1
|
Zou M, Shabala S, Zhao C, Zhou M. Molecular mechanisms and regulation of recombination frequency and distribution in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:86. [PMID: 38512498 PMCID: PMC10957645 DOI: 10.1007/s00122-024-04590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
KEY MESSAGE Recent developments in understanding the distribution and distinctive features of recombination hotspots are reviewed and approaches are proposed to increase recombination frequency in coldspot regions. Recombination events during meiosis provide the foundation and premise for creating new varieties of crops. The frequency of recombination in different genomic regions differs across eukaryote species, with recombination generally occurring more frequently at the ends of chromosomes. In most crop species, recombination is rare in centromeric regions. If a desired gene variant is linked in repulsion with an undesired variant of a second gene in a region with a low recombination rate, obtaining a recombinant plant combining two favorable alleles will be challenging. Traditional crop breeding involves combining desirable genes from parental plants into offspring. Therefore, understanding the mechanisms of recombination and factors affecting the occurrence of meiotic recombination is important for crop breeding. Here, we review chromosome recombination types, recombination mechanisms, genes and proteins involved in the meiotic recombination process, recombination hotspots and their regulation systems and discuss how to increase recombination frequency in recombination coldspot regions.
Collapse
Affiliation(s)
- Meilin Zou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia.
| |
Collapse
|
2
|
Tapia HJ, Dávila P. Continuity and discontinuity in evolutionary processes with emphasis on plants. Biosystems 2024; 236:105108. [PMID: 38159673 DOI: 10.1016/j.biosystems.2023.105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The present work is aimed to review the concepts of continuity and discontinuity in the reproductive processes and their impact on the evolutionary outcome, emphasizing on the plant model. Let be stated that evolutionary changes need to pass down generation after generation through the cellular reproductive mechanisms, and these mechanisms can account for changes from single nucleotide to genome-wide mutations. Patterns of continuity and discontinuity in sexual and asexual species pose notorious differences as the involvement of the cellular genetic material from single or different individuals, the changes in the ploidy level, or the independence between nuclear and plastid genomes. One relevant aspect of the plant model is the open system for pollen donation, which can be driven from every male flower to every female flower in the neighborhood, as well as the facilitated seed dispersal patterns, that may break or restore the contact between populations. Three significative processes are distinguishable, syngenesis, anagenesis, and cladogenesis. The syngenesis refers to the reproduction between individuals, either if they pertain to the same species, from different populations or even from different species. The anagenesis refers to the pursuit of all the possible rearrangements of genes and alleles pooled in a population of individuals, and the cladogenesis represents the absence of reproduction that leads to differentiation. Recent developments on the genomic analysis of single cells, single chromosomes and fragments of homologous chromosomes could bring new insights into the processes of the evolution, in generational time and in a broad spectrum of spatial/geographic extents.
Collapse
Affiliation(s)
- Hector J Tapia
- Laboratorio de Recursos Naturales, UBIPRO, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, 54090, Estado de México, Mexico.
| | - Patricia Dávila
- Laboratorio de Recursos Naturales, UBIPRO, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, 54090, Estado de México, Mexico
| |
Collapse
|
3
|
Bradbury PJ, Casstevens T, Jensen SE, Johnson LC, Miller ZR, Monier B, Romay MC, Song B, Buckler ES. The Practical Haplotype Graph, a platform for storing and using pangenomes for imputation. Bioinformatics 2022; 38:3698-3702. [PMID: 35748708 PMCID: PMC9344836 DOI: 10.1093/bioinformatics/btac410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/28/2022] [Accepted: 06/22/2022] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Pangenomes provide novel insights for population and quantitative genetics, genomics, and breeding not available from studying a single reference genome. Instead, a species is better represented by a pangenome or collection of genomes. Unfortunately, managing and using pangenomes for genomically diverse species is computationally and practically challenging. We developed a trellis graph representation anchored to the reference genome that represents most pangenomes well and can be used to impute complete genomes from low density sequence or variant data. RESULTS The Practical Haplotype Graph (PHG) is a pangenome pipeline, database (PostGRES & SQLite), data model (Java, Kotlin, or R), and Breeding API (BrAPI) web service. The PHG has already been able to accurately represent diversity in four major crops including maize, one of the most genomically diverse species, with up to 1000-fold data compression. Using simulated data, we show that, at even 0.1X coverage, with appropriate reads and sequence alignment, imputation results in extremely accurate haplotype reconstruction. The PHG is a platform and environment for the understanding and application of genomic diversity. AVAILABILITY All resources listed here are freely available. The PHG Docker used to generate the simulation results is https://hub.docker.com/ as maizegenetics/phg:0.0.27. PHG source code is at https://bitbucket.org/bucklerlab/practicalhaplotypegraph/src/master/. The code used for the analysis of simulated data is at https://bitbucket.org/bucklerlab/phg-manuscript/src/master/. The PHG database of NAM parent haplotypes is in the CyVerse data store (https://de.cyverse.org/de/) and named /iplant/home/shared/panzea/panGenome/PHG_db_maize/phg_v5Assemblies_20200608.db. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- P J Bradbury
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Ithaca, NY 14853 USA
| | - T Casstevens
- Institute for Genomic Diversity,Cornell University, Ithaca, NY 14853 USA
| | - S E Jensen
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - L C Johnson
- Institute for Genomic Diversity,Cornell University, Ithaca, NY 14853 USA
| | - Z R Miller
- Institute for Genomic Diversity,Cornell University, Ithaca, NY 14853 USA
| | - B Monier
- Institute for Genomic Diversity,Cornell University, Ithaca, NY 14853 USA
| | - M C Romay
- Institute for Genomic Diversity,Cornell University, Ithaca, NY 14853 USA
| | - B Song
- Institute for Genomic Diversity,Cornell University, Ithaca, NY 14853 USA
| | - E S Buckler
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Ithaca, NY 14853 USA.,Institute for Genomic Diversity,Cornell University, Ithaca, NY 14853 USA.,Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Garcia-Lor A, Bermejo A, Morales J, Hernández M, Medina A, Cuenca J, Navarro L, Aleza P. Strategies to Produce Grapefruit-Like Citrus Varieties With a Low Furanocoumarin Content and Distinctive Flavonoid Profiles. FRONTIERS IN PLANT SCIENCE 2021; 12:640512. [PMID: 33719319 PMCID: PMC7943927 DOI: 10.3389/fpls.2021.640512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Pummelos and hybrids, such as grapefruits, have high furanocoumarin and low flavonoid contents. Furanocoumarins interact negatively with certain drugs, while flavonoids are antioxidant compounds with health benefits. To obtain new grapefruit-like varieties with low furanocoumarin and high flavonoid contents, diploid and triploid hybrid populations from crosses between diploid and tetraploid "Clemenules" clementine and diploid "Pink" pummelo were recovered and analyzed. With regard to furanocoumarins, triploids produce less bergapten, bergamottin and 6,7-DHB than diploids. Regarding flavonoids, triploids yielded more eriocitrin, narirutin, hesperidin and neohesperidin than diploids, whereas no differences were observed in neoeriocitrin and naringin. These results indicate that, the strategy to recover triploid hybrids by 4x × 2x crosses is more appropriate than the recovery of diploid hybrids by 2x × 2x crosses for obtaining grapefruit-like varieties of citrus with lower furanocoumarin and higher flavonoid contents.
Collapse
|
5
|
Abstract
Biparental mapping populations consist of a set of individuals derived from crosses between two parents often belonging to diverse species of a botanical genus and differing in terms of phenotype and traits to share. The development of such recombinant libraries represents a powerful strategy for dissection of the genetic basis of complex traits in crops and these are largely utilized to develop pre-breeding sources to use in crop improvement. This chapter provides an overview of methods and strategies to follow, for the construction of different types of populations, from a plant breeder point of view. Starting from the initial crossing between founder lines toward the further selection steps, here are described the populations commonly established in autogamous species including F2, double haploids, backcrosses and recombinant inbreds, and introgression lines.
Collapse
Affiliation(s)
- Pasquale Tripodi
- Council for Agricultural Research and Economics - Research Centre for Vegetable and Ornamental Crops (CREA-OF), Pontecagnano, SA, Italy.
| |
Collapse
|
6
|
Gardiner LJ, Wingen LU, Bailey P, Joynson R, Brabbs T, Wright J, Higgins JD, Hall N, Griffiths S, Clavijo BJ, Hall A. Analysis of the recombination landscape of hexaploid bread wheat reveals genes controlling recombination and gene conversion frequency. Genome Biol 2019; 20:69. [PMID: 30982471 PMCID: PMC6463664 DOI: 10.1186/s13059-019-1675-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/13/2019] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Sequence exchange between homologous chromosomes through crossing over and gene conversion is highly conserved among eukaryotes, contributing to genome stability and genetic diversity. A lack of recombination limits breeding efforts in crops; therefore, increasing recombination rates can reduce linkage drag and generate new genetic combinations. RESULTS We use computational analysis of 13 recombinant inbred mapping populations to assess crossover and gene conversion frequency in the hexaploid genome of wheat (Triticum aestivum). We observe that high-frequency crossover sites are shared between populations and that closely related parents lead to populations with more similar crossover patterns. We demonstrate that gene conversion is more prevalent and covers more of the genome in wheat than in other plants, making it a critical process in the generation of new haplotypes, particularly in centromeric regions where crossovers are rare. We identify quantitative trait loci for altered gene conversion and crossover frequency and confirm functionality for a novel RecQ helicase gene that belongs to an ancient clade that is missing in some plant lineages including Arabidopsis. CONCLUSIONS This is the first gene to be demonstrated to be involved in gene conversion in wheat. Harnessing the RecQ helicase has the potential to break linkage drag utilizing widespread gene conversions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - James D. Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH UK
| | - Neil Hall
- Earlham Institute, Norwich, NR4 7UZ UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | | | | | - Anthony Hall
- Earlham Institute, Norwich, NR4 7UZ UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| |
Collapse
|
7
|
Liu S, Schnable JC, Ott A, Yeh CTE, Springer NM, Yu J, Muehlbauer G, Timmermans MCP, Scanlon MJ, Schnable PS. Intragenic Meiotic Crossovers Generate Novel Alleles with Transgressive Expression Levels. Mol Biol Evol 2018; 35:2762-2772. [PMID: 30184112 PMCID: PMC6231493 DOI: 10.1093/molbev/msy174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Meiotic recombination is an evolutionary force that generates new genetic diversity upon which selection can act. Whereas multiple studies have assessed genome-wide patterns of recombination and specific cases of intragenic recombination, few studies have assessed intragenic recombination genome-wide in higher eukaryotes. We identified recombination events within or near genes in a population of maize recombinant inbred lines (RILs) using RNA-sequencing data. Our results are consistent with case studies that have shown that intragenic crossovers cluster at the 5′ ends of some genes. Further, we identified cases of intragenic crossovers that generate transgressive transcript accumulation patterns, that is, recombinant alleles displayed higher or lower levels of expression than did nonrecombinant alleles in any of ∼100 RILs, implicating intragenic recombination in the generation of new variants upon which selection can act. Thousands of apparent gene conversion events were identified, allowing us to estimate the genome-wide rate of gene conversion at SNP sites (4.9 × 10−5). The density of syntenic genes (i.e., those conserved at the same genomic locations since the divergence of maize and sorghum) exhibits a substantial correlation with crossover frequency, whereas the density of nonsyntenic genes (i.e., those which have transposed or been lost subsequent to the divergence of maize and sorghum) shows little correlation, suggesting that crossovers occur at higher rates in syntenic genes than in nonsyntenic genes. Increased rates of crossovers in syntenic genes could be either a consequence of the evolutionary conservation of synteny or a biological process that helps to maintain synteny.
