1
|
Pawar K, Gupta PP, Solanki PS, Niraj RRK, Kothari SL. Downregulation of solute carrier family 4 members 4 as a biomarker for colorectal cancer. Discov Oncol 2025; 16:229. [PMID: 39988623 PMCID: PMC11847767 DOI: 10.1007/s12672-025-01948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Colorectal cancer (CRC) is one of the major cancer types associated with increased mortality worldwide. Hence, identifying reliable biomarkers make it very essential for early diagnosis and prognosis of CRC. Numerous studies have been conducted to decipher molecular mechanisms underlying CRC, however more deep insightful knowledge is the need of the hour. The purpose of this study was to identify promising key candidate genes in colorectal cancer (CRC) and assess their expression and clinical significance. To clarify and verify promising key biomarkers with signal transduction pathways in colorectal cancer, we integrated 11 microarray datasets from NCBI-GEO. This study utilized multiple bioinformatics tools and databases, including OncoDB, GEO2R, UALCAN, GEIPA, TIMER, and DAVID. The gene expression profiles of eleven datasets (GSE10714, GSE113513, GSE13471, GSE15960, GSE24514, GSE32323, GSE41258, GSE4183, GSE44076, GSE44861, GSE9348) were screened. In 11 gene expression profiles, 3 downregulated genes were identified and validated by databases such as OncoDB, UALCAN, GEIPA and TIMER. Downregulation of SLC4A4 with significant predictive value was validated by multi-omic data analysis and validated by Gene Expression Omnibus (GEO). GEIPA survival analysis showed that low SLC4A4 expression correlated with poorer overall survival among CRC patients. Based on this study, we identified SLC4A4 as a potential candidate biomarker for colorectal cancer (CRC), enabling early diagnosis and prognosis with molecular targeted therapy.
Collapse
Affiliation(s)
- Krunal Pawar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Pramodkumar P Gupta
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to Be University, Navi-Mumbai, Maharashtra, 400614, India
| | - Pooran Singh Solanki
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Off Campus Jaipur, Jaipur, India, Rajasthan, 302001
| | - Ravi Ranjan Kumar Niraj
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Shanker Lal Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India.
| |
Collapse
|
2
|
Cui CY, Liu X, Peng MH, Liu Q, Zhang Y. Identification of key candidate genes and biological pathways in neuropathic pain. Comput Biol Med 2022; 150:106135. [PMID: 36166989 DOI: 10.1016/j.compbiomed.2022.106135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/18/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neuropathic pain is a common chronic pain, characterized by spontaneous pain and mechanical allodynia. The incidence of neuropathic pain is on the rise due to infections, higher rates of diabetes and stroke, and increased use of chemotherapy drugs in cancer patients. At present, due to its pathophysiological process and molecular mechanism remaining unclear, there is a lack of effective treatment and prevention methods in clinical practice. Now, we use bioinformatics technology to integrate and filter hub genes that may be related to the pathogenesis of neuropathic pain, and explore their possible molecular mechanism by functional annotation and pathway enrichment analysis. METHODS The expression profiles of GSE24982, GSE2884, GSE2636 and GSE30691 were downloaded from the Gene Expression Omnibus(GEO)database, and these datasets include 93 neuropathic pain Rattus norvegicus and 59 shame controls. After the four datasets were all standardized by quantiles, the differentially expressed genes (DEGs) between NPP Rattus norvegicus and the shame controls were finally identified by the robust rank aggregation (RRA) analysis method. In order to reveal the possible underlying biological function of DEGs, the Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis of DEGs were performed. In addition, a Protein-protein Interaction (PPI) network was also established. At the end of our study, a high throughput sequencing dataset GSE117526 was used to corroborate our calculation results. RESULTS Through RRA analysis of the above four datasets GSE24982, GSE2884, GSE2636, and GSE30691, we finally obtained 231 DEGs, including 183 up-regulated genes and 47 down-regulated genes. Arranging 231 DEGs in descending order according to |log2 fold change (FC)|, we found that the top 20 key genes include 14 up-regulated genes and 6 down-regulated genes. The most down-regulated hub gene abnormal expressed in NPP was Egf17 (P-value = 0.008), Camk2n2 (P-value = 0.002), and Lep (P-value = 0.02), and the most up-regulated hub gene abnormal expressed in NPP was Nefm (P-value = 1.08E-06), Prx (P-value = 2.68E-07), and Stip1 (P-value = 4.40E-07). In GO functional annotation analysis results, regulation of ion transmembrane transport (GO:0034765; P-value = 1.45E-09) was the most remarkable enriched for biological process, synaptic membrane (GO:0097060; P-value = 2.95E-08) was the most significantly enriched for cellular component, channel activity (GO:0015267; P-value = 2.44E-06) was the most prominent enriched for molecular function. In KEGG pathway enrichment analysis results, the top three notable enrichment pathways were Neuroactive ligand-receptor interaction (rno04080; P-value = 3.46E-08), Calcium signaling pathway (rno04020; P-value = 5.37E-05), and Osteoclast differentiation (rno04380; P-value = 0.000459927). Cav1 and Lep appeared in the top 20 genes in both RRA analysis and PPI analysis, while Nefm appeared in RRA analysis and datasets GSE117526 validation analysis, so we finally identified these three genes as hub genes. CONCLUSIONS Our research identified the hub genes and signal pathways of neuropathic pain, enriched the pathophysiological mechanism of neuropathic pain to some extent, and provided a possible basis for the targeted therapy of neuropathic pain.
Collapse
Affiliation(s)
- Chun-Yan Cui
- Department of Pain, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Liu
- Department of Pain, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ming-Hui Peng
- Department of Pain, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qing Liu
- Department of Pain, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Hejiang Traditional Chinese Medicine Hospital, Luzhou, 646000, Sichuan, China.
| | - Ying Zhang
- Department of Pain, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Ma LL, Liu HM, Liu XM, Yuan XY, Xu C, Wang F, Lin JZ, Xu RC, Zhang DK. Screening S protein - ACE2 blockers from natural products: Strategies and advances in the discovery of potential inhibitors of COVID-19. Eur J Med Chem 2021; 226:113857. [PMID: 34628234 PMCID: PMC8489279 DOI: 10.1016/j.ejmech.2021.113857] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 02/09/2023]
Abstract
The Coronavirus disease, 2019 (COVID-19) is caused by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), which poses a major threat to human life and health. Given its continued development, limiting the spread of COVID-19 in the population remains a challenging task. Currently, multiple therapies are being tried around the world to deal with SARS-CoV-2 infection, and a variety of studies have shown that natural products have a significant effect on COVID-19 patients. The combination of SARS-CoV-2 S protein with Angiotensin converting enzyme II(ACE2) of host cell to promote membrane fusion is an initial critical step for SARS-CoV-2 infection. Therefore, screening natural products that inhibit the binding of SARS-CoV-2 S protein and ACE2 also provides a feasible strategy for the treatment of COVID-19. Establishment of high throughput screening model is an important basis and key technology for screening S protein-ACE2 blockers. Based on this, the molecular structures of SARS-CoV-2 and ACE2 and their processes in the life cycle of SARS-CoV-2 and host cell infection were firstly reviewed in this paper, with emphasis on the methods and techniques of screening S protein-ACE2 blockers, including Virtual Screening (VS), Surface Plasmon Resonance (SPR), Biochromatography, Biotin-avidin with Enzyme-linked Immunosorbent assay and Gene Chip Technology. Furthermore, the technical principle, advantages and disadvantages and application scope were further elaborated. Combined with the application of the above screening technologies in S protein-ACE2 blockers, a variety of natural products, such as flavonoids, terpenoids, phenols, alkaloids, were summarized, which could be used as S protein-ACE2 blockers, in order to provide ideas for the efficient discovery of S protein-ACE2 blockers from natural sources and contribute to the development of broad-spectrum anti coronavirus drugs.
Collapse
Affiliation(s)
- Le-le Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Hui-Min Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xue-Mei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiao-Yu Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Chao Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Fang Wang
- Key Laboratory of Modern Chinese Medicine Preparation of Ministry of Education, Jiangxi University of Traditional Chinese Medicine Central Laboratory, Nanchang, 330000, PR China
| | - Jun-Zhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Run-Chun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
4
|
Li S, Han F, Qi N, Wen L, Li J, Feng C, Wang Q. Determination of a six-gene prognostic model for cervical cancer based on WGCNA combined with LASSO and Cox-PH analysis. World J Surg Oncol 2021; 19:277. [PMID: 34530829 PMCID: PMC8447612 DOI: 10.1186/s12957-021-02384-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
AIM This study aimed to establish a risk model of hub genes to evaluate the prognosis of patients with cervical cancer. METHODS Based on TCGA and GTEx databases, the differentially expressed genes (DEGs) were screened and then analyzed using GO and KEGG analyses. The weighted gene co-expression network (WGCNA) was then used to perform modular analysis of DEGs. Univariate Cox regression analysis combined with LASSO and Cox-pH was used to select the prognostic genes. Then, multivariate Cox regression analysis was used to screen the hub genes. The risk model was established based on hub genes and evaluated by risk curve, survival state, Kaplan-Meier curve, and receiver operating characteristic (ROC) curve. RESULTS We screened 1265 DEGs between cervical cancer and normal samples, of which 620 were downregulated and 645 were upregulated. GO and KEGG analyses revealed that most of the upregulated genes were related to the metastasis of cancer cells, while the downregulated genes mostly acted on the cell cycle. Then, WGCNA mined six modules (red, blue, green, brown, yellow, and gray), and the brown module with the most DEGs and related to multiple cancers was selected for the follow-up study. Eight genes were identified by univariate Cox regression analysis combined with the LASSO Cox-pH model. Then, six hub genes (SLC25A5, ENO1, ANLN, RIBC2, PTTG1, and MCM5) were screened by multivariate Cox regression analysis, and SLC25A5, ANLN, RIBC2, and PTTG1 could be used as independent prognostic factors. Finally, we determined that the risk model established by the six hub genes was effective and stable. CONCLUSIONS This study supplies the prognostic value of the risk model and the new promising targets for the cervical cancer treatment, and their biological functions need to be further explored.
