/biom13050731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Among the adenylate carriers identified in Arabidopsis thaliana, only the AMP/ATP transporter ADNT1 shows increased expression in roots under waterlogging stress conditions. Here, we investigated the impact of a reduced expression of ADNT1 in A. thaliana plants submitted to waterlogging conditions. For this purpose, an adnt1 T-DNA mutant and two ADNT1 antisense lines were evaluated. Following waterlogging, ADNT1 deficiency resulted in a reduced maximum quantum yield of PSII electron transport (significantly for adnt1 and antisense Line 10), indicating a higher impact caused by the stress in the mutants. In addition, ADNT1 deficient lines showed higher levels of AMP in roots under nonstress condition. This result indicates that the downregulation of ADNT1 impacts the levels of adenylates. ADNT1-deficient plants exhibited a differential expression pattern of hypoxia-related genes with an increase in non-fermenting-related-kinase 1 (SnRK1) expression and upregulation of adenylate kinase (ADK) under stress and non-stress conditions. Together, these results indicated that the lower expression of ADNT1 is associated with an early "hypoxic status" due to the perturbation of the adenylate pool caused by reduced AMP import by mitochondria. This perturbation, which is sensed by SnRK1, results in a metabolic reprogramming associated with early induction of the fermentative pathway in ADNT1 deficient plants.
Collapse
Affiliation(s)
- Roberto Neri-Silva
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Rita de Cássia Monteiro-Batista
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Mateus Dias Nunes
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Ana Luiza Viana-Silva
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Tamara Palhares Ribeiro
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Jorge L Pérez-Díaz
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
25
|
Kisiel A, Krzemińska A, Cembrowska-Lech D, Miller T. Data Science and Plant Metabolomics. Metabolites 2023; 13:metabo13030454. [PMID: 36984894 PMCID: PMC10054611 DOI: 10.3390/metabo13030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The study of plant metabolism is one of the most complex tasks, mainly due to the huge amount and structural diversity of metabolites, as well as the fact that they react to changes in the environment and ultimately influence each other. Metabolic profiling is most often carried out using tools that include mass spectrometry (MS), which is one of the most powerful analytical methods. All this means that even when analyzing a single sample, we can obtain thousands of data. Data science has the potential to revolutionize our understanding of plant metabolism. This review demonstrates that machine learning, network analysis, and statistical modeling are some techniques being used to analyze large quantities of complex data that provide insights into plant development, growth, and how they interact with their environment. These findings could be key to improving crop yields, developing new forms of plant biotechnology, and understanding the relationship between plants and microbes. It is also necessary to consider the constraints that come with data science such as quality and availability of data, model complexity, and the need for deep knowledge of the subject in order to achieve reliable outcomes.
Collapse
Affiliation(s)
- Anna Kisiel
- Institute of Marine and Environmental Sciences, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland
| | - Adrianna Krzemińska
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland
| | - Danuta Cembrowska-Lech
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | - Tymoteusz Miller
- Institute of Marine and Environmental Sciences, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland
| |
Collapse
|
26
|
Attalage DS, Hettiaratchi JPA, Chu A, Pokhrel D, Jayasinghe PA. Impact of Landfill Gas Exposure on Vegetation in Engineered Landfill Biocover Systems Implemented to Minimize Fugitive Methane Emissions from Landfills. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4448. [PMID: 36901459 PMCID: PMC10001856 DOI: 10.3390/ijerph20054448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Engineered landfill biocovers (LBCs) minimize the escape of methane into the atmosphere through biological oxidation. Vegetation plays a crucial role in LBCs and can suffer from hypoxia caused by the displacement of root-zone oxygen due to landfill gas and competition for oxygen with methanotrophic bacteria. To investigate the impact of methane gas on vegetation growth, we conducted an outdoor experiment using eight vegetated flow-through columns filled with a 45 cm mixture of 70% topsoil and 30% compost, planted with three types of vegetation: native grass blend, Japanese millet, and alfalfa. The experiment included three control columns and five columns exposed to methane, as loading rates gradually increased from 75 to 845 gCH4/m2/d over a period of 65 days. At the highest flux, we observed a reduction of 51%, 31%, and 19% in plant height, and 35%, 25%, and 17% in root length in native grass, Japanese millet, and alfalfa, respectively. The column gas profiles indicated that oxygen concentrations were below the levels required for healthy plant growth, which explains the stunted growth observed in the plants used in this experiment. Overall, the experimental results demonstrate that methane gas has a significant impact on the growth of vegetation used in LBCs.
Collapse
Affiliation(s)
- Dinu S. Attalage
- Department of Geoscience, University of Calgary, 2500 University Drive, NW, Calgary, AB T2N 1N4, Canada
| | - J. Patrick A. Hettiaratchi
- Department of Civil Engineering, Center for Environmental Engineering Research and Education (CEERE), University of Calgary, 2500 University Drive, NW, Calgary, AB T2N 1N4, Canada
| | - Angus Chu
- Department of Civil Engineering, Center for Environmental Engineering Research and Education (CEERE), University of Calgary, 2500 University Drive, NW, Calgary, AB T2N 1N4, Canada
| | - Dinesh Pokhrel
- Department of Civil Engineering, Center for Environmental Engineering Research and Education (CEERE), University of Calgary, 2500 University Drive, NW, Calgary, AB T2N 1N4, Canada
| | - Poornima A. Jayasinghe
- Department of Civil Engineering, Center for Environmental Engineering Research and Education (CEERE), University of Calgary, 2500 University Drive, NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
27
|
Jiao C, Zhang J, Wang X, He N. Plant magnesium on the Qinghai-Tibetan Plateau: Spatial patterns and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160743. [PMID: 36502968 DOI: 10.1016/j.scitotenv.2022.160743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Magnesium (Mg) plays a crucial role in regulating plant photosynthesis and stress resistance. However, our understanding of plant Mg at the community level remains limited because of lack of systematic investigations. This study, for the first time, comprehensively evaluated community-level Mg content and density, and determined their spatial patterns and driving factors, on the Qinghai-Tibetan Plateau (TP), using data from 680 ecosystems (169 forests, 22 shrublands, 466 grasslands, and 23 deserts). Mg density was 1.01, 2.36, 1.87, and 2.26 g m-2 in leaves, branches, trunks, and roots, respectively. Notably, we generated maps of plant Mg content and density with a 1 km × 1 km resolution based on random forest models. Mg content decreased from northwest to southeast, but Mg density was higher in the east of the plateau, which reflected plant adaptive strategies to the unique radiation, oxygen, and temperature conditions (major driving factors) on the TP. Our findings provide insights into biogeochemical cycling and could facilitate the optimization of remote sensing parameters.