Collapse
Affiliation(s)
- Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS.,Department of Agronomy, Iowa State University, Ames, IA
| | - James C Schnable
- Department of Agriculture and Horticulture, University of Nebraska-Lincoln, Lincoln, NE
| | - Alina Ott
- Department of Agronomy, Iowa State University, Ames, IA.,Roche Sequencing Solutions, 500 S Rosa Road, Madison, WI
| | | | - Nathan M Springer
- Department of Plant and Microbial Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA
| | - Gary Muehlbauer
- Department of Agronomy and Plant Genetics, Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN
| | | | | | | |
Collapse
|
8
|
Birth and Death of LTR-Retrotransposons in Aegilops tauschii. Genetics 2018; 210:1039-1051. [PMID: 30158124 DOI: 10.1534/genetics.118.301198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 11/18/2022] Open
Abstract
Long terminal repeat-retrotransposons (LTR-RTs) are a major component of all flowering plant genomes. To analyze the time dynamics of LTR-RTs, we modeled the insertion rates of the 35 most abundant LTR-RT families in the genome of Aegilops tauschii, one of the progenitors of wheat. Our model of insertion rate (birth) takes into account random variation in LTR divergence and the deletion rate (death) of LTR-RTs. Modeling the death rate is crucial because ignoring it would underestimate insertion rates in the distant past. We rejected the hypothesis of constancy of insertion rates for all 35 families and showed by simulations that our hypothesis test controlled the false-positive rate. LTR-RT insertions peaked from 0.064 to 2.39 MYA across the 35 families. Among other effects, the average age of elements within a family was negatively associated with recombination rate along a chromosome, with proximity to the closest gene, and weakly associated with the proximity to its 5' end. Elements within a family that were near genes colinear with genes in the genome of tetraploid emmer wheat tended to be younger than those near noncolinear genes. We discuss these associations in the context of genome evolution and stability of genome sizes in the tribe Triticeae. We demonstrate the general utility of our models by analyzing the two most abundant LTR-RT families in Arabidopsis lyrata, and show that these families differed in their insertion dynamics. Our estimation methods are available in the R package TE on CRAN.
Collapse
|
9
|
Haenel Q, Laurentino TG, Roesti M, Berner D. Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Mol Ecol 2018; 27:2477-2497. [PMID: 29676042 DOI: 10.1111/mec.14699] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023]
Abstract
Understanding the distribution of crossovers along chromosomes is crucial to evolutionary genomics because the crossover rate determines how strongly a genome region is influenced by natural selection on linked sites. Nevertheless, generalities in the chromosome-scale distribution of crossovers have not been investigated formally. We fill this gap by synthesizing joint information on genetic and physical maps across 62 animal, plant and fungal species. Our quantitative analysis reveals a strong and taxonomically widespread reduction of the crossover rate in the centre of chromosomes relative to their peripheries. We demonstrate that this pattern is poorly explained by the position of the centromere, but find that the magnitude of the relative reduction in the crossover rate in chromosome centres increases with chromosome length. That is, long chromosomes often display a dramatically low crossover rate in their centre, whereas short chromosomes exhibit a relatively homogeneous crossover rate. This observation is compatible with a model in which crossover is initiated from the chromosome tips, an idea with preliminary support from mechanistic investigations of meiotic recombination. Consequently, we show that organisms achieve a higher genome-wide crossover rate by evolving smaller chromosomes. Summarizing theory and providing empirical examples, we finally highlight that taxonomically widespread and systematic heterogeneity in crossover rate along chromosomes generates predictable broad-scale trends in genetic diversity and population differentiation by modifying the impact of natural selection among regions within a genome. We conclude by emphasizing that chromosome-scale heterogeneity in crossover rate should urgently be incorporated into analytical tools in evolutionary genomics, and in the interpretation of resulting patterns.
Collapse
Affiliation(s)
- Quiterie Haenel
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Marius Roesti
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Wang B, Liu H, Liu Z, Dong X, Guo J, Li W, Chen J, Gao C, Zhu Y, Zheng X, Chen Z, Chen J, Song W, Hauck A, Lai J. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC PLANT BIOLOGY 2018; 18:17. [PMID: 29347909 PMCID: PMC5774087 DOI: 10.1186/s12870-018-1233-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 01/14/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Plant Architecture Related Traits (PATs) are of great importance for maize breeding, and mainly controlled by minor effect quantitative trait loci (QTLs). However, cloning or even fine-mapping of minor effect QTLs is very difficult in maize. Theoretically, large population and high density genetic map can be helpful for increasing QTL mapping resolution and accuracy, but such a possibility have not been actually tested. RESULTS Here, we employed a genotyping-by-sequencing (GBS) strategy to construct a linkage map with 16,769 marker bins for 1021 recombinant inbred lines (RILs). Accurately mapping of well studied genes P1, pl1 and r1 underlying silk color demonstrated the map quality. After QTL analysis, a total of 51 loci were mapped for six PATs. Although all of them belong to minor effect alleles, the lengths of the QTL intervals, with a minimum and median of 1.03 and 3.40 Mb respectively, were remarkably reduced as compared with previous reports using smaller size of population or small number of markers. Several genes with known function in maize were shown to be overlapping with or close neighboring to these QTL peaks, including na1, td1, d3 for plant height, ra1 for tassel branch number, and zfl2 for tassel length. To further confirm our mapping results, a plant height QTL, qPH1a, was verified by an introgression lines (ILs). CONCLUSIONS We demonstrated a method for high resolution mapping of minor effect QTLs in maize, and the resulted comprehensive QTLs for PATs are valuable for maize molecular breeding in the future.
Collapse
Affiliation(s)
- Baobao Wang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Han Liu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Zhipeng Liu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xiaomei Dong
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Jinjie Guo
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Wei Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Jing Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Chi Gao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Yanbin Zhu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xinmei Zheng
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Zongliang Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Jian Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Andrew Hauck
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Wu B, Hu W, Ayaad M, Liu H, Xing Y. Intragenic recombination between two non-functional semi-dwarf 1 alleles produced a functional SD1 allele in a tall recombinant inbred line in rice. PLoS One 2017; 12:e0190116. [PMID: 29281725 PMCID: PMC5744974 DOI: 10.1371/journal.pone.0190116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/10/2017] [Indexed: 02/07/2023] Open
Abstract
Intragenic recombination is one of the most important sources of genetic variability. In our previous study, RI92 a tall line (160 cm of plant height) was observed in the cross progeny between two semi-dwarf indica cultivars Zhenshan 97 and Minghui 63. Genome-wide genotyping and sequencing indicated that the genome constitution of RI92 was completely from both parents. Bulk segregant analysis in a BC3F2 population revealed that “green revolution gene” semi-dwarf 1 (sd1) was most likely the gene controlling the tall plant height in RI92. Sequencing analysis of SD1 revealed that an intragenic recombination occurred between two parental non-functional sd1 alleles and generated a functional SD1 in RI92. Four-fold high recombination rate in SD1 located bins to the genome-wide average was observed in two RIL populations, indicating recombination hotspot in the SD1 region. Intragenic recombination creates new alleles in the progeny distinct from parental alleles and diversifies natural variation.
Collapse
Affiliation(s)
- Bi Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wei Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Mohammed Ayaad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
12
|
Meiotic Crossing Over in Maize Knob Heterochromatin. Genetics 2017; 205:1101-1112. [PMID: 28108587 DOI: 10.1534/genetics.116.196089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
There is ample evidence that crossing over is suppressed in heterochromatin associated with centromeres and nucleolus organizers (NORs). This characteristic has been attributed to all heterochromatin, but the generalization may not be justified. To investigate the relationship of crossing over to heterochromatin that is not associated with centromeres or NORs, we used a combination of fluorescence in situ hybridization of the maize 180-bp knob repeat to show the locations of knob heterochromatin and fluorescent immunolocalization of MLH1 protein and AFD1 protein to show the locations of MLH1 foci on maize synaptonemal complexes (SCs, pachytene chromosomes). MLH1 foci correspond to the location of recombination nodules (RNs) that mark sites of crossing over. We found that MLH1 foci occur at similar frequencies per unit length of SC in interstitial knobs and in the 1 µm segments of SC in euchromatin immediately to either side of interstitial knobs. These results indicate not only that crossing over occurs within knob heterochromatin, but also that crossing over is not suppressed in the context of SC length in maize knobs. However, because there is more DNA per unit length of SC in knobs compared to euchromatin, crossing over is suppressed (but not eliminated) in knobs in the context of DNA length compared to adjacent euchromatin.