Collapse
Affiliation(s)
- Shiyan Li
- Department of Gynecology, Heilongjiang University of Traditional Chinese Medicine, Harbin, PR China
| | - Fengjuan Han
- Department of Gynecology, Heilongjiang University of Traditional Chinese Medicine, Harbin, PR China.
| | - Na Qi
- Department of Gynecology, Heilongjiang University of Traditional Chinese Medicine, Harbin, PR China
| | - Liyang Wen
- Department of Acupuncture and Moxibustion, Heilongjiang University of Traditional Chinese Medicine, Harbin, P.R. China
| | - Jia Li
- Department of Gynecology, Heilongjiang University of Traditional Chinese Medicine, Harbin, PR China
| | - Cong Feng
- Department of Gynecology, Heilongjiang University of Traditional Chinese Medicine, Harbin, PR China
| | - Qingling Wang
- Department of Gynecology, Shenzhen Nanshan Maternal and Child Health Care Hospital, Shenzhen, P.R. China.
| |
Collapse
|
5
|
Lakowitz A, Godard T, Biedendieck R, Krull R. Mini review: Recombinant production of tailored bio-pharmaceuticals in different Bacillus strains and future perspectives. Eur J Pharm Biopharm 2017; 126:27-39. [PMID: 28606596 DOI: 10.1016/j.ejpb.2017.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 01/06/2023]
Abstract
Bio-pharmaceuticals like antibodies, hormones and growth factors represent about one-fifth of commercial pharmaceuticals. Host candidates of growing interest for recombinant production of these proteins are strains of the genus Bacillus, long being established for biotechnological production of homologous and heterologous proteins. Bacillus strains benefit from development of efficient expression systems in the last decades and emerge as major industrial workhorses for recombinant proteins due to easy cultivation, non-pathogenicity and their ability to secrete recombinant proteins directly into extracellular medium allowing cost-effective downstream processing. Their broad product portfolio of pharmaceutically relevant recombinant proteins described in research include antibody fragments, growth factors, interferons and interleukins, insulin, penicillin G acylase, streptavidin and different kinases produced in various cultivation systems like microtiter plates, shake flasks and bioreactor systems in batch, fed-batch and continuous mode. To further improve production and secretion performance of Bacillus, bottlenecks and limiting factors concerning proteases, chaperones, secretion machinery or feedback mechanisms can be identified on different cell levels from genomics and transcriptomics via proteomics to metabolomics and fluxomics. For systematical identification of recurring patterns characteristic of given regulatory systems and key genetic targets, systems biology and omics-technology provide suitable and promising approaches, pushing Bacillus further towards industrial application for recombinant pharmaceutical protein production.
Collapse
Affiliation(s)
- Antonia Lakowitz
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-List-Straβe 35a, 38106 Braunschweig, Germany; Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Thibault Godard
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-List-Straβe 35a, 38106 Braunschweig, Germany; Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Rebekka Biedendieck
- Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-List-Straβe 35a, 38106 Braunschweig, Germany; Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany.
| |
Collapse
|
6
|
Xu Z, Lei P, Feng X, Li S, Xu H. Analysis of the Metabolic Pathways Affected by Poly(γ-glutamic Acid) in Arabidopsis thaliana Based on GeneChip Microarray. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6257-6266. [PMID: 27465513 DOI: 10.1021/acs.jafc.6b02163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plant growth is promoted by poly(γ-glutamic acid) (γ-PGA). However, the molecular mechanism underlying such promotion is not yet well understood. Therefore, we used GeneChip microarrays to explore the effects of γ-PGA on gene transcription in Arabidopsis thaliana. Our results revealed 299 genes significantly regulated by γ-PGA. These differently expressed genes participate mainly in metabolic and cellular processes and in stimuli responses. The metabolic pathways linked to these differently expressed genes were also investigated. A total of 64 of the 299 differently expressed genes were shown to be directly involved in 24 pathways such as brassinosteroid biosynthesis, α-linolenic acid metabolism, phenylpropanoid biosynthesis, and nitrogen metabolism, all of which were influenced by γ-PGA. The analysis demonstrated that γ-PGA promoted nitrogen assimilation and biosynthesis of brassinosteroids, jasmonic acid, and lignins, providing a better explanation for why γ-PGA promotes growth and enhances stress tolerance in plants.
Collapse
Affiliation(s)
- Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering and Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, People's Republic of China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering and Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, People's Republic of China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering and Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, People's Republic of China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering and Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, People's Republic of China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering and Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, People's Republic of China
| |
Collapse
|
7
|
Agarwal P, Parida SK, Mahto A, Das S, Mathew IE, Malik N, Tyagi AK. Expanding frontiers in plant transcriptomics in aid of functional genomics and molecular breeding. Biotechnol J 2014; 9:1480-92. [PMID: 25349922 DOI: 10.1002/biot.201400063] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/02/2014] [Accepted: 10/01/2014] [Indexed: 12/30/2022]
Abstract
The transcript pool of a plant part, under any given condition, is a collection of mRNAs that will pave the way for a biochemical reaction of the plant to stimuli. Over the past decades, transcriptome study has advanced from Northern blotting to RNA sequencing (RNA-seq), through other techniques, of which real-time quantitative polymerase chain reaction (PCR) and microarray are the most significant ones. The questions being addressed by such studies have also matured from a solitary process to expression atlas and marker-assisted genetic enhancement. Not only genes and their networks involved in various developmental processes of plant parts have been elucidated, but also stress tolerant genes have been highlighted. The transcriptome of a plant with altered expression of a target gene has given information about the downstream genes. Marker information has been used for breeding improved varieties. Fortunately, the data generated by transcriptome analysis has been made freely available for ample utilization and comparison. The review discusses this wide variety of transcriptome data being generated in plants, which includes developmental stages, abiotic and biotic stress, effect of altered gene expression, as well as comparative transcriptomics, with a special emphasis on microarray and RNA-seq. Such data can be used to determine the regulatory gene networks, which can subsequently be utilized for generating improved plant varieties.
Collapse
Affiliation(s)
- Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
8
|
Liu TW, Niu L, Fu B, Chen J, Wu FH, Chen J, Wang WH, Hu WJ, He JX, Zheng HL. A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana. Genome 2013; 56:49-60. [PMID: 23379338 DOI: 10.1139/gen-2012-0090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acid rain, as a worldwide environmental issue, can cause serious damage to plants. In this study, we provided the first case study on the systematic responses of arabidopsis (Arabidopsis thaliana (L.) Heynh.) to simulated acid rain (SiAR) by transcriptome approach. Transcriptomic analysis revealed that the expression of a set of genes related to primary metabolisms, including nitrogen, sulfur, amino acid, photosynthesis, and reactive oxygen species metabolism, were altered under SiAR. In addition, transport and signal transduction related pathways, especially calcium-related signaling pathways, were found to play important roles in the response of arabidopsis to SiAR stress. Further, we compared our data set with previously published data sets on arabidopsis transcriptome subjected to various stresses, including wound, salt, light, heavy metal, karrikin, temperature, osmosis, etc. The results showed that many genes were overlapped in several stresses, suggesting that plant response to SiAR is a complex process, which may require the participation of multiple defense-signaling pathways. The results of this study will help us gain further insights into the response mechanisms of plants to acid rain stress.
Collapse
Affiliation(s)
- Ting-Wu Liu
- a Department of Biology, Huaiyin Normal University, Huaian, Jiangsu 223300, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li L, Yi H. Differential expression of Arabidopsis defense-related genes in response to sulfur dioxide. CHEMOSPHERE 2012; 87:718-724. [PMID: 22265681 DOI: 10.1016/j.chemosphere.2011.12.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 05/31/2023]
Abstract
Sulfur dioxide (SO(2)) is one of the most common and harmful air pollutants. To analyze cellular responses to SO(2), we investigated the transcript alterations, antioxidant enzyme activities and reactive oxygen species (ROS) levels in Arabidopsisthaliana (Col-0) exposed to SO(2). Transcriptional profiling using Affymetrix GeneChip technology identified 494 genes differentially expressed (≥2-fold change) in plants exposed to 30 mg m(-3) SO(2) for 72 h, including up-regulation of some defense-related genes encoding antioxidant enzymes and heat shock proteins. Moreover, numerous genes encoding pathogenesis-related proteins and enzymes required for the phenylpropanoid pathway and for cell wall modification were highly activated upon SO(2) exposure. We selected eight of the significantly differentially expressed defense-related genes for analysis using semi-quantitative RT-PCR and confirmed that their expression was up-regulated under SO(2) stress. In addition, SO(2) exposure caused the enhancement of ROS production, and also increased activities of antioxidant enzymes (superoxide dismutase, peroxidase, glutathione peroxidase and glutathione S-transferase) in Arabidopsis plants. Our results indicated that increased ROS may act as a signal to induce defense responses, which provide enhanced defense capacity to protect plants against SO(2) and other environmental stress. This is the first transcriptional profiling that identifies novel genes and pathways involved in SO(2) stress responses in plant cells. These data will be helpful for better understanding the molecular basis for plant adaptation to SO(2) stress.
Collapse
Affiliation(s)
- Lihong Li
- School of Life Science, Research Center of Environmental Science and Engineering, Shanxi University, Taiyuan 030006, China
| | | |
Collapse
|
10
|
Sarwat M, Nabi G, Das S, Srivastava PS. Molecular markers in medicinal plant biotechnology: past and present. Crit Rev Biotechnol 2011; 32:74-92. [DOI: 10.3109/07388551.2011.551872] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Yoon UH, Kim YK, Kim CK, Hahn JH, Kim DH, Lee TH, Lee GS, Park SC, Nahm BH. Current status on expression profiling using rice microarray. ACTA ACUST UNITED AC 2010. [DOI: 10.5010/jpb.2010.37.3.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Kim SY, Zhu T, Sung ZR. Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis. PLANT PHYSIOLOGY 2010; 152:516-28. [PMID: 19783648 PMCID: PMC2815887 DOI: 10.1104/pp.109.143495] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/14/2009] [Indexed: 05/18/2023]
Abstract
The EMBRYONIC FLOWER (EMF) genes are required to maintain vegetative development in Arabidopsis (Arabidopsis thaliana). Loss-of-function emf mutants skip the vegetative phase, flower upon germination, and display pleiotropic phenotypes. EMF1 encodes a putative transcriptional regulator, while EMF2 encodes a Polycomb group (PcG) protein. PcG proteins form protein complexes that maintain gene silencing via histone modification. They are known to function as master regulators repressing multiple gene programs. Both EMF1 and EMF2 participate in PcG-mediated silencing of the flower homeotic genes AGAMOUS, PISTILLATA, and APETALA3. Full-genome expression pattern analysis of emf mutants showed that both EMF proteins regulate additional gene programs, including photosynthesis, seed development, hormone, stress, and cold signaling. Chromatin immunoprecipitation was carried out to investigate whether EMF regulates these genes directly. It was determined that EMF1 and EMF2 interact with genes encoding the transcription factors ABSCISIC ACID INSENSITIVE3, LONG VEGETATIVE PHASE1, and FLOWERING LOCUS C, which control seed development, stress and cold signaling, and flowering, respectively. Our results suggest that the two EMFs repress the regulatory genes of individual gene programs to effectively silence the genetic pathways necessary for vegetative development and stress response. A model of the regulatory network mediated by EMF is proposed.