Collapse
Affiliation(s)
- Chaolian Jiao
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Jiahui Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China.
| | - Xiaochun Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Son S, Park SR. Plant translational reprogramming for stress resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1151587. [PMID: 36909402 PMCID: PMC9998923 DOI: 10.3389/fpls.2023.1151587] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Organisms regulate gene expression to produce essential proteins for numerous biological processes, from growth and development to stress responses. Transcription and translation are the major processes of gene expression. Plants evolved various transcription factors and transcriptome reprogramming mechanisms to dramatically modulate transcription in response to environmental cues. However, even the genome-wide modulation of a gene's transcripts will not have a meaningful effect if the transcripts are not properly biosynthesized into proteins. Therefore, protein translation must also be carefully controlled. Biotic and abiotic stresses threaten global crop production, and these stresses are seriously deteriorating due to climate change. Several studies have demonstrated improved plant resistance to various stresses through modulation of protein translation regulation, which requires a deep understanding of translational control in response to environmental stresses. Here, we highlight the translation mechanisms modulated by biotic, hypoxia, heat, and drought stresses, which are becoming more serious due to climate change. This review provides a strategy to improve stress tolerance in crops by modulating translational regulation.
Collapse
|
29
|
Zhang R, Xuan L, Ni L, Yang Y, Zhang Y, Wang Z, Yin Y, Hua J. ADH Gene Cloning and Identification of Flooding-Responsive Genes in Taxodium distichum (L.) Rich. PLANTS (BASEL, SWITZERLAND) 2023; 12:678. [PMID: 36771761 PMCID: PMC9919530 DOI: 10.3390/plants12030678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/14/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
As a flooding-tolerant tree species, Taxodium distichum has been utilized in afforestation projects and proven to have important value in flooding areas. Alcohol dehydrogenase (ADH), which participates in ethanol fermentation, is essential for tolerance to the anaerobic conditions caused by flooding. In a comprehensive analysis of the ADH gene family in T. distichum, TdADHs were cloned on the basis of whole-genome sequencing, and then bioinformatic analysis, subcellular localization, and gene expression level analysis under flooding were conducted. The results show that the putative protein sequences of 15 cloned genes contained seven TdADHs and eight TdADH-like genes (one Class III ADH included) that were divided into five clades. All the sequences had an ADH_N domain, and except for TdADH-likeE2, all the other genes had an ADH_zinc_N domain. Moreover, the TdADHs in clades A, B, C, and D had a similar motif composition. Additionally, the number of TdADH amino acids ranged from 277 to 403, with an average of 370.13. Subcellular localization showed that, except for TdADH-likeD3, which was not expressed in the nucleus, the other genes were predominantly expressed in both the nucleus and cytosol. TdADH-likeC2 was significantly upregulated in all three organs (roots, stems, and leaves), and TdADHA3 was also highly upregulated under 24 h flooding treatment; the two genes might play key roles in ethanol fermentation and flooding tolerance. These findings offer a comprehensive understanding of TdADHs and could provide a foundation for the molecular breeding of T. distichum and current research on the molecular mechanisms driving flooding tolerance.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Lei Xuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Longjie Ni
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Ying Yang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Ya Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Zhiquan Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Yunlong Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Jianfeng Hua
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| |
Collapse
|
30
|
Hoffmann K, Schilling JV, Wandrey G, Welters T, Mahr S, Conrath U, Büchs J. Spotting priming-active compounds using parsley cell cultures in microtiter plates. BMC PLANT BIOLOGY 2023; 23:72. [PMID: 36726070 PMCID: PMC9893529 DOI: 10.1186/s12870-023-04043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Conventional crop protection has major drawbacks, such as developing pest and pathogen insensitivity to pesticides and low environmental compatibility. Therefore, alternative crop protection strategies are needed. One promising approach treats crops with chemical compounds that induce the primed state of enhanced defense. However, identifying priming compounds is often tedious as it requires offline sampling and analysis. High throughput screening methods for the analysis of priming-active compounds have great potential to simplify the search for such compounds. One established method to identify priming makes use of parsley cell cultures. This method relies on measurement of fluorescence of furanocoumarins in the final sample. This study demonstrates for the first time the online measurement of furanocoumarins in microtiter plates. As not all plants produce fluorescence molecules as immune response, a signal, which is not restricted to a specific plant is required, to extend online screening methods to other plant cell cultures. It was shown that the breathing activity of primed parsley cell cultures increases, compared to unprimed parsley cell cultures. The breathing activity can by monitored online. Therefore, online identification of priming-inducing compounds by recording breathing activity represents a promising, straight-forward and highly informative approach. However, so far breathing has been recorded in shake flasks which suffer from low throughput. For industrial application we here report a high-throughput, online identification method for identifying priming-inducing chemistry. RESULTS This study describes the development of a high-throughput screening system that enables identifying and analyzing the impact of defense priming-inducing compounds in microtiter plates. This screening system relies on the breathing activity of parsley cell cultures. The validity of measuring the breathing activity in microtiter plates to drawing conclusions regarding priming-inducing activity was demonstrated. Furthermore, for the first time, the fluorescence of the priming-active reference compound salicylic acid and of furanocoumarins were simultaneously monitored online. Dose and time studies with salicylic acid-treated parsley cell suspensions revealed a wide range of possible addition times and concentrations that cause priming. The online fluorescence measuring method was further confirmed with three additional compounds with known priming-causing activity. CONCLUSIONS Determining the OTR, fluorescence of the priming-active chemical compound SA and of furanocoumarins in parsley suspension cultures in MTPs by online measurement is a powerful and high-throughput tool to study possible priming compounds. It allows an in-depth screening for priming compounds and a better understanding of the priming process induced by a given substance. Evaluation of priming phenomena via OTR should also be applicable to cell suspensions of other plant species and varieties and allow screening for priming-inducing chemical compounds in intact plants. These online fluorescence methods to measure the breathing activity, furanocoumarin and SA have the potential to accelerate the search for new priming compounds and promote priming as a promising, eco-friendly crop protection strategy.