Collapse
|
13
|
Argyris JM, Ruiz-Herrera A, Madriz-Masis P, Sanseverino W, Morata J, Pujol M, Ramos-Onsins SE, Garcia-Mas J. Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics 2015; 16:4. [PMID: 25612459 PMCID: PMC4316794 DOI: 10.1186/s12864-014-1196-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/22/2014] [Indexed: 01/01/2023] Open
Abstract
Background The genome of the melon (Cucumis melo L.) double-haploid line DHL92 was recently sequenced, with 87.5 and 80.8% of the scaffold assembly anchored and oriented to the 12 linkage groups, respectively. However, insufficient marker coverage and a lack of recombination left several large, gene rich scaffolds unanchored, and some anchored scaffolds unoriented. To improve the anchoring and orientation of the melon genome assembly, we used resequencing data between the parental lines of DHL92 to develop a new set of SNP markers from unanchored scaffolds. Results A high-resolution genetic map composed of 580 SNPs was used to anchor 354.8 Mb of sequence, contained in 141 scaffolds (average size 2.5 Mb) and corresponding to 98.2% of the scaffold assembly, to the 12 melon chromosomes. Over 325.4 Mb (90%) of the assembly was oriented. The genetic map revealed regions of segregation distortion favoring SC alleles as well as recombination suppression regions coinciding with putative centromere, 45S, and 5S rDNA sites. New chromosome-scale pseudomolecules were created by incorporating to the previous v3.5 version an additional 38.3 Mb of anchored sequence representing 1,837 predicted genes contained in 55 scaffolds. Using fluorescent in situ hybridization (FISH) with BACs that produced chromosome-specific signals, melon chromosomes that correspond to the twelve linkage groups were identified, and a standardized karyotype of melon inbred line T111 was developed. Conclusions By utilizing resequencing data and targeted SNP selection combined with a large F2 mapping population, we significantly improved the quantity of anchored and oriented melon scaffold genome assembly. Using genome information combined with FISH mapping provided the first cytogenetic map of an inodorus melon type. With these results it was possible to make inferences on melon chromosome structure by relating zones of recombination suppression to centromeres and 45S and 5S heterochromatic regions. This study represents the first steps towards the integration of the high-resolution genetic and cytogenetic maps with the genomic sequence in melon that will provide more information on genome organization and allow for the improvement of the melon genome draft sequence. Electronic supplementary material The online version of this article (doi:10.1186/s12864-014-1196-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jason M Argyris
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain.
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Campus UAB, 08193, Barcelona, Spain. .,Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Campus UAB, 08193, Barcelona, Spain.
| | - Pablo Madriz-Masis
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain.
| | - Walter Sanseverino
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain. .,Present Address: Sequentia Biotech, Campus UAB - Edifici CRAG, Bellaterra - Cerdanyola del Vallès, 08193, Barcelona, Spain.
| | - Jordi Morata
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain.
| | - Marta Pujol
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain.
| | | | - Jordi Garcia-Mas
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain.
| |
Collapse
|
14
|
Deokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar'an B. Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics 2014; 15:708. [PMID: 25150411 PMCID: PMC4158123 DOI: 10.1186/1471-2164-15-708] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/31/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In the whole genome sequencing, genetic map provides an essential framework for accurate and efficient genome assembly and validation. The main objectives of this study were to develop a high-density genetic map using RAD-Seq (Restriction-site Associated DNA Sequencing) genotyping-by-sequencing (RAD-Seq GBS) and Illumina GoldenGate assays, and to examine the alignment of the current map with the kabuli chickpea genome assembly. RESULTS Genic single nucleotide polymorphisms (SNPs) totaling 51,632 SNPs were identified by 454 transcriptome sequencing of Cicer arietinum and Cicer reticulatum genotypes. Subsequently, an Illumina GoldenGate assay for 1,536 SNPs was developed. A total of 1,519 SNPs were successfully assayed across 92 recombinant inbred lines (RILs), of which 761 SNPs were polymorphic between the two parents. In addition, the next generation sequencing (NGS)-based GBS was applied to the same population generating 29,464 high quality SNPs. These SNPs were clustered into 626 recombination bins based on common segregation patterns. Data from the two approaches were used for the construction of a genetic map using a population derived from an intraspecific cross. The map consisted of 1,336 SNPs including 604 RAD recombination bins and 732 SNPs from Illumina GoldenGate assay. The map covered 653 cM of the chickpea genome with an average distance between adjacent markers of 0.5 cM. To date, this is the most extensive genetic map of chickpea using an intraspecific population. The alignment of the map with the CDC Frontier genome assembly revealed an overall conserved marker order; however, a few local inconsistencies within the Cicer arietinum pseudochromosome 1 (Ca1), Ca5 and Ca8 were detected. The map enabled the alignment of 215 unplaced scaffolds from the CDC Frontier draft genome assembly. The alignment also revealed varying degrees of recombination rates and hotspots across the chickpea genome. CONCLUSIONS A high-density genetic map using RAD-Seq GBS and Illumina GoldenGate assay was developed and aligned with the existing kabuli chickpea draft genome sequence. The analysis revealed an overall conserved marker order, although some localized inversions between draft genome assembly and the genetic map were detected. The current analysis provides an insight of the recombination rates and hotspots across the chickpea genome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bunyamin Tar'an
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
15
|
Lind M, Källman T, Chen J, Ma XF, Bousquet J, Morgante M, Zaina G, Karlsson B, Elfstrand M, Lascoux M, Stenlid J. A Picea abies linkage map based on SNP markers identifies QTLs for four aspects of resistance to Heterobasidion parviporum infection. PLoS One 2014; 9:e101049. [PMID: 25036209 PMCID: PMC4103950 DOI: 10.1371/journal.pone.0101049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
A consensus linkage map of Picea abies, an economically important conifer, was constructed based on the segregation of 686 SNP markers in a F1 progeny population consisting of 247 individuals. The total length of 1889.2 cM covered 96.5% of the estimated genome length and comprised 12 large linkage groups, corresponding to the number of haploid P. abies chromosomes. The sizes of the groups (from 5.9 to 9.9% of the total map length) correlated well with previous estimates of chromosome sizes (from 5.8 to 10.8% of total genome size). Any locus in the genome has a 97% probability to be within 10 cM from a mapped marker, which makes the map suited for QTL mapping. Infecting the progeny trees with the root rot pathogen Heterobasidion parviporum allowed for mapping of four different resistance traits: lesion length at the inoculation site, fungal spread within the sapwood, exclusion of the pathogen from the host after initial infection, and ability to prevent the infection from establishing at all. These four traits were associated with two, four, four and three QTL regions respectively of which none overlapped between the traits. Each QTL explained between 4.6 and 10.1% of the respective traits phenotypic variation. Although the QTL regions contain many more genes than the ones represented by the SNP markers, at least four markers within the confidence intervals originated from genes with known function in conifer defence; a leucoanthocyanidine reductase, which has previously been shown to upregulate during H. parviporum infection, and three intermediates of the lignification process; a hydroxycinnamoyl CoA shikimate/quinate hydroxycinnamoyltransferase, a 4-coumarate CoA ligase, and a R2R3-MYB transcription factor.
Collapse
Affiliation(s)
- Mårten Lind
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Thomas Källman
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Jun Chen
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Xiao-Fei Ma
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Jean Bousquet
- Institute for Systems and Integrative Biology, Université Laval, Québec City, Québec, Canada
| | - Michele Morgante
- Dipartimento di Scienze Agrarie e Ambientali, Universita di Udine, Udine, Italy
| | - Giusi Zaina
- Dipartimento di Scienze Agrarie e Ambientali, Universita di Udine, Udine, Italy
| | | | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
16
|
Zhang S, Chen W, Xin L, Gao Z, Hou Y, Yu X, Zhang Z, Qu S. Genomic variants of genes associated with three horticultural traits in apple revealed by genome re-sequencing. HORTICULTURE RESEARCH 2014; 1:14045. [PMID: 26504548 PMCID: PMC4596325 DOI: 10.1038/hortres.2014.45] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/06/2014] [Accepted: 07/25/2014] [Indexed: 05/06/2023]
Abstract
The apple (Malus × domestica Borkh.) cultivar 'Su Shuai' exhibits greater disease resistance, shorter internodes and lighter fruit flavor compared with its parents 'Golden Delicious' and 'Indo'. To obtain a comprehensive overview of the sequence variation in these three horticultural traits, the genomes of 'Su Shuai' and 'Indo' were resequenced using next-generation sequencing and compared to the genome of 'Golden Delicious'. A wide range of genetic variations were detected, including 2 454 406 and 18 749 349 single nucleotide polymorphism (SNP) and 59 547 and 50 143 structural variants (SVs) in the 'Indo' and 'Su Shuai' genomes, respectively. Among the SVs in 'Su Shuai', 17 genes related to disease resistance, 10 genes related to Gibberellin (GA) and 19 genes associated with fruit flavor were identified. The expression patterns of eight of the SV genes were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The results of this study illustrate the genomic variation in these cultivars and provide evidence for a genetic basis for the horticultural traits of disease resistance, short internodes and lighter flavor exhibited in these cultivars. These results provide a genetic basis for the phenotypic characteristics of 'Su Shuai' and, as such, these SVs could serve as gene-specific molecular markers in maker-assisted breeding of apples.