Collapse
|
13
|
Senthil-Kumar M, Hema R, Suryachandra TR, Ramegowda HV, Gopalakrishna R, Rama N, Udayakumar M, Mysore KS. Functional characterization of three water deficit stress-induced genes in tobacco and Arabidopsis: an approach based on gene down regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:35-44. [PMID: 19811926 DOI: 10.1016/j.plaphy.2009.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 07/07/2009] [Accepted: 09/16/2009] [Indexed: 05/08/2023]
Abstract
Functional characterization of water deficit stress responsive genes is important to understand their role in stress tolerance. RNAi-based silencing of gene of interest and studying the stress response of knockdown plants under stress can be one of the potential options for assessing functional significance of these genes. Several genes showing higher transcript expression under water deficit stress were cloned earlier from a stress adapted crop species, groundnut. In this study, a few selected gene homologs have been characterized in Nicotiana tabacum and Arabidopsis. Using post transcriptional gene silencing (PTGS) based RNAi approach we developed N. tabacum knockdown lines for three of the genes namely alcohol dehydrogenase (ADH), trans caffeoyl coA-3-O-methyl transferase (CcoAOMT) and flavonol-3-O-glucosyl transferase (F3OGT). By quantitative RT-PCR we demonstrated that the RNAi lines showed significant reduction in target gene transcripts. We followed a stress imposition protocol that allows the plants to experience initial gradual acclimation stress and subsequently severe stress for a definite period. The RNAi knockdown lines generated against ADH and F3OGT, when subjected to water deficit stress showed susceptible symptoms signifying the relevance of these genes under stress. Knockdown of CcoAOMT showed higher chlorophyll degradation and less cell viability upon stress compared to control plants. Further, the Arabidopsis mutant lines clearly showed susceptibility to salinity and water deficit stresses validating relevance of these three genes under abiotic stresses.
Collapse
Affiliation(s)
- Muthappa Senthil-Kumar
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560 065, India
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Bi YM, Kant S, Clarke J, Gidda S, Ming F, Xu J, Rochon A, Shelp BJ, Hao L, Zhao R, Mullen RT, Zhu T, Rothstein SJ. Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. PLANT, CELL & ENVIRONMENT 2009; 32:1749-60. [PMID: 19682292 DOI: 10.1111/j.1365-3040.2009.02032.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Development of genetic varieties with improved nitrogen-use efficiency (NUE) is essential for sustainable agriculture. In this study, we developed a growth system for rice wherein N was the growth-limiting factor, and identified N-responsive genes by a whole genome transcriptional profiling approach. Some genes were selected to test their functionality in NUE by a transgenic approach. One such example with positive effects on NUE is an early nodulin gene OsENOD93-1. This OsENOD93-1 gene responded significantly to both N induction and N reduction. Transgenic rice plants over-expressing the OsENOD93-1 gene had increased shoot dry biomass and seed yield. This OsENOD93-1 gene was expressed at high levels in roots of wild-type (WT) plants, and its protein product was localized in mitochondria. Transgenic plants accumulated higher concentrations of total amino acids and total N in roots. A higher concentration of amino acids in xylem sap was detected in transgenic plants, especially under N stress. In situ hybridization revealed that OsENOD93-1 is expressed in vascular bundles, as well as in epidermis and endodermis. This work demonstrates that transcriptional profiling, coupled with a transgenic validation approach, is an effective strategy for gene discovery. The knowledge gained from this study could be applied to other important crops.
Collapse
Affiliation(s)
- Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ni FT, Chu LY, Shao HB, Liu ZH. Gene expression and regulation of higher plants under soil water stress. Curr Genomics 2009; 10:269-80. [PMID: 19949548 PMCID: PMC2709938 DOI: 10.2174/138920209788488535] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 04/25/2009] [Accepted: 04/27/2009] [Indexed: 01/08/2023] Open
Abstract
Higher plants not only provide human beings renewable food, building materials and energy, but also play the most important role in keeping a stable environment on earth. Plants differ from animals in many aspects, but the important is that plants are more easily influenced by environment than animals. Plants have a series of fine mechanisms for responding to environmental changes, which has been established during their long-period evolution and artificial domestication. The machinery related to molecular biology is the most important basis. The elucidation of it will extremely and purposefully promote the sustainable utilization of plant resources and make the best use of its current potential under different scales. This molecular mechanism at least includes drought signal recognition (input), signal transduction (many cascade biochemical reactions are involved in this process), signal output, signal responses and phenotype realization, which is a multi-dimension network system and contains many levels of gene expression and regulation. We will focus on the physiological and molecular adaptive machinery of plants under soil water stress and draw a possible blueprint for it. Meanwhile, the issues and perspectives are also discussed. We conclude that biological measures is the basic solution to solving various types of issues in relation to sustainable development and the plant measures is the eventual way.
Collapse
Affiliation(s)
- Fu-Tai Ni
- 1College of Life Sciences, Jilin Normal University, Siping 136000, China
| | - Li-Ye Chu
- Institute of Life Sciences, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Hong-Bo Shao
- 2State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling 712100, China
- 3Shandong Key Laboratory of Eco-environmental Science for Yellow River Delta, Binzhou University, Binzhou 256603, China
- Institute of Life Sciences, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zeng-Hui Liu
- Institute of Life Sciences, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
16
|
Bruce M, Hess A, Bai J, Mauleon R, Diaz MG, Sugiyama N, Bordeos A, Wang GL, Leung H, Leach JE. Detection of genomic deletions in rice using oligonucleotide microarrays. BMC Genomics 2009; 10:129. [PMID: 19320995 PMCID: PMC2666768 DOI: 10.1186/1471-2164-10-129] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 03/25/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The induction of genomic deletions by physical- or chemical- agents is an easy and inexpensive means to generate a genome-saturating collection of mutations. Different mutagens can be selected to ensure a mutant collection with a range of deletion sizes. This would allow identification of mutations in single genes or, alternatively, a deleted group of genes that might collectively govern a trait (e.g., quantitative trait loci, QTL). However, deletion mutants have not been widely used in functional genomics, because the mutated genes are not tagged and therefore, difficult to identify. Here, we present a microarray-based approach to identify deleted genomic regions in rice mutants selected from a large collection generated by gamma ray or fast neutron treatment. Our study focuses not only on the utility of this method for forward genetics, but also its potential as a reverse genetics tool through accumulation of hybridization data for a collection of deletion mutants harboring multiple genetic lesions. RESULTS We demonstrate that hybridization of labeled genomic DNA directly onto the Affymetrix Rice GeneChip allows rapid localization of deleted regions in rice mutants. Deletions ranged in size from one gene model to approximately 500 kb and were predicted on all 12 rice chromosomes. The utility of the technique as a tool in forward genetics was demonstrated in combination with an allelic series of mutants to rapidly narrow the genomic region, and eventually identify a candidate gene responsible for a lesion mimic phenotype. Finally, the positions of mutations in 14 mutants were aligned onto the rice pseudomolecules in a user-friendly genome browser to allow for rapid identification of untagged mutations http://irfgc.irri.org/cgi-bin/gbrowse/IR64_deletion_mutants/. CONCLUSION We demonstrate the utility of oligonucleotide arrays to discover deleted genes in rice. The density and distribution of deletions suggests the feasibility of a database saturated with deletions across the rice genome. This community resource can continue to grow with further hybridizations, allowing researchers to quickly identify mutants that harbor deletions in candidate genomic regions, for example, regions containing QTL of interest.
Collapse
Affiliation(s)
- Myron Bruce
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Variation at the transcriptional level among Chinese natural populations of Arabidopsis thaliana in response to cold stress. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0403-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Chiari M, Cretich M, Damin F, Di Carlo G, Oldani C. Advanced polymers for molecular recognition and sensing at the interface. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 866:89-103. [DOI: 10.1016/j.jchromb.2008.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/07/2007] [Accepted: 01/04/2008] [Indexed: 11/29/2022]
|
19
|
Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genet 2008; 4:e1000032. [PMID: 18369451 PMCID: PMC2265482 DOI: 10.1371/journal.pgen.1000032] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 02/11/2008] [Indexed: 12/26/2022] Open
Abstract
Whole genome tiling arrays provide a high resolution platform for profiling of genetic, epigenetic, and gene expression polymorphisms. In this study we surveyed natural genomic variation in cytosine methylation among Arabidopsis thaliana wild accessions Columbia (Col) and Vancouver (Van) by comparing hybridization intensity difference between genomic DNA digested with either methylation-sensitive (HpaII) or -insensitive (MspI) restriction enzyme. Single Feature Polymorphisms (SFPs) were assayed on a full set of 1,683,620 unique features of Arabidopsis Tiling Array 1.0F (Affymetrix), while constitutive and polymorphic CG methylation were assayed on a subset of 54,519 features, which contain a 5′CCGG3′ restriction site. 138,552 SFPs (1% FDR) were identified across enzyme treatments, which preferentially accumulated in pericentromeric regions. Our study also demonstrates that at least 8% of all analyzed CCGG sites were constitutively methylated across the two strains, while about 10% of all analyzed CCGG sites were differentially methylated between the two strains. Within euchromatin arms, both constitutive and polymorphic CG methylation accumulated in central regions of genes but under-represented toward the 5′ and 3′ ends of the coding sequences. Nevertheless, polymorphic methylation occurred much more frequently in gene ends than constitutive methylation. Inheritance of methylation polymorphisms in reciprocal F1 hybrids was predominantly additive, with F1 plants generally showing levels of methylation intermediate between the parents. By comparing gene expression profiles, using matched tissue samples, we found that magnitude of methylation polymorphism immediately upstream or downstream of the gene was inversely correlated with the degree of expression variation for that gene. In contrast, methylation polymorphism within genic region showed weak positive correlation with expression variation. Our results demonstrated extensive genetic and epigenetic polymorphisms between Arabidopsis accessions and suggested a possible relationship between natural CG methylation variation and gene expression variation. The functional expression of DNA sequence depends on the chromatin status. Epigenetic marks at specific loci could affect local chromatin accessibility, thus affect the gene activity of that loci. We applied an enzyme methylome approach to globally detect one type of epigenetic mark, cytosine methylation at CCGG restriction sites. Simultaneous transcriptional profiling allowed gene expression differences to be compared with DNA methylation differences, suggesting functional regulatory regions. Our method reveals natural variation in chromatin patterns which may underlie phenotypic variation.