Collapse
Affiliation(s)
- Kyra Hoffmann
- AVT – Biochemical Engineering, RWTH Aachen University, 51 Forckenbeckstr, 52074 Aachen, Germany
| | - Jana Viola Schilling
- AVT – Biochemical Engineering, RWTH Aachen University, 51 Forckenbeckstr, 52074 Aachen, Germany
| | - Georg Wandrey
- AVT – Biochemical Engineering, RWTH Aachen University, 51 Forckenbeckstr, 52074 Aachen, Germany
| | - Tim Welters
- AVT – Biochemical Engineering, RWTH Aachen University, 51 Forckenbeckstr, 52074 Aachen, Germany
| | - Stefan Mahr
- AVT – Biochemical Engineering, RWTH Aachen University, 51 Forckenbeckstr, 52074 Aachen, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, 1 Worringer Weg, 52074 Aachen, Germany
| | - Jochen Büchs
- AVT – Biochemical Engineering, RWTH Aachen University, 51 Forckenbeckstr, 52074 Aachen, Germany
| |
Collapse
|
31
|
Brazel AJ, Graciet E. Complexity of Abiotic Stress Stimuli: Mimicking Hypoxic Conditions Experimentally on the Basis of Naturally Occurring Environments. Methods Mol Biol 2023; 2642:23-48. [PMID: 36944871 DOI: 10.1007/978-1-0716-3044-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Plants require oxygen to respire and produce energy. Plant cells are exposed to low oxygen levels (hypoxia) in different contexts and have evolved conserved molecular responses to hypoxia. Both environmental and developmental factors can influence intracellular oxygen concentrations. In nature, plants can experience hypoxic conditions when the soil becomes saturated with water following heavy precipitation (i.e., waterlogging). Hypoxia can also arise in specific tissues that have poor gas exchange with atmospheric oxygen. In this case, hypoxic niches that are physiologically and developmentally relevant may form. To dissect the molecular mechanisms underlying the regulation of hypoxia response in plants, a wide range of hypoxia-inducing methods have been used in the laboratory setting. Yet, the different characteristics, pros and cons of each of these hypoxia treatments are seldom compared between methods, and with natural forms of hypoxia. In this chapter, we present both environmental and developmental forms of hypoxia that plants encounter in the wild, as well as the different experimental hypoxia treatments used to mimic them in the laboratory setting, with the aim of informing on what experimental approaches might be most appropriate to the questions addressed, including stress signaling and regulation.
Collapse
|
32
|
Huo L, Wang H, Wang Q, Gao Y, Xu K, Sun X. Exogenous treatment with melatonin enhances waterlogging tolerance of kiwifruit plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1081787. [PMID: 36570925 PMCID: PMC9780670 DOI: 10.3389/fpls.2022.1081787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Waterlogging stress has an enormous negative impact on the kiwifruit yield and quality. The protective role of exogenous melatonin on water stress has been widely studied, especially in drought stress. However, the research on melatonin-induced waterlogging tolerance is scarce. Here, we found that treatment with exogenous melatonin could effectively alleviate the damage on kiwifruit plants in response to waterlogging treatment. This was accompanied by higher antioxidant activity and lower ROS accumulation in kiwifruit roots during stress period. The detection of changes in amino acid levels of kiwifruit roots during waterlogging stress showed a possible interaction between melatonin and amino acid metabolism, which promoted the tolerance of kiwifruit plants to waterlogging. The higher levels of GABA and Pro in the roots of melatonin-treated kiwifruit plants partly contributed to their improved waterlogging tolerance. In addition, some plant hormones were also involved in the melatonin-mediated waterlogging tolerance, such as the enhancement of ACC accumulation. This study discussed the melatonin-mediated water stress tolerance of plants from the perspective of amino acid metabolism for the first time.
Collapse
Affiliation(s)
| | | | | | | | - Kai Xu
- *Correspondence: Kai Xu, ; Liuqing Huo,
| | | |
Collapse
|
33
|
Zhang W, Wang B, Zhang A, Zhou Q, Li Y, Li L, Ma S, Fan Y, Huang Z. Exogenous 6-benzylaminopurine enhances waterlogging and shading tolerance after anthesis by improving grain starch accumulation and grain filling. FRONTIERS IN PLANT SCIENCE 2022; 13:1003920. [PMID: 36388481 PMCID: PMC9647130 DOI: 10.3389/fpls.2022.1003920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Due to the frequent occurrence of extreme weather events, the area of wheat affected by continuous cloudy rainfall is increasing, with waterlogging becoming a major limiting factor of wheat yield. To alleviate the effect, spraying exogenous plant growth regulators is often used. In this study, two wheat cultivars, waterlogging-tolerant Yangmai 18 and waterlogging-sensitive Sumai 188, were selected for waterlogging and shading (WS) after anthesis for 7, 11, and 15 days respectively. Three concentrations of 6-benzylaminoadenine (6-BA) solution (15, 25, and 35 mg·L-1) were sprayed after WS treatment and water was sprayed as the control. Then, the effect of spraying 6-BA on photosynthetic characteristics, starch content, grain filling characteristics, and yield was explored under artificially stimulated continuous cloudy rainfall during anthesis. Compared with the control, the application of 6-BA caused a significant increase in grain plumpness throughout grain filling, as well as increases in the net photosynthetic rate (P n), stomatal conductance (G s), and transpiration rate (T r), and a significant decrease in the intercellular CO2 concentration (C i) of the flag leaves, all of which enhanced the photosynthetic capacity. The content of total starch, amylose, and amylopectin in the grains also increased significantly compared with the control. After WS for 15 days, the starch content increased by 3.81%-11.41% compared with the control. Spraying 6-BA also prolonged grain filling, increased the average grain filling rate, and significantly increased the 1000-grain weight and yield. The thousand-grain weight increased by 5.06%-43.28%, and wheat yield increased by 8.93%-64.27% after spraying 25 mg·L-1 of the 6-BA solution. These findings suggest that the application of 6-BA after WS stress could significantly improve the photosynthetic performance, which is propitious to the accumulation and transport of photosynthetic products after anthesis. Besides, spraying 6-BA can also increase the duration and rate of grain filling and starch accumulation content and improve grain weight, thereby alleviating the adverse effects of WS on wheat yield. Overall, spraying 25 mg·L-1 of the 6-BA solution had an optimal effect. These findings provide a theoretical basis for the exploration of cultivation techniques and measures aimed at alleviating damage caused by continuous rainfall during wheat anthesis.