Collapse
Affiliation(s)
- Shijie Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiping Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Xin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjun Hou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Fresnedo-Ramírez J, Martínez-García PJ, Parfitt DE, Crisosto CH, Gradziel TM. Heterogeneity in the entire genome for three genotypes of peach [Prunus persica (L.) Batsch] as distinguished from sequence analysis of genomic variants. BMC Genomics 2013; 14:750. [PMID: 24182359 PMCID: PMC4046826 DOI: 10.1186/1471-2164-14-750] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 10/19/2013] [Indexed: 12/22/2022] Open
Abstract
Background Peach [Prunus persica (L.) Batsch] is an economically important fruit crop that has become a genetic-genomic model for all Prunus species in the family Rosaceae. A doubled haploid reference genome sequence length of 227.3 Mb, a narrow genetic base contrasted by a wide phenotypic variability, the generation of cultivars through hybridization with subsequent clonal propagation, and the current accessibility of many founder genotypes, as well as the pedigree of modern commercial cultivars make peach a model for the study of inter-cultivar genomic heterogeneity and its shaping by artificial selection. Results The quantitative genomic differences among the three genotypes studied as genomic variants, included small variants (SNPs and InDels) and structural variants (SV) (duplications, inversions and translocations). The heirloom cultivar 'Georgia Belle’ and an almond by peach introgression breeding line 'F8,1-42’ are more heterogeneous than is the modern cultivar 'Dr. Davis’ when compared to the peach reference genome ('Lovell’). A pair-wise comparison of consensus genome sequences with 'Lovell’ showed that 'F8,1-42’ and 'Georgia Belle’ were more divergent than were 'Dr. Davis’ and 'Lovell’. Conclusions A novel application of emerging bioinformatics tools to the analysis of ongoing genome sequencing project outputs has led to the identification of a range of genomic variants. Results can be used to delineate the genomic and phenotypic differences among peach genotypes. For crops such as fruit trees, the availability of old cultivars, breeding selections and their pedigrees, make them suitable models for the study of genome shaping by artificial selection. The findings from the study of such genomic variants can then elucidate the control of pomological traits and the characterization of metabolic pathways, thus facilitating the development of protocols for the improvement of Prunus crops. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-14-750) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan Fresnedo-Ramírez
- Department of Plant Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
18
|
Targeted sequence capture provides insight into genome structure and genetics of male sterility in a gynodioecious diploid strawberry, Fragaria vesca ssp. bracteata (Rosaceae). G3-GENES GENOMES GENETICS 2013; 3:1341-51. [PMID: 23749450 PMCID: PMC3737174 DOI: 10.1534/g3.113.006288] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gynodioecy is a sexual system wherein females coexist with hermaphrodites. It is of interest not only because male-sterile plants are advantageous in plant breeding but also because it can be a crucial step in the evolutionary transition to entirely separate sexes (dioecy) from a hermaphroditic ancestor. The gynodioecious diploid wild strawberry, Fragaria vesca ssp. bracteata (Rosaceae), is a member of a clade with both dioecious and cultivated species, making it an ideal model in which to study the genetics of male sterility. To create a genetic map of F. v. ssp. bracteata, we identified informative polymorphisms from genomic sequencing (3−5x coverage) of two outbred plants from the same population. Using targeted enrichment, we sequenced 200 bp surrounding each of 6575 polymorphisms in 48 F1 offspring, yielding genotypes at 98% of targeted sites with mean coverage >100x, plus more than 600-kb high-coverage nontargeted sequence. With the resulting linkage map of 7802 stringently filtered markers (5417 targeted), we assessed recombination rates and genomic incongruities. Consistent with past work in strawberries, male sterility is dominant, segregates 1:1, and maps to a single location in the female. Further mapping an additional 55 offspring places male sterility in a gene-dense, 338-kb region of chromosome 4. The region is not syntenic with the sex-determining regions in the closely related octoploids, F. chiloensis and F. virginiana, suggesting either independent origins or translocation. The 57 genes in this region do not include protein families known to control male sterility and thus suggest alternate mechanisms for the suppression of male function.
Collapse
|
19
|
Draft genome sequence, and a sequence-defined genetic linkage map of the legume crop species Lupinus angustifolius L. PLoS One 2013; 8:e64799. [PMID: 23734219 PMCID: PMC3667174 DOI: 10.1371/journal.pone.0064799] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/17/2013] [Indexed: 11/30/2022] Open
Abstract
Lupin (Lupinus angustifolius L.) is the most recently domesticated crop in major agricultural cultivation. Its seeds are high in protein and dietary fibre, but low in oil and starch. Medical and dietetic studies have shown that consuming lupin-enriched food has significant health benefits. We report the draft assembly from a whole genome shotgun sequencing dataset for this legume species with 26.9x coverage of the genome, which is predicted to contain 57,807 genes. Analysis of the annotated genes with metabolic pathways provided a partial understanding of some key features of lupin, such as the amino acid profile of storage proteins in seeds. Furthermore, we applied the NGS-based RAD-sequencing technology to obtain 8,244 sequence-defined markers for anchoring the genomic sequences. A total of 4,214 scaffolds from the genome sequence assembly were aligned into the genetic map. The combination of the draft assembly and a sequence-defined genetic map made it possible to locate and study functional genes of agronomic interest. The identification of co-segregating SNP markers, scaffold sequences and gene annotation facilitated the identification of a candidate R gene associated with resistance to the major lupin disease anthracnose. We demonstrated that the combination of medium-depth genome sequencing and a high-density genetic linkage map by application of NGS technology is a cost-effective approach to generating genome sequence data and a large number of molecular markers to study the genomics, genetics and functional genes of lupin, and to apply them to molecular plant breeding. This strategy does not require prior genome knowledge, which potentiates its application to a wide range of non-model species.
Collapse
|
20
|
Molecular characterization of a genomic interval with highly uneven recombination distribution on maize chromosome 10 L. Genetica 2011; 139:1109-18. [PMID: 22057628 DOI: 10.1007/s10709-011-9613-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 10/22/2011] [Indexed: 10/15/2022]
Abstract
Homologous recombination in meiosis provides the evolutionary driving force in eukaryotic organisms by generating genetic variability. Meiotic recombination does not always occur evenly across the chromosome, and therefore genetic and physical distances are not consistently in proportion. We discovered a 278 kb interval on the long arm of chromosome 10 (10 L) through analyzed 13,933 descendants of backcross population. The recombinant events distributed unevenly in the interval. The ratio of genetic to physical distance in the interval fluctuated about 47-fold. With the assistance of molecular markers, the interval was divided into several subintervals for further characterization. In agreement with previous observations, high gene-density regions such as subinterval A and B were also genetic recombination hot subintervals, and repetitive sequence-riched region such as subinterval C was also found to be recombination inert at the detection level of the study. However, we found an unusual subinterval D, in which the 72-kb region contained 6 genes. The gene-density of subinterval D was 5.8 times that of the genome-wide average. The ratio of genetic to physical distance in subinterval D was 0.58 cM/Mb, only about 3/4 of the genome average. We carried out an analysis of sequence polymorphisms and methylation status in subinterval D, and the potential causes of recombination suppression were discussed. This study was another case of a detailed genetic analysis of an unusual recombination region in the maize genome.
Collapse
|
21
|
Gadaleta A, Giancaspro A, Giove SL, Zacheo S, Mangini G, Simeone R, Signorile A, Blanco A. Genetic and physical mapping of new EST-derived SSRs on the A and B genome chromosomes of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:1015-1025. [PMID: 19183861 DOI: 10.1007/s00122-008-0958-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 12/20/2008] [Indexed: 05/27/2023]
Abstract
The availability of genetic maps and phenotypic data of segregating populations allows to localize and map agronomically important genes, and to identify closely associated molecular markers to be used in marker-assisted selection and positional cloning. The objective of the present work was to develop a durum wheat intervarietal genetic and physical map based on genomic microsatellite or genomic simple sequence repeats (gSSR) markers and expressed sequence tag (EST)-derived microsatellite (EST-SSR) markers. A set of 122 new EST-SSR loci amplified by 100 primer pairs was genetically mapped on the wheat A and B genome chromosomes. The whole map also comprises 149 gSSR markers amplified by 120 primer pairs used as anchor chromosome loci, two morphological markers (Black colour, Bla1, and spike glaucousness, Ws) and two seed storage protein loci (Gli-A2 and Gli-B2). The majority of SSR markers tested (182) was chromosome-specific. Out of 275 loci 241 loci assembled in 25 linkage groups assigned to the chromosomes of the A and B genome and 34 remained unlinked. A higher percentage of markers (54.4%), localized on the B genome chromosomes, in comparison to 45.6% distributed on the A genome. The whole map covered 1,605 cM. The B genome accounted for 852.2 cM of genetic distance; the A genome basic map spanned 753.1 cM with a minimum length of 46.6 cM for chromosome 5A and a maximum of 156.2 cM for chromosome 3A and an average value of 114.5 cM. The primer sets that amplified two or more loci mapped to homoeologous as well as to non-homoeologous sites. Out of 241 genetically mapped loci 213 (88.4%) were physically mapped by using the nulli-tetrasomic, ditelosomic and a stock of 58 deletion lines dividing the A and B genome chromosomes in 94 bins. No discrepancies concerning marker order were observed but the cytogenetic maps revealed in some cases small genetic distance covered large physical regions. Putative function for mapped SSRs were assigned by searching against GenBank nonredundant database using TBLASTX algorithms.
Collapse
Affiliation(s)
- A Gadaleta
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola 165/A, 70126, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chao E, Krewski D. A risk-based classification scheme for genetically modified foods. I: Conceptual development. Regul Toxicol Pharmacol 2008; 52:208-22. [PMID: 18778747 DOI: 10.1016/j.yrtph.2008.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/22/2008] [Accepted: 08/13/2008] [Indexed: 11/19/2022]
Abstract
The predominant paradigm for the premarket assessment of genetically modified (GM) foods reflects heightened public concern by focusing on foods modified by recombinant deoxyribonucleic acid (rDNA) techniques, while foods modified by other methods of genetic modification are generally not assessed for safety. To determine whether a GM product requires less or more regulatory oversight and testing, we developed and evaluated a risk-based classification scheme (RBCS) for crop-derived GM foods. The results of this research are presented in three papers. This paper describes the conceptual development of the proposed RBCS that focuses on two categories of adverse health effects: (1) toxic and antinutritional effects, and (2) allergenic effects. The factors that may affect the level of potential health risks of GM foods are identified. For each factor identified, criteria for differentiating health risk potential are developed. The extent to which a GM food satisfies applicable criteria for each factor is rated separately. A concern level for each category of health effects is then determined by aggregating the ratings for the factors using predetermined aggregation rules. An overview of the proposed scheme is presented, as well as the application of the scheme to a hypothetical GM food.