Collapse
|
20
|
Couldridge C, Newbury HJ, Ford-Lloyd B, Bale J, Pritchard J. Exploring plant responses to aphid feeding using a full Arabidopsis microarray reveals a small number of genes with significantly altered expression. BULLETIN OF ENTOMOLOGICAL RESEARCH 2007; 97:523-32. [PMID: 17916270 DOI: 10.1017/s0007485307005160] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The aim of this study was to determine which Arabidopsis thaliana (L.) genes had significantly altered expression following 2-36 h of infestation by the aphid Myzus persicae (Sulzer). Six biological replicates were performed for both control and treatment at each time point, allowing rigorous statistical analysis of any changes. Only two genes showed altered expression after 2 h (one up- and one down-regulated) while two were down-regulated and twenty three were up-regulated at 36 h. The transcript annotation allowed classification of the significantly altered genes into a number of classes, including those involved in cell wall modification, carbon metabolism and signalling. Additionally, a number of genes were implicated in oxidative stress and defence against other pathogens. Five genes could not currently be assigned any function. The changes in gene expression are discussed in relation to current models of plant-insect interactions.
Collapse
Affiliation(s)
- C Couldridge
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
21
|
Bi YM, Wang RL, Zhu T, Rothstein SJ. Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics 2007; 8:281. [PMID: 17705847 PMCID: PMC1994689 DOI: 10.1186/1471-2164-8-281] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 08/16/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND A large quantity of nitrogen (N) fertilizer is used for crop production to achieve high yields at a significant economic and environmental cost. Efforts have been directed to understanding the molecular basis of plant responses to N and identifying N-responsive genes in order to manipulate their expression, thus enabling plants to use N more efficiently. No studies have yet delineated these responses at the transcriptional level when plants are grown under chronic N stress and the understanding of regulatory elements involved in N response is very limited. RESULTS To further our understanding of the response of plants to varying N levels, a growth system was developed where N was the growth-limiting factor. An Arabidopsis whole genome microarray was used to evaluate global gene expression under different N conditions. Differentially expressed genes under mild or severe chronic N stress were identified. Mild N stress triggered only a small set of genes significantly different at the transcriptional level, which are largely involved in various stress responses. Plant responses were much more pronounced under severe N stress, involving a large number of genes in many different biological processes. Differentially expressed genes were also identified in response to short- and long-term N availability increases. Putative N regulatory elements were determined along with several previously known motifs involved in the responses to N and carbon availability as well as plant stress. CONCLUSION Differentially expressed genes identified provide additional insights into the coordination of the complex N responses of plants and the components of the N response mechanism. Putative N regulatory elements were identified to reveal possible new components of the regulatory network for plant N responses. A better understanding of the complex regulatory network for plant N responses will help lead to strategies to improve N use efficiency.
Collapse
Affiliation(s)
- Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Rong-Lin Wang
- Ecological Exposure Research Division, National Exposure Research Lab, US EPA, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Tong Zhu
- Syngenta Biotechnology Inc., 3054 Cornwallis Road, Research Triangle Park, North Carolina, 27709, USA
| | - Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
22
|
Bi YM, Wang RL, Zhu T, Rothstein SJ. Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics 2007. [PMID: 17705847 DOI: 10.1186/1471-2164-8-281/tables/6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND A large quantity of nitrogen (N) fertilizer is used for crop production to achieve high yields at a significant economic and environmental cost. Efforts have been directed to understanding the molecular basis of plant responses to N and identifying N-responsive genes in order to manipulate their expression, thus enabling plants to use N more efficiently. No studies have yet delineated these responses at the transcriptional level when plants are grown under chronic N stress and the understanding of regulatory elements involved in N response is very limited. RESULTS To further our understanding of the response of plants to varying N levels, a growth system was developed where N was the growth-limiting factor. An Arabidopsis whole genome microarray was used to evaluate global gene expression under different N conditions. Differentially expressed genes under mild or severe chronic N stress were identified. Mild N stress triggered only a small set of genes significantly different at the transcriptional level, which are largely involved in various stress responses. Plant responses were much more pronounced under severe N stress, involving a large number of genes in many different biological processes. Differentially expressed genes were also identified in response to short- and long-term N availability increases. Putative N regulatory elements were determined along with several previously known motifs involved in the responses to N and carbon availability as well as plant stress. CONCLUSION Differentially expressed genes identified provide additional insights into the coordination of the complex N responses of plants and the components of the N response mechanism. Putative N regulatory elements were identified to reveal possible new components of the regulatory network for plant N responses. A better understanding of the complex regulatory network for plant N responses will help lead to strategies to improve N use efficiency.
Collapse
Affiliation(s)
- Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | | | | | | |
Collapse
|
23
|
Dupl'áková N, Reňák D, Hovanec P, Honysová B, Twell D, Honys D. Arabidopsis Gene Family Profiler (aGFP)--user-oriented transcriptomic database with easy-to-use graphic interface. BMC PLANT BIOLOGY 2007; 7:39. [PMID: 17645793 PMCID: PMC1963329 DOI: 10.1186/1471-2229-7-39] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 07/23/2007] [Indexed: 05/16/2023]
Abstract
BACKGROUND Microarray technologies now belong to the standard functional genomics toolbox and have undergone massive development leading to increased genome coverage, accuracy and reliability. The number of experiments exploiting microarray technology has markedly increased in recent years. In parallel with the rapid accumulation of transcriptomic data, on-line analysis tools are being introduced to simplify their use. Global statistical data analysis methods contribute to the development of overall concepts about gene expression patterns and to query and compose working hypotheses. More recently, these applications are being supplemented with more specialized products offering visualization and specific data mining tools. We present a curated gene family-oriented gene expression database, Arabidopsis Gene Family Profiler (aGFP; http://agfp.ueb.cas.cz), which gives the user access to a large collection of normalised Affymetrix ATH1 microarray datasets. The database currently contains NASC Array and AtGenExpress transcriptomic datasets for various tissues at different developmental stages of wild type plants gathered from nearly 350 gene chips. RESULTS The Arabidopsis GFP database has been designed as an easy-to-use tool for users needing an easily accessible resource for expression data of single genes, pre-defined gene families or custom gene sets, with the further possibility of keyword search. Arabidopsis Gene Family Profiler presents a user-friendly web interface using both graphic and text output. Data are stored at the MySQL server and individual queries are created in PHP script. The most distinguishable features of Arabidopsis Gene Family Profiler database are: 1) the presentation of normalized datasets (Affymetrix MAS algorithm and calculation of model-based gene-expression values based on the Perfect Match-only model); 2) the choice between two different normalization algorithms (Affymetrix MAS4 or MAS5 algorithms); 3) an intuitive interface; 4) an interactive "virtual plant" visualizing the spatial and developmental expression profiles of both gene families and individual genes. CONCLUSION Arabidopsis GFP gives users the possibility to analyze current Arabidopsis developmental transcriptomic data starting with simple global queries that can be expanded and further refined to visualize comparative and highly selective gene expression profiles.
Collapse
Affiliation(s)
- Nikoleta Dupl'áková
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR v.v.i., Rozvojová 263, 165 00 Prague 6, Czech Republic
- Department of Plant Physiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic
| | - David Reňák
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR v.v.i., Rozvojová 263, 165 00 Prague 6, Czech Republic
- Department of Plant Physiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic
- Department of Plant Physiology and Anatomy, Faculty of Biological Sciences, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | | | - Barbora Honysová
- Laboratory of Cell Biology, Institute of Experimental Botany ASCR v.v.i., Rozvojová 263, 165 00 Prague 6, Czech Republic
| | - David Twell
- Department of Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR v.v.i., Rozvojová 263, 165 00 Prague 6, Czech Republic
- Department of Plant Physiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic
| |
Collapse
|
24
|
Profiling of chicken adipose tissue gene expression by genome array. BMC Genomics 2007; 8:193. [PMID: 17594506 PMCID: PMC1914355 DOI: 10.1186/1471-2164-8-193] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 06/27/2007] [Indexed: 12/02/2022] Open
Abstract
Background Excessive accumulation of lipids in the adipose tissue is a major problem in the present-day broiler industry. However, few studies have analyzed the expression of adipose tissue genes that are involved in pathways and mechanisms leading to adiposity in chickens. Gene expression profiling of chicken adipose tissue could provide key information about the ontogenesis of fatness and clarify the molecular mechanisms underlying obesity. In this study, Chicken Genome Arrays were used to construct an adipose tissue gene expression profile of 7-week-old broilers, and to screen adipose tissue genes that are differentially expressed in lean and fat lines divergently selected over eight generations for high and low abdominal fat weight. Results The gene expression profiles detected 13,234–16,858 probe sets in chicken adipose tissue at 7 weeks, and genes involved in lipid metabolism and immunity such as fatty acid binding protein (FABP), thyroid hormone-responsive protein (Spot14), lipoprotein lipase(LPL), insulin-like growth factor binding protein 7(IGFBP7) and major histocompatibility complex (MHC), were highly expressed. In contrast, some genes related to lipogenesis, such as leptin receptor, sterol regulatory element binding proteins1 (SREBP1), apolipoprotein B(ApoB) and insulin-like growth factor 2(IGF2), were not detected. Moreover, 230 genes that were differentially expressed between the two lines were screened out; these were mainly involved in lipid metabolism, signal transduction, energy metabolism, tumorigenesis and immunity. Subsequently, real-time RT-PCR was performed to validate fifteen differentially expressed genes screened out by the microarray approach and high consistency was observed between the two methods. Conclusion Our results establish the groundwork for further studies of the basic genetic control of growth and development of chicken adipose tissue, and will be beneficial in clarifying the molecular mechanism of obesity in chickens.