Collapse
Affiliation(s)
- Wenjing Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, Ministry of Agriculture, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Beibei Wang
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, Ministry of Agriculture, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Anmin Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, Ministry of Agriculture, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Qirui Zhou
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, Ministry of Agriculture, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yang Li
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, Ministry of Agriculture, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Lingyu Li
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, Ministry of Agriculture, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Shangyu Ma
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, Ministry of Agriculture, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yonghui Fan
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, Ministry of Agriculture, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zhenglai Huang
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, Ministry of Agriculture, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
34
|
Physiological and Transcriptomic Analyses Reveal the Effects of Elevated Root-Zone CO2 on the Metabolism of Sugars and Starch in the Roots of Oriental Melon Seedlings. Int J Mol Sci 2022; 23:ijms232012537. [PMID: 36293393 PMCID: PMC9604077 DOI: 10.3390/ijms232012537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Root-zone CO2 is a major factor that affects crop growth, development, nutrient uptake, and metabolism. Oriental melon is affected by root-zone gases during growth, the microstructure, sugar and starch contents, enzymatic activities related to sugar and starch metabolism, and gene expression in the roots of oriental melon seedlings were investigated under three root-zone CO2 concentrations (CK: 0.2%, T1: 0.4%, T2: 1.1%). Elevated root-zone CO2 altered the cellular microstructure, accelerated the accumulation and release of starch grains, disrupted organelle formation, and accelerated root senescence. The sugar and starch contents and metabolic activity in the roots increased within a short duration following treatment. Compared to the control, 232 and 1492 differentially expressed genes (DEGs) were identified on the 6th day of treatment in T1 and T2 plants, respectively. The DEGs were enriched in three metabolic pathways. The majority of genes related to sucrose and starch hydrolysis were upregulated, while the genes related to sucrose metabolism were downregulated. The study revealed that oriental melon seedlings adapt to elevated root-zone CO2 stress by adjusting sugar and starch metabolism at the transcriptome level and provides new insights into the molecular mechanism underlying the response to elevated root-zone CO2 stress.
Collapse
|
35
|
Ribeiro IM, Vinson CC, Coca GC, Ferreira CDS, Franco AC, Williams TCR. Differences in the metabolic and functional mechanisms used to tolerate flooding in Guazuma ulmifolia (Lam.) from flood-prone Amazonian and dry Cerrado savanna populations. TREE PHYSIOLOGY 2022; 42:2116-2132. [PMID: 35640151 DOI: 10.1093/treephys/tpac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Flood tolerance is crucial to the survival of tree species subject to long periods of flooding, such as those present in the Amazonian várzea. Tolerance can be mediated by adjustments of metabolism, physiology and morphology, reinforcing the need to investigate the physiological and biochemical mechanisms used by tropical tree species to survive this stress. Moreover, such mechanisms may vary between populations that are subjected to differences in the frequency of flooding events. Here, we aimed to identify the mechanisms used by two populations of the tropical tree Guazuma ulmifolia (Lam.) to tolerate flooding: an Amazonian population frequently exposed to flooding and a Cerrado population, adapted to a dry environment. Young plants were subjected to a flooding of the roots and lower stem for 32 days, followed by 17 days of recovery. Amazonian plants exhibited greater increases in shoot length and higher maximum photosynthetic rate (Amax) compared with non-flooded plants from 7 days of flooding onwards, whereas increased Amax occurred later in flooded Cerrado plants and was not accompanied by increased shoot length. Lactate accumulated in roots of Cerrado plants after 24 h flooding, together with transcripts coding for lactate dehydrogenase in roots of both Cerrado and Amazonian plants. After 7 days of flooding, lactate decreased and alcohol dehydrogenase activity increased transiently, together with concentrations of alanine, γ-aminobutyric acid and succinate, indicating activation of metabolic processes associated with low oxygen availability. Other amino acids also increased in flooded Cerrado plants, revealing more extensive metabolic changes than in Amazonian plants. Wetland and dryland populations of G. ulmifolia revealed the great capacity to tolerate flooding stress through a suite of alterations in photosynthetic gas exchange and metabolism. However, the integrated physiological, biochemical and molecular analyses realized here indicated that wetland plants acclimatized more efficiently with increased shoot elongation and more rapid restoration of normal metabolism.
Collapse
Affiliation(s)
- Isadora M Ribeiro
- Department of Botany, University of Brasília, Institute of Biological Sciences, Campus Darcy Ribeiro, Asa Norte, Brasília DF 70910-900, Brazil
| | - Christina C Vinson
- Department of Botany, University of Brasília, Institute of Biological Sciences, Campus Darcy Ribeiro, Asa Norte, Brasília DF 70910-900, Brazil
| | - Guilherme C Coca
- Department of Botany, University of Brasília, Institute of Biological Sciences, Campus Darcy Ribeiro, Asa Norte, Brasília DF 70910-900, Brazil
| | - Cristiane da S Ferreira
- Department of Botany, University of Brasília, Institute of Biological Sciences, Campus Darcy Ribeiro, Asa Norte, Brasília DF 70910-900, Brazil
| | - Augusto C Franco
- Department of Botany, University of Brasília, Institute of Biological Sciences, Campus Darcy Ribeiro, Asa Norte, Brasília DF 70910-900, Brazil
| | - Thomas C R Williams
- Department of Botany, University of Brasília, Institute of Biological Sciences, Campus Darcy Ribeiro, Asa Norte, Brasília DF 70910-900, Brazil
| |
Collapse
|
36
|
Mao H, Lv Y, Chen G, Jiang Y. Effects of cuticular wax on the postharvest physiology in fragrant pear at different storages. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4425-4434. [PMID: 35089595 DOI: 10.1002/jsfa.11796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Epidermal wax is an important factor affecting the storage quality of fruits and vegetables. Previous studies have shown that the epidermal wax of fruits undergoes significant changes during storage, but there are few studies on the effects of different storage methods on the changes in waxes and the relationship with storage quality. To investigate the effect of cuticular wax on the postharvest physiology in fragrant pear, equal numbers of fragrant pear fruits were stored in room temperature storage (control), cold storage and controlled atmosphere (CA) storage environs, respectively. RESULTS Gas chromatography-mass spectrometry analysis revealed that the prevailing compositions of cuticular wax of fragrant pear were alkanes, alkenes, alcohols, aldehydes, esters and fatty acids. Compared with the control, cold storage and CA storage significantly inhibited changes in postharvest physiology, total wax contents and wax compositions of fragrant pear, and the effects of CA storage were more pronounced than cold storage. Under different storage methods, total wax contents and wax compositions show different correlations with various physiological indicators. CONCLUSION The results obtained in the present study indicate that cold storage and CA storage altered the fragrant pear cuticular wax contents and constituents, thus changing the postharvest physiology quality. The changes in the metabolism of wax components caused by the changes in storage environment mainly affect the changes in the hardness of fragrant pears. The present study provides a theoretical basis for the preservation and storage of fruits. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huijuan Mao