Collapse
Affiliation(s)
- Eunice Chao
- McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health, University of Ottawa, 1 Stewart Street, Ottawa, Ont., Canada KIN 6N5.
| | | |
Collapse
|
23
|
Yuan J, Liakat Ali M, Taylor J, Liu J, Sun G, Liu W, Masilimany P, Gulati-Sakhuja A, Pauls KP. A guanylyl cyclase-like gene is associated with Gibberella ear rot resistance in maize (Zea mays L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:465-479. [PMID: 18074115 DOI: 10.1007/s00122-007-0683-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 11/18/2007] [Accepted: 11/21/2007] [Indexed: 05/25/2023]
Abstract
Gibberella ear rot, caused by the fungal pathogen Fusarium graminearum Schwabe, is a serious disease of maize (Zea mays L.) grown in northern climates. The infected maize grain contains toxins that are very harmful to livestock and humans. A maize gene that encodes a putative 267-amino acid guanylyl cyclase-like protein (ZmGC1) was characterized and shown to be associated with resistance to this disease. The putative ZmGC1 amino acid sequence is 53% identical and 65% similar to AtGC1, an Arabidopsis guanylyl cyclase. The Zmgc1 coding sequence is nearly identical in a Gibberella ear rot-resistant line (CO387) and a susceptible line (CG62) but several nucleotide sequence differences were observed in the UTRs and introns of the two alleles. Using a 463 bp probe derived from the CG62 allele of Zmgc1 and a recombinant inbred (RI) mapping population developed from a CG62 x CO387 cross, six Zmgc1 restriction fragment length polymorphism (RFLP) fragments (ER1_1, ER1_2, ER1_3, ER1_4, ER1_5, and ER5_1) were mapped on maize chromosomes 2, 3, 7, and 8. Markers ER1_1 and ER5_1 on chromosomes 7 and 8, respectively, were significantly associated with Gibberella ear rot resistance, each in three different environments. The amount of Zmgc1 transcript in ear tissues increased more quickly and to a greater extent in the resistant genotype compared to the susceptible genotype after inoculation with F. graminearum. Zmgc1 is the first guanylyl cyclase gene characterized in maize and the first gene found to be associated with Gibberella ear rot resistance in this plant.
Collapse
Affiliation(s)
- J Yuan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Truco MJ, Antonise R, Lavelle D, Ochoa O, Kozik A, Witsenboer H, Fort SB, Jeuken MJW, Kesseli RV, Lindhout P, Michelmore RW, Peleman J. A high-density, integrated genetic linkage map of lettuce (Lactuca spp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:735-46. [PMID: 17828385 DOI: 10.1007/s00122-007-0599-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 06/17/2007] [Indexed: 05/17/2023]
Abstract
An integrated map for lettuce comprising of 2,744 markers was developed from seven intra- and inter-specific mapping populations. A total of 560 markers that segregated in two or more populations were used to align the individual maps. 2,073 AFLP, 152 RFLP, 130 SSR, and 360 RAPD as well as 29 other markers were assigned to nine chromosomal linkage groups that spanned a total of 1,505 cM and ranged from 136 to 238 cM. The maximum interval between markers in the integrated map is 43 cM and the mean interval is 0.7 cM. The majority of markers segregated close to Mendelian expectations in the intra-specific crosses. In the two L. saligna x L. sativa inter-specific crosses, a total of 155 and 116 markers in 13 regions exhibited significant segregation distortion. Data visualization tools were developed to curate, display and query the data. The integrated map provides a framework for mapping ESTs in one core mapping population relative to phenotypes that segregate in other populations. It also provides large numbers of markers for marker assisted selection, candidate gene identification, and studies of genome evolution in the Compositae.
Collapse
Affiliation(s)
- M J Truco
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cai X, Xu SS. Meiosis-driven genome variation in plants. Curr Genomics 2007; 8:151-61. [PMID: 18645601 PMCID: PMC2435351 DOI: 10.2174/138920207780833847] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 02/26/2007] [Accepted: 03/06/2007] [Indexed: 11/22/2022] Open
Abstract
Meiosis includes two successive divisions of the nucleus with one round of DNA replication and leads to the formation of gametes with half of the chromosomes of the mother cell during sexual reproduction. It provides a cytological basis for gametogenesis and nheritance in eukaryotes. Meiotic cell division is a complex and dynamic process that involves a number of molecular and cellular events, such as DNA and chromosome replication, chromosome pairing, synapsis and recombination, chromosome segregation, and cytokinesis. Meiosis maintains genome stability and integrity over sexual life cycles. On the other hand, meiosis generates genome variations in several ways. Variant meiotic recombination resulting from specific genome structures induces deletions, duplications, and other rearrangements within the genic and non-genic genomic regions and has been considered a major driving force for gene and genome evolution in nature. Meiotic abnormalities in chromosome segregation lead to chromosomally imbalanced gametes and aneuploidy. Meiotic restitution due to failure of the first or second meiotic division gives rise to unreduced gametes, which triggers polyploidization and genome expansion. This paper reviews research regarding meiosis-driven genome variation, including deletion and duplication of genomic regions, aneuploidy, and polyploidization, and discusses the effect of related meiotic events on genome variation and evolution in plants. Knowledge of various meiosis-driven genome variations provides insight into genome evolution and genetic variability in plants and facilitates plant genome research.
Collapse
Affiliation(s)
- Xiwen Cai
- Department of Plant Sciences, North Dakota State University
| | - Steven S Xu
- USDA-ARS, Northern Crop Science Laboratory, Fargo, ND 58105, USA
| |
Collapse
|
26
|
Pourkheirandish M, Wicker T, Stein N, Fujimura T, Komatsuda T. Analysis of the barley chromosome 2 region containing the six-rowed spike gene vrs1 reveals a breakdown of rice-barley micro collinearity by a transposition. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:1357-65. [PMID: 17375281 DOI: 10.1007/s00122-007-0522-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 02/05/2007] [Indexed: 05/14/2023]
Abstract
In cultivated barley (Hordeum vulgare ssp. vulgare), six-rowed spikes produce three times as many seeds per spike as do two-rowed spikes. The determinant of this trait is the Mendelian gene vrs1, located on chromosome 2H, which is syntenous with rice (Oryza sativa) chromosomes 4 and 7. We exploited barley-rice micro-synteny to increase marker density in the vrs1 region as a prelude to its map-based cloning. The rice genomic sequence, covering a 980 kb contig, identified barley ESTs linked to vrs1. A high level of conservation of gene sequence was obtained between barley chromosome 2H and rice chromosome 4. A total of 22 EST-based STS markers were placed within the target region, and the linear order of these markers in barley and rice was identical. The genetic window containing vrs1 was narrowed from 0.5 to 0.06 cM, which facilitated covering the vrs1 region by a 518 kb barley BAC contig. An analysis of the contig sequence revealed that a rice Vrs1 orthologue is present on chromosome 7, suggesting a transposition of the chromosomal segment containing Vrs1 within barley chromosome 2H. The breakdown of micro-collinearity illustrates the limitations of synteny cloning, and stresses the importance of implementing genomic studies directly in the target species.
Collapse
Affiliation(s)
- M Pourkheirandish
- National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan
| | | | | | | | | |
Collapse
|
27
|
Pourkheirandish M, Wicker T, Stein N, Fujimura T, Komatsuda T. Analysis of the barley chromosome 2 region containing the six-rowed spike gene vrs1 reveals a breakdown of rice-barley micro collinearity by a transposition. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007. [PMID: 17375281 DOI: 10.1007/s00122‐007‐0522‐4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
In cultivated barley (Hordeum vulgare ssp. vulgare), six-rowed spikes produce three times as many seeds per spike as do two-rowed spikes. The determinant of this trait is the Mendelian gene vrs1, located on chromosome 2H, which is syntenous with rice (Oryza sativa) chromosomes 4 and 7. We exploited barley-rice micro-synteny to increase marker density in the vrs1 region as a prelude to its map-based cloning. The rice genomic sequence, covering a 980 kb contig, identified barley ESTs linked to vrs1. A high level of conservation of gene sequence was obtained between barley chromosome 2H and rice chromosome 4. A total of 22 EST-based STS markers were placed within the target region, and the linear order of these markers in barley and rice was identical. The genetic window containing vrs1 was narrowed from 0.5 to 0.06 cM, which facilitated covering the vrs1 region by a 518 kb barley BAC contig. An analysis of the contig sequence revealed that a rice Vrs1 orthologue is present on chromosome 7, suggesting a transposition of the chromosomal segment containing Vrs1 within barley chromosome 2H. The breakdown of micro-collinearity illustrates the limitations of synteny cloning, and stresses the importance of implementing genomic studies directly in the target species.
Collapse
Affiliation(s)
- M Pourkheirandish
- National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan
| | | | | | | | | |
Collapse
|
28
|
Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK. Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 2007; 8:77-84. [PMID: 17173059 DOI: 10.1038/nrg1970] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our knowledge of recombination rates and patterns in plants is far from being comprehensive. However, compelling evidence indicates a central role for recombination, through its influences on mutation and selection, in the evolution of plant genomes. Furthermore, recombination seems to be generally higher and more variable in plants than in animals, which could be one of the primary reasons for differences in genome lability between these two kingdoms. Much additional study of recombination in plants is needed to investigate these ideas further.
Collapse
Affiliation(s)
- Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA.
| | | | | | | | | |
Collapse
|
29
|
Eller CD, Regelson M, Merriman B, Nelson S, Horvath S, Marahrens Y. Repetitive sequence environment distinguishes housekeeping genes. Gene 2006; 390:153-65. [PMID: 17141428 PMCID: PMC1857324 DOI: 10.1016/j.gene.2006.09.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/18/2006] [Accepted: 09/24/2006] [Indexed: 12/14/2022]
Abstract
Housekeeping genes are expressed across a wide variety of tissues. Since repetitive sequences have been reported to influence the expression of individual genes, we employed a novel approach to determine whether housekeeping genes can be distinguished from tissue-specific genes by their repetitive sequence context. We show that Alu elements are more highly concentrated around housekeeping genes while various longer (>400-bp) repetitive sequences ("repeats"), including Long Interspersed Nuclear Element-1 (LINE-1) elements, are excluded from these regions. We further show that isochore membership does not distinguish housekeeping genes from tissue-specific genes and that repetitive sequence environment distinguishes housekeeping genes from tissue-specific genes in every isochore. The distinct repetitive sequence environment, in combination with other previously published sequence properties of housekeeping genes, was used to develop a method of predicting housekeeping genes on the basis of DNA sequence alone. Using expression across tissue types as a measure of success, we demonstrate that repetitive sequence environment is by far the most important sequence feature identified to date for distinguishing housekeeping genes.