Collapse
|
25
|
Sugio A, Yang B, Zhu T, White FF. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAgamma1 and OsTFX1 during bacterial blight of rice. Proc Natl Acad Sci U S A 2007; 104:10720-5. [PMID: 17563377 PMCID: PMC1965579 DOI: 10.1073/pnas.0701742104] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae strain PXO99(A) induces the expression of the host gene Os8N3, which results in increased host susceptibility to bacterial blight of rice. Here, we show that PXO99(A) affects the expression of two additional genes in a type III secretion system-dependent manner, one encoding a bZIP transcription factor (OsTFX1) and the other the small subunit of the transcription factor IIA located on chromosome 1 (OsTFIIAgamma1). Induction of OsTFX1 and OsTFIIAgamma1 depended on the type III effector genes pthXo6 and pthXo7, respectively, both encoding two previously undescribed members of the transcription activator-like (TAL) effector family. pthXo7 is strain-specific and may reflect adaptation to the resistance mediated by xa5, an allele of OsTFIIAgamma5 encoding a second form of the TFIIA small subunit on chromosome 5 of rice. The loss of pthXo6 resulted in reduced pathogen virulence, and ectopic expression of OsTFX1 abrogated the requirement for pthXo6 for full virulence. X. oryzae pv. oryzae therefore modulates the expression of multiple host genes using multiple TAL effectors from a single strain, and evidence supports the hypothesis that expression of the associated host genes contributes to host susceptibility to disease.
Collapse
Affiliation(s)
- Akiko Sugio
- *Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
- Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, United Kingdom; and
| | - Bing Yang
- *Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Tong Zhu
- Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709
| | - Frank F. White
- *Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Zhu T, Salmeron J. High-definition genome profiling for genetic marker discovery. TRENDS IN PLANT SCIENCE 2007; 12:196-202. [PMID: 17416547 DOI: 10.1016/j.tplants.2007.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 02/06/2007] [Accepted: 03/29/2007] [Indexed: 05/04/2023]
Abstract
Genetic mapping is a key step towards isolating genes and genetic markers associated with phenotypic traits by elucidating their genetic positions. The success of this approach depends on precision in pinpointing genetic positions and the effectiveness of the discovery process. Recent advances in microarray technology and the increasing availability of genomic information have provided an opportunity to use microarrays to scan effectively for genetic variations at the whole-genome scale, enabling the production of high-definition gene-based genetic maps, in combination with functional analyses and identification of trait-associated genetic marker candidates with high precision. In this review, we discuss the concept, process, tools and applications of microarray-based high-definition genetic analysis. This post-genomics approach should help to identify causative genetic variation by uniting genetic and functional information.
Collapse
Affiliation(s)
- Tong Zhu
- Syngenta Biotechnology, Inc., 3054 East Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
27
|
Shao HB, Chu LY, Wu G, Zhang JH, Lu ZH, Hu YC. Changes of some anti-oxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Colloids Surf B Biointerfaces 2007; 54:143-9. [PMID: 17196377 DOI: 10.1016/j.colsurfb.2006.09.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 08/16/2006] [Accepted: 09/07/2006] [Indexed: 11/24/2022]
Abstract
Drought is one of the major ecological factors limiting crop production and food quality globally, especially in the arid and semi-arid areas of the world. Wheat is the staple food for more than 35% of world population and wheat cultivation is mainly restricted to such zones with scarcity of water, so wheat anti-drought physiology study is of importance to wheat production, food safety and quality and biotechnological breeding for the sake of coping with abiotic and biotic conditions. The current study is to investigate changes of anti-oxidative physiological indices of 10 wheat genotypes at tillering stage. The main results and conclusion of tillering stage in terms of activities of POD, SOD, CAT and MDA content as followed: (1) 10 wheat genotypes can be generally grouped into three kinds (A-C, respectively) according to their changing trend of the measured indices; (2) A group performed better drought resistance under the condition of treatment level 1 (appropriate level), whose activities of anti-oxidative enzymes (POD, SOD, CAT) were higher and MDA lower; (3) B group exhibited stronger anti-drought under treatment level 2 (light-stress level), whose activities of anti-oxidative enzymes were higher and MDA lower; (4) C group expressed anti-drought to some extent under treatment level 3 (serious-stress), whose activities of anti-oxidative enzymes were stronger, MDA lower; (5) these results demonstrated that different wheat genotypes have different physiological mechanisms to adapt themselves to changing drought stress, whose molecular basis is discrete gene expression profiling (transcriptom). The study in this respect is the key to wheat anti-drought and biological-saving water in worldwide arid and semi-arid areas; (6) POD, SOD, and CAT activities and MDA content of different wheat genotypes had quite different changing trend at different stages and under different soil water stress conditions, which was linked with their origin of cultivation and individual soil water threshold, which will provide better reference to selecting proper plant species for eco-environmental construction and crops for sustainable agriculture in arid and semi-arid areas.
Collapse
|
28
|
Hu YC, Shao HB, Chu LY, Gang W. Relationship between water use efficiency (WUE) and production of different wheat genotypes at soil water deficit. Colloids Surf B Biointerfaces 2006; 53:271-7. [PMID: 17097278 DOI: 10.1016/j.colsurfb.2006.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/13/2006] [Accepted: 10/01/2006] [Indexed: 10/24/2022]
Abstract
Through 2-year field experiments, 7 wheat genotypes were better in their field yield. These 7 wheat genotypes and other 3 wheat species, which are being popularized on a large scale in different locations of China, were selected as experimental materials for the sake of measuring their difference in WUE and production and comparing their relationship at soil water deficits, future more, providing better drought resistance lines and theoretical guide for wheat production and practices and exploring anti-drought physiological mechanisms of different wheat genotypes. Under the condition of 3 soil-water-stress treatments (75% field capacity (FC), 55% FC, 45% FC, named level 1, level 2 and level 3, respectively), pot experiments for them were conducted and the related data were collected from their life circle. The main results were as followed: (1) according to the selected soil stress levels, water use efficiency (WUE) of 10 different wheat genotypes was divided into two groups (A and B); group A included genotypes 2, 3, 4, 5, 6, 7, 8, whose WUE decreased basically from level 1 to level 3 and reached individual peak of WUE at level 1; Group 2 included genotypes 1, 9, 10, whose WUE reached their individual peak at level 2; (2) based on total water consumption through all life circle, genotypes 1, 4, 8, 9 had lower water consumption (TWC) at level 1, genotypes 2, 3, 5, 6, 7 lower TWC at level 2, genotype 10 lower TWC at level 3; (3) at level 1, genotypes 2, 3, 4, 5, 6, 7, 8 had higher grain weight of single spike (GWSS), genotypes 1, 9, 10 better GWSS at level 2, which was in good line with individual WUE of different wheat genotypes; (4) by analyzing the indexes related to examining cultivars, it was found that genotypes 1, 2, 3, 4, 5, 6, 9, 10 had longer plant length (PL), spike length (SL), bigger grain number (GN) except genotypes 7 and 8 at level 1, RL was in better line with genotypes 1, 2, 3, 8, 9, 10, but not in the other genotypes at level 1.
Collapse
Affiliation(s)
- Ya-Chen Hu
- Teaching Affairs Department, Jilin Normal University, Siping 13600, Jilin, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Tosti N, Pasqualini S, Borgogni A, Ederli L, Falistocco E, Crispi S, Paolocci F. Gene expression profiles of O3-treated Arabidopsis plants. PLANT, CELL & ENVIRONMENT 2006; 29:1686-702. [PMID: 16913859 DOI: 10.1111/j.1365-3040.2006.01542.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To analyse cellular response to O(3), the tolerant Arabidopsis thaliana genotype Col-0 was exposed to O(3) fumigation (300 ppb) for 6 h and the modulation of gene expression during the treatment (3 h after the beginning of the treatment, T3 h) and the recovery phase (6 h from the end of the treatment, T12 h) assessed by gene chip microarray and real-time reverse transcriptase (RT)-PCR analyses. The Arabidopsis transcriptional profile is complex, as new genes (i.e. reticuline oxidase) and pathways, other than those already reported as O(3)-responsive, appear to be involved in the O(3) response. The steady-state transcript levels of several WRKY genes were increased in O(3)-treated plants and the W-box was the cis-element over-represented in the promoter region of T3 h up-regulated genes. The fact that the W-box element was also over-represented in almost all T3 h-induced receptor-like kinases (RLKs) suggests a WRKY-mediated control of RLKs under O(3) stress and a mechanicistic similarity with the pathogen-induced transcriptional responses. We investigated the molecular and physiological implications of our findings in relation to O(3)-induced plant stress response.
Collapse
Affiliation(s)
- Nicola Tosti
- Università degli Studi di Perugia, Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali e Zootecniche, Borgo XX Giugno, 74, I-06121 Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Shao HB, Guo QJ, Chu LY, Zhao XN, Su ZL, Hu YC, Cheng JF. Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids Surf B Biointerfaces 2006; 54:37-45. [PMID: 16914294 DOI: 10.1016/j.colsurfb.2006.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/02/2006] [Accepted: 07/07/2006] [Indexed: 01/08/2023]
Abstract
Higher plants play the most important role in keeping a stable environment on the earth, which regulate global circumstances in many ways in terms of different levels (molecular, individual, community, and so on), but the nature of the mechanism is gene expression and control temporally and spatially at the molecular level. In persistently changing environment, there are many adverse stress conditions such as cold, drought, salinity and UV-B (280-320 mm), which influence plant growth and crop production greatly. Plants differ from animals in many aspects, but the important may be that plants are more easily influenced by environment than animals. Plants have a series of fine mechanisms for responding to environmental changes, which has been established during their long-period evolution and artificial domestication. These mechanisms are involved in many aspects of anatomy, physiology, biochemistry, genetics, development, evolution and molecular biology, in which the adaptive machinery related to molecular biology is the most important. The elucidation of it will extremely and purposefully promote the sustainable utilization of plant resources and make the best use of its current potential under different scales. This molecular mechanism at least include environmental signal recognition (input), signal transduction (many cascade biochemical reactions are involved in this process), signal output, signal responses and phenotype realization, which is a multi-dimensional network system and contain many levels of gene expression and regulation. We will focus on the molecular adaptive machinery of higher plant plasticity under abiotic stresses.