- Angelica Research Institute of Min County, Dingxi, China
| | - Yunhao Lv
- College of Food Science, Shihezi University, Shihezi, China
| | - Guogang Chen
- College of Food Science, Shihezi University, Shihezi, China
| | - Ying Jiang
- College of Food Science, Shihezi University, Shihezi, China
| |
Collapse
|
37
|
Transcriptomics and Metabolomics Analyses Reveal Defensive Responses and Flavonoid Biosynthesis of Dracaena cochinchinensis (Lour.) S. C. Chen under Wound Stress in Natural Conditions. Molecules 2022; 27:molecules27144514. [PMID: 35889387 PMCID: PMC9320494 DOI: 10.3390/molecules27144514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 12/27/2022] Open
Abstract
Dracaena cochinchinensis has special defensive reactions against wound stress. Under wound stress, D. cochinchinensis generates a resin that is an important medicine known as dragon’s blood. However, the molecular mechanism underlying the defensive reactions is unclear. Metabolomics and transcriptomics analyses were performed on stems of D. cochinchinensis at different timepoints from the short term to the long term after wounding. According to the 378 identified compounds, wound-induced secondary metabolic processes exhibited three-phase characteristics: short term (0–5 days), middle term (10 days–3 months), and long term (6–17 months). The wound-induced transcriptome profile exhibited characteristics of four stages: within 24 h, 1–5 days, 10–30 days, and long term. The metabolic regulation in response to wound stress mainly involved the TCA cycle, glycolysis, starch and sucrose metabolism, phenylalanine biosynthesis, and flavonoid biosynthesis, along with some signal transduction pathways, which were all well connected. Flavonoid biosynthesis and modification were the main reactions against wound stress, mainly comprising 109 flavonoid metabolites and 93 wound-induced genes. A group of 21 genes encoding CHS, CHI, DFR, PPO, OMT, LAR, GST, and MYBs were closely related to loureirin B and loureirin C. Wound-induced responses at the metabolome and transcriptome level exhibited phase characteristics. Complex responses containing primary metabolism and flavonoid biosynthesis are involved in the defense mechanism against wound stress in natural conditions, and flavonoid biosynthesis and modification are the main strategies of D. cochinchinensis in the long-term responses to wound stress.
Collapse
|
38
|
Ortega-Cuadros M, De Souza TL, Berruyer R, Aligon S, Pelletier S, Renou JP, Arias T, Campion C, Guillemette T, Verdier J, Grappin P. Seed Transmission of Pathogens: Non-Canonical Immune Response in Arabidopsis Germinating Seeds Compared to Early Seedlings against the Necrotrophic Fungus Alternaria brassicicola. PLANTS (BASEL, SWITZERLAND) 2022; 11:1708. [PMID: 35807659 PMCID: PMC9269218 DOI: 10.3390/plants11131708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
The transmission of seed-borne pathogens by the germinating seed is responsible for major crop diseases. The immune responses of the seed facing biotic invaders are poorly documented so far. The Arabidopsis thaliana/Alternaria brassicicola patho-system was used to describe at the transcription level the responses of germinating seeds and young seedling stages to infection by the necrotrophic fungus. RNA-seq analyses of healthy versus inoculated seeds at 3 days after sowing (DAS), stage of radicle emergence, and at 6 and 10 DAS, two stages of seedling establishment, identified thousands of differentially expressed genes by Alternaria infection. Response to hypoxia, ethylene and indole pathways were found to be induced by Alternaria in the germinating seeds. However, surprisingly, the defense responses, namely the salicylic acid (SA) pathway, the response to reactive oxygen species (ROS), the endoplasmic reticulum-associated protein degradation (ERAD) and programmed cell death, were found to be strongly induced only during the latter post-germination stages. We propose that this non-canonical immune response in early germinating seeds compared to early seedling establishment was potentially due to the seed-to-seedling transition phase. Phenotypic analyses of about 14 mutants altered in the main defense pathways illustrated these specific defense responses. The unexpected germination deficiency and insensitivity to Alternaria in the glucosinolate deficient mutants allow hypothesis of a trade-off between seed germination, necrosis induction and Alternaria transmission to the seedling. The imbalance of the SA and jasmonic acid (JA) pathways to the detriment of the JA also illustrated a non-canonical immune response at the first stages of the seedling.
Collapse
Affiliation(s)
- Mailen Ortega-Cuadros
- Faculty of Exact and Natural Sciences, Institute of Biology, University City Campus, University of Antioquia, Calle 67 N°53-108, Medellín 050010, Colombia;
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Tiago Lodi De Souza
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Romain Berruyer
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Sophie Aligon
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Sandra Pelletier
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Jean-Pierre Renou
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Tatiana Arias
- Marie Selby Botanical Gardens, Downtown Sarasota Campus, 1534 Mound Street, Sarasota, FL 34236, USA;
| | - Claire Campion
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Thomas Guillemette
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Jérome Verdier
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Philippe Grappin
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| |
Collapse
|
39
|
Commercial Red Food Dyes Preparations Modulate the Oxidative State in Three Model Organisms (Cucumis sativus, Artemia salina, and Danio rerio). ENVIRONMENTS 2022. [DOI: 10.3390/environments9050063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The growing environmental spreading of food synthetic dyes and bio-colors have the potential for altering organisms’ redox states. Here, three model species for aquatic pollution trials, Cucumis sativus seeds, Artemia salina cysts, and Danio rerio embryos, were short-term exposed to a fixed concentration of the artificial red E124, and two red bio-colors, cochineal E120, and vegan red (VEGR). In the animal models, we evaluated the total reactive oxygen species (ROS) and the susceptibility to in vitro oxidative stress, and in C. sativus, H2O2 production and antioxidant capacity. We also measured organismal performance indices (routine oxygen consumption in the animal models, dark oxygen consumption, and photosynthetic efficiency in C. sativus). In C. sativus, only E124 increased ROS and affected dark oxygen consumption and photosynthetic efficiency, while all dyes enhanced the antioxidant defenses. In the A. salina nauplii, all dyes increased ROS, while E120 and E124 reduced the susceptibility to oxidative stress. In D. rerio, treatments did not affect ROS content, and reduced oxidative stress susceptibility. Our data show that red food dyes affect the redox state of the developing organisms, in which ROS plays a significant role. We suggest a potentially toxic role for red food dyes with environmentally relevant consequences.