Collapse
Affiliation(s)
- C. Daniel Eller
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
| | - Moira Regelson
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
| | - Barry Merriman
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
| | - Stan Nelson
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
| | - Steve Horvath
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
- UCLA Department of Biostatistics, School of Public Health, Box 951772, Los Angeles, California 90095-1772, USA
| | - York Marahrens
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
- * to whom correspondence should be addressed: York Marahrens, UCLA Department of Human Genetics, Gonda Center, Room 4554b, 695 Charles E. Young Drive, Los Angeles, CA 90095, USA, Phone: (310) 267-2466, Fax: (310) 794-5446, E-mail:
| |
Collapse
|
30
|
Yandeau-Nelson MD, Nikolau BJ, Schnable PS. Effects of trans-acting genetic modifiers on meiotic recombination across the a1-sh2 interval of maize. Genetics 2006; 174:101-12. [PMID: 16816431 PMCID: PMC1569796 DOI: 10.1534/genetics.105.049270] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 06/26/2006] [Indexed: 01/13/2023] Open
Abstract
Meiotic recombination rates are potentially affected by cis- and trans-acting factors, i.e., genotype-specific modifiers that do or do not reside in the recombining interval, respectively. Effects of trans modifiers on recombination across the approximately 140-kb maize a1-sh2 interval of chromosome 3L were studied in the absence of polymorphic cis factors in three genetically diverse backgrounds into which a sequence-identical a1-sh2 interval had been introgressed. Genetic distances across a1-sh2 varied twofold among genetic backgrounds. Although the existence of regions exhibiting high and low rates of recombination (hot and cold spots, respectively) was conserved across backgrounds, the absolute rates of recombination in these sequence-identical regions differed significantly among backgrounds. In addition, an intergenic hot spot had a higher rate of recombination as compared to the genome average rate of recombination in one background and not in another. Recombination rates across two genetic intervals on chromosome 1 did not exhibit the same relationships among backgrounds as was observed in a1-sh2. This suggests that at least some detected trans-acting factors do not equally affect recombination across the genome. This study establishes that trans modifier(s) polymorphic among genetic backgrounds can increase and decrease recombination in both genic and intergenic regions over relatively small genetic and physical intervals.
Collapse
Affiliation(s)
- Marna D Yandeau-Nelson
- Interdepartmental Genetics Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50014-3467, USA
| | | | | |
Collapse
|
31
|
Drouaud J, Camilleri C, Bourguignon PY, Canaguier A, Bérard A, Vezon D, Giancola S, Brunel D, Colot V, Prum B, Quesneville H, Mézard C. Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination "hot spots". Genome Res 2005; 16:106-14. [PMID: 16344568 PMCID: PMC1356134 DOI: 10.1101/gr.4319006] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Crossover (CO) is a key process for the accurate segregation of homologous chromosomes during the first meiotic division. In most eukaryotes, meiotic recombination is not homogeneous along the chromosomes, suggesting a tight control of the location of recombination events. We genotyped 71 single nucleotide polymorphisms (SNPs) covering the entire chromosome 4 of Arabidopsis thaliana on 702 F2 plants, representing 1404 meioses and allowing the detection of 1171 COs, to study CO localization in a higher plant. The genetic recombination rates varied along the chromosome from 0 cM/Mb near the centromere to 20 cM/Mb on the short arm next to the NOR region, with a chromosome average of 4.6 cM/Mb. Principal component analysis showed that CO rates negatively correlate with the G+C content (P = 3x10(-4)), in contrast to that reported in other eukaryotes. COs also significantly correlate with the density of single repeats and the CpG ratio, but not with genes, pseudogenes, transposable elements, or dispersed repeats. Chromosome 4 has, on average, 1.6 COs per meiosis, and these COs are subjected to interference. A detailed analysis of several regions having high CO rates revealed "hot spots" of meiotic recombination contained in small fragments of a few kilobases. Both the intensity and the density of these hot spots explain the variation of CO rates along the chromosome.
Collapse
Affiliation(s)
- Jan Drouaud
- Station de Génétique et d'Amélioration des Plantes, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, 78026, Versailles cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Anderson LK, Lai A, Stack SM, Rizzon C, Gaut BS. Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes. Genome Res 2005; 16:115-22. [PMID: 16339046 PMCID: PMC1356135 DOI: 10.1101/gr.4249906] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Examining the relationships among DNA sequence, meiotic recombination, and chromosome structure at a genome-wide scale has been difficult because only a few markers connect genetic linkage maps with physical maps. Here, we have positioned 1195 genetically mapped expressed sequence tag (EST) markers onto the 10 pachytene chromosomes of maize by using a newly developed resource, the RN-cM map. The RN-cM map charts the distribution of crossing over in the form of recombination nodules (RNs) along synaptonemal complexes (SCs, pachytene chromosomes) and allows genetic cM distances to be converted into physical micrometer distances on chromosomes. When this conversion is made, most of the EST markers used in the study are located distally on the chromosomes in euchromatin. ESTs are significantly clustered on chromosomes, even when only euchromatic chromosomal segments are considered. Gene density and recombination rate (as measured by EST and RN frequencies, respectively) are strongly correlated. However, crossover frequencies for telomeric intervals are much higher than was expected from their EST frequencies. For pachytene chromosomes, EST density is about fourfold higher in euchromatin compared with heterochromatin, while DNA density is 1.4 times higher in heterochromatin than in euchromatin. Based on DNA density values and the fraction of pachytene chromosome length that is euchromatic, we estimate that approximately 1500 Mbp of the maize genome is in euchromatin. This overview of the organization of the maize genome will be useful in examining genome and chromosome evolution in plants.
Collapse
Affiliation(s)
- Lorinda K Anderson
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | | | |
Collapse
|
33
|
Caldwell KS, Russell J, Langridge P, Powell W. Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 2005; 172:557-67. [PMID: 16219791 PMCID: PMC1456183 DOI: 10.1534/genetics.104.038489] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In human genetics a detailed knowledge of linkage disequilibrium (LD) is considered a prerequisite for effective population-based, high-resolution gene mapping and cloning. Similar opportunities exist for plants; however, differences in breeding system and population history need to be considered. Here we report a detailed study of localized LD in different populations of an inbreeding crop species. We measured LD between and within four gene loci within the region surrounding the hardness locus in three different gene pools of barley (Hordeum vulgare). We demonstrate that LD extends to at least 212 kb in elite barley cultivars but is rapidly eroded in related inbreeding ancestral populations. Our results indicate that haplotype-based sequence analysis in multiple populations will provide new opportunities to adjust the resolution of association studies in inbreeding crop species.
Collapse
|
34
|
Still DW, Kim DH, Aoyama N. Genetic variation in Echinacea angustifolia along a climatic gradient. ANNALS OF BOTANY 2005; 96:467-77. [PMID: 15994841 PMCID: PMC4246781 DOI: 10.1093/aob/mci199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUNDS AND AIMS Echinacea angustifolia is a widespread species distributed throughout the Great Plains region of North America. Genetic differentiation among populations was investigated along a 1500 km north-south climatic gradient in North America, a region with no major geographical barriers. The objective of the study was to determine if genetic differentiation of populations could be explained by an isolation-by-distance model or by associations with climatic parameters known to affect plant growth and survival. METHODS Historical climatic data were used to define the nature of the climatic gradient and AFLP markers were used to establish patterns of population genetic differentiation among ten Echinacea populations collected from North Dakota to Oklahoma. A total of 1290 fragments were scored using six EcoRI/MseI and three PstI/MseI primer combinations. Assessment of the correlation between climatic, genetic and geographic distances was assessed by Mantel and partial Mantel tests. KEY RESULTS PstI/MseI combinations produced significantly fewer fragments, but a larger percentage was unique compared with EcoRI/MseI markers. Using estimates of F(ST), populations in Oklahoma and southern Kansas were identified as the most divergent from the other populations. Both the neighbour-joining tree and principal co-ordinate analysis clustered the populations in a north-south spatial orientation. About 60% of the genetic variation was found within populations, 20% among populations and the remaining 20% was partitioned among groups that were defined by the topology of the neighbour-joining tree. Significant support was found for the isolation-by-distance model independent of the effects of annual mean precipitation, but not from annual mean temperature and freeze-free days. CONCLUSIONS Echinacea angustifolia populations exhibit genetic divergence along a north-south climatic gradient. The data support an isolation-by-distance restriction in gene flow that is independent of annual mean precipitation.
Collapse
Affiliation(s)
- D W Still
- Department of Horticulture, Plant and Soil Science, California State Polytechnic University, Pomona, 3801 W Temple Avenue, Pomona, CA 91768, USA.
| | | | | |
Collapse
|
35
|
Yao H, Schnable PS. Cis-effects on meiotic recombination across distinct a1-sh2 intervals in a common Zea genetic background. Genetics 2005; 170:1929-44. [PMID: 15937141 PMCID: PMC1449771 DOI: 10.1534/genetics.104.034454] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 04/22/2005] [Indexed: 11/18/2022] Open
Abstract
Genetic distances across the a1-sh2 interval varied threefold in three near-isogenic stocks that carry structurally distinct teosinte A1 Sh2 haplotypes (from Z. mays spp. mexicana Chalco, Z. mays spp. parviglumis, and Z. luxurians) and a common maize a1::rdt sh2 haplotype. In each haplotype >85% of recombination events resolved in the proximal 10% of the approximately 130-kb a1-sh2 interval. Even so, significant differences in the distributions of recombination breakpoints were observed across subintervals among haplotypes. Each of the three previously detected recombination hot spots was detected in at least one of the three teosinte haplotypes and two of these hot spots were not detected in at least one teosinte haplotype. Moreover, novel hot spots were detected in two teosinte haplotypes. Due to the near-isogenic nature of the three stocks, the observed variation in the distribution of recombination events is the consequence of cis-modifications. Although generally negatively correlated with rates of recombination per megabase, levels of sequence polymorphisms do not fully account for the nonrandom distribution of recombination breakpoints. This study also suggests that estimates of linkage disequilibrium must be interpreted with caution when considering whether a gene has been under selection.