Collapse
Affiliation(s)
- Hong-Bo Shao
- Molecular Biology Laboratory, Bio-informatics College, Chongqing University of Posts & Telecom, Chongqing 400065, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Calderon-Villalobos LIA, Kuhnle C, Li H, Rosso M, Weisshaar B, Schwechheimer C. LucTrap vectors are tools to generate luciferase fusions for the quantification of transcript and protein abundance in vivo. PLANT PHYSIOLOGY 2006; 141:3-14. [PMID: 16684932 PMCID: PMC1459313 DOI: 10.1104/pp.106.078097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Proper plant growth and development strongly rely on the plant's ability to respond dynamically to signals and cues from the intra- and extracellular environment. Whereas many of these responses require specific changes at the level of gene expression, in recent years it has become increasingly clear that many plant responses are at least in part also controlled at the level of protein turnover. It is a challenge for signal transduction research to understand how distinct incoming signals are integrated to generate specific changes at the transcript or protein level. The activity of luciferase (LUC) reporters can be detected in nondestructive qualitative and quantitative assays in vivo. Therefore, LUC reporters are particularly well suited for the detection of changes at the transcript and protein level. To the best of our knowledge, the number of plant transformation vectors for LUC fusions is very limited. In this article, we describe the LucTrap plant transformation vectors that allow generation of targeted and random transcriptional and translational fusions with the modified firefly LUC reporter LUC+. We demonstrate that LucTrap-based fusions can be used to monitor rapid changes in gene expression and protein abundance in vivo.
Collapse
|
32
|
Clarke JD, Zhu T. Microarray analysis of the transcriptome as a stepping stone towards understanding biological systems: practical considerations and perspectives. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:630-50. [PMID: 16441353 DOI: 10.1111/j.1365-313x.2006.02668.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
DNA microarrays have been used to characterize plant transcriptomes to answer various biological questions. While many studies have provided significant insights, there has been great debate about the general reliability of the technology and data analysis. When compared to well-established transcript analysis technologies, such as RNA blot analysis or quantitative reverse transcription-PCR, discrepancies have frequently been observed. The reasons for these discrepancies often relate to the technical and experimental systems. This review-tutorial addresses common problems in microarray analysis and describes: (i) methods to maximize extraction of valuable biological information from the vast amount of microarray data and (ii) approaches to balance resource availability with high scientific standards and technological innovation with peer acceptability.
Collapse
Affiliation(s)
- Joseph D Clarke
- Syngenta Biotechnology Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709-2257, USA
| | | |
Collapse
|
33
|
Hongbo S, Zongsuo L, Mingan S. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloids Surf B Biointerfaces 2006; 47:132-9. [PMID: 16413760 DOI: 10.1016/j.colsurfb.2005.11.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 10/14/2005] [Accepted: 11/23/2005] [Indexed: 11/17/2022]
Abstract
Drought is a worldwide problem, seriously influencing plant (crop) productivity. Wheat is a stable food for 35% of the world population, moreover about 60% of land area on the globe belongs to arid and semi-arid zone. Wheat drought resistance is a multi-gene-controlling quantitative character and wheat final production in field is realized mainly by physiological regulation under the condition of multi-environmental factor interaction. Exploring drought resistance physiological mechanisms for different wheat genotypes is of importance to finding new drought resistance gene resources and conventional breeding and the basis for wheat drought resistance biotechnological breeding and platform. Osmotic adjustment regulation is the main component for physiological machinery of wheat drought resistance. By pot-cultivating experiments, investigation of osmotic adjustment comparison for 10 wheat genotypes at soil water deficits (75% FC, 55% FC, 45% FC, respectively), was conducted. The main results were as followed: (1) K(+) content in 10 wheat genotypes at three levels of soil water stress and at the same soil water deficit was very different. Five of these 10 wheat genotypes had higher K K(+) content under the condition of 75% FC. (2) Five of these 10 wheat genotypes possessed greater soluble sugar content at 55% FC soil water level. (3) Proline (Pro) content in five wheat genotypes was higher at 75% FC. (4) Five of these 10 wheat genotypes had lower malondialdehyde (MDA) content at 45% FC at seedling stage. Osmotic adjustment of wheat different genotypes was discussed in terms of different content of osmotic solutes.
Collapse
Affiliation(s)
- Shao Hongbo
- Biological Science Laboratory, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China.
| | | | | |
Collapse
|
34
|
HongBo S, ZongSuo L, MingAn S. Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage. Colloids Surf B Biointerfaces 2005; 45:7-13. [PMID: 16102947 DOI: 10.1016/j.colsurfb.2005.06.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 06/21/2005] [Indexed: 11/18/2022]
Abstract
Drought is a world-spread problem seriously influencing grain production and quality, the loss of which is the total for other natural disasters, with increasing global climate change making the situation more serious. Wheat is the staple food for more than 35% of world population, so wheat anti-drought physiology study is of importance to wheat production and biological breeding for the sake of coping with abiotic and biotic conditions. Much research is involved in this hot topic, but the pace of progress is not so large because of drought resistance being a multiple-gene-control quantitative character and wheat genome being larger (16,000Mb). On the other hand, stress adaptive mechanisms are quite different, with stress degree, time course, materials, soil quality status and experimental plots, thus increasing the complexity of the issue in question. Additionally, a little study is related to the whole life circle of wheat, which cannot provide a comprehensive understanding of its anti-drought machinery. We selected 10 kinds of wheat genotypes as materials, which have potential to be applied in practice, and measured change of relative physiological indices through wheat whole growing-developmental circle (i.e. seedling, tillering and maturing). Here, we reported the anti-oxidative results of maturation stage (the results of seedling and tillering stage have been published) in terms of activities of POD, SOD, CAT and MDA content as follows: (1) 10 wheat genotypes can be grouped into three kinds (A-C, respectively) according to their changing trend of the measured indices; (2) A group performed better resistance drought under the condition of treatment level 1 (appropriate level), whose activities of anti-oxidative enzymes (POD, SOD, CAT) were higher and MDA lower; (3) B group exhibited stronger anti-drought under treatment level 2 (light-stress level), whose activities of anti-oxidative enzymes were higher and MDA lower; (4) C group expressed anti-drought to some extent under treatment level 3 (serious-stress level), whose activities of anti-oxidative enzymes were stronger, MDA lower; (5) these results demonstrated that different wheat genotypes have different physiological mechanisms to adapt themselves to changing drought stress, whose molecular basis is discrete gene expression profiling (transcriptom); (6) our results also showed that the concept and method accepted and adopted by most researchers [T.C. Hsiao, Plant response to water stress, Ann. Rev. Plant Physiol. 24 (1973) 519-570], that 75% FC is a proper supply for higher plants, was doubted, because this level could not reflect the true suitable level of different wheat genotypes. The study in this respect is the key to wheat anti-drought and biological-saving water agriculture; (7) our research can provide insights into physiological mechanisms of crop anti-drought and direct practical materials for wheat anti-drought breeding; (8) the physiological study of wheat is more urgent up-to-date and molecular aspects are needed, but cannot substitute this important part. The combination of both is an important strategy and a key and (9) POD, SOD and CAT activities and MDA content of different wheat genotypes had quite different changing trend at different stages and under different soil water stress conditions, which was linked with their origin of cultivation and individual soil water threshold.
Collapse
Affiliation(s)
- Shao HongBo
- Molecular Biology Laboratory, Bioinformatics College, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China.
| | | | | |
Collapse
|
35
|
Bi YM, Zhang Y, Signorelli T, Zhao R, Zhu T, Rothstein S. Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:680-92. [PMID: 16262716 DOI: 10.1111/j.1365-313x.2005.02568.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Arabidopsis GATA transcription factor family has 30 members, the biological function of most of which is poorly understood. Homozygous T-DNA insertion lines for 23 of the 30 members were identified and analyzed. Genetic screening of the insertion lines in defined growth conditions revealed one line with an altered phenotype, while the other lines showed no obvious change. This line, SALK_001778, has a T-DNA insertion in the second exon of At5g56860 which prevents the expression of the GATA domain. Genetic analysis of the mutant demonstrated that the phenotypic change is caused by a single gene effect and is recessive to the wild-type allele. In wild-type plants, the expression of At5g56860 is shoot-specific, occurs at an early stage of development and is inducible by nitrate. Loss of expression of At5g56860 in the loss-of-function mutant plants resulted in reduced chlorophyll levels. A transcript profiling experiment revealed that a considerable proportion of genes downregulated in the loss-of-function mutants are involved in carbon metabolism and At5g56860 is thus designated GNC (GATA, nitrate-inducible, carbon metabolism-involved). gnc mutants with no GNC expression are more sensitive to exogenous glucose, and two hexose transporter genes, with a possible connection to glucose signaling, are significantly downregulated, while GNC over-expressing transgenic plants upregulate their expression and are less sensitive to exogenous glucose. These observations suggest a function for GNC in regulating carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | |
Collapse
|
36
|
Hongbo S, Zongsuo L, Mingan S, Shimeng S, Zanmin H. Investigation on dynamic changes of photosynthetic characteristics of 10 wheat (Triticum aestivum L.) genotypes during two vegetative-growth stages at water deficits. Colloids Surf B Biointerfaces 2005; 43:221-7. [PMID: 15975772 DOI: 10.1016/j.colsurfb.2005.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 05/01/2005] [Indexed: 11/16/2022]
Abstract
Drought is a worldwide problem, seriously influencing plant (crop) productivity. Wheat is a stable food for 35% of the world population, and moreover, about 60% of land area on the globe belongs to arid and semiarid zone. Wheat drought resistance is a multi-gene controlling quantitative character and wheat final production in field is realized mainly by physiological regulation under the condition of multi-environmental factor interaction. Exploring drought resistance physiological mechanisms for different wheat genotypes is of importance to finding new drought resistance gene resources and conventional breeding, and the basis for wheat drought resistance biotechnological breeding and platform. Photosynthesis is the main component for physiological machinery of wheat assimilates conversion and wheat production. Investigation on photosynthetic characteristics of different wheat genotypes at soil water deficits also has other implications for refine physiological regulation of photosynthesis in fields and field management of crops in arid and semiarid areas. By pot-cultivating experiments, investigation of photosynthesis for 10 wheat genotypes at seedling stage and tillering stage at soil water deficits (75%FC, 55%FC and 45%FC, respectively) was conducted. The main results were as followed: developmental stages influenced wheat photosynthesis greatly and tillering stage played more roles; there were significant difference in the main photosynthetic parameters, photosynthesis rate (Photo), stomatal conductance (Cond) and transpiration rate (Tr), among 10 wheat genotypes; general photosynthesis and drought resistance in different wheat genotypes was related much to their domesticated origin soil water environment and selected generations and there was a photosynthetic threshold effect in terms of different wheat genotypes at soil water deficits.