Collapse
|
40
|
Deng X, Yang D, Sun H, Liu J, Song H, Xiong Y, Wang Y, Ma J, Zhang M, Li J, Liu Y, Yang M. Time-course analysis and transcriptomic identification of key response strategies to complete submergence in Nelumbo nucifera. HORTICULTURE RESEARCH 2022; 9:uhac001. [PMID: 35147174 PMCID: PMC8973275 DOI: 10.1093/hr/uhac001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/12/2021] [Indexed: 05/12/2023]
Abstract
Water submergence is an environmental stress with detrimental effects on plant growth and survival. As a wetland plant species, lotus (Nelumbo nucifera) is widely cultivated in flood-prone lowlands throughout Asian countries, but little is known about its endurance and acclimation mechanisms to complete submergence. Here, we combined a time-course submergence experiment and an RNA-sequencing transcriptome analysis on two lotus varieties of "Qiuxing" and "China Antique". Both varieties showed a low submergence tolerance, with a median lethal time of around 10 days. Differentially expressed gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) identified a number of key genes putatively involved in lotus submergence responses. Lotus plants under complete submergence developed thinned leaves and elongated petioles containing high density of aerenchyma. All four lotus submergence responsive ERF-VII genes and gene sets corresponding to the low oxygen "escape" strategy (LOES) were elevated. In addition, a number of lotus innate immunity genes were rapidly induced by submergence, likely to confer resistance to possible pathogen infections. Our data also reveals the likely involvement of jasmonic acid in modulating lotus submergence responses, but to a lesser extent than the gaseous ethylene hormone. These results suggest that lotus plants primarily take the LOES strategy in coping with submergence-induced complex stresses, and will be valuable for people understanding the molecular basis underlying the plant submergence acclimations.
Collapse
Affiliation(s)
- Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Dong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Juan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yaqian Xiong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yunmeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Junyu Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Minghua Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Yanling Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
41
|
Gómez-Álvarez EM, Pucciariello C. Cereal Germination under Low Oxygen: Molecular Processes. PLANTS (BASEL, SWITZERLAND) 2022; 11:460. [PMID: 35161441 PMCID: PMC8838265 DOI: 10.3390/plants11030460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Cereal crops can differ greatly in tolerance to oxygen shortage under germination and seedling establishment. Rice is able to germinate and elongate the coleoptile under submergence and anoxia. This capacity has been attributed to the successful use of starchy reserves through a molecular pathway activated by sugar starvation and low oxygen. This pathway culminates with the expression of α-amylases to provide sugars that fuel the sink organs. On the contrary, barley and wheat are unable to germinate under anoxia. The sensitivity of barley and wheat is likely due to the incapacity to use starch during germination. This review highlights what is currently known about the molecular mechanisms associated with cereal germination and seedling establishment under oxygen shortage with a special focus on barley and rice. Insights into the molecular mechanisms that support rice germination under low oxygen and into those that are associated with barley sensitivity may be of help for genetic improvement programs.
Collapse
|
42
|
Jethva J, Schmidt RR, Sauter M, Selinski J. Try or Die: Dynamics of Plant Respiration and How to Survive Low Oxygen Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020205. [PMID: 35050092 PMCID: PMC8780655 DOI: 10.3390/plants11020205] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/09/2023]
Abstract
Fluctuations in oxygen (O2) availability occur as a result of flooding, which is periodically encountered by terrestrial plants. Plant respiration and mitochondrial energy generation rely on O2 availability. Therefore, decreased O2 concentrations severely affect mitochondrial function. Low O2 concentrations (hypoxia) induce cellular stress due to decreased ATP production, depletion of energy reserves and accumulation of metabolic intermediates. In addition, the transition from low to high O2 in combination with light changes-as experienced during re-oxygenation-leads to the excess formation of reactive oxygen species (ROS). In this review, we will update our current knowledge about the mechanisms enabling plants to adapt to low-O2 environments, and how to survive re-oxygenation. New insights into the role of mitochondrial retrograde signaling, chromatin modification, as well as moonlighting proteins and mitochondrial alternative electron transport pathways (and their contribution to low O2 tolerance and survival of re-oxygenation), are presented.
Collapse
Affiliation(s)
- Jay Jethva
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Romy R. Schmidt
- Department of Plant Biotechnology, Faculty of Biology, University of Bielefeld, D-33615 Bielefeld, Germany;
| | - Margret Sauter
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Faculty of Mathematics and Natural Sciences, Christian-Albrechts University, D-24118 Kiel, Germany
- Correspondence: ; Tel.: +49-(0)431-880-4245
| |
Collapse
|
43
|
Butkeviciute A, Viskelis J, Liaudanskas M, Viskelis P, Janulis V. Impact of Storage Controlled Atmosphere on the Apple Phenolic Acids, Flavonoids, and Anthocyanins and Antioxidant Activity In Vitro. PLANTS 2022; 11:plants11020201. [PMID: 35050089 PMCID: PMC8781301 DOI: 10.3390/plants11020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Apples are seasonal fruits, and it is important to prepare them adequately for storage and ensure proper storage conditions. In this study, we used ten different apple cultivars: ‘Alva’, ‘Auksis’, ‘Connell Red’, ‘Cortland’, ‘Ligol’, ‘Lodel’, ‘Noris’, ‘Rubin’, ‘Sampion’, and ‘Spartan’. We studied the qualitative and quantitative composition of phenolic compounds in the apple and apple extracts antioxidants activity before placing them in the controlled atmosphere chambers and again at the end of the experiment, eight months later. Different concentrations of O2, CO2, and N2, constant temperature, relative humidity, and removal of endogenous ethylene were continually maintained. HPLC analysis showed that the highest amount of 2265.7 ± 152.5 µg/g of chlorogenic acid was found in apple samples of the ‘Auksis’ cultivar stored under variant IV conditions. Different concentrations of gas in the controlled atmosphere chambers caused changes in antioxidant activity in whole apple and apple peel extracts. In our study, we found that the antioxidant activity of apple extracts varied between samples of different apple cultivars and depended on the composition of the controlled atmosphere. Determining the optimal storage conditions is beneficial to providing the consumers with apples that have a known and minimally altered chemical composition of phenolic compounds and the strongest antioxidant activity, which determine the use of apples in the healthy food chain.