Collapse
Affiliation(s)
- Hong Yao
- Interdepartmental Genetics Program, Development and Cell Biology, Iowa State University, Ames, Iowa 50011-3650, USA
| | | |
Collapse
|
36
|
High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics 2005; 168:2127-40. [PMID: 15611181 DOI: 10.1534/genetics.104.031013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The locus sun on the short arm of tomato chromosome 7 controls morphology of the fruit. Alleles from wild relatives impart a round shape, while alleles from certain cultivated varieties impart an oval shape typical of roma-type tomatoes. We fine mapped the locus in two populations and investigated the genome organization of the region spanning and flanking sun. The first high-resolution genetic map of the sun locus was constructed using a nearly isogenic F(2) population derived from a cross between Lycopersicon pennellii introgression line IL7-4 and L. esculentum cv Sun1642. The mapping combined with results from pachytene FISH experiments demonstrated that the top of chromosome 7 is inverted in L. pennellii accession LA716. sun was located close to the chromosomal breakpoint and within the inversion, thereby precluding map-based cloning of the gene using this population. The fruit-shape locus was subsequently fine mapped in a population derived from a cross between L. esculentum Sun1642 and L. pimpinellifolium LA1589. Chromosome walking using clones identified from several large genomic insert libraries resulted in two noncontiguous contigs flanking sun. Fiber-FISH analysis showed that distance between the two contigs measured 68 kb in L. esculentum Sun1642 and 38 kb in L. pimpinellifolium LA1589, respectively. The sun locus mapped between the two contigs, suggesting that allelic variation at this locus may be due to an insertion/deletion event. The results demonstrate that sun is located in a highly dynamic region of the tomato genome.
Collapse
|
37
|
Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, Ordon F, Graner A. The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:912-22. [PMID: 15941403 DOI: 10.1111/j.1365-313x.2005.02424.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Virus diseases are widespread threats for crop production, which can, in many cases, be controlled efficiently by exploiting naturally occurring resistance. Barley, an important cereal species of the Triticeae, carries two genes, rym4 and rym5, which are located in the telomeric region of chromosome 3HL and confer recessive resistance to various strains of the Barley yellow mosaic virus complex. The barley 'eukaryotic translation initiation factor 4E' (Hv-eIF4E) was identified as a candidate for resistance gene function by physical mapping on a 650 kb contig. It is located in a chromosomal region characterized by suppressed recombination, in a position collinear to its homologue on rice chromosome 1L. Sequence diversity in the coding region of Hv-eIF4E, as calculated from a collection of unrelated barley accessions, revealed non-silent single nucleotide polymorphisms (SNPs) in four of its five exons. Stable transformation of a resistant barley genotype with a genomic fragment or a full-length cDNA of Hv-eIF4E derived from susceptible cultivars induced susceptibility to Barley mild mosaic virus. Moreover, the identification of SNPs diagnostic for rym4 and rym5 provides evidence that these are two alleles, which confer different resistance specificities. These findings demonstrate that variants of Hv-eIF4E confer multiallelic recessive virus resistance in a monocot species. The identification of eIF4E as the causal host factor for bymovirus resistance illustrates that mutations in this basic component of the eukaryotic translation complex form a seminal mechanism for recessive virus resistance in both dicot and monocot plants.
Collapse
Affiliation(s)
- Nils Stein
- Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Nelson MN, Nixon J, Lydiate DJ. Genome-wide analysis of the frequency and distribution of crossovers at male and female meiosis in Sinapis alba L. (white mustard). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:31-43. [PMID: 15902398 DOI: 10.1007/s00122-005-1961-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 02/14/2005] [Indexed: 05/02/2023]
Abstract
We present the first genetic linkage maps of Sinapis alba (white mustard) and a rigorous analysis of sex effects on the frequency and distribution of crossovers at meiosis in this species. Sex-averaged maps representing recombination in two highly heterozygous parents were aligned to give a consensus map consisting of 382 loci defined by restriction fragment length polymorphisms and arranged in 12 linkage groups with no unlinked markers. The loci were distributed in a near-random manner across the genome, and there was little evidence of segregation distortion. From these dense maps, a subset of spaced informative markers was used to establish recombination frequencies assayed separately in male and female gametes and derived from two distinct genetic backgrounds. Analyses of 746 gametes indicated that recombination frequencies were greater in male gametes, with the greatest differences near the ends of linkage groups. Genetic background had a lesser effect on recombination frequencies, with no discernible pattern in the distribution of such differences. The possible causes of sex differences in recombination frequency and the implications for plant breeding are discussed.
Collapse
|
39
|
Anderson LK, Stack SM. Recombination nodules in plants. Cytogenet Genome Res 2005; 109:198-204. [PMID: 15753577 DOI: 10.1159/000082400] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 03/28/2004] [Indexed: 11/19/2022] Open
Abstract
The molecular events of recombination are thought to be catalyzed by proteins present in recombination nodules (RNs). Therefore, studying RN structure and function should give insights into the processes by which meiotic recombination is regulated in eukaryotes. Two types of RNs have been identified so far, early (ENs) and late (LNs). ENs appear at leptotene and persist into early pachytene while LNs appear in pachytene and remain into early diplotene. ENs and LNs can be distinguished not only on their time of appearance, but also by such characteristics as shape and size, relative numbers, and association with unsynapsed and/or synapsed chromosomal segments. The function(s) of ENs is not clear, but they may have a role in searching for DNA homology, synapsis, gene conversion and/or crossing over. LNs are well correlated with crossing over. Here, the patterns of ENs and LNs during prophase I in plants are reviewed.
Collapse
Affiliation(s)
- L K Anderson
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA.
| | | |
Collapse
|
40
|
Yandeau-Nelson MD, Zhou Q, Yao H, Xu X, Nikolau BJ, Schnable PS. MuDR transposase increases the frequency of meiotic crossovers in the vicinity of a Mu insertion in the maize a1 gene. Genetics 2005; 169:917-29. [PMID: 15489518 PMCID: PMC1449141 DOI: 10.1534/genetics.104.035089] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 10/19/2004] [Indexed: 01/15/2023] Open
Abstract
Although DNA breaks stimulate mitotic recombination in plants, their effects on meiotic recombination are not known. Recombination across a maize a1 allele containing a nonautonomous Mu transposon was studied in the presence and absence of the MuDR-encoded transposase. Recombinant A1' alleles isolated from a1-mum2/a1::rdt heterozygotes arose via either crossovers (32 CO events) or noncrossovers (8 NCO events). In the presence of MuDR, the rate of COs increased fourfold. This increase is most likely a consequence of the repair of MuDR-induced DNA breaks at the Mu1 insertion in a1-mum2. Hence, this study provides the first in vivo evidence that DNA breaks stimulate meiotic crossovers in plants. The distribution of recombination breakpoints is not affected by the presence of MuDR in that 19 of 24 breakpoints isolated from plants that carried MuDR mapped to a previously defined 377-bp recombination hotspot. This result is consistent with the hypothesis that the DNA breaks that initiate recombination at a1 cluster at its 5' end. Conversion tracts associated with eight NCO events ranged in size from <700 bp to >1600 bp. This study also establishes that MuDR functions during meiosis and that ratios of CO/NCO vary among genes and can be influenced by genetic background.
Collapse
|
41
|
Wulff BBH, Thomas CM, Parniske M, Jones JDG. Genetic variation at the tomato Cf-4/Cf-9 locus induced by EMS mutagenesis and intralocus recombination. Genetics 2005; 167:459-70. [PMID: 15166169 PMCID: PMC1470844 DOI: 10.1534/genetics.167.1.459] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interaction between tomato (Lycopersicon esculentum) and the leaf mold pathogen Cladosporium fulvum is an excellent model for investigating disease resistance gene evolution. The interaction is controlled in a gene-for-gene manner by Cf genes that encode type I transmembrane extracellular leucine-rich repeat glycoproteins that recognize their cognate fungal avirulence (Avr) proteins. Cf-4 from L. hirsutum and Cf-9 from L. pimpinellifolium are located at the same locus on the short arm of tomato chromosome 1 in an array of five paralogs. Molecular analysis has shown that one mechanism for generating sequence variation in Cf genes is intragenic sequence exchange through unequal crossing over or gene conversion. To investigate this we used a facile genetic selection to identify novel haplotypes in the progeny of Cf-4/Cf-9 trans-heterozygotes that lacked Cf-4 and Cf-9. This selection is based on the ability of Avr4 and Avr9 to induce Cf-4- or Cf-9-dependent seedling death. The crossovers were localized to the same intergenic region defining a recombination hotspot in this cross. As part of a structure-function analysis of Cf-9 and Cf-4, nine EMS-induced mutant alleles have been characterized. Most mutations result in single-amino-acid substitutions in their C terminus at residues that are conserved in other Cf proteins.
Collapse
Affiliation(s)
- Brande B H Wulff
- Sainsbury Laboratory, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | | | | | | |
Collapse
|
42
|
Anderson LK, Salameh N, Bass HW, Harper LC, Cande WZ, Weber G, Stack SM. Integrating genetic linkage maps with pachytene chromosome structure in maize. Genetics 2005; 166:1923-33. [PMID: 15126409 PMCID: PMC1470829 DOI: 10.1534/genetics.166.4.1923] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic linkage maps reveal the order of markers based on the frequency of recombination between markers during meiosis. Because the rate of recombination varies along chromosomes, it has been difficult to relate linkage maps to chromosome structure. Here we use cytological maps of crossing over based on recombination nodules (RNs) to predict the physical position of genetic markers on each of the 10 chromosomes of maize. This is possible because (1). all 10 maize chromosomes can be individually identified from spreads of synaptonemal complexes, (2). each RN corresponds to one crossover, and (3). the frequency of RNs on defined chromosomal segments can be converted to centimorgan values. We tested our predictions for chromosome 9 using seven genetically mapped, single-copy markers that were independently mapped on pachytene chromosomes using in situ hybridization. The correlation between predicted and observed locations was very strong (r(2) = 0.996), indicating a virtual 1:1 correspondence. Thus, this new, high-resolution, cytogenetic map enables one to predict the chromosomal location of any genetically mapped marker in maize with a high degree of accuracy. This novel approach can be applied to other organisms as well.
Collapse
Affiliation(s)
- Lorinda K Anderson
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Cellini F, Chesson A, Colquhoun I, Constable A, Davies HV, Engel KH, Gatehouse AMR, Kärenlampi S, Kok EJ, Leguay JJ, Lehesranta S, Noteborn HPJM, Pedersen J, Smith M. Unintended effects and their detection in genetically modified crops. Food Chem Toxicol 2004; 42:1089-125. [PMID: 15123383 DOI: 10.1016/j.fct.2004.02.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2003] [Accepted: 02/04/2004] [Indexed: 11/28/2022]
Abstract
The commercialisation of GM crops in Europe is practically non-existent at the present time. The European Commission has instigated changes to the regulatory process to address the concerns of consumers and member states and to pave the way for removing the current moratorium. With regard to the safety of GM crops and products, the current risk assessment process pays particular attention to potential adverse effects on human and animal health and the environment. This document deals with the concept of unintended effects in GM crops and products, i.e. effects that go beyond that of the original modification and that might impact primarily on health. The document first deals with the potential for unintended effects caused by the processes of transgene insertion (DNA rearrangements) and makes comparisons with genetic recombination events and DNA rearrangements in traditional breeding. The document then focuses on the potential value of evolving "profiling" or "omics" technologies as non-targeted, unbiased approaches, to detect unintended effects. These technologies include metabolomics (parallel analysis of a range of primary and secondary metabolites), proteomics (analysis of polypeptide complement) and transcriptomics (parallel analysis of gene expression). The technologies are described, together with their current limitations. Importantly, the significance of unintended effects on consumer health are discussed and conclusions and recommendations presented on the various approaches outlined.