Collapse
Affiliation(s)
- Shao Hongbo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Center of Soil and Water Conservation and Eco-environmental Research, The Chinese Academy of Sciences, Yangling 712100, PR China.
| | | | | | | | | |
Collapse
|
37
|
Shao HB, Liang ZS, Shao MA, Wang BC. Changes of anti-oxidative enzymes and membrane peroxidation for soil water deficits among 10 wheat genotypes at seedling stage. Colloids Surf B Biointerfaces 2005; 42:107-13. [PMID: 15833661 DOI: 10.1016/j.colsurfb.2005.01.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 01/21/2005] [Indexed: 10/25/2022]
Abstract
Drought is one of the major factors limiting crop production globally, with increasing global climate change making the situation more serious. Wheat is the staple food for more than 35% of world population, so wheat anti-drought physiology study is of importance to wheat production and biological breeding for the sake of coping with abiotic and biotic conditions. Much research is involved in this hot topic, but the pace of progress is not so large because of drought resistance being a multiple-gene-control quantitative character and wheat genome being larger (16,000 Mb). On the other hand, stress adaptive mechanisms are quite different, with stress degree, time course, materials, and experimental plots, thus increasing the complexity of the issue in question. Additionally, a little study is related to the whole life circle of wheat, which cannot provide a comprehensive understanding of its anti-drought machinery. We selected 10 kinds of wheat genotypes as materials, which have potential to be applied in practice, and measured relative change of anti-oxidative enzymes and membrane peroxidation through wheat whole growth-developmental circle (i.e. seedling, tillering and maturing). Here, we firstly reported the results of seedling stage as follows: (1) 10 wheat genotypes can be grouped into three kinds (A-C, respectively) according to their changing trend of the measured indices; (2) A performed better resistance drought under the condition of treatment level 1 (appropriate level), whose activities of anti-oxidative enzymes (POD, SOD, CAT) were higher and MDA lower and chlorophyll a+b higher; (3) B exhibited stronger anti-drought under treatment level 2 (light stress level), whose activities of anti-oxidative enzymes were higher, MDA lower and chlorophyll higher; (4) C expressed anti-drought to some extent under treatment level 3 (serious stress), whose activities of anti-oxidative enzymes were stronger, MDA lower and chlorophyll higher; (5) these results demonstrated that different wheat genotypes have different physiological mechanisms to adapt themselves to changing drought stress, whose molecular basis is discrete gene expression profiling (transcriptom); (6) our results also showed that the concept accepted by most researchers, 70-75% QF is a proper supply for plants, was doubted, because this level could not reflect the true suitable level of wheat. The study in this respect is the key to wheat anti-drought and biological saving-water; (7) our research can provide insights into physiological mechanisms of crop anti-drought and direct practical materials for wheat anti-drought breeding.
Collapse
Affiliation(s)
- Hong Bo Shao
- State Key Laboratory of Soil Erosion and Dryland Farming, The Center of Soil and Water Conservation and Ecoenvironmental Research, Chinese Academy of Sciences, Yangling 712100, People's Republic of China.
| | | | | | | |
Collapse
|
38
|
Shao HB, Liang ZS, Shao MA, Sun Q. Dynamic changes of anti-oxidative enzymes of 10 wheat genotypes at soil water deficits. Colloids Surf B Biointerfaces 2005; 42:187-95. [PMID: 15876527 DOI: 10.1016/j.colsurfb.2005.02.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 02/25/2005] [Indexed: 10/25/2022]
Abstract
Drought is a world-spread problem seriously influencing crop production and quality, the loss of which is the total for other natural disasters, with increasing global climate change making the situation more serious. Wheat is the staple food for more than 35% of world population, so wheat anti-drought physiology study is of importance to wheat production and biological breeding for the sake of coping with abiotic and biotic conditions. Much research is involved in this hot topic, but the pace of progress is not so large because of drought resistance being a multiple-gene-control quantitative character and wheat genome being larger (16,000 Mb). On the other hand, stress adaptive mechanisms are quite different, with stress degree, different growth and developmental stages, time course, materials and experimental plots, thus increasing the complexity of the issue in question. Additionally, a little study is related to the whole life circle of wheat, which cannot provide a comprehensive understanding of its anti-drought machinery. We selected 10 kinds of wheat genotypes as materials, which have potential to be applied in practice, and measured change of relative physiological indices through wheat whole growing developmental circle (i.e. seedling, tillage and maturing). Here, we reported the dynamic anti-oxidative results of whole stage (i.e. seedling, tillage and maturing) in terms of activities of POD, SOD, CAT of 10 wheat genotypes as follows: (1) 10 wheat genotypes can be grouped into three kinds (A, B and C, respectively) according to their changing trend of the measured indices; (2) A group performed better resistance drought under the condition of treatment level 1, whose activities of anti-oxidative enzymes (POD, SOD, CAT) were higher; (3) B group exhibited stronger anti-drought under treatment level 2, whose activities of anti-oxidative enzymes were higher; (4) C group expressed anti-drought to some extent under treatment level 3, whose activities of anti-oxidative enzymes were stronger, MDA lower; (5) these results demonstrated that different wheat genotypes have different physiological mechanisms to adapt themselves to changing drought stress, whose molecular basis is discrete gene expression profiling (transcriptom); (6) our results also showed that the concept and method accepted and adopted by most researchers--that 75% FC is a proper supply for higher plants--was doubted because this level could not reflect the true suitable level of different wheat genotypes; (7) our research can provide insights into physiological mechanisms of crop anti-drought and direct practical materials for wheat anti-drought breeding; (8) POD, SOD and CAT activities of different wheat genotypes had quite different changing trend at different stages and under different soil water stress conditions, which was linked with their origin of cultivation and individual soil water stress threshold; (9) our primary results also firstly displayed that the changing trend for wheat adapting to environmental stress during life circle was an S-shaped curve, which is, by chance, consistent with Plant Growth Grand Periodicity Curve.
Collapse
Affiliation(s)
- Hong Bo Shao
- State Key Laboratory of Soil Erosion and Dryland Farming, The Center of Soil and Water Conservation and Ecoenvironmental Research, Chinese Academy of Sciences, Yangling 712100, People's Republic of China.
| | | | | | | |
Collapse
|
39
|
Urbanczyk-Wochniak E, Baxter C, Kolbe A, Kopka J, Sweetlove LJ, Fernie AR. Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves. PLANTA 2005; 221:891-903. [PMID: 15744496 DOI: 10.1007/s00425-005-1483-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 01/03/2005] [Indexed: 05/24/2023]
Abstract
Diurnal changes in carbohydrates and a broad range of primary metabolites were analysed through a diurnal period in potato leaves (Solanum tuberosum cv. Desiree) using an established gas chromatography-mass spectrometry based metabolic profiling protocol alongside conventional spectrophotometric technologies. In tandem, we profiled transcript levels using both a custom array containing approximately 2,500 cDNA clones predominantly representing transcripts involved in primary metabolism and commercially available arrays containing approximately 12,000 cDNA clones that gave coverage of transcript levels over a broader functional range. The levels of many metabolites and transcripts varied during the diurnal period with 56 significant differences observed in the metabolite contents and 832 significant differences recorded in transcript levels. Whilst a large number of the differences would be expected from what has been known previously, several novel changes were observed in these experiments. Notably, qualitative comparison of the combined data sets obtained from the parallel analysis of transcripts and metabolites suggests relatively few changes in gene expression strongly correlate with changes in metabolite levels during a diurnal cycle. Furthermore, these changes appear to be confined to the central metabolic pathways. However, principal component analysis of the metabolic profiles obtained here revealed that metabolite patterns change progressively through a diurnal period suggesting the operation of mechanisms for tight temporal regulation of metabolite composition.
Collapse
Affiliation(s)
- Ewa Urbanczyk-Wochniak
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Golm, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Lee JY, Levesque M, Benfey PN. High-throughput RNA isolation technologies. New tools for high-resolution gene expression profiling in plant systems. PLANT PHYSIOLOGY 2005; 138:585-90. [PMID: 15955922 PMCID: PMC1150379 DOI: 10.1104/pp.105.061812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Ji-Young Lee
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
41
|
Ren XY, Fiers MWEJ, Stiekema WJ, Nap JP. Local coexpression domains of two to four genes in the genome of Arabidopsis. PLANT PHYSIOLOGY 2005; 138:923-34. [PMID: 15923337 PMCID: PMC1150408 DOI: 10.1104/pp.104.055673] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Expression of genes in eukaryotic genomes is known to cluster, but cluster size is generally loosely defined and highly variable. We have here taken a very strict definition of cluster as sets of physically adjacent genes that are highly coexpressed and form so-called local coexpression domains. The Arabidopsis (Arabidopsis thaliana) genome was analyzed for the presence of such local coexpression domains to elucidate its functional characteristics. We used expression data sets that cover different experimental conditions, organs, tissues, and cells from the Massively Parallel Signature Sequencing repository and microarray data (Affymetrix) from a detailed root analysis. With these expression data, we identified 689 and 1,481 local coexpression domains, respectively, consisting of two to four genes with a pairwise Pearson's correlation coefficient larger than 0.7. This number is approximately 1- to 5-fold higher than the numbers expected by chance. A small (5%-10%) yet significant fraction of genes in the Arabidopsis genome is therefore organized into local coexpression domains. These local coexpression domains were distributed over the genome. Genes in such local domains were for the major part not categorized in the same functional category (GOslim). Neither tandemly duplicated genes nor shared promoter sequence nor gene distance explained the occurrence of coexpression of genes in such chromosomal domains. This indicates that other parameters in genes or gene positions are important to establish coexpression in local domains of Arabidopsis chromosomes.