Collapse
Affiliation(s)
- Aurita Butkeviciute
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (V.J.)
- Correspondence: ; Tel.: +37-037-621-56190
| | - Jonas Viskelis
- Laboratory of Biochemistry and Technology, Lithuanian Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno Str. 30, LT-54333 Babtai, Lithuania; (J.V.); (P.V.)
| | - Mindaugas Liaudanskas
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (V.J.)
| | - Pranas Viskelis
- Laboratory of Biochemistry and Technology, Lithuanian Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno Str. 30, LT-54333 Babtai, Lithuania; (J.V.); (P.V.)
| | - Valdimaras Janulis
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (V.J.)
| |
Collapse
|
44
|
Liu Q, Dong GR, Ma YQ, Huang XX, Mu TJ, Huang XX, Li YJ, Li X, Hou BK. Retracted: Glycosyltransferase UGT79B7 negatively regulates hypoxia response through γ-aminobutyric acid homeostasis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7998-8010. [PMID: 33693583 DOI: 10.1093/jxb/erab107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Qian Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Guang-Rui Dong
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Yu-Qing Ma
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Xiu-Xiu Huang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Tian-Jiao Mu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Xu-Xu Huang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Yan-Jie Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Bing-Kai Hou
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| |
Collapse
|
45
|
Jayawardhane J, Wijesinghe MKPS, Bykova NV, Igamberdiev AU. Metabolic Changes in Seed Embryos of Hypoxia-Tolerant Rice and Hypoxia-Sensitive Barley at the Onset of Germination. PLANTS (BASEL, SWITZERLAND) 2021; 10:2456. [PMID: 34834819 PMCID: PMC8622212 DOI: 10.3390/plants10112456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022]
Abstract
Rice (Oryza sativa L.) and barley (Hordeum vulgare L.) are the cereal species differing in tolerance to oxygen deficiency. To understand metabolic differences determining the sensitivity to low oxygen, we germinated rice and barley seeds and studied changes in the levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), activities of the enzymes involved in their scavenging, and measured cell damage parameters. The results show that alcohol dehydrogenase activity was higher in rice than in barley embryos providing efficient anaerobic fermentation. Nitric oxide (NO) levels were also higher in rice embryos indicating higher NO turnover. Both fermentation and NO turnover can explain higher ATP/ADP ratio values in rice embryos as compared to barley. Rice embryos were characterized by higher activity of S-nitrosoglutathione reductase than in barley and a higher level of free thiols in proteins. The activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase) in imbibed embryos were higher in rice than in barley, which corresponded to the reduced levels of ROS, malonic dialdehyde and electrolyte leakage. The observed differences in metabolic changes in embryos of the two cereal species differing in tolerance to hypoxia can partly explain the adaptation of rice to low oxygen environments.
Collapse
Affiliation(s)
- Jayamini Jayawardhane
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
- Department of Botany, Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - M. K. Pabasari S. Wijesinghe
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| | - Natalia V. Bykova
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| |
Collapse
|
46
|
Mignolli F, Barone JO, Vidoz ML. Root submergence enhances respiration and sugar accumulation in the stem of flooded tomato plants. PLANT, CELL & ENVIRONMENT 2021; 44:3643-3654. [PMID: 34268805 DOI: 10.1111/pce.14152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Flooding is a major environmental constraint that obliges plants to adopt plastic responses in order to cope with it. When partially submerged, tomato plants undergo profound changes involving rearrangements in their morphology and metabolism. In this work, we observed that partial submergence markedly dampens root respiration and halts root growth. However, the flooded hypocotyl surprisingly enhances oxygen consumption. Previous results demonstrated that aerenchyma formation in the submerged tomato stem re-establishes internal oxygen tension, making aerobic respiration possible. Indeed, potassium cyanide abruptly stops oxygen uptake, indicating that the cytochrome c pathway is likely to be engaged. Furthermore, we found out that leaf-derived sugars accumulate in large amounts in hypocotyls of flooded plants. Girdling and feeding experiments point to sucrose as the main carbon source for respiration. Consistently, submerged hypocotyls are characterized by high sucrose synthase activity, indicating that sucrose is cleaved and channelled into respiration. Since inhibition of hypocotyl respiration significantly prevents sugar build-up, it is suggested that a high respiration rate is required for sucrose unloading from phloem. As substrate availability increases, respiration is fuelled even more, leading to a maintained allocation of sugars to flooded hypocotyls.
Collapse
Affiliation(s)
- Francesco Mignolli
- Fisiología Vegetal e Interacción Planta-Microorganismo, Instituto de Botánica del Nordeste (IBONE), UNNE-CONICET, Corrientes, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| | - Javier Orlando Barone
- Fisiología Vegetal e Interacción Planta-Microorganismo, Instituto de Botánica del Nordeste (IBONE), UNNE-CONICET, Corrientes, Argentina
| | - María Laura Vidoz
- Fisiología Vegetal e Interacción Planta-Microorganismo, Instituto de Botánica del Nordeste (IBONE), UNNE-CONICET, Corrientes, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| |
Collapse
|
47
|
AIP1, Encoding the Small Subunit of Acetolactate Synthase, Is Partially Responsible for Resistance to Hypoxic Stress in Arabidopsis thaliana. PLANTS 2021; 10:plants10112251. [PMID: 34834615 PMCID: PMC8621687 DOI: 10.3390/plants10112251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Flooding is a significant stress to land plants, depriving them of essential oxygen. Plants have evolved diverse strategies with variable success to survive flooding. Similar strategies have been described in organisms from other kingdoms. Several fungal species can successfully survive a low-oxygen environment by increasing their branched-chain amino acid (BCAA) contents. BCAAs may act as alternative electron acceptors in the respiratory chain under an oxygen-limited environment. The key and first enzyme for BCAA biosynthesis is acetolactate synthase (ALS). We identified two homologous genes encoding the small subunit of ALS in Arabidopsis (Arabidopsis thaliana). We determined that ALS INTERACTING PROTEIN1 (AIP1), which encodes the small subunit of ALS, is strongly expressed in all organs and highly expressed under submergence and low-oxygen stresses. We also showed that the overexpression of AIP1 confers tolerance to low-oxygen stress. These results indicate that ALS may play an essential role under prolonged flooding or oxygen deficiency in Arabidopsis.