Collapse
Affiliation(s)
- F Cellini
- Metapontum Agrobios, SS Jonica Km 448.2, I-75010 Metaponto Matera, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Anderson LK, Salameh N, Bass HW, Harper LC, Cande WZ, Weber G, Stack SM. Integrating Genetic Linkage Maps With Pachytene Chromosome Structure in Maize. Genetics 2004. [DOI: 10.1093/genetics/166.4.1923] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Genetic linkage maps reveal the order of markers based on the frequency of recombination between markers during meiosis. Because the rate of recombination varies along chromosomes, it has been difficult to relate linkage maps to chromosome structure. Here we use cytological maps of crossing over based on recombination nodules (RNs) to predict the physical position of genetic markers on each of the 10 chromosomes of maize. This is possible because (1) all 10 maize chromosomes can be individually identified from spreads of synaptonemal complexes, (2) each RN corresponds to one crossover, and (3) the frequency of RNs on defined chromosomal segments can be converted to centimorgan values. We tested our predictions for chromosome 9 using seven genetically mapped, single-copy markers that were independently mapped on pachytene chromosomes using in situ hybridization. The correlation between predicted and observed locations was very strong (r2 = 0.996), indicating a virtual 1:1 correspondence. Thus, this new, high-resolution, cytogenetic map enables one to predict the chromosomal location of any genetically mapped marker in maize with a high degree of accuracy. This novel approach can be applied to other organisms as well.
Collapse
Affiliation(s)
- Lorinda K Anderson
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Naser Salameh
- Department of Plant Breeding and Biotechnology, University of Hohenheim, D-70593 Stuttgart, Germany
| | - Hank W Bass
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Lisa C Harper
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - W Z Cande
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Gerd Weber
- Department of Plant Breeding and Biotechnology, University of Hohenheim, D-70593 Stuttgart, Germany
| | - Stephen M Stack
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
45
|
Nutritional and Safety Assessments of Foods and Feeds Nutritionally Improved through Biotechnology: An Executive Summary A Task Force Report by the International Life Sciences Institute, Washington, D.C. Compr Rev Food Sci Food Saf 2004; 3:35-104. [DOI: 10.1111/j.1541-4337.2004.tb00059.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 2004; 4:12-25. [PMID: 15004738 DOI: 10.1007/s10142-004-0106-1] [Citation(s) in RCA: 440] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 12/19/2003] [Accepted: 12/19/2003] [Indexed: 02/03/2023]
Abstract
Because of polyploidy and large genome size, deletion stocks of bread wheat are an ideal material for physically allocating ESTs and genes to small chromosomal regions for targeted mapping. To enhance the utility of deletion stocks for chromosome bin mapping, we characterized a set of 84 deletion lines covering the 21 chromosomes of wheat using 725 microsatellites. We localized these microsatellite loci to 94 breakpoints in a homozygous state (88 distal deletions, 6 interstitial), and 5 in a heterozygous state representing 159 deletion bins. Chromosomes from homoeologous groups 2 and 5 were the best covered (126 and 125 microsatellites, respectively) while the coverage for group 4 was lower (80 microsatellites). We assigned at least one microsatellite in up to 92% of the bins (mean 4.97 SSR/bin). Only a few discrepancies concerning marker order were observed. The cytogenetic maps revealed small genetic distances over large physical regions around the centromeres and large genetic to physical map ratios close to the telomeres. As SSRs are the markers of choice for many genetic and breeding studies, the mapped microsatellite loci will be useful not only for deletion stock verifications but also for allocating associated QTLs to deletion bins where numerous ESTs that could be potential candidate genes are currently assigned.
Collapse
Affiliation(s)
- Pierre Sourdille
- UMR INRA-UBP Amélioration et Santé des Plantes, 234, Avenue du Brézet, 63039 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhou Y, Gwaze DP, Reyes-Valdés MH, Bui T, Williams CG. No clustering for linkage map based on low-copy and undermethylated microsatellites. Genome 2003; 46:809-16. [PMID: 14608397 DOI: 10.1139/g03-062] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clustering has been reported for conifer genetic maps based on hypomethylated or low-copy molecular markers, resulting in uneven marker distribution. To test this, a framework genetic map was constructed from three types of microsatellites: low-copy, undermethylated, and genomic. These Pinus taeda L. microsatellites were mapped using a three-generation pedigree with 118 progeny. The microsatellites were highly informative; of the 32 markers in intercross configuration, 29 were segregating for three or four alleles in the progeny. The sex-averaged map placed 51 of the 95 markers in 15 linkage groups at LOD > 4.0. No clustering or uneven distribution across the genome was observed. The three types of P. taeda microsatellites were randomly dispersed within each linkage group. The 51 microsatellites covered a map distance of 795 cM, an average distance of 21.8 cM between markers, roughly half of the estimated total map length. The minimum and maximum distances between any two bins was 4.4 and 45.3 cM, respectively. These microsatellites provided anchor points for framework mapping for polymorphism in P. taeda and other closely related hard pines.Key words: simple sequence repeats, genome duplication, conifers, Pinus taeda L. hypomethylation, low-copy kinetic component.
Collapse
Affiliation(s)
- Yi Zhou
- Forest Genetics Program, Texas A&M University, College Station, TX 77843-2135, USA
| | | | | | | | | |
Collapse
|
48
|
Dieterich JH, Braun HP, Schmitz UK. Alloplasmic male sterility in Brassica napus (CMS 'Tournefortii-Stiewe') is associated with a special gene arrangement around a novel atp9 gene. Mol Genet Genomics 2003; 269:723-31. [PMID: 12898218 DOI: 10.1007/s00438-003-0886-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2003] [Accepted: 06/09/2003] [Indexed: 10/26/2022]
Abstract
To identify regions of the mitochondrial genome potentially involved in the expression of alloplasmic 'Tournefortii-Stiewe' cytoplasmic male sterility (CMS) in Brassica napus, transcripts of 25 mitochondrial genes were analysed in fertile and near isogenic male-sterile plants (BC(8) generation). Differences were detected in the transcription of genes for subunit 9 of ATP synthase (atp9), cytochrome b (cob) and subunit 2 of NADH dehydrogenase (nad2). Structural analysis of these gene regions revealed differences in genome organisation around atp9 between male-sterile and fertile plants. Three atp9 genes, two of which were hitherto unknown, are present in the mitochondria of CMS plants, and rearrangements upstream of one of these genes have generated a chimeric 193-codon ORF, designated orf193. This region is transcribed as a CMS specific bi-cistronic mRNA of 1.58 kb comprising orf193 and atp9. The level of the aberrant 1.58-kb transcript is reduced in plants restored to fertility by as yet uncharacterized nuclear genes. orf193 encodes a polypeptide of 22.7 kDa which exhibits partial sequence identity to the subunit 6 of the ATP synthase complex. However, as it forms an uninterrupted ORF with one of the newly discovered atp9 genes it may also be translated as a chimeric 30.2-kDa protein. It is likely that either or both gene products interfere with the function or assembly of the mitochondrial F(0)F(1)-ATP synthase, thus impairing the highly ATP-dependent process of pollen development. The novel molecular features of alloplasmic 'Tournefortii-Stiewe' CMS are discussed with respect to the other known mechanisms of CMS in B. napus.
Collapse
Affiliation(s)
- J-H Dieterich
- Institut für Angewandte Genetik, Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | | | | |
Collapse
|
49
|
Wright SI, Agrawal N, Bureau TE. Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana. Genome Res 2003; 13:1897-903. [PMID: 12902382 PMCID: PMC403781 DOI: 10.1101/gr.1281503] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) comprise a major component of eukaryotic genomes, and exhibit striking deviations from random distribution across the genomes studied, including humans, flies, nematodes, and plants. Although considerable progress has been made in documenting these patterns, the causes are subject to debate. Here, we use the genome sequence of Arabidopsis thaliana to test for the importance of competing models of natural selection against TE insertions. We show that, despite TE accumulation near the centromeres, recombination does not generally correlate with TE abundance, suggesting that selection against ectopic recombination does not influence TE distribution in A. thaliana. In contrast, a consistent negative correlation between gene density and TE abundance, and a strong under-representation of TE insertions in introns suggest that selection against TE disruption of gene expression is playing a more important role in A. thaliana. High rates of self-fertilization may reduce the importance of recombination rate in genome structuring in inbreeding organisms such as A. thaliana and Caenorhabditis elegans.
Collapse
Affiliation(s)
- Stephen I Wright
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, Scotland EH9 3JT, UK.
| | | | | |
Collapse
|
50
|
Faris JD, Fellers JP, Brooks SA, Gill BS. A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 2003; 164:311-21. [PMID: 12750342 PMCID: PMC1462558 DOI: 10.1093/genetics/164.1.311] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Q locus played a major role in the domestication of wheat because it confers the free-threshing character and influences many other agronomically important traits. We constructed a physical contig spanning the Q locus using a Triticum monococcum BAC library. Three chromosome walking steps were performed by complete sequencing of BACs and identification of low-copy markers through similarity searches of database sequences. The BAC contig spans a physical distance of approximately 300 kb corresponding to a genetic distance of 0.9 cM. The physical map of T. monococcum had perfect colinearity with the genetic map of wheat chromosome arm 5AL. Recombination data in conjunction with analysis of fast neutron deletions confirmed that the contig spanned the Q locus. The Q gene was narrowed to a 100-kb segment, which contains an APETALA2 (AP2)-like gene that cosegregates with Q. AP2 is known to play a major role in controlling floral homeotic gene expression and thus is an excellent candidate for Q.
Collapse
Affiliation(s)
- Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58105, USA.
| | | | | | | |
Collapse
|