Collapse
Affiliation(s)
- Xin-Ying Ren
- Applied Bioinformatics, Plant Research International, NL-6700 AA Wageningen, The Netherlands
| | | | | | | |
Collapse
|
42
|
El Ouakfaoui S, Miki B. The stability of the Arabidopsis transcriptome in transgenic plants expressing the marker genes nptII and uidA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:791-800. [PMID: 15743445 DOI: 10.1111/j.1365-313x.2005.02350.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The ATH1 Arabidopsis GeneChip from Affymetrix was used to search for transcriptome changes in Arabidopsis associated with the strong expression of transgenes regulated by constitutive promoters. The insertion and expression of the commonly used marker genes, uidA and nptII, did not induce changes to the expression patterns of the approximately 24 000 genes that were screened under optimal growth conditions and under physiological stress imposed by low temperatures. Approximately 8000 genes (35% of the Arabidopsis genome) underwent changes in gene expression in both wild-type and transgenic plants under abiotic stresses such as salt, dehydration, cold, and heat. This study provides detailed information on the extent of non-targeted or pleiotropic effects of transgenes on plants and shows that the transgenic and non-transgenic plants were equivalent in their global patterns of transcription. This information may help to extend our understanding and interpretation of the principle of substantial equivalence which is used as a first step in the biosafety evaluation of transgenic crops.
Collapse
Affiliation(s)
- Souad El Ouakfaoui
- Bioproducts and Bioprocesses, Research Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | | |
Collapse
|
43
|
|
44
|
Abstract
Transcriptional re-programming is a key step of plant defense in response to pathogen recognition. Microarray analyses combined with genetic and biochemical approaches are now enabling us to study basic principles and details of regulatory mechanisms controlling the defense transcriptome in Arabidopsis. Recent results show that signaling pathways used by different defense systems converge and target overlapping gene sets. Furthermore, a quantitative mechanism common to multiple defense systems modulates transcript levels of these defense-associated genes. Most importantly, some transcription factors have been proven to play a pivotal role in disease resistance. Regulatory circuits linking signaling and gene regulation are emerging, suggesting that a complex interplay of transcriptional activators and repressors fine-tunes expression of the defense transcriptome.
Collapse
Affiliation(s)
- Thomas Eulgem
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, 3214 Batchelor Hall, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
45
|
Chen WJ, Zhu T. Networks of transcription factors with roles in environmental stress response. TRENDS IN PLANT SCIENCE 2004; 9:591-6. [PMID: 15564126 DOI: 10.1016/j.tplants.2004.10.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Genome-wide transcriptome analyses have identified hundreds of genes encoding transcription factors that are induced or repressed by a range of environmental stresses. Their complex expression patterns suggest that stress tolerance and resistance are controlled at the transcriptional level by a complicated gene regulatory network. The next steps towards understanding stress biology at the systems level are reconstructing the network and then verifying the roles these transcription factors play in the network.
Collapse
|
46
|
Price J, Laxmi A, St Martin SK, Jang JC. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. THE PLANT CELL 2004; 16:2128-50. [PMID: 15273295 PMCID: PMC519203 DOI: 10.1105/tpc.104.022616] [Citation(s) in RCA: 370] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 05/17/2004] [Indexed: 05/17/2023]
Abstract
Complex and interconnected signaling networks allow organisms to control cell division, growth, differentiation, or programmed cell death in response to metabolic and environmental cues. In plants, it is known that sugar and nitrogen are critical nutrient signals; however, our understanding of the molecular mechanisms underlying nutrient signal transduction is very limited. To begin unraveling complex sugar signaling networks in plants, DNA microarray analysis was used to determine the effects of glucose and inorganic nitrogen source on gene expression on a global scale in Arabidopsis thaliana. In whole seedling tissue, glucose is a more potent signal in regulating transcription than inorganic nitrogen. In fact, other than genes associated with nitrate assimilation, glucose had a greater effect in regulating nitrogen metabolic genes than nitrogen itself. Glucose also regulated a broader range of genes, including genes associated with carbohydrate metabolism, signal transduction, and metabolite transport. In addition, a large number of stress responsive genes were also induced by glucose, indicating a role of sugar in environmental responses. Cluster analysis revealed significant interaction between glucose and nitrogen in regulating gene expression because glucose can modulate the effects of nitrogen and vise versa. Intriguingly, cycloheximide treatment appeared to disrupt glucose induction more than glucose repression, suggesting that de novo protein synthesis is an intermediary event required before most glucose induction can occur. Cross talk between sugar and ethylene signaling may take place on the transcriptional level because several ethylene biosynthetic and signal transduction genes are repressed by glucose, and the repression is largely unaffected by cycloheximide. Collectively, our global expression data strongly support the idea that glucose and inorganic nitrogen act as both metabolites and signaling molecules.
Collapse
Affiliation(s)
- John Price
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
47
|
Hass C, Lohrmann J, Albrecht V, Sweere U, Hummel F, Yoo SD, Hwang I, Zhu T, Schäfer E, Kudla J, Harter K. The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J 2004; 23:3290-302. [PMID: 15282545 PMCID: PMC514511 DOI: 10.1038/sj.emboj.7600337] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 06/29/2004] [Indexed: 11/09/2022] Open
Abstract
Hormones are important regulators of plant growth and development. In Arabidopsis, perception of the phytohormones ethylene and cytokinin is accomplished by a family of sensor histidine kinases including ethylene-resistant (ETR) 1 and cytokinin-response (CRE) 1. We identified the Arabidopsis response regulator 2 (ARR2) as a signalling component functioning downstream of ETR1 in ethylene signal transduction. Analyses of loss-of-function and ARR2-overexpressing lines as well as functional assays in protoplasts indicate an important role of ARR2 in mediating ethylene responses. Additional investigations indicate that an ETR1-initiated phosphorelay regulates the transcription factor activity of ARR2. This mechanism may create a novel signal transfer from endoplasmic reticulum-associated ETR1 to the nucleus for the regulation of ethylene-response genes. Furthermore, global expression profiling revealed a complex ARR2-involving two-component network that interferes with a multitude of different signalling pathways and thereby contributes to the highly integrated signal processing machinery in higher plants.
Collapse
Affiliation(s)
- Claudia Hass
- Botanisches Institut, Universität zu Köln, Köln, Germany
| | - Jens Lohrmann
- Institut für Biologie II, Universität Freiburg, Freiburg, Germany
| | - Verónica Albrecht
- Institut für Botanik und Botanischer Garten, Universität Münster, Münster, Germany
- Molekulare Botanik, Universität Ulm, Ulm, Germany
| | - Uta Sweere
- Botanisches Institut, Universität zu Köln, Köln, Germany
- Institut für Biologie II, Universität Freiburg, Freiburg, Germany
| | - Florian Hummel
- Institut für Biologie II, Universität Freiburg, Freiburg, Germany
| | - Sang Dong Yoo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Ildoo Hwang
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Tong Zhu
- Syngenta Biotechnology Inc., Research Triangle Park, NC, USA
| | - Eberhard Schäfer
- Institut für Biologie II, Universität Freiburg, Freiburg, Germany
| | - Jörg Kudla
- Institut für Botanik und Botanischer Garten, Universität Münster, Münster, Germany
- Molekulare Botanik, Universität Ulm, Ulm, Germany
- Institut für Botanik und Botanischer Garten, Universität Münster, Schlossgarten 3, 48149 Münster, Germany. Tel.: +49 251 83 24813; Fax: +49 251 83 23823; E-mail:
| | - Klaus Harter
- Botanisches Institut, Universität zu Köln, Köln, Germany
- Botanisches Institut, Universität zu Köln, Gyrhofstr. 15, 50931 Köln, Germany. Tel.: +49 221 470 6897; Fax: +49 221 470 7765; E-mail:
| |
Collapse
|
48
|
Hurst LD, Pál C, Lercher MJ. The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 2004; 5:299-310. [PMID: 15131653 DOI: 10.1038/nrg1319] [Citation(s) in RCA: 524] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Laurence D Hurst
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | | | | |
Collapse
|
49
|
Lein W, Börnke F, Reindl A, Ehrhardt T, Stitt M, Sonnewald U. Target-based discovery of novel herbicides. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:219-25. [PMID: 15003224 DOI: 10.1016/j.pbi.2004.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the past 10 years, strategies for the first steps of herbicide discovery have switched from the testing of chemicals for efficacy on whole plants towards the use of in-vitro assays against molecular targets. Many different approaches have been developed to identify bona fide targets for in-vitro screening. Developments in functional genomics and in pharmaceutical research could aid the development of assay systems for the evaluation of chemicals for their suitability as lead structures in herbicide discovery.
Collapse
Affiliation(s)
- Wolfgang Lein
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Golm, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Zhu T, Provart NJ. Transcriptional responses to low temperature and their regulation in Arabidopsis. ACTA ACUST UNITED AC 2003. [DOI: 10.1139/b03-115] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have used a transcriptional profiling approach to identify genes in Arabidopsis that respond at the level of transcript abundance to cold (4 °C) or chilling (13 °C) temperatures. Results have shown that plants respond to low temperatures by altering mRNA levels of a large number of genes belonging to different independent pathways. Early transcriptional response to low temperatures frequently involves signaling pathways used to respond to other environmental stresses, indicating the existence and involvement of a complex genetic network. Genes with functions specific to low-temperature signaling pathways, and those with functions in multiple signaling pathways, especially those encoding transcription factors and other signaling molecules, have been identified based on their transcriptional responses to different environmental stresses. The qualitative and quantitative difference in transcriptional response to chilling and cold suggests that plants might have different molecular mechanisms to acclimate to different types of low-temperature stresses. The regulation and interactions of genes involved in low-temperature response at the transcriptional level has been further explored by computational methods, and preliminary results have identified motifs that are known to be important for cold response, raising the possibility of a better understanding of the processes involved.Key words: Arabidopsis, low-temperature stress, gene expression, transcriptional regulation, microarray.
Collapse
|