Collapse
|
48
|
Walne CH, Reddy KR. Developing Functional Relationships between Soil Waterlogging and Corn Shoot and Root Growth and Development. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10102095. [PMID: 34685904 PMCID: PMC8539431 DOI: 10.3390/plants10102095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 05/19/2023]
Abstract
Short- and long-term waterlogging conditions impact crop growth and development, preventing crops from reaching their true genetic potential. Two experiments were conducted using a pot-culture facility to better understand soil waterlogging impacts on corn growth and development. Two corn hybrids were grown in 2017 and 2018 under ambient sunlight and temperature conditions. Waterlogging durations of 0, 2, 4, 6, 8, 10, 12, and 14 days were imposed at the V2 growth stage. Morphological (growth and development) and pigment estimation data were collected 15 days after treatments were imposed, 23 days after sowing. As waterlogging was imposed, soil oxygen rapidly decreased until reaching zero in about 8-10 days; upon the termination of the treatments, the oxygen levels recovered to the level of the 0 days treatment within 2 days. Whole-plant dry weight declined as the waterlogging duration increased, and after 2 days of waterlogging, a 44% and 27% decline was observed in experiments 1 and 2, respectively. Leaf area and root volume showed an exponential decay similar to the leaf and root dry weight. Leaf number and plant height were the least sensitive measured parameters and decreased linearly in both experiments. Root forks were the most sensitive parameter after 14 days of waterlogging in both experiments, declining by 83% and 80% in experiments 1 and 2, respectively. The data from this study improve our understanding of how corn plants react to increasing durations of waterlogging. In addition, the functional relationships generated from this study could enhance current corn simulation models for field applications.
Collapse
|
49
|
Liang LL, Song YK, Qian WJ, Ruan JY, Ding ZT, Zhang QF, Hu JH. Metabolomics analysis reveals the responses of tea plants to excessive calcium. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5678-5687. [PMID: 33792039 DOI: 10.1002/jsfa.11222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND The proper growth and development of tea plants requires moderately acidic soils and relatively low calcium levels, and excessive calcium at high pH can damage tea plant roots. To reveal the effects of calcium on the responses of tea plant to three pH levels (3.5, 5.0 and 6.5), a repeated test of two factors was designed. RESULTS Root growth and elemental analysis indicated that excessive calcium improved the growth of tea roots at low pH conditions, whereas it did not harm the growth of tea roots under normal and high pH conditions, especially at pH 6.5. Excessive calcium antagonized the absorption and utilization of magnesium by tea plants. Gas chromatography-mass spectrometry results showed that the addition of Ca2+ resulted in the primary metabolism in roots being more active at a low pH level. By contrast, it had obvious adverse effects on the accumulation of root metabolites with high calcium treatment at normal or high pH. Differential metabolites identified using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry indicated that flavonoids demonstrated the largest number of changes, and their biosynthesis was partially enriched with excessive calcium at low and high pH conditions, whereas it was down-regulated under normal pH conditions. Kaempferol 3-(2'-rhamnosyl-6'-acetylgalactoside) 7-rhamnoside, quercetin 3-(6'-sinapoylsophorotrioside) and delphinidin 3-(3'-p-coumaroylglucoside) showed the greatest increase. The results of gene expression related to root growth and calcium regulation were consistent with root growth and root metabolism. CONCLUSION The overall results demonstrated that high Ca concentrations further aggravate the detrimental effects of high pH to tea roots. However, it is interesting that excessive calcium reduced the harm of a low pH on tea root growth to some extent. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li-Li Liang
- College of Horticulture/College of Foreign Languages, Qingdao Agricultural University, Qingdao, China
| | - Ya-Kang Song
- College of Horticulture/College of Foreign Languages, Qingdao Agricultural University, Qingdao, China
| | - Wen-Jun Qian
- College of Horticulture/College of Foreign Languages, Qingdao Agricultural University, Qingdao, China
| | - Jian-Yun Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Hangzhou, China
| | - Zhao-Tang Ding
- College of Horticulture/College of Foreign Languages, Qingdao Agricultural University, Qingdao, China
| | - Qun-Feng Zhang
- Key Laboratory of Tea Plant Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Hangzhou, China
| | - Jian-Hui Hu
- College of Horticulture/College of Foreign Languages, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
50
|
Boaretto LF, Labate MTV, Franceschini LM, Cataldi TR, Budzinski IGF, de Moraes FE, Labate CA. Proteomics Reveals an Increase in the Abundance of Glycolytic and Ethanolic Fermentation Enzymes in Developing Sugarcane Culms During Sucrose Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:716964. [PMID: 34659289 PMCID: PMC8515036 DOI: 10.3389/fpls.2021.716964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Sugarcane is an economically important crop contributing to the sugar and ethanol production of the world with 80 and 40%, respectively. Despite its importance as the main crop for sugar production, the mechanisms involved in the regulation of sucrose accumulation in sugarcane culms are still poorly understood. The aim of this work was to compare the quantitative changes of proteins in juvenile and maturing internodes at three stages of plant development. Label-free shotgun proteomics was used for protein profiling and quantification in internodes 5 (I5) and 9 (I9) of 4-, 7-, and 10-month-old-plants (4M, 7M, and 10M, respectively). The I9/I5 ratio was used to assess the differences in the abundance of common proteins at each stage of internode development. I9 of 4M plants showed statistically significant increases in the abundance of several enzymes of the glycolytic pathway and proteoforms of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC). The changes in content of the enzymes were followed by major increases of proteins related to O2 transport like hemoglobin 2, ROS scavenging enzymes, and enzymes involved in the ascorbate/glutatione system. Besides, intermediates from tricarboxylic acid cycle (TCA) were reduced in I9-4M, indicating that the increase in abundance of several enzymes involved in glycolysis, pentose phosphate cycle, and TCA, might be responsible for higher metabolic flux, reducing its metabolites content. The results observed in I9-4M indicate that hypoxia might be the main cause of the increased flux of glycolysis and ethanolic fermentation to supply ATP and reducing power for plant growth, mitigating the reduction in mitochondrial respiration due to the low oxygen availability inside the culm. As the plant matured and sucrose accumulated to high levels in the culms, the proteins involved in glycolysis, ethanolic fermentation, and primary carbon metabolism were significantly reduced.
Collapse